Algebra Prelim Exam for 2004-05

Instructions: explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.

Problem 1. Let V be a nonzero finite-dimensional complex vector space, and let $f, g: V \to V$ be two linear maps. Prove that there exists a non-zero vector $v \in V$ such that the vectors f(v), g(v) are collinear (that is, $\dim(\operatorname{Span}(f(v), g(v))) \leq 1$).

Warning: neither of f, g is assumed to be non-singular.

Problem 2. Prove that an infinite simple (not having proper normal subgroups) group does not have proper subgroups of finite index.

Problem 3. Let G be a finitely generated abelian group. Prove that there are no non-zero homomorphisms $\mathbb{Q} \to G$ (here \mathbb{Q} is the additive group of rational numbers).

Problem 4. Prove of disprove: $\mathbb{C}[x,y]$ is a PID (Principal Ideal Domain).

Problem 5. Give examples of each of the following

- a) a finite nonabelian group
- b) an infinite nonabelian group
- c) a group that is not finitely generated
- d) a group that is not solvable

Problem 6.

- a) Construct infinitely many non-isomorphic quadratic extensions of Q.
- b) Use (a) to show that the Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ does not have finitely generated abelianization.

Here \mathbb{Q} is the field of rational numbers.

Analysis Prelim Exam for 2004-05

Instructions: explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.

Problem 1. Let $f:(-1,1)\to\mathbb{R}$ be a differentiable function such that there exists a limit

$$\lim_{x \to 0} \frac{f(x)}{x^2} = L \in \mathbb{R}.$$

Does it follow that the second derivative f''(0) exist and equals L? Give a proof or a counter-example.

Problem 2. For functions from [0,1] to \mathbb{R} do the following:

- a) Define what it means for a sequence of functions to converge uniformly.
- b) Explain what it means for a sequence of functions to be equicontinuous.
- c) Does every equicontinuous sequence of functions converge uniformly to a continuous function? Is the converse true? Give examples or prove.

Problem 3. Define two sequences of functions, (f_n) and (g_n) , on the interval [0,1] as follows:

$$f_n(x) = (1 + \cos 2\pi x)^{1/n}, \quad n \ge 1$$

 $g_n(x) = (1 + \frac{1}{2}\cos 2\pi x)^{1/n}, \quad n \ge 1$

- a) What are the pointwise limits, f and g, of the sequences (f_n) and (g_n) respectively?
- b) For each sequence, determine whether the convergence is uniform. Explain your answer.

Problem 4. Let X and Y be a topological spaces. Prove that if $f: X \to Y$ is continuous and X is compact, then f(X) is also compact.

Problem 5. Let X be a normed linear space and let X^* be its topological dual. Suppose that for $x, y \in X$ are such that for all $\varphi \in X^*$, $\varphi(x) = \varphi(y)$. Prove that x = y.

Problem 6. Consider the following equation for an unknown function $f:[0,1]\to\mathbb{R}$:

$$f(x) = g(x) + \lambda \int_0^1 (x - y)^2 f(y) \, dy + \frac{1}{2} \sin(f(x)) \tag{1}$$

Prove that there exists a number $\lambda_0 > 0$ such that for all $\lambda \in [0, \lambda_0)$, and all continuous functions g on [0, 1], the equation (1) has a unique continuous solution.