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Abstract. We compare various notions of proper discontinuity for group actions. We also discuss
fundamental domains and criteria for cocompactness.

To the memory of Sasha Anan’in

1. Introduction

This note is meant to clarify the relation between different commonly used definitions of proper
discontinuity without the local compactness assumption for the underlying topological space. Much
of the discussion applies to actions of nondiscrete locally compact Hausdorff topological groups,
but, since my primary interest is geometric group theory, I will mostly work with discrete groups.
All group actions are assumed to be continuous, in other words, for discrete groups, these are
homomorphisms from abstract groups to groups of homeomorphisms of topological spaces. This
combination of continuous and properly discontinuous, sadly, leads to the ugly terminology “a
continuous properly discontinuous action.” A better terminology might be that of a properly discrete
action, since it refers to proper actions of discrete groups.

Throughout this note, I will be working only with topological spaces which are 1st countable,
since spaces most common in metric geometry, geometric topology, algebraic topology and geometric
group theory satisfy this property. One advantage of this assumption is that if (xn) is a sequence
converging to a point x ∈ X, then the subset {x}∪{xn : n ∈ N} is compact, which is not true if we
work with nets instead of sequences. However, I will try to avoid the local compactness assumption
whenever possible, since many spaces appearing in metric geometry and geometric group theory
(e.g. asymptotic cones) and algebraic topology (e.g. CW complexes) are not locally compact.
(Recall that topological space X is locally compact if every point has a basis of topology consisting
of relatively compact subsets.) In the last two sections of the note I also discuss cocompact group
actions and fundamental sets/domains of properly discontinuous group actions.

Acknowledgement. I am grateful to Boris Okun for pointing out several typos and the reference
to [12]. I am also grateful to the referee of the paper for useful suggestions and corrections.
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2. Group actions

A topological group is a group G equipped with a topology such that the multiplication and
inversion maps

G×G→ G, (g, h) 7→ gh,G→ G, g 7→ g−1
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are both continuous. A discrete group is a group with discrete topology. Every discrete group is
clearly a topological group.

A left continuous action of a topological group G on a topological space X is a continuous map

λ : G×X → X

satisfying
1. λ(1G, x) = x for all x ∈ X.
2. λ(gh, x) = λ(g, λ(h, x)), for all x ∈ X, g, h ∈ G.
From this, it follows that the map ρ : G→ Homeo(X)

ρ(g)(x) = λ(g, x),

is a group homomorphism, where the group operation ϕψ on Homeo(X) is the composition ϕ ◦ ψ.
If G is discrete, then every homomorphism G → Homeo(X) defines a left continuous action of

G on X.
The shorthand for ρ(g)(x) is gx or g ·x. Similarly, for a subset A ⊂ X, GA or G ·A, denotes the

orbit of A under the G-action:

GA =
⋃
g∈G

gA.

The quotient space X/G (also frequently denoted G\X), of X by the G-action, is the set of G-
orbits of points in X, equipped with the quotient topology: The elements of X/G are equivalence
classes in X, where x ∼ y when Gx = Gy (equivalently, y ∈ Gx).

The stabilizer of a point x ∈ X under the G-action is the subgroup Gx < G given by

{g ∈ G : gx = x}.
An action of G on X is called free if Gx = {1} for all x ∈ X. Assuming that X is Hausdorff, Gx is
closed in G for every x ∈ X.

Example 1. An example of a left action of G is the action of G on itself via left multiplication:

λ(g, h) = gh.

In this case, the common notation for ρ(g) is Lg. This action is free.

3. Proper maps

Properness of certain maps is the most common form of defining proper discontinuity; sadly,
there are two competing notions of properness in the literature.

A continuous map f : X → Y of topological spaces is proper in the sense of Bourbaki, or simply
Bourbaki–proper (cf. [3, Ch. I, §10, Theorem 1]) if f is a closed map (images of closed subsets are
closed) and point–preimages f−1(y), y ∈ Y , are compact. A continuous map f : X → Y is proper
(and this is the most common definition) if for every compact subset K ⊂ X, f−1(K) is compact.
It is noted in [3, Ch. I, §10; Prop. 7] that if X is Hausdorff and Y is locally compact, then f is
Bourbaki–proper if and only if f is proper.

The advantage of the notion of Bourbaki-properness is that it applies in the case of Zariski
topology, where spaces tend to be compact1 (every subset of a finite-dimensional affine space is
Zariski-compact) and, hence, the standard notion of properness is useless.

Since our goal is to trade local compactness for 1st countability, I will prove a lemma which
appears as a Corollary in [12]:

1quasicompact in the Bourbaki terminology
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Lemma 2. If f : X → Y is proper, and X,Y are Hausdorff and 1st countable, then f is Bourbaki-
proper.

Proof. We only have to verify that f is closed. Suppose that A ⊂ X is a closed subset. Since Y
is 1st countable, it suffices to show that for each sequence (xn) in A such that (f(xn)) converges
to y ∈ Y , there is a subsequence (xnk

) which converges to some x ∈ A such that f(x) = y. The
subset C = {y} ∪ {f(xn) : n ∈ N} ⊂ Y is compact. Hence, by properness of f , K = f−1(C) is
also compact. Since X is Hausdorff, and K is compact, follows that (xn) subconverges to a point
x ∈ K. By continuity of f , f(x) = y. Since A is closed, x ∈ A. □

Remark 3. This lemma still holds if one were to replace the assumption that X is 1st countable
by surjectivity of f , see [12].

The converse (each Bourbaki–proper map is proper) is proven in [3, Ch. I, §10; Prop. 6] without
any restrictions on X,Y . Hence:

Corollary 4. For maps between 1st countable Hausdorff spaces, Bourbaki-properness is equivalent
to properness.

4. Proper discontinuity

Suppose thatX is a 1st countable Hausdorff topological space, G a discrete group andG×X → X
a (continuous) action. I use the notation gn → ∞ in G to indicate that gn converges to ∞ in the
1-point compactification G ∪ {∞} of G, i.e. for every finite subset F ⊂ G,

card({n : gn ∈ F}) <∞.

Given a group action G×X → X and two subsets A,B ⊂ X, the transporter subset (A|B)G is
defined as

(A|B)G := {g ∈ G : gA ∩B ̸= ∅}.
Properness of group actions is (typically) stated using certain transporter sets.

Definition 5. Two points x, y ∈ X are said to be G-dynamically related if there is a sequence
gn → ∞ in G and a sequence xn → x in X such that gnxn → y.

A point x ∈ X is said to be a wandering point of the G-action if there is a neighborhood U of x
such that (U |U)G is finite.

Lemma 6. Suppose that the action G × X → X is wandering at a point x ∈ X. Then the G-
action has a G-slice at x, i.e. a neighborhood Wx ⊂ U which is Gx-stable and for all g /∈ Gx,
gWx ∩Wx = ∅.

Proof. For each g ∈ (U |U)G −Gx we pick a neighborhood Vg ⊂ U of x such that

gVg ∩ Vg = ∅.
Then the intersection

V :=
⋂

g∈(U |U)G−Gx

Vg

satisfies the property that (V |V )G = Gx. Lastly, take

Wx :=
⋂

g∈Gx

V.
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□
The next lemma is clear:

Lemma 7. Assuming that X is Hausdorff and 1st countable, the action G×X → X is wandering
at x if and only if x is not dynamically related to itself.

Given a group action α : G×X → X, we have the natural map

α̂ := α× idX : G×X → X ×X

where idX : (g, x) 7→ x.

Definition 8. An action α of a discrete group G on a topological space X is Bourbaki–proper if
the map α̂ is Bourbaki-proper.

Lemma 9. If the action α : G×X → X of a discrete group G on a Hausdorff topological space X
is Bourbaki-proper, then the quotient space X/G is Hausdorff.

Proof. The quotient map X → X/G is an open map by the definition of the quotient topology on
X/G. Since α is Bourbaki-proper, the image of the map α̂ is closed in X ×X. This image is the
equivalence relation on X ×X which use used to form the quotient X/G. Now, Hausdorffness of
X/G follows from [3, Proposition 8 in I.8.3]. □

Definition 10. An action α of a discrete group G on a topological space X is proper if the map α̂
is proper.

Note that the equivalence of (1) and (5) in the following theorem is proven in [3, Ch. III, §4.4,
Proposition 7] without any assumptions on X.

Theorem 11. Assuming that X is Hausdorff and 1st countable, the following are equivalent:

(1) The action α : G×X → X is Bourbaki-proper.
(2) For every compact subset K ⊂ X,

card((K|K)G) <∞.

(3) The action α : G×X → X is proper, i.e. the map α̂ is proper.
(4) For every compact subset K ⊂ X, there exists an open neighborhood U of K such that

card((U |U)G) <∞.
(5) For any pair of points x, y ∈ X there is a pair of neighborhoods Ux, Vx (of x, y respectively)

such that card((Ux|Vy)G)) <∞.
(6) There are no G-dynamically related points in X.
(7) Assuming, that G is countable and X is completely metrizable2 : The G-stabilizer of every

x ∈ X is finite and for any two points x ∈ X, y ∈ X−Gx, there exists a pair of neighborhoods
Ux, Vy (of x, resp. y) such that ∀g ∈ G, gUx ∩ Vy = ∅.

(8) Assuming that X is a metric space and the action G ×X → X is equicontinuous3: There
is no x ∈ X and a sequence hn → ∞ in G such that hnx→ x.

(9) Assuming that X is a metric space and the action G × X → X is equicontinuous: Every
x ∈ X is a wandering point of the G-action.

(10) Assuming that X is a CW complex and the action G×X → X is cellular: Every point of
X is wandering.

2It suffices to assume that X is hereditarily Baire: Every closed subset of X is Baire.
3E.g. an isometric action.
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(11) Assuming that X is a CW complex the action G×X → X is cellular: Every cell in X has
finite G-stabilizer.

Proof. The action α is Bourbaki-proper if and only if the map α̂ is proper (see Corollary 4) which
is equivalent to the statement that for each compact K ⊂ X, the subset (K|K)G ×K is compact.
Hence, (1) ⇐⇒ (2).

Assume that (3) holds, i.e. α is proper, equivalently, the map α̂ is proper. This means that for
each compact K ⊂ X, α̂−1(K ×K) = {(g, x) ∈ G×K : x ∈ K, gx ∈ K} is compact. This subset is
closed in G×X and projects onto (K|K)G in the first factor and to the subset

(⋆)
⋃

g∈(K|K)G

g−1(K)

in the second factor. Hence, properness of the action α implies finiteness of (K|K)G, i.e. (2).
Conversely, if (K|K)G is finite, compactness of g−1(K) for every g ∈ G implies compactness of the
union (⋆). Thus, (2) ⇐⇒ (3).

In order to show that (2)⇒(6), suppose that x, y are G-dynamically related points: There exists
a sequence gn → ∞ in G and a sequence xn → x such that gn(xn) → y. The subset

K = {x, y} ∪ {xn, gn(xn) : n ∈ N}
is compact. However, yn ∈ gn(K) ∩K for every n. A contradiction.

(6)⇒(5): Suppose that the neighborhoods Ux, Vy do not exist. Let {Un}n∈N, {Vn}n∈N be count-
able bases at x, y respectively. Then for every n there exists gn ∈ G, such that gn(Un) ∩ Vn ̸= ∅
for infinitely many gn’s in G. After extraction, gn → ∞ in G. This yields points xn ∈ Un, yn =
gn(xn) ∈ Vn. Hence, xn → x, yn → y. Thus, x is G-dynamically related to y. A contradiction.

(5)⇒(4). Consider a compact K ⊂ X. Then for each x ∈ K, y ∈ K there exist neighborhoods
Ux, Vy such that (Ux|Vy)G is finite. The product sets Ux × Vy, x, y ∈ K constitute an open cover of
K2. By compactness of K2, there exist x1, ..., xn, y1, ..., ym ∈ K such that

K ⊂ Ux1 ∪ ... ∪ Uxn

K ⊂ Vy1 ∪ ... ∪ Vym

and for each pair (xi, yj),
card({g ∈ G : gUxi ∩ Vyj ̸= ∅}) <∞.

Setting

W :=

n⋃
i=1

Uxi
, V :=

m⋃
j=1

Vyj
,

we see that
card((W |V )G) <∞.

Taking U := V ∩W yields the required subset U .
The implication (4)⇒(2) is immediate.
This concludes the proof of equivalence of the properties (1)—(6).

(5)⇒(7): Finiteness of G-stabilizers of points in X is clear. Let x, y be points in distinct G-
orbits. Let U ′

x, V
′
y be neighborhoods of x, y such that (U ′

x|V ′
y)G = {g1, ..., gn}. For each i, since X

is Hausdorff, there are disjoint neighborhoods Vi of y and Wi of gi(xi). Now set

Vy :=

n⋂
i=1

Vi, Ux :=

n⋂
i=1

g−1
i (Wi).



6 M. KAPOVICH

Then gUx ∩ Vy = ∅ for every g ∈ G.
(7)⇒(6): It is clear that (7) implies that there are no dynamically related points with distinct

G-orbits. In particular, every G-orbit in X is closed.
Assume now that X is completely metrizable and G is countable. Suppose that a point x ∈ X

is G-dynamically related to itself. Since the stabilizer Gx is finite, the point x is an accumulation
point of Gx; moreover, Gx is closed in X. Hence, Gx is a closed perfect subset of X. Since X
admits a complete metric, so does its closed subset Gx. Thus, for each g ∈ G, the complement
Ug := Gx − {gx} is open and dense in Gx. By the Baire Category Theorem, the countable
intersection ⋂

g∈G

Ug

is dense in Gx. However, this intersection is empty. A contradiction.
It is clear that (6)⇒(8) (without any extra assumptions).
(8)⇒(6). Suppose that X is a metric space and the G-action is equicontinuous. Equicontinuity

implies that for each z ∈ X, a sequence zn → z and gn ∈ G,

gnzn → gz.

Suppose that there exist a pair of G-dynamically related points x, y ∈ X: ∃xn → x, gn ∈ G,
gnxn → y. By the equicontinuity of the action, gnx → y. Since gn → ∞, there exist subsequences
gni → ∞ and gmi → ∞ such that the products hi := g−1

ni
gmi are all distinct. Then, by the

equicontinuity,
hix→ x.

A contradiction.
The implications (5)⇒(9)⇒(8) and (5)⇒(10)⇒(11) are clear.

Lastly, let us prove the implication (11)⇒(2). We first observe that every CW complex is
Hausdorff and 1st countable. Furthermore, every compact K ⊂ X intersects only finitely many
open cells eλ in X. (Otherwise, picking one point from each nonempty intersection K ∩ eλ we
obtain an infinite closed discrete subset of K.) Thus, there exists a finite subset E := {eλ : λ ∈ Λ}
of open cells in X such that for every g ∈ (K|K)G, gE ∩E ̸= ∅. Now, finiteness of (K|K)G follows
from finiteness of cell-stabilizers in G. □

Unfortunately, the property that every point of X is a wandering point is frequently taken as
the definition of proper discontinuity for G-actions, see e.g. [9, 11]. Items (8) and (10) in the above
theorem provide a (weak) justification for this abuse of terminology. I feel that the better name for
such actions is wandering actions.

Example 12. Consider the action of G = Z on the punctured affine plane X = R2 − {(0, 0)},
where the generator of Z acts via (x, y) 7→ (2x, 12y). Then for any p ∈ X, the G-orbit Gp has no
accumulation points in X. However, any two points p = (x, 0), q = (0, y) ∈ X are dynamically
related. Thus, the action of G is not proper

This example shows that the quotient space of a wandering action need not be Hausdorff.

Lemma 13. Suppose that G × X → X is a wandering action. Then each G-orbit is closed and
discrete in X. In particular, the quotient space X/G is T1.

Proof. Suppose that Gx accumulates at a point y. Then Gx ∩Wy is nonempty, where Wy is a
G-slice at y. It follows that all points of Gx ∩Wy lie in the same Wy-orbit, which implies that
Gx ∩Wy = {y}. □
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There are several reasons to consider proper actions of discrete (and, more generally, locally
compact) groups; one reason is that such each proper action of a discrete group yields an orbi-
covering map in the case of smooth group actions on manifolds: M → M/G is an orbi-covering
provided that the action of G on M is smooth (or, at least, locally smoothable). Another reason is
that for a proper action on a Hausdorff space, G×X → X, the quotient X/G is again Hausdorff,
see Lemma 9.

Question 14. Suppose that G is a discrete group, G × X → X is a free continuous action on
an n-dimensional topological manifold X such that the quotient space X/G is a (Hausdorff) n-
dimensional topological manifold. Does it follow that the G-action on X is proper?

The answer to this question is negative if one merely assumes that X is a locally compact Haus-
dorff topological space and X/G is Hausdorff, see [7] (the action given there was even cocompact).
Below is a different example. We begin by constructing a non-proper free continuous R-action on
a manifold, such that the quotient space is not just Hausdorff but is a manifold with boundary.

Example 15. This is a variation on Example 12. We start with the space

Z = {(x, y) : x, y ∈ [0,∞), (x, y) ̸= (0, 0)}.
Take the quotient space X of Z by the equivalence relation (x, 0) ∼ (0, 1x ). The space X is homeo-
morphic to the open Moebius band. The group G = R acts on Z continuously by

(t, (x, y)) 7→ (2tx, 2−ty).

The above equivalence relation on X is preserved by the G-action and, hence, the G-action descends
to a continuous G-action on X. It is easy to see that this action is free but not proper: The
equivalence class of (1, 0) is dynamically related to itself. Lastly, the quotient X/G is Hausdorff,
homeomorphic to [0, 1) (the equivalence class of (1, 0) maps to 0 ∈ [0, 1)).

Lastly, we use Example 15 to construct a non-proper free Z-action with Hausdorff quotient. We
continue with the notation of the previous example.

Example 16. Let Y ⊂ Z denote the following subset of Z (with the subspace topology):

Y = {(2m, 0) : m ∈ Z} ∪ {(0, 2n) : n ∈ Z} ∪ {(2m, 2n) : (m,n) ∈ Z2}.
Let W denote the projection of Y to X. We take Γ = Z < G = R. This subgroup preserves Y and,
hence, W . The quotient W/Γ is homeomorphic to Y ∩ {(0, y) : y ∈ R}, hence, is Hausdorff. At the
same time, the Γ-action on W is non-proper.

5. Cocompactness

There are two common notions of cocompactness for group actions:

(1) G×X → X is cocompact if there exists a compact K ⊂ X such that G ·K = X.
(2) G×X → X is cocompact if X/G is compact.

It is clear that (1)⇒(2), as the image of a compact under the continuous (quotient) map p : X →
X/G is compact.

Lemma 17. If X is locally compact then (2)⇒(1).

Proof. For each x ∈ X let Ux denote a relatively compact neighborhood of x in X. Then

Vx := p(Ux) = p(G · Ux),
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is compact since G · Ux is open in X. Thus, we obtain an open cover {Vx : x ∈ X} of X/G. Since
X/G is compact, this open cover contains a finite subcover

Vx1 , ..., Vxn .

It follows that

p(

n⋃
i=1

Uxi
) = X/G.

The set

K =

n⋃
i=1

Uxi

is compact and p(K) = X/G. Hence, G ·K = X. □

Lemma 18. Suppose that X is normal and Hausdorff, G×X → X is a proper action of a discrete
group, such that X/G is locally compact. Then X is locally compact.

Proof. Pick x ∈ X. Let Wx be a slice for the G-action at x; then Wx/Gx → X/G is a topological
embedding. Thus, our assumptions imply that Wx/Gx is compact for every x ∈ X. Let (xα) be
a net in Wx. Since Wx/Gx is compact, the net (xα)/G contains a convergent subnet. Thus, after
passing to a subnet, there exists g ∈ Gx such that (gxα) converges to some x ∈ Wx. Hence, (xα)
subconverges to g−1(x). Thus, Wx is relatively compact. Since X is assumed to be normal, x
admits a basis of relatively compact neighborhoods. □

Corollary 19. For normal Hausdorff spaces X the two notions of cocompactness agree for proper
discrete group actions on X.

On the other hand, if the drop the properness condition, the two notions are not equivalent even
for Z-actions with Hausdorff quotients, see the example by R. de la Vega in [16].

6. Fundamental sets

Definition 20. A closed subset F ⊂ X is a fundamental set for the action of G on X if G ·F = X
and there exists an open neighborhood U = UF of F such that for every compact K ⊂ X, the
transporter set (U |K)G is finite (the local finiteness condition).

Fundamental sets appear naturally in the reduction theory of arithmetic groups (Siegel sets), see
[13] and [2].

There are several existence theorems for fundamental sets. The next proposition, proven in [10,
Lemma 2], guarantees the existence of fundamental sets under the paracompactness assumption on
X/G.

Proposition 21. Each proper action G × X → X of a discrete group G on a locally compact
Hausdorff space X with paracompact quotient X/G admits a fundamental set.

One frequently encounters a sharper version of fundamental sets, called fundamental domains.
A domain in a topological space X is an open connected subset U ⊂ X which equals the interior
of its closure.

Definition 22. Suppose that G×X → X is a proper action of a discrete group. A subset F in X
is called a fundamental domain for an action G×X → X if the following hold:

(1) F is a domain in X.
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(2) G · F = X.
(3) gF ∩ F ̸= ∅ if and only if g = 1.
(4) For every compact subset K ⊂ X, the transporter set (F |K)G is finite, i.e. the family

{gF}g∈G of subsets in X is locally finite.

Suppose that (X, d) is a proper geodesic metric space, i.e. a space where every closed metric ball
is compact and every two points are connected by a geodesic segment. Suppose, furthermore, that
G ×X → X is a proper isometric action of a discrete group, x ∈ X is a point which is fixed only
by the identity element.

Remark 23. If G is countable and fixed point sets in X of nontrivial elements of G are nowhere
dense, then Baire’s Theorem implies existence of such x.

One defines the Dirichlet domain of the action as

D = Dx = {y ∈ X : d(y, x) < d(y, gx) ∀g ∈ G \Gx}.
Note that gDx = Dgx.

Proposition 24. Each Dirichlet domain D is a fundamental domain for the G-action.

Proof. 1. The closure D is contained in

D̂ = D̂x = {y ∈ X : d(y, x) ≤ d(y, gx) ∀g ∈ G \Gx}.

As before, gD̂x = D̂gx. I claim that D̂ is the closure of D and D is the interior of D̂; this will prove

that D is a domain. Clearly, D is contained in the interior of D̂ and D̂ is closed. Hence, it suffices
to prove that each point of D̂ is the limit of a sequence in D. Consider a point z ∈ D̂ \D and let
c : [0, T ] → X be a geodesic connecting x to z. Then for each t ∈ [0, T ) and g ∈ G \ {1},

d(x, c(t)) < d(x, c(t)) + d(c(t), z) = d(x, z) ≤ d(z, gx),

i.e. c(t) ∈ D. Thus, indeed, z lies in the closure of D, as claimed. This argument also proves that
D is connected.

2. Let us prove that gD̂ = X. For each y ∈ X the function g 7→ d(z, gx) is a proper function on

G, hence, it attains its minimum at some g ∈ G. Then, clearly, y ∈ D̂gx, hence, y ∈ gD̂x. Thus,

gD = X.
3. Suppose that g ∈ G \ {1} is such that gD = Dgx ∩D ̸= ∅. Then each point y of intersection is

closer to x than to gx (since y ∈ Dx) and also y is closer to gx than to g−1gx = x (since y ∈ Dgx).
This is clearly impossible.

4. Lastly, we verify local finiteness. Consider a compact K ⊂ X. Then K ⊂ B = B(x,R) for
some R. For every g ∈ G such that gB ∩ B ̸= ∅, d(x, gx) ≤ 2R. Since (X, d) is a proper metric
space and the action of G on X is proper, the set of such elements of G is finite. □

We will now prove existence of fundamental domains for proper discrete group actions on a
certain class of topological spaces, cf. [14].

Theorem 25. Suppose that X is a 2nd countable, connected and locally connected locally compact
Hausdorff topological space. Suppose that G × X → X is a proper action of a discrete countable
group such that the fixed-point set of each nontrivial element of G is nowhere dense in X. Then
this action admits a fundamental domain.

Proof. Our goal is to construct a G-invariant geodesic metric metrizing X. Then the result will
follow from the proposition.
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Lemma 26. The quotient space Y = X/G is locally compact, connected, locally connected and
metrizable.

Proof. Local compactness and connectedness of Y follows from that of X. The 2nd countability of
X implies the 2nd countability of Y . By Lemma 9, Y is Hausdorff. Since Y is locally compact and
Hausdorff, its one-point compactification is compact and Hausdorff, hence, regular. It follows that
Y itself is regular. In view of the 2nd countability of Y , Urysohn’s metrization theorem implies
that Y is metrizable. □

Remark 27. Note that each locally compact metrizable space is also locally path-connected.

It is proven in [15] that each locally compact, connected, locally connected metrizable space, such
as Y , admits a complete geodesic metric dY which we fix from now on. Consider the projection
p : X → Y . According to [4, Theorem 6.2] (see also [1, Lemma 2]), the map p satisfies the path-
lifting property: Given any path c : [0, 1] → Y , a point x ∈ X satisfying p(x) = c(0), there exists
a path c̃ : [0, 1] → X such that p ◦ c̃ = c. (This result is, of course, much easier if the G-action is
free, i.e. p : X → Y is a covering map.) We let LX denote the set of paths in X which are lifts
of rectifiable paths c : [0, 1] → Y . Clearly, the postcomposition of c̃ ∈ LX with an element of G
is again in LX . Our next goal is to equip X with a G-invariant length structure using the family
of paths LX . Such a structure is a function on LX with values in [0,∞), satisfying certain axioms
that can be found in [5, Section 2.1]. Verification of most of these axioms is straightforward, I will
check only some (items 1, 2, 3 and 4 below).

1. If c̃ ∈ LX is a lift of a path c in Y , then we declare ℓ(c̃) to be equal to the length of c.
2. If c̃i, i = 1, 2, are paths in LX (which are lifts of the paths c1, c2 respectively) whose concate-

nation b = c̃1 ⋆ c̃2 is defined, then b is a lift of the concatenation c1 ⋆c2. Clearly, ℓ(b) = ℓ(c̃1)+ ℓ(c̃2).
3. Let U be a neighborhood of some x ∈ X. We need to prove that

(28) inf
γ
{ℓ(γ)} > 0,

where the infimum is taken over all γ = c̃ ∈ LX connecting x to points of X \U . It suffices to prove
this claim in the case when U is Gx-invariant, satisfies

(29) U ∩ gU ̸= ∅ ⇐⇒ g ∈ Gx,

and γ connects x to points of ∂U . Then V = p(U) is a neighborhood of y = p(x) in Y and the
paths c = p ◦ γ connect y to points in ∂V . But the lengths of the paths c are clearly bounded away
from zero and are equal to the lengths of their lifts c̃. Thus, we obtain the required bound (28).

4. Let us verify that any two points in X are connected by a path in LX . Since X is connected,
it suffices to verify the claim locally. Let U is Gx-invariant neighborhood of x satisfying (29), such
that V = p(U) is an open metric ball in Y centered at y = p(x). Take u ∈ U , v := p(u) ∈ V . Let
c : [0, T ] → V be a geodesic connecting v to y. Then there exists a lift c̃ : [0, T ] → U of c with
c̃(0) = u. Since x ∈ U is the only point projecting to y, we get c̃(T ) = x. By taking concatenations
of pairs of such radial paths in U , we conclude that any two points in U are connected by a path
c̃ ∈ LX .

Given a length structure on X, one defines a path-metric (metrizing the topology of X) by

dX(x1, x2) = inf
γ
{ℓ(γ)}

where the infimum is taken over all γ ∈ LX connecting x1 to x2. By the construction, the projection
p : (X, dX) → (Y, dY ) is 1-Lipschitz.
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Lemma 30. The metric dX is complete.

Proof. Let (xn) be a Cauchy sequence in (X, dX). By the construction of the metric dX , there exists
a finite length path c̃ : [0, 1) → (X, dX) and a sequence tn ∈ [0, 1) such that c̃(tn) = xn, c̃(0) =
x = x1. Since the map p is 1-Lipschitz, the path c = p ◦ c̃ : [0, 1) → (Y, dY ) also has finite length.
Since the metric dY was complete to begin with, the path c extends to a path c̄ : [0, 1] → Y ; set
y′ := c̄(1).

Assume for a moment that G acts freely on X. Then we have the uniqueness of lifts of paths
from Y to X. Thus, the unique lift ˜̄c of c̄ starting at the point x satisfies the property that its
restriction to [0, 1) equals c̃. It follows that the sequence (xn) converges to ˜̄c(1). Below we generalize
this argument to the case of non-free actions.

Let U be a neighborhood of y′ = c̄(1) which is the projection to Y of a relatively compact slice

neighborhood Ũ of some x′ ∈ p−1(y′). Without loss of generality (by removing finitely many initial
terms of the sequence (xn)) we can assume that the image of the path c lies entirely in U . Applying
the path-lifting property to the path c with the prescribed terminal point x′, we obtain a lift of the
path c̄ that terminates at x′. This lift has to be entirely contained in Ũ and its initial point has to
be of the form g(x) for some g ∈ G. Applying g−1 to this lift, we obtain another lift of c̄, denoted
˜̄c, which starts at x and terminates at g−1(x′).

Consider the restriction of ˜̄c to [0, 1). This restriction is also a lift to the path c|[0,1) and the image

of the latter lies entirely in U . Hence, the image of ˜̄c|[0,1) lies entirely in the relatively compact

subset g−1(Ũ) ⊂ X. Thus, the Cauchy sequence (xn) lies in a relatively compact subset of X, and
it follows that this sequence converges in X. □

Since (X, dX) is locally compact and complete, by Theorem 2.5.28 (and Remark 2.5.29) in [5],
(X, dX) is a geodesic metric space. Lastly, we note that, by the construction, the length structure
on X and, hence, the metric dX , is G-invariant. This concludes the proof of the theorem. □

Question 31. Local compactness and local connectivity were critical for the proof of the theorem.
Does the theorem hold without these assumptions?

For each fundamental set F of a G-action on a topological space X we define its quotient space
F/G as the quotient space of the equivalence relation x ∼ y ⇐⇒ ({x}|{y})G ̸= ∅. The following
proposition explains why fundamental sets are useful: They allow one to describe quotient spaces
of proper actions by discrete groups using less information than is contained in the description of
that action.

Proposition 32. Suppose that F is a fundamental set for proper action by discrete group G on
a 1st countable and Hausdorff space X. Then the natural projection map p : F/G → X/G is a
homeomorphism.

Proof. The map p is continuous by the definition of the quotient topology. It is also obviously a
bijection. It remains to show that p is a closed map. Since F is closed, it suffices to show that the
projection q : F → X/G is a closed map. Suppose that (xn) is a sequence in F such that q(xn)
converges to some y ∈ X/G, y is represented by a point x ∈ F . Then there is a sequence gn ∈ G
such that gn(xn) converges to x. Since {gn(xn) : n ∈ N} ∪ {x} is compact which, without loss
of generality is contained in UF , the local finiteness assumption implies that the sequence (gn) is
finite. Hence, after extraction, gn = g for all n. The fact that F is closed then implies that x ∈ F .
It follows that x is an accumulation point of (xn). Thus, q : F → F/G is a closed map. □
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