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1. Introduction

This note is meant to clarify the relation between different commonly used definitions of proper
discontinuity without the local compactness assumption for the underlying topological space. Much
of the discussion applies to actions of nondiscrete locally compact Hausdorff topological groups,
but, since my primary interest is geometric group theory, I will mostly work with discrete groups.
All group actions are assumed to be continuous, in other words, for discrete groups, these are
homomorphisms from abstract groups to groups of homeomorphisms of topological spaces. This
combination of continuous and properly discontinuous, sadly, leads to the ugly terminology “a
continuous properly discontinuous action.” A better terminology might be that of a properly discrete
action, since it refers to proper actions of discrete groups.

Throughout this note, I will be working only with topological spaces which are 1st countable,
since spaces most common in metric geometry, geometric topology, algebraic topology and geometric
group theory satisfy this property. One advantage of this assumption is that if (xn) is a sequence
converging to a point x ∈ X, then the subset {x}∪{xn : n ∈ N} is compact, which is not true if we
work with nets instead of sequences. However, I will try to avoid the local compactness assumption
whenever possible, since many spaces appearing in metric geometry and geometric group theory
(e.g. asymptotic cones) and algebraic topology (e.g. CW complexes) are not locally compact.
(Recall that topological space X is locally compact if every point has a basis of topology consisting
of relatively compact subsets.)

In the last three sections of the note I discuss several concepts related to properly discontinuous
actions. In Section 5 I discuss cocompactness of group actions. In Section 6 I discuss group-invariant
metrics. In particular, under suitable assumptions I will prove existence of an invariant complete
geodesic metric (Theorem 25). In Section 7 I discuss fundamental sets and regions. The main result
of this section is Theorem 61 which uses Voronoi tessellations to establish existence of fundamental
regions and domains for free properly discontinuous actions on proper geodesic metric spaces.
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2. Group actions

A topological group is a group G equipped with a topology such that the multiplication and
inversion maps

G×G→ G, (g, h) 7→ gh,G→ G, g 7→ g−1

are both continuous. A discrete group is a group with discrete topology. Every discrete group is
clearly a topological group.

A left continuous action of a topological group G on a topological space X is a continuous map

λ : G×X → X

satisfying
1. λ(1G, x) = x for all x ∈ X.
2. λ(gh, x) = λ(g, λ(h, x)), for all x ∈ X, g, h ∈ G.
From this, it follows that the map ρ : G→ Homeo(X)

ρ(g)(x) = λ(g, x),

is a group homomorphism, where the group operation ϕψ on Homeo(X) is the composition ϕ ◦ ψ.
If G is discrete, then every homomorphism G → Homeo(X) defines a left continuous action of

G on X.
The shorthand for ρ(g)(x) is gx or g ·x. Similarly, for a subset A ⊂ X, GA or G ·A, denotes the

orbit of A under the G-action:

GA =
⋃
g∈G

gA.

The quotient space X/G (also frequently denoted G\X), of X by the G-action, is the set of G-
orbits of points in X, equipped with the quotient topology: The elements of X/G are equivalence
classes in X, where x ∼ y when Gx = Gy (equivalently, y ∈ Gx).

The stabilizer of a point x ∈ X under the G-action is the subgroup Gx < G given by

{g ∈ G : gx = x}.
An action of G on X is called free if Gx = {1} for all x ∈ X. Assuming that X is Hausdorff, Gx is
closed in G for every x ∈ X.

Example 1. An example of a left action of G is the action of G on itself via left multiplication:

λ(g, h) = gh.

In this case, the common notation for ρ(g) is Lg. This action is free.

3. Proper maps

Properness of certain maps is the most common form of defining proper discontinuity; sadly,
there are two competing notions of properness in the literature.

A continuous map f : X → Y of topological spaces is proper in the sense of Bourbaki, or simply
Bourbaki–proper (cf. [6, Ch. I, §10, Theorem 1]) if f is a closed map (images of closed subsets are
closed) and point–preimages f−1(y), y ∈ Y , are compact. A continuous map f : X → Y is proper
(and this is the most common definition) if for every compact subset K ⊂ X, f−1(K) is compact.
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It is noted in [6, Ch. I, §10; Prop. 7] that if X is Hausdorff and Y is locally compact, then f is
Bourbaki–proper if and only if f is proper.

The advantage of the notion of Bourbaki-properness is that it applies in the case of Zariski
topology, where spaces tend to be compact1 (every subset of a finite-dimensional affine space is
Zariski-compact) and, hence, the standard notion of properness is useless.

Since our goal is to trade local compactness for 1st countability, I will prove a lemma which
appears as a corollary in [20]:

Lemma 2. If f : X → Y is proper, and X,Y are Hausdorff and 1st countable, then f is Bourbaki-
proper.

Proof. We only have to verify that f is closed. Suppose that A ⊂ X is a closed subset. Since Y
is 1st countable, it suffices to show that for each sequence (xn) in A such that (f(xn)) converges
to y ∈ Y , there is a subsequence (xnk

) which converges to some x ∈ A such that f(x) = y. The
subset C = {y} ∪ {f(xn) : n ∈ N} ⊂ Y is compact. Hence, by properness of f , K = f−1(C) is
also compact. Since X is Hausdorff, and K is compact, follows that (xn) subconverges to a point
x ∈ K. By continuity of f , f(x) = y. Since A is closed, x ∈ A. □

Remark 3. This lemma still holds if one were to replace the assumption that X is 1st countable
by surjectivity of f , see [20].

The converse (each Bourbaki–proper map is proper) is proven in [6, Ch. I, §10; Prop. 6] without
any restrictions on X,Y . Hence:

Corollary 4. For maps between 1st countable Hausdorff spaces, Bourbaki-properness is equivalent
to properness.

4. Proper discontinuity

Suppose thatX is a 1st countable Hausdorff topological space, G a discrete group andG×X → X
a (continuous) action. I use the notation gn → ∞ in G to indicate that gn converges to ∞ in the
1-point compactification G ∪ {∞} of G, i.e. for every finite subset F ⊂ G,

card({n : gn ∈ F}) <∞.

Given a group action G×X → X and two subsets A,B ⊂ X, the transporter subset (A|B)G is
defined as

(A|B)G := {g ∈ G : gA ∩B ̸= ∅}.
Properness of group actions is (typically) stated using certain transporter sets.

Definition 5. Two points x, y ∈ X are said to be G-dynamically related if there is a sequence
gn → ∞ in G and a sequence xn → x in X such that gnxn → y.

A point x ∈ X is said to be a wandering point of the G-action if there is a neighborhood U of x
such that (U |U)G is finite.

Lemma 6. Suppose that the action G × X → X is wandering at a point x ∈ X. Then the G-
action has a G-slice at x, i.e. a neighborhood Wx ⊂ U which is Gx-stable and for all g /∈ Gx,
gWx ∩Wx = ∅.

1quasicompact in the Bourbaki terminology
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Proof. For each g ∈ (U |U)G − Gx we pick a neighborhood Vg ⊂ U of x such that gVg ∩ Vg = ∅.
Then the intersection

V :=
⋂

g∈(U |U)G−Gx

Vg

satisfies the property that (V |V )G = Gx. Lastly, take

Wx :=
⋂

g∈Gx

V. □

The next lemma is clear:

Lemma 7. Assuming that X is Hausdorff and 1st countable, the action G×X → X is wandering
at x if and only if x is not dynamically related to itself.

Given a group action α : G×X → X, we have the natural map

α̂ := α× idX : G×X → X ×X

where idX : (g, x) 7→ x.

Definition 8. An action α of a discrete group G on a topological space X is Bourbaki–proper if
the map α̂ is Bourbaki-proper.

Lemma 9. If the action α : G×X → X of a discrete group G on a Hausdorff topological space X
is Bourbaki-proper, then the quotient space X/G is Hausdorff.

Proof. The quotient map X → X/G is an open map by the definition of the quotient topology on
X/G. Since α is Bourbaki-proper, the image of the map α̂ is closed in X ×X. This image is the
equivalence relation on X ×X which use used to form the quotient X/G. Now, Hausdorffness of
X/G follows from [6, Proposition 8 in I.8.3]. □

Definition 10. An action α of a discrete group G on a topological space X is proper if the map α̂
is proper.

Note that the equivalence of (1) and (5) in the following theorem is proven in [6, Ch. III, §4.4,
Proposition 7] without any assumptions on X.

Theorem 11. Assuming that X is Hausdorff and 1st countable, the following are equivalent:

(1) The action α : G×X → X is Bourbaki-proper.
(2) For every compact subset K ⊂ X,

card((K|K)G) <∞.

(3) The action α : G×X → X is proper, i.e. the map α̂ is proper.
(4) For every compact subset K ⊂ X, there exists an open neighborhood U of K such that

card((U |U)G) <∞.
(5) For any pair of points x, y ∈ X there is a pair of neighborhoods Ux, Vx (of x, y respectively)

such that card((Ux|Vy)G)) <∞.
(6) There are no G-dynamically related points in X.
(7) Assuming, that G is countable and X is completely metrizable2 : The G-stabilizer of every

x ∈ X is finite and for any two points x ∈ X, y ∈ X−Gx, there exists a pair of neighborhoods
Ux, Vy (of x, resp. y) such that ∀g ∈ G, gUx ∩ Vy = ∅.

2It suffices to assume that X is hereditarily Baire: Every closed subset of X is Baire.
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(8) Assuming that X is a metric space and the action G ×X → X is equicontinuous3: There
is no x ∈ X and a sequence hn → ∞ in G such that hnx→ x.

(9) Assuming that X is a metric space and the action G × X → X is equicontinuous: Every
x ∈ X is a wandering point of the G-action.

(10) Assuming that X is a CW complex and the action G×X → X is cellular: Every point of
X is wandering.

(11) Assuming that X is a CW complex the action G×X → X is cellular: Every cell in X has
finite G-stabilizer.

Proof. The action α is Bourbaki-proper if and only if the map α̂ is proper (see Corollary 4) which
is equivalent to the statement that for each compact K ⊂ X, the subset (K|K)G ×K is compact.
Hence, (1) ⇐⇒ (2).

Assume that (3) holds, i.e. α is proper, equivalently, the map α̂ is proper. This means that for
each compact K ⊂ X, α̂−1(K ×K) = {(g, x) ∈ G×K : x ∈ K, gx ∈ K} is compact. This subset is
closed in G×X and projects onto (K|K)G in the first factor and to the subset

(⋆)
⋃

g∈(K|K)G

g−1(K)

in the second factor. Hence, properness of the action α implies finiteness of (K|K)G, i.e. (2).
Conversely, if (K|K)G is finite, compactness of g−1(K) for every g ∈ G implies compactness of the
union (⋆). Thus, (2) ⇐⇒ (3).

In order to show that (2)⇒(6), suppose that x, y are G-dynamically related points: There exists
a sequence gn → ∞ in G and a sequence xn → x such that gn(xn) → y. The subset

K = {x, y} ∪ {xn, gn(xn) : n ∈ N}
is compact. However, yn ∈ gn(K) ∩K for every n. A contradiction.

(6)⇒(5): Suppose that the neighborhoods Ux, Vy do not exist. Let {Un}n∈N, {Vn}n∈N be count-
able bases at x, y respectively. Then for every n there exists gn ∈ G, such that gn(Un) ∩ Vn ̸= ∅
for infinitely many gn’s in G. After extraction, gn → ∞ in G. This yields points xn ∈ Un, yn =
gn(xn) ∈ Vn. Hence, xn → x, yn → y. Thus, x is G-dynamically related to y. A contradiction.

(5)⇒(4). Consider a compact K ⊂ X. Then for each x ∈ K, y ∈ K there exist neighborhoods
Ux, Vy such that (Ux|Vy)G is finite. The product sets Ux × Vy, x, y ∈ K constitute an open cover of
K2. By compactness of K2, there exist x1, ..., xn, y1, ..., ym ∈ K such that

K ⊂ Ux1
∪ ... ∪ Uxn

K ⊂ Vy1
∪ ... ∪ Vym

and for each pair (xi, yj),
card({g ∈ G : gUxi

∩ Vyj
̸= ∅}) <∞.

Setting

W :=

n⋃
i=1

Uxi
, V :=

m⋃
j=1

Vyj
,

we see that
card((W |V )G) <∞.

Taking U := V ∩W yields the required subset U .
The implication (4)⇒(2) is immediate.

3E.g. an isometric action.
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This concludes the proof of equivalence of the properties (1)—(6).

(5)⇒(7): Finiteness of G-stabilizers of points in X is clear. Let x, y be points in distinct G-
orbits. Let U ′

x, V
′
y be neighborhoods of x, y such that (U ′

x|V ′
y)G = {g1, ..., gn}. For each i, since X

is Hausdorff, there are disjoint neighborhoods Vi of y and Wi of gi(xi). Now set

Vy :=

n⋂
i=1

Vi, Ux :=

n⋂
i=1

g−1
i (Wi).

Then gUx ∩ Vy = ∅ for every g ∈ G.
(7)⇒(6): It is clear that (7) implies that there are no dynamically related points with distinct

G-orbits. In particular, every G-orbit in X is closed.
Assume now that X is completely metrizable and G is countable. Suppose that a point x ∈ X

is G-dynamically related to itself. Since the stabilizer Gx is finite, the point x is an accumulation
point of Gx; moreover, Gx is closed in X. Hence, Gx is a closed perfect subset of X. Since X
admits a complete metric, so does its closed subset Gx. Thus, for each g ∈ G, the complement
Ug := Gx − {gx} is open and dense in Gx. By the Baire Category Theorem, the countable
intersection ⋂

g∈G

Ug

is dense in Gx. However, this intersection is empty. A contradiction.
It is clear that (6)⇒(8) (without any extra assumptions).
(8)⇒(6). Suppose that X is a metric space and the G-action is equicontinuous. Equicontinuity

implies that for each z ∈ X, a sequence zn → z and gn ∈ G,

gnzn → gz.

Suppose that there exist a pair of G-dynamically related points x, y ∈ X: ∃xn → x, gn ∈ G,
gnxn → y. By the equicontinuity of the action, gnx → y. Since gn → ∞, there exist subsequences
gni → ∞ and gmi → ∞ such that the products hi := g−1

ni
gmi are all distinct. Then, by the

equicontinuity,

hix→ x.

A contradiction.
The implications (5)⇒(9)⇒(8) and (5)⇒(10)⇒(11) are clear.

Lastly, let us prove the implication (11)⇒(2). We first observe that every CW complex is
Hausdorff and 1st countable. Furthermore, every compact K ⊂ X intersects only finitely many
open cells eλ in X. (Otherwise, picking one point from each nonempty intersection K ∩ eλ we
obtain an infinite closed discrete subset of K.) Thus, there exists a finite subset E := {eλ : λ ∈ Λ}
of open cells in X such that for every g ∈ (K|K)G, gE ∩E ̸= ∅. Now, finiteness of (K|K)G follows
from finiteness of cell-stabilizers in G. □

Unfortunately, the property that every point of X is a wandering point is frequently taken as the
definition of proper discontinuity for G-actions, see e.g. [13, 18]. Items (8) and (10) in the above
theorem provide a (weak) justification for this abuse of terminology. I feel that the better name for
such actions is wandering actions.

Example 12. Consider the action of G = Z on the punctured affine plane X = R2 − {(0, 0)},
where the generator of Z acts via (x, y) 7→ (2x, 12y). Then for any p ∈ X, the G-orbit Gp has no
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accumulation points in X. However, any two points p = (x, 0), q = (0, y) ∈ X are dynamically
related. Thus, the action of G is not proper.

This example shows that the quotient space of a wandering action need not be Hausdorff.

Lemma 13. Suppose that G × X → X is a wandering action. Then each G-orbit is closed and
discrete in X. In particular, the quotient space X/G is T1.

Proof. Suppose that Gx accumulates at a point y. Then Gx ∩Wy is nonempty, where Wy is a
G-slice at y. It follows that all points of Gx ∩Wy lie in the same Wy-orbit, which implies that
Gx ∩Wy = {y}. □

There are several reasons to consider proper actions of discrete (and, more generally, locally
compact) groups; one reason is that such each proper action of a discrete group yields an orbi-
covering map in the case of smooth group actions on manifolds: M → M/G is an orbi-covering
provided that the action of G on M is smooth (or, at least, locally smoothable). Another reason is
that for a proper action on a Hausdorff space, G×X → X, the quotient X/G is again Hausdorff,
see Lemma 9.

Question 14. Suppose that G is a discrete group, G × X → X is a free continuous action on
an n-dimensional topological manifold X such that the quotient space X/G is a (Hausdorff) n-
dimensional topological manifold. Does it follow that the G-action on X is proper?

The answer to this question is negative if one merely assumes that X is a locally compact Haus-
dorff topological space and X/G is Hausdorff, see [10] (the action given there was even cocompact).
Below is a different example. We begin by constructing a non-proper free continuous R-action on
a manifold, such that the quotient space is not just Hausdorff but is a manifold with boundary.

Example 15. This is a variation on Example 12. We start with the space

Z = {(x, y) : x, y ∈ [0,∞), (x, y) ̸= (0, 0)}.

Take the quotient space X of Z by the equivalence relation (x, 0) ∼ (0, 1x ). The space X is homeo-
morphic to the open Moebius band. The group G = R acts on Z continuously by

(t, (x, y)) 7→ (2tx, 2−ty).

The above equivalence relation on X is preserved by the G-action and, hence, the G-action descends
to a continuous G-action on X. It is easy to see that this action is free but not proper: The
equivalence class of (1, 0) is dynamically related to itself. Lastly, the quotient X/G is Hausdorff,
homeomorphic to [0, 1) (the equivalence class of (1, 0) maps to 0 ∈ [0, 1)).

Lastly, we use Example 15 to construct a non-proper free Z-action with Hausdorff quotient. We
continue with the notation of the previous example.

Example 16. Let Y ⊂ Z denote the following subset of Z (with the subspace topology):

Y = {(2m, 0) : m ∈ Z} ∪ {(0, 2n) : n ∈ Z} ∪ {(2m, 2n) : (m,n) ∈ Z2}.

Let W denote the projection of Y to X. We take Γ = Z < G = R. This subgroup preserves Y and,
hence, W . The quotient W/Γ is homeomorphic to Y ∩ {(0, y) : y ∈ R}, hence, is Hausdorff. At the
same time, the Γ-action on W is non-proper.
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5. Cocompactness

There are two common notions of cocompactness for group actions:

(1) G×X → X is cocompact if there exists a compact K ⊂ X such that G ·K = X.
(2) G×X → X is cocompact if X/G is compact.

It is clear that (1)⇒(2), as the image of a compact under the continuous (quotient) map p : X →
X/G is compact.

Lemma 17. If X is locally compact then (2)⇒(1).

Proof. For each x ∈ X let Ux denote a relatively compact neighborhood of x in X. Then

Vx := p(Ux) = p(G · Ux),

is compact since G · Ux is open in X. Thus, we obtain an open cover {Vx : x ∈ X} of X/G. Since
X/G is compact, this open cover contains a finite subcover

Vx1
, ..., Vxn

.

It follows that

p(

n⋃
i=1

Uxi) = X/G.

The set

K =

n⋃
i=1

Uxi

is compact and p(K) = X/G. Hence, G ·K = X. □

Lemma 18. Suppose that X is normal and Hausdorff, G×X → X is a proper action of a discrete
group, such that X/G is locally compact. Then X is locally compact.

Proof. Pick x ∈ X. Let Wx be a slice for the G-action at x; then Wx/Gx → X/G is a topological
embedding. Thus, our assumptions imply that Wx/Gx is compact for every x ∈ X. Let (xα) be
a net in Wx. Since Wx/Gx is compact, the net (xα)/G contains a convergent subnet. Thus, after
passing to a subnet, there exists g ∈ Gx such that (gxα) converges to some x ∈ Wx. Hence, (xα)
subconverges to g−1(x). Thus, Wx is relatively compact. Since X is assumed to be normal, x
admits a basis of relatively compact neighborhoods. □

Corollary 19. For normal Hausdorff spaces X the two notions of cocompactness agree for proper
discrete group actions on X.

On the other hand, if the drop the properness condition, the two notions are not equivalent even
for Z-actions with Hausdorff quotients, see the example by R. de la Vega in [27].

6. Invariant metrics

We start with several general definitions. A discrete subset E of a metric space (X, d) will be
called metrically proper if for some (equivalently, every) p ∈ X the function

d(p, ·) : E → R+

is proper. In other words, every metric ball contains only finitely many points of E. A geodesic
metric space, is a metric space (X, d) where every two points x, y are connected by a geodesic
segment, i.e. an isometric embedding c : [a, b] → (X, d) such that c(a) = x, c(b) = y. Geodesic
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segments connecting x to y need not be unique; however, one frequently denotes such segments xy
by abusing the notation. We will also conflate geodesic segments and their images. Note that each
locally compact complete geodesic metric space (X, d) is proper, i.e. closed metric balls in (X, d)
are compact, see [8, Theorem 2.5.28].

An isometric action G × X → X of a discrete group is metrically proper if G acts with finite
point-stabilizers and one (equivalently, every) G-orbit in X is a metrically proper subset. In other
words, for every x ∈ X the function

g 7→ d(x, gx)

is proper on G. This condition is stronger than properness of the action but is equivalent to
properness of the G-action in the case of proper metric spaces (X, d). Given an isometric properly
discontinuous G-action on X we define the function

ρ : X/G→ R+

sending each equivalence class [x] ∈ X/G to

inf{d(gx, x) : g ∈ G \ {1}}.
This function is 2-Lipschitz:

|ρ([x])− ρ([y])| ≤ 2d([x], [y]).

If the G-action is metrically proper, then the infimum in the definition of ρ is realized and if the
action is also free then ρ([x]) > 0 for all x ∈ X. By abusing the notation, we will also denote this
function ρ(x).

Suppose that (X, d) is a metric space and G is a group acting isometrically and metrically
properly on X. One defines the quotient-metric dG on X/G by

(20) dG([x], [y]) = min
g∈G

d(x,Gy) = min
g,h∈G

d(gx, hy),

where [x], [y] ∈ X/G are equivalence classes of points x, y ∈ X under the equivalence relation
defined by G. Then dG is a metric on X/G which metrizes the quotient topology on X/G, see [21,
Theorem 6.6.2]. By the construction, the quotient map q : (X, d) → (X/G, dG) is 1-Lipschitz.

Lemma 21. Suppose that the G-action on X is metrically proper. Then the following hold:
1. If the metric space (X, d) is geodesic and complete, then so is (X/G, dG).
2. If (X, d) is proper, so is (X/G, dG).
3. If the G-action is free then the quotient map q : (X, d) → (X/G, dG) is a local isometry. More

precisely, for every x ∈ X the restriction of q to B(x, 18ρ(x)) is an isometry onto B([x], 18ρ(x)).

Proof. 1a. Take points [x], [y] ∈ X/G. Pick their representatives x, y ∈ X which realize the
minimal distance between the corresponding G-orbits in X. Let c : [0, T ] → xy ⊂ X be a geodesic
connecting x to y. Then, by the definition of the metric dG, the composition of c with the quotient
map q : X → X/G is a geodesic in (X/G, dG) connecting [x] to [y].

1b. Suppose that (zn) is a Cauchy sequence in X/G. Then the diameter D of the subset

{zn : n ∈ N} ⊂ X/G

is finite. We inductively choose a subsequence (zni
) in (zn) such that

dG(zni
, zni+1

) ≤ D

2i
, i ∈ N.

Concatenating geodesic segments zni
zni+1

we obtain a piecewise-geodesic path

γ : [0, T ) → X
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whose length T is at most
∞∑

n=1

D

2i
<∞.

We then inductively lift each geodesic segment in γ to a geodesic segment in X and obtain a
piecewise-geodesic path c : [0, T ) → X of length T . Since (X, d) is complete, the path c extends
continuously to T . Projecting c(T ) to X/G we obtain the limit of the subsequence (zni

). Hence,
(zn) converges as well.

2. Suppose that (X, d) is proper. Consider the closed metric ball B̄([x], R) in (X/G, dG). Then
the closed ball B̄(x,R) ⊂ X projects onto B̄([x], R). Compactness of B̄(x,R) implies compactness
of B̄([x], R).

3. Fix x ∈ X, set R = 1
8ρ(x) and consider points y, z ∈ B(x,R). We have to verify that

d(y, z) = d(y,Gz). Take g ∈ G \ {1}. We have |ρ(y)− ρ(x)| ≤ 2R and |ρ(z)− ρ(x)| < 2R since ρ is
2-Lipschitz. Thus, d(z, gz) > ρ(x)− 2R = ρ(x)− 1

4ρ(x) =
3
4ρ(x). By the triangle inequality,

d(y, gz) >
3

4
ρ[x)− 2R =

3

4
ρ(x)− 1

4
ρ(x) =

1

2
ρ(x) > 2R > d(y, z).

Lastly, for every r > 0 and x ∈ X, q(B(x, r)) is contained in B([x], r) since the quotient map
q : (X, d) → (X/G, dG) is 1-Lipschitz. In the case r = R as above, the fact that q restricts to an
isometry on B(x,R) implies the equality q(B(x,R)) = B([x], R). □

It turns out that under some rather mild assumptions, given a proper action G×X → X, there
is a G-invariant metric metrizing the topology on X:

Theorem 22. Suppose that G is a locally compact Hausdorff group, X is locally compact, metrizable
space, G × X → X is a proper action and X/G is paracompact. Then X admits a G-invariant
metric metrizing the topology on X

See [17, Theorem 3]. Koszul also notes that if X is paracompact and locally connected, then
X/G is paracompact. This theorem was improved in [1]:

Theorem 23. Suppose that G is a locally compact Hausdorff group, X is locally compact, σ-compact
metrizable space, and G×X → X is a proper action. Then X admits a G-invariant proper metric
metrizing the topology on X.

A Riemannian version of these theorems holds in the context of smooth actions of Lie groups:

Theorem 24. Suppose that X is a smooth manifold, G is a Lie group and G×X → X is a smooth
proper action. There there exists a G-invariant complete Riemannian metric on X.

See [17, Theorem 2] for the existence of an invariant Riemannian metric and [14] for the existence
of an invariant complete Riemannian metric.

We next discuss a construction of G-invariant complete geodesic metrics on more general topo-
logical spaces.

Theorem 25. Suppose that X is a 2nd countable, connected and locally connected locally compact
Hausdorff topological space. Suppose that G × X → X is a proper action of a discrete countable
group such that the fixed-point set of each nontrivial element of G is nowhere dense in X. Then X
can be metrized using a G-invariant complete geodesic metric.

Proof.
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Lemma 26. The quotient space Y = X/G is locally compact, connected, locally connected and
metrizable.

Proof. Local compactness and connectedness of Y follows from that of X. The 2nd countability of
X implies the 2nd countability of Y . By Lemma 9, Y is Hausdorff. Since Y is locally compact and
Hausdorff, its one-point compactification is compact and Hausdorff, hence, regular. It follows that
Y itself is regular. In view of the 2nd countability of Y , Urysohn’s metrization theorem implies
that Y is metrizable. □

Remark 27. Note that each locally compact metrizable space is also locally path-connected.

It is proven in [26] that each locally compact, connected, locally connected metrizable space, such
as Y , admits a complete geodesic metric dY which we fix from now on. Consider the projection
p : X → Y . According to [7, Theorem 6.2] (see also [2, Lemma 2]), the map p satisfies the path-
lifting property: Given any path c : [0, 1] → Y , a point x ∈ X satisfying p(x) = c(0), there exists
a path c̃ : [0, 1] → X such that p ◦ c̃ = c. (This result is, of course, much easier if the G-action is
free, i.e. p : X → Y is a covering map.) We let LX denote the set of paths in X which are lifts
of rectifiable paths c : [0, 1] → Y . Clearly, the postcomposition of c̃ ∈ LX with an element of G
is again in LX . Our next goal is to equip X with a G-invariant length structure using the family
of paths LX . Such a structure is a function on LX with values in [0,∞), satisfying certain axioms
that can be found in [8, Section 2.1]. Verification of most of these axioms is straightforward, I will
check only some (items 1, 2, 3 and 4 below).

1. If c̃ ∈ LX is a lift of a path c in Y , then we declare ℓ(c̃) to be equal to the length of c.
2. If c̃i, i = 1, 2, are paths in LX (which are lifts of the paths c1, c2 respectively) whose concate-

nation b = c̃1 ⋆ c̃2 is defined, then b is a lift of the concatenation c1 ⋆c2. Clearly, ℓ(b) = ℓ(c̃1)+ ℓ(c̃2).
3. Let U be a neighborhood of some x ∈ X. We need to prove that

(28) inf
γ
{ℓ(γ)} > 0,

where the infimum is taken over all γ = c̃ ∈ LX connecting x to points of X \U . It suffices to prove
this claim in the case when U is Gx-invariant, satisfies

(29) U ∩ gU ̸= ∅ ⇐⇒ g ∈ Gx,

and γ connects x to points of ∂U . Then V = p(U) is a neighborhood of y = p(x) in Y and the
paths c = p ◦ γ connect y to points in ∂V . But the lengths of the paths c are clearly bounded away
from zero and are equal to the lengths of their lifts c̃. Thus, we obtain the required bound (28).

4. Let us verify that any two points in X are connected by a path in LX . Since X is connected,
it suffices to verify the claim locally. Let U is Gx-invariant neighborhood of x satisfying (29), such
that V = p(U) is an open metric ball in Y centered at y = p(x). Take u ∈ U , v := p(u) ∈ V . Let
c : [0, T ] → V be a geodesic connecting v to y. Then there exists a lift c̃ : [0, T ] → U of c with
c̃(0) = u. Since x ∈ U is the only point projecting to y, we get c̃(T ) = x. By taking concatenations
of pairs of such radial paths in U , we conclude that any two points in U are connected by a path
c̃ ∈ LX .

Given a length structure on X, one defines a path-metric (metrizing the topology of X) by

dX(x1, x2) = inf
γ
{ℓ(γ)}

where the infimum is taken over all γ ∈ LX connecting x1 to x2. By the construction, the projection
p : (X, dX) → (Y, dY ) is 1-Lipschitz.
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Lemma 30. The metric dX is complete.

Proof. Let (xn) be a Cauchy sequence in (X, dX). By the construction of the metric dX , there exists
a finite length path c̃ : [0, 1) → (X, dX) and a sequence tn ∈ [0, 1) such that c̃(tn) = xn, c̃(0) =
x = x1. Since the map p is 1-Lipschitz, the path c = p ◦ c̃ : [0, 1) → (Y, dY ) also has finite length.
Since the metric dY was complete to begin with, the path c extends to a path c̄ : [0, 1] → Y ; set
y′ := c̄(1).

Assume for a moment that G acts freely on X. Then we have the uniqueness of lifts of paths
from Y to X. Thus, the unique lift ˜̄c of c̄ starting at the point x satisfies the property that its
restriction to [0, 1) equals c̃. It follows that the sequence (xn) converges to ˜̄c(1). Below we generalize
this argument to the case of non-free actions.

Let U be a neighborhood of y′ = c̄(1) which is the projection to Y of a relatively compact slice

neighborhood Ũ of some x′ ∈ p−1(y′). Without loss of generality (by removing finitely many initial
terms of the sequence (xn)) we can assume that the image of the path c lies entirely in U . Applying
the path-lifting property to the path c with the prescribed terminal point x′, we obtain a lift of the
path c̄ that terminates at x′. This lift has to be entirely contained in Ũ and its initial point has to
be of the form g(x) for some g ∈ G. Applying g−1 to this lift, we obtain another lift of c̄, denoted
˜̄c, which starts at x and terminates at g−1(x′).

Consider the restriction of ˜̄c to [0, 1). This restriction is also a lift to the path c|[0,1) and the image

of the latter lies entirely in U . Hence, the image of ˜̄c|[0,1) lies entirely in the relatively compact

subset g−1(Ũ) ⊂ X. Thus, the Cauchy sequence (xn) lies in a relatively compact subset of X, and
it follows that this sequence converges in X. □

Since (X, dX) is locally compact and complete, by Theorem 2.5.28 (and Remark 2.5.29) in [8],
(X, dX) is a geodesic metric space. Lastly, we note that, by the construction, the length structure
on X and, hence, the metric dX , is G-invariant. This concludes the proof of the theorem. □

Question 31. Local compactness and local connectivity were critical for the proof of the theorem.
Does the theorem hold without these assumptions?

7. Fundamental domains of properly discontinuous group actions

7.1. Fundamental sets. As with many notions going back to the 19th century, there is no consis-
tency in the literature regarding the definition of fundamental sets and domains. The next definition
follows [17]. Our definition is similar to the definition given by Borel and Ji in [5, Definition III.2.14],
except that their local finiteness condition is weaker: It is required only for singletons K.

Definition 32. A closed subset F ⊂ X is a fundamental set for a proper action of a discrete G on
a topological space X if G · F = X and for every compact K ⊂ X, the transporter set (F |K)G is
finite (the local finiteness condition). A closed subset F ⊂ X is a fundamental set in the sense of
Koszul if, moreover, there exists an open neighborhood U of F such that for every compact K ⊂ X,
the transporter set (U |K)G is finite.

Fundamental sets appear naturally in the reduction theory of arithmetic groups (Siegel sets),
see [24] and [5]. We note, however, that in the literature there are many alternative notions of
fundamental sets, inconsistent with the one given above, see e.g. Beardon’s book [3, 9.1]: According
to Beardon’s definition, a subset F ofX is called fundamental for the action of G onX if F intersects
every G-orbit in X in exactly one point. We will avoid using this definition since its set-theoretic
nature provides us with no useful control of the structure of F .

The local finiteness condition in the definition of a fundamental set has several implications:
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Lemma 33. Suppose that F ⊂ X is a fundamental set for a proper action of a discrete group G
on a 1st countable and Hausdorff space X. Then:

1. For every x ∈ X there exists a neighborhood W of x such that (F |U)G is finite.
2. For every x ∈ X there exist a finite subset E = {g1, ..., gk} ⊂ G such that the interior of

g1(F ) ∪ ... ∪ gn(F ) is a neighborhood of x in X.

Proof. 1. Suppose that such W does not exist. Then there exists a sequence of distinct elements
gn ∈ G and points xn ∈ X such that

lim
n→∞

xn = x

and xn ∈ gn(F ). It follows that for the compact K = {xn : n ∈ N} ∪ {x} the transporter set
(F |K)G is infinite, which is a contradiction.

2. By the local finiteness condition, there are only finitely many elements g1, ..., gk ∈ G such
that x ∈ gi(F ). By Part 1 of the lemma, there exists a neighborhood W of x such that W ∩ gF ̸= ∅
only for g ∈ E = {g1, ..., gk}. But then, since GF = X, it follows that

W ⊂ g1F ∪ ... ∪ gkF. □

For each fundamental set F of a G-action on a topological space X we define its quotient space
F/G as the quotient space of the equivalence relation x ∼ y ⇐⇒ Gx = Gy. The following
proposition explains why fundamental sets are useful: They allow one to describe quotient spaces
of proper actions by discrete groups using less information than is contained in the description of
the action.

Proposition 34. Suppose that F is a fundamental set for a proper action by discrete group G on
a 1st countable and Hausdorff space X. Then the natural projection map p : F/G → X/G is a
homeomorphism.

Proof. The map p is continuous by the definition of the quotient topology. It is also obviously a
bijection. It remains to show that p is a closed map. Since F is closed, it suffices to show that
the projection q : F → X/G is a closed map. Suppose that (xn) is a sequence in F such that
q(xn) converges to some y ∈ X/G, y is represented by a point x ∈ F . Then there is a sequence
hn ∈ G such that zn = hn(xn) converges to x. If the sequence (hn) contains infinitely many distinct
elements, we obtain a contradiction with the local finiteness property of F similarly to the proof of
Lemma 33. Hence, the set E = {hn : n ∈ N} is finite. Applying inverses of the elements h ∈ E,
to the sequence (zn), we see that the subset {xn : n ∈ N} ⊂ X is relatively compact. Thus,
q : F → F/G is a closed map. □

There are several existence theorems for fundamental sets. The next proposition, proven in
[17, Lemma 2], guarantees existence of fundamental sets under the paracompactness assumption on
X/G.

Proposition 35. Each proper action G × X → X of a discrete group G on a locally compact
Hausdorff space X with paracompact quotient X/G admits a fundamental set in the sense of Koszul.

Another construction of fundamental sets is given by closed Dirichlet domains. Let G×X → X
be an isometric proper action of a discrete group G on a metric space (X, d). The closed Dirichlet
domain for this action is

(36) D̂x = {y ∈ X : d(y, x) ≤ d(y, gx) ∀g ∈ G}.
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Note that gD̂x = D̂gx. We also note that D̂x is a closed subset of X since it is the intersection of
a family of closed subsets

{y ∈ X : d(y, x) ≤ d(y, gx)}, g ∈ G.

Proposition 37. Suppose that G × X → X is a metrically proper isometric action of a discrete
group G. Then every closed Dirichlet domain D̂ = D̂x is a fundamental set for the G-action.

Proof. 1. Let us prove that gD̂ = X. For each y ∈ X the function g 7→ d(y, gx) is a proper function

on G, hence, it attains its minimum at some g ∈ G. Then, clearly, y ∈ D̂gx = gD̂x. Thus, gD̂ = X.
2. Secondly, we verify local finiteness. Consider a metric ball B = B(x,R) for any R > 0. If

D̂gx ∩B ̸= ∅, for every point y in this intersection

d(g−1y, x) = d(y, gx) ≤ d(y, x) < R,

In view of metric properness of the G-action, the set of such elements g ∈ G is finite. □

We will discuss Dirichlet domains (and their generalizations via Voronoi tessellations) again in
Section 7.2.

Note that in the definition of a closed Dirichlet domain one does not really need a metric, what
is needed is a G-invariant continuous function d : X ×X → R+. For the proof of Proposition 37 to
go through one needs a metric δ on X such that:

(a) The G-action is metrically proper on (X, δ).
(b) δ(y, x) ≤ ϕ(d(y, x)) for some function ϕ.

An example of the situation when this is useful appears in the context of discrete subgroups
Γ of G = SL(n,R) acting on the space X of symmetric positive-definite n × n matrices M with
detM = 1 by

M 7→ gTMg, g ∈ SL(n,R).
Then Selberg in [23] used the function d : X ×X → R+,

d(A,B) = log

(
1

n
tr(A−1B)

)
to define an analogue of Dirichlet domains for the Γ-action on X. (See also [15].) The advantage
of such generalized Dirichlet domains is that they are intersections of X with polyhedral cones in
the space of all symmetric n× n matrices.

Definition 38. Suppose that G × X → X is a continuous action. A closed subset F ⊂ X is a
strict fundamental set for the action if it intersects each G-orbit in X in exactly one point.

Strict fundamental sets do not exist often, but they do exist for some classes simplicial group
actions on simplicial complexes (one does not even need to assume properness), e.g. for actions of
Coxeter groups on Coxeter complexes and actions of semisimple Lie groups (as well as semisimple
algebraic groups over discrete valued fields) on buildings (see e.g. [22]). In the next section we will
use a construction of strict fundamental sets for properly discontinuous simplicial group actions
on vertex sets of connected graphs described below. Suppose that Γ is a simplicial graph (a 1-
dimensional simplicial complex), G×Γ → Γ is a simplicial action of a discrete group G. (The action
need not be proper.) Note that the edge-stabilizers need not fix the invariant edges. However, if Γ′

denotes the barycentric subdivision of Γ then the induced action of G on Γ′ is without inversions,
i.e. if an element of G preserves an edge, then it fixes the edge pointwise.



A NOTE ON PROPERLY DISCONTINUOUS ACTIONS 15

Lemma 39. Suppose that Γ is connected. Then there exists a subtree Φ ⊂ Γ′ such that the vertex
set of Φ is a strict fundamental set for the G-action on the vertex set of Γ′.

Proof. The quotient Γ′/G has natural structure of a connected simplicial graph. Let q : Γ′ → Γ′/G
denote the quotient map. Choose T ⊂ Γ′/G, a maximal subtree (this may require the Axiom of
Choice if the vertex set of Γ′/G is uncountable). We will construct Φ by lifting T (inductively) to
Γ′. We pick a vertex v ∈ Γ′/G and lift it arbitrarily to a vertex ṽ ∈ q−1(v) ∈ Γ′. Then, of course,
G{ṽ} ∩ {ṽ} = {ṽ}. We proceed inductively, working with subtrees Bn ⊂ T which are closed metric
balls of radius n centered at v. Suppose that we defined a subtree Φn ⊂ Γ′ such that q(Φn) = Bn

and each G-orbit in Γ′ intersects Φn in at most one point. Let e = [u,w] be an edge in Bn+1 with
u ∈ Bn. Then there exists an edge ẽ = [ũ, w̃] of Γ′ which projects to e and ũ ∈ Bn is a vertex
projecting to u. We add the edge ẽ (and the vertex w̃) to Φn (note that w̃ cannot belong to Φn).
We repeat this for all edges of Bn+1 which are not in Bn, resulting in a subtree Φn+1 ⊂ Γ′. By the
construction, each G-orbit in Γ′ intersects Φn+1 in at most one point. Lastly, the union

Φ =
⋃
n

Φn

is a subtree satisfying the required properties. □

Note that, unless Γ′/G = T (i.e. Γ′/G is a tree), Φ is not a fundamental set of the G-action on
Γ′ since preimages of edges of Γ′/G that are not in T are not contained in the G-orbit of Φ.

7.2. Fundamental regions and domains. One frequently encounters a sharper version of fun-
damental sets, called fundamental domains or fundamental regions. Again, there is no consistency
in this definition in the literature. Below is a small sample of existing definitions. Ratcliffe in
[21, §6.6] defines fundamental regions for a properly discontinuous isometric G-action on a metric
space (X, d) as open subsets R ⊂ X such that X = GR = X and gR ∩ R = ∅ for all g ∈ G \ {1}.
Then Ratcliffe defines fundamental domains as connected fundamental regions. Ratcliffe also de-
fines locally finite fundamental domains by imposing the extra assumption of local finiteness just
as in Definition 32 given above. Beardon in [3, §9.1, 9.2] also defines fundamental domains as open
connected subsets as above, but (working in the context of subsets of hyperbolic spaces) imposes
the extra condition that the boundary has Lebesgue measure zero. In contrast, S. Katok in §3.1
of [16], defines fundamental regions F ⊂ X as closures of certain open subsets R ⊂ X where R is
a fundamental region as in Ratcliffe’s definition. Furthermore, Benedetti and Petronio, [4, §C1],
define fundamental domains as Borel subsets F ⊂ X such that GF = X and gF ∩ F ⊂ ∂F for all
g ∈ G \ {1}.

Below we will adopt a variation of Ratcliffe’s and Katok’s terminology of fundamental re-
gions/domains but impose the local finiteness condition from the beginning.

Definition 40. 1. A subset U of a topological space is called an open domain (or a regular open
subset) if U is the interior of its closure.

2. A subset V of a topological space is called a closed domain (or a regular closed subset) if V
is the closure of its interior.

Definition 41. Suppose that G × X → X is a proper action of a discrete group on a topological
space X.

1. An open subset R ⊂ X is an open fundamental region for this action if the following hold:

(1) G ·R = X.
(2) gR ∩R ̸= ∅ if and only if g = 1.
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(3) For every compact subset K ⊂ X, the transporter set (R|K)G is finite, i.e. the family
{gR}g∈G of subsets in X is locally finite.

2. A closed subset F ⊂ X is a closed fundamental domain if F is a closed domain in X and

(1) G · F = X.
(2) g int(F ) ∩ int(F ) ̸= ∅ if and only if g = 1.
(3) For every compact subset K ⊂ X, the transporter set (F |K)G is finite.

Below we describe the most common construction of open fundamental regions, open Dirichlet
domains and their variations.

Given an isometric metrically proper action of a discrete group G on a metric space (X, d) and
a point x ∈ X, one defines the open Dirichlet domain of the action as

Dx = {y ∈ X : d(y, x) < d(y, gx) ∀g ∈ G \Gx}.

Thus, Dx ⊂ D̂x (see (36)). It is clear from the construction that for every g ∈ G \Gx,

gDx ∩Dx = ∅
and gDx = Dx for all g ∈ Gx. In order to have a chance to get a fundamental region using open
Dirichlet domains one has to assume that Gx = {1}.
Remark 42. Suppose that G is countable, X is a complete metric space, G×X → X is a continuous
action and fixed point sets in X of nontrivial elements of G are nowhere dense. Then Baire’s
Theorem implies existence of x ∈ X such that Gx = {1}. For instance, if X is a connected
topological manifold, G is discrete and acts effectively and properly on X. Then the fixed-point set
of each nontrivial element of G has empty interior, see [19].

More generally, given a closed discrete subset E ⊂ X, one defines the Voronoi tessellation VE of
X corresponding to E. The open/closed tiles of the tessellation are the subsets Vx, V̂x, x ∈ E, of X
defined as

Vx = {y ∈ X : d(y, x) < d(y, x′) ∀x′ ∈ E \ {x}},
V̂x = {y ∈ X : d(y, x) ≤ d(y, x′) ∀x′ ∈ E \ {x}}.

The point x is the center of the tiles Vx, V̂x. Each V̂x is closed in X (as the intersection of closed
subsets). The open tile Vx need not be an open subset of X (the intersection of open subsets need
not be open). A sufficient condition is that E ⊂ X is metrically proper, see Section 6.

Lemma 43. If E ⊂ X is metrically proper then each open tile Vx of VE is an open subset of X
and the collection of tiles V̂x, x ∈ E, is locally finite.

Proof. 1. Take y ∈ Vx. In view of metric properness of E, the function

d(y, ·)− d(y, x) : E \ {x} → R+

attains its positive minimum R at some x′ ∈ E \ {x}. Then B(y,R/2) ⊂ Vx.

2. Consider a unit ball B = B(z, 1) ⊂ X. Suppose that V̂x ∩ B ̸= ∅ for some x ∈ E. Then,

whenever V̂y ∩ B ̸= ∅, y ∈ E, d(y, z) ≤ d(x, z) + 1. By the metric properness of E, the number of
such points y ∈ E is finite. □

The key issue that we will have to deal with is that, even if E is metrically proper, the closed
tile V̂x is not necessarily the closure of the open tile Vx. Moreover, in general, the bisectors

Bis(x, z) = {y ∈ X : d(y, x) = d(y, z)}
may have nonempty interior in X. This happens, for instance, in the case of metric graphs.
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Example 44. Consider the space X which is the union of two coordinate lines in R2, with the
induced path-metric d, i.e. the restriction of the ℓ1-metric from R2. Thus, (X, d) is a complete
geodesic metric space. Let G = Z2, whose generator g acts on X by restriction of the antipodal map
(x, y) 7→ (−x,−y) on R2. The group G has unique fixed point in X, namely the origin 0 = (0, 0).

For every point p ∈ X \ {0} the closed Dirichlet domain D̂p is the union of three coordinate rays,

while Dp consists of just one open coordinate ray. In particular, δDp = D̂p \Dp is a coordinate line

and, thus, is not contained in the boundary of Dp (which is the singleton {0}). The interior of D̂p

is D̂p \ {0}, hence,
int D̂p ∩ g(int D̂p)

is nonempty and equals a coordinate line minus the origin. In particular, the interior of any
closed Dirichlet domain cannot be a fundamental region. Note also that the closure of Dp is the

closed coordinate ray containing p, which implies that GDp ̸= X (it misses two open coordinate

rays). Of course, in this example one can take a suitable open subset of int D̂p (the union of
two open rays) as a fundamental region. However, it cannot be chosen to be connected. Thus,
connectedness of fundamental regions (as required by Ratcliffe’s definition of a fundamental domain)
is an unreasonable requirement in the setting of general complete geodesic metric spaces.

Below we discuss some basic properties of Voronoi tiles.

Lemma 45. Let ϕ : X → (0,∞) be an L-Lipschitz function for some L ≤ 1/2 and let E ⊂ X be
such that for every x ∈ X, the open ball B(x, ϕ(x)) has nonempty intersection with E. Then for

every x ∈ X, V̂x ⊂ B(x, 2ϕ(x)).

Proof. Take y ∈ V̂x. Then there exists z ∈ E such that d(y, z) < ϕ(y). Since y ∈ V̂x, d(x, y) ≤
d(z, y) < ϕ(y). By the L-Lipschitz property of ϕ, we have ϕ(y) ≤ ϕ(x) + Ld(x, y), implying

(1− L)d(x, y) < ϕ(x)

and d(x, y) < 1
1−Lϕ(x) ≤ 2ϕ(x). Therefore, y ∈ B(x, 2ϕ(x)). □

Suppose that (X, d) is a metric space, G ×X → X an isometric properly discontinuous action,
E ⊂ X is a metrically proper G-invariant subset, S = q(E) ⊂ X/G is the image of E under the
quotient map q : X → X/G. We then have two Voronoi tessellations VE (of X) and VS (of X/G
equipped with the metric dG).

Lemma 46. For every closed and every open Voronoi tile V̂x, Vx, x ∈ E, we have q(V̂x) = V̂[x] and
q(Vx) = V[x].

Proof. The statement is a direct consequence of definitions of Voronoi tiles and the metric dG. □

Our next goal is to find a condition on E that ensures injectivity of the restriction of q to each
V̂x. Recall that in Section 6, given an isometric properly discontinuous action G × X → X, we
defined a function ρ : X/G→ R+ (as well as ρ : X → R+).

Lemma 47. Suppose now that G is a group acting freely, isometrically and properly discontinuously
on (X, d). Suppose that E ⊂ X is a G-invariant closed discrete subset such that B(x, 14ρ(x))∩E ̸= ∅
for all x ∈ X. Then the quotient map q : X → X/G is injective on each closed tile V̂x, x ∈ E. In
other words,

V̂x ∩ V̂gx = ∅, ∀x ∈ E, ∀g ∈ G \ {1}.
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Proof. For every y ∈ V̂x there exists x′ ∈ E at distance < r = 1
4ρ(y) from y. Since y ∈ V̂x, we have

d(x, y) < r and, therefore, d(x, x′) < 2r. Using the inequality

|ρ(x)− ρ(y)| < 2r,

we get d(x, gx) ≥ ρ(x) > ρ(y)− 2r = 2r for all g ∈ G \ {1}. By the triangle inequality, d(x, y) < r

implies that d(y, gx) > r. Thus, y /∈ V̂gx. □

We will construct subsets E ⊂ X satisfying the assumptions of Lemma 47 in Lemma 56.

A subset A of a geodesic metric space (X, d) is starlike with respect to a point a ∈ A if for each
x ∈ A every geodesic segment ax is contained in A.

Lemma 48. Suppose that (X, d) is a geodesic space and VE be the Voronoi tessellation correspond-

ing to a metrically proper subset E ⊂ X. Then each tile Vx, V̂x of VE is starlike with respect to its
center.

Proof. The proof is essentially the same as the one in [21, Theorem 6.6.13]. Take a point z ∈ V̂x
and let c : [0, T ] → X be a geodesic connecting x to z. Then for each t ∈ [0, T ] and y ∈ E \ {x}, we
get (by the triangle inequality)

d(x, c(t)) = t = T − d(c(t), z) = d(x, z)− d(c(t), z) ≤ d(y, z)− d(c(t), z) ≤ d(y, c(t)).

Hence c(t) ∈ V̂x and, therefore, V̂x is starlike with respect to x. The same argument works for
Vx. □

The basic examples of Voronoi tessellations are when (X, d) is a Euclidean or a real-hyperbolic
space; in these cases Voronoi tiles (and, hence, their intersections) are convex. This need not
be the case in general even when one works with, say, complex-hyperbolic spaces (see e.g. [12]).
Below we will see that some kind of convexity still holds in the case of Voronoi tessellations of
Gromov-hyperbolic spaces.

Recall that a subset Y of a geodesic metric space (X, d) is called λ-quasiconvex if every geodesic
segment xy with the end-points in Y is contained in the closed λ-neighborhood of Y , i.e. d(z, Y ) ≤ λ
for all z ∈ xy.

Corollary 49. Suppose, additionally, that (X, d) is δ-hyperbolic. Then:

1. For every Voronoi tessellation VE of X, each tile Vx, V̂x is δ-quasiconvex.
2. Each bisector Bis(x, y) in X is 2δ-quasiconvex.

Proof. 1. This is a direct consequence of Lemma 48 and the definition of δ-hyperbolicity via slimness
of geodesic triangles.

2. Take E = {x, y} and the corresponding Voronoi tessellation of X with just two closed tiles,

V̂x, V̂y. Then Bis(x, y) = V̂x ∩ V̂y. Suppose that points p, q belong to Bis(x, y). Consider a point

z on a geodesic pq in X. By Part 1, there exist points x′ ∈ V̂x, y
′ ∈ V̂y within distance δ from z.

In particular, d(x′, y′) ≤ 2δ. Since the geodesic x′y′ connects V̂x, V̂y, by continuity of the function
d(x, ·)− d(y, ·), there exists z′ ∈ x′y′ ∈ Bis(x, y). By the triangle inequality, d(z, z′) ≤ 2δ. □

Note that the proof of Lemma 48 also shows that for each z ∈ V̂x and t < T , either we get the
strict inequality d(x, c(t)) < d(y, c(t)), or c(t) belongs to a geodesic yz. If the former case occurs

for all y ∈ E \ {x}, we conclude that we get c(t) ∈ Vx. In particular, in that case, V̂x is the closure
of Vx. In order to rule out the second possibility (c(t) belongs to a geodesic yz) one has to impose
extra restrictions.
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Definition 50. A geodesic metric space (X, d) has nonbranching geodesics if each geodesic c : I →
(X, d) is uniquely determined by its restriction to a nonempty open subset of the interval I.

For instance, geodesics in Riemannian manifolds and, more generally, manifolds with smooth
Finsler metrics and Alexandrov spaces satisfy this property.

Corollary 51. Suppose that (X, d) is a metric space with nonbranching geodesics. Then for each

Voronoi tessellation VE of X and every x ∈ E, z ∈ V̂x and geodesic c : [0, T ] → xz connecting x to

z, one has c(t) ∈ Vx, t < T . In particular, V̂x is the closure of Vx. Moreover, Vx is an open domain
in X.

Proof. The proof is the same as the one in [21, Theorem 6.6.13]. Suppose that c(t) /∈ Vx for certain

t < T . Then for all s ∈ [t, T ] we have c(s) ∈ δVx = V̂x \ Vx. Due to the local finiteness of VE , there

exist y ∈ E \ {x} and t′, t < t′ < T , such that c(s) ∈ V̂y for all s ∈ [t′, T ] ⊂ [t, T ]. Therefore, for all
s ∈ [t′, T ] we get

s = d(x, c(s)) = d(y, c(s)),

and, thus, d(y, c(s)) + d(c(s), z) = d(y, z). In other words, the concatenation of geodesics yc(t′) ⋆
c(t′)z is a geodesic γ in (X, d). For the second segment c(t′)z of this geodesic we will take the
restriction of c to [t′, T ]. Since y ̸= x, geodesics c and γ have distinct images; on the other hand,
they agree on the open subinterval (t′, T ). This contradicts the nonbranching assumption. The
proof that Vx is an open domain in X is similar and we omit it. □

Corollary 52 (See Theorem 6.6.13 in [21]). Suppose that (X, d) is a metric space with nonbranching
geodesics, G × X → X is an isometric metrically proper action. Then for every x ∈ X with
Gx = {1} the open Dirichlet domain Dx is a connected open fundamental region for the G-action

on X. Moreover, D̂x is the closure of Dx and the interior of D̂x is precisely Dx.

Proof. We apply Corollary 51 to the Voronoi tessellation VGx. Corollary 51 implies that D̂x is the
closure of Dx. Connectedness of Dx is clear from the same corollary. The fact that GD̂x = X
follows from Proposition 37. It remains to prove that the interior of D̂x is Dx. Take z ∈ D̂x ∩ D̂y,

where y ∈ Gx \ {x}. By applying Corollary 51 to the Voronoi tile D̂y we see that z belongs to the

closure of Dy. Since the latter is disjoint from D̂x, we conclude that z /∈ int D̂x. □

Question 53. Suppose that M is a connected topological manifold. Does M admit a complete
geodesic metric with nonbranching geodesics?

In the rest of the section we will prove existence of connected closed fundamental domains for
free properly discontinuous actions on geodesic metric spaces by using Voronoi tessellations more
general than the ones given by the Dirichlet construction. (More precisely, we will use VE for some
G-invariant closed discrete subset E of X.) In what follows, (X, d) is a separable geodesic complete
metric space.

Lemma 54. Fix a point y ∈ X. Then there is a Gδ-subset Xy ⊂ X consisting of points x such
that Bis(x, y) has empty interior.

Proof. First of all, we prove that for every z ∈ X the subset {x ∈ X : z /∈ Bis(x, y)} is open
and dense in X. Openness is clear. To prove denseness, take a sequence of points xn ∈ xz \ {x}
converging to x and note that for every xn, z /∈ Bis(xn, y).

Now, we take a dense countable subset Z ⊂ X (here we use the separability assumption). Define

Xy = {x : ∀z ∈ Z, z /∈ Bis(x, y)}.
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Then Xy is the intersection of a countable family of open and dense subsets, i.e. is a Gδ-subset of X.
Let us prove that for every x ∈ Xy the bisector Bis(x, y) has empty interior. Take w ∈ Bis(x, y) and
a sequence zn ∈ Z converging to w. Then, by the definition of the set Xy, for all n, zn /∈ Bis(x, y).
Hence, w cannot belong to the interior of Bis(x, y). □

Since the intersection of a countable family of Gδ-subsets is again a Gδ-subset, we obtain:

Corollary 55. Let Y ⊂ X be a countable subset. Define XY =
⋂

y∈Y Xy. Then XY is a Gδ-subset

of X. For every x ∈ XY and y ∈ Y the bisector Bis(x, y) has empty interior.

Lemma 56. Suppose that (M,d) is a separable metric space, ϕ :M → (0,∞) a continuous function.
Then there exists a countable discrete and closed subset C ⊂M such that for all z ∈M , B(z, ϕ(z))∩
C is nonempty.

Proof. Take a maximal subset S of M satisfying the property that for all distinct x, y ∈ S,

d(x, y) ≥ 1

2
min(ϕ(x), ϕ(y)).

Separability of M ensures that such a subset is countable. Suppose that (xn) is a sequence of
distinct elements in S converging to x ∈M . By continuity of ϕ, we have that

ϕ(xn) > ϵ =
1

2
ϕ(x) > 0

for all sufficiently large n. We have (for all m ̸= n)

d(xm, xn) ≥
1

2
min(ϕ(x), ϕ(y)) > ϵ.

But then the sequence (xn) cannot converge.
Lastly, take x ∈ M . Suppose that B(x, ϕ(x)) ∩ S = ∅. Then d(x, y) ≥ ϕ(x) for all y ∈ S, which

implies

d(x, y) ≥ min(ϕ(x), ϕ(y)).

Hence, S ∪ {x} still satisfies the inequality defining S. This contradicts the maximality of S. □

Addendum 57. Assume, additionally, that (M,d) is a proper metric space. Then the collection

of Voronoi tiles V̂x, x ∈ C, associated with the subset C in the lemma, is locally finite.

Proof. This follows from the fact that each metric ball B(x,R) in M contains only finitely many
points from C, see Lemma 43. □

We next perturb the subset C in Lemma 56 to a new subset C ′ which satisfies essentially the
same properties as C but also has empty interior of δVx′ := V̂x′ \ Vx′ for every x′ ∈ C ′:

Lemma 58. Suppose that (M,d) is a complete separable geodesic metric space. Then there exists a
countable discrete and closed subset C ′ ⊂M such that for all z ∈M , B(z, 2ϕ(z)) ∩ C is nonempty
and for each x′ ∈ C ′, δVx′ has empty interior.

Proof. We will take the subset C constructed in the previous lemma and perturb it inductively
using Corollary 55 so that the bisectors Bis(x′, y′) ⊂M (for distinct points x′, y′ ∈ C ′) have empty
interior. Since the complements δVx′ are contained in the union of bisectorsBis(x′, y′), y′ ∈ C ′\{x′},
it will follows that each δVx′ has empty interior.

In order to construct the perturbation, using continuity and nonvanishing of ϕ, for every x ∈ C
we find ϵx > such that:

1. For all z ∈M satisfying x ∈ B(z, ϕ(z)) we have ϵx < ϕ(z).
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2. limn→∞ ϵxn = 0 for some enumeration of the set C.
3. The metric balls B(x, ϵx), x ∈ C, are pairwise disjoint.
Now, we replace each x ∈ C with some x′ ∈ B(x, ϵx); the resulting subset C ′ of M is still

countable. Furthermore, for every z ∈M , there exists x′ ∈ C ′ as above such that d(x′, z) < 2ϕ(z).
If C ′ fails to be closed and discrete, there exists a sequence x′n of distinct elements of C ′ converging
to some x ∈M . By (2),

lim
n→∞

d(xn, x
′
n) = 0, xn ∈ C.

Then the sequence (xn) also converges to x and, by (3), all the points xn are distinct. This is a
contradiction. □

Lemma 59. Suppose, additionally, that (M,d) is a proper metric space (separability is automatic
in this case). Then for every point y ∈M there exists x ∈ C ′ such that y ∈ V x.

Proof. By the local finiteness of the Voronoi tessellation, for each point y ∈M there is a neighbor-
hood U of y which intersects only finitely many closed tiles V̂xi

, i = 1, ..., n. Suppose that

y ∈ δVxi , i = 1, ..., n.

Then, by shrinking the neighborhood U further, we can assume that U ⊂ δVx1
∪ ... ∪ δVxn

. But
this contradicts the fact that each δVxi has empty interior. □

We now consider the situation when (X, d) is a proper geodesic metric space, G×X → X is a free,
isometric, properly discontinuous action. We form the quotient space (M,dM ) = (X/G, dG). This
space is again proper and geodesic, see Lemma 21. Take the function ϕ = 1

16ρ :M → R+, where ρ
is defined via the G-action on X as in Section 6. Using Lemma 58 we find a suitable (countable)
metrically proper subset C ′ ⊂ M . Let E ⊂ X denote q−1(C ′), where q : X → X/G = M is the
quotient map. We obtain two Voronoi tessellations, VE ,VC′ of X and M respectively. According
to Lemmata 46 and 47, the map q sends each closed tile V̂x, x ∈ E, of VE homeomorphically to the
closed tile V̂[x] of VC′ . By applying Lemma 59, we obtain:

Corollary 60. For every point y ∈ X there exists x ∈ E such that y ∈ V x.

We are now ready to prove the main theorem of this section:

Theorem 61. Suppose that (X, d) is a proper geodesic metric space, G×X → X is a free, isometric,
properly discontinuous action. Then this action admits an open fundamental region R and a closed
connected fundamental domain F .

Proof. We define a G-invariant subset E ⊂ X as above and pick its subset S ⊂ E intersecting each
G-orbit in E in exactly one point. Take

R =
⋃
x∈S

Vx.

We claim that R is an open fundamental region for the G-action on X. First of all, since G preserves
the open and closed tiles of the Voronoi tessellation VE , we have that for every x ∈ S, gVx ∩Vx ̸= ∅
if and only if gx = x, i.e. g = 1 (since g acts freely on X). Next, the tiling VE is locally finite (since
the subset E is properly embedded in X). Hence, the collection of closures V x, x ∈ E, is locally
finite as well. Lastly, by Corollary 60, each point y ∈ X belongs to some V x, x ∈ E. Then there
exists z ∈ S such that g(z) = x and, hence, gV z = V x. Thus, all properties of an open fundamental
region are satisfied by R.
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We construct a closed connected fundamental domain F by modifying the construction of R
above. The main issue is that for a random choice of S, the region R need not have connected
closure. We will use Lemma 39 to choose S more carefully. We let Γ denote the incidence graph of
the closed cover {V x : x ∈ E} of X: Vertices of Γ are the elements of E and we connect distinct
points x, y ∈ E by an edge if and only if V x ∩ V y ̸= ∅. Since X is connected, the graph Γ is
connected as well. By the construction, the graph Γ is simplicial and the group G acts on Γ by
simplicial automorphisms. We let Γ′ denote the barycentric subdivision of Γ and Φ ⊂ Γ′ a subtree
given by Lemma 39. We let S ⊂ E denote the intersection of E with the vertex set of Φ (i.e.
the subset of vertices of Φ which are vertices of Γ). According to Lemma 39, each G-orbit in E
intersects S in exactly one point. Thus, the open subset R ⊂ X defined as above using S is an
open fundamental region for the G-action on X. We let

F :=
⋃
x∈S

V x.

Let us verify connectedness of F . First of all, each V x is connected since Vx is connected. For any two
points x, y ∈ S there exists a vertex-path x1x2...xn in Γ connecting these vertices (x1 = x, xn = y)
such that each vertex of this path is in S (this follows from the fact that the graph Φ is connected).
The union

V x1
∪ ... ∪ V xn

is connected since each intersection V xi
∩ V xi+1

is nonempty. Thus, F is connected. The fact that

F is closed follows from the fact that each V x is closed and the family {V x : x ∈ S} is locally finite
in X. The subset

R =
⋃
x∈S

Vx

is open in X and dense in F . Hence, F is a closed domain in X. □

As an application we will prove existence of open fundamental regions and closed connected
fundamental domains for free properly discontinuous group actions on a certain class of topological
spaces, cf. [25].

Theorem 62. Suppose that X is a 2nd countable, connected and locally connected locally compact
Hausdorff topological space. Suppose that G×X → X is a free proper action of a discrete countable
group. Then this action admits an open fundamental region and a closed connected fundamental
domain.

Proof. In Theorem 25 we constructed a complete G-invariant geodesic metric d on X. The metric
space (X, d) is necessarily proper, since X is locally compact. Using Theorem 61 we find an open
fundamental region R and a closed connected fundamental domain F for the G-action on X. □
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