Fall 2003 Mathematics Graduate Program Preliminary Exam

Instructions: Explain your answers clearly. Unclear answers will not receive credit. State results and theorems that you are using.

1. Analysis

Problem 1. (a) For a function $f:(a,b)\to R^1$, (a,b) an open interval, state briefly but precisely:

- i. What is meant by the statement: f(x) is continuous at $x_0 \in (a,b)$.
- ii. What is meant by the statement: f(x) is continuous on (a, b).
- iii. What is meant by the statement: f(x) is uniformly continuous on (a, b).
- (b) Prove, directly from the definition, that the function f(x) = 1/x is uniformly continuous on the interval $[1, \infty)$.

Problem 2. Let $\{U_n\}_{n=1}^{\infty}$ be a nested sequence of open sets in a topological space X, so that $U_1 \subset U_2 \subset \cdots \subset U_n \subset U_{n+1}$. Let $x_n \in U_n \setminus U_{n-1}$ Set $U = \bigcup_{n=1}^{\infty} U_n$. Prove that $\{x_n\}$ does not have a subsequence that converges to a point in U.

Problem 3. Let $T:(X,d)\to (X,d)$ be a contraction mapping from the metric space (X,d) to itself, so that for some r<1, $d(Tx,Ty)\leq rd(x,y) \ \forall x,y\in X$. Assume that x_0 is a fixed point of this mapping. Prove that

$$d(x, x_0) \le \frac{d(x, T(x))}{1 - r}$$

Problem 4. Let y, y' be two elements of a Hilbert space H. Prove that if $\langle y, x \rangle = \langle y', x \rangle$ for every $x \in H$ then y = y'.

Problem 5. Let L and R be the left shift operator and the right shift operator of $l^2(\mathbb{N})$ respectively.So

$$L(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4 \dots)$$

$$R(x_1, x_2, x_3, \dots) = (0, x_1, x_2, x_3, x_4 \dots).$$

Find the point specturm of L and R

Problem 6. Define the following three sequences of functions $[0, +\infty) \to \mathbb{R}$:

Problem 6. Define the following three sequences of funct
$$(f_n)_{n=1}^{\infty} \text{ given by } f_n(x) = \begin{cases} \frac{n^{1/2}}{(x+1)^n} & \text{if } 0 \leq x \leq n \\ 0 & \text{else} \end{cases}$$

$$(g_n)_{n=1}^{\infty} \text{ given by } g_n(x) = \begin{cases} \sin(2\pi nx) & \text{if } n \leq x \leq n+1 \\ 0 & \text{else} \end{cases}$$

and
$$(h_n)_{n=1}^{\infty}$$
 given by $h_n(x) = \sum_{k=1}^n \frac{k}{\sqrt{n}} \text{Ind}_{[k,k+(1/n^2)]}(x)$.

Consider these sequences with each of the topologies given below and determine whether or not they converge and, if they converge, determine their limits. Explain your assertions.

- a. Pointwise on $[0, +\infty)$.
- b. Uniformly on $[0, +\infty)$.
- c. In the norm topology of $L^2([0, +\infty))$.
- d. Strongly in $L^{3/2}([0,+\infty))$.
- e. Weakly in $L^{3/2}([0,+\infty))$.

Fall 2003 Mathematics Graduate Program Preliminary Exam

2. Algebra and Linear Algebra

Problem 7. Let G be a group and p a prime. Prove or give a counter example:

- **a.** A group of order p is commutative.
- **b.** A group of order p^2 is commutative.
- **c.** A group of order p^3 is commutative.

Problem 8. Let F be a finite field. Show that the number of elements of F is p^r for some prime p and positive integer r.

Problem 9. A vector space V contains an n-element set with the following properties:

- (i) It is not linearly independent, but contains an (n-1)-element linearly independent set;
- (ii) It does not span V, but is contained in an (n+1)-element spanning set. Prove that $\dim V = n$

Problem 10. Let B be a symmetric, non-degenerate, not positive definite bilinear form in an n-dimensional real vector space V. Prove that there exists a basis v_1, \ldots, v_n in V such that $B(v_i, v_i) < 0$ for all i.

Problem 11. Let $I \subset \mathbb{R}[x]$ be the ideal generated by the polynomial $x^2 + 2x + 3$. Prove that the quotient ring $\mathbb{R}[x]/I$ is isomorphic to the field \mathbb{C} of complex numbers.

Problem 12. Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Find α so that $K = \mathbb{Q}(\alpha)$, and compute the irreducible polynomial of α over \mathbb{Q} .