Fall 2003 Mathematics Graduate Program Preliminary Exam

Instructions: Explain your answers clearly. Unclear answers will not receive credit. State results and theorems that you are using.

1. Analysis

Problem 1. (a) For a function $f:(a, b) \rightarrow R^{1},(a, b)$ an open interval, state briefly but precisely:
i. What is meant by the statement: $f(x)$ is continuous at $x_{0} \in(a, b)$.
ii. What is meant by the statement: $f(x)$ is continuous on (a, b).
iii. What is meant by the statement: $f(x)$ is uniformly continuous on (a, b).
(b) Prove, directly from the definition, that the function $f(x)=1 / x$ is uniformly continuous on the interval $[1, \infty)$.
Problem 2. Let $\left\{U_{n}\right\}_{n=1}^{\infty}$ be a nested sequence of open sets in a topological space X, so that $U_{1} \subset U_{2} \subset \cdots \subset U_{n} \subset U_{n+1}$. Let $x_{n} \in U_{n} \backslash U_{n-1}$ Set $U=\cup_{n=1}^{\infty} U_{n}$. Prove that $\left\{x_{n}\right\}$ does not have a subsequence that converges to a point in U.

Problem 3. Let $T:(X, d) \rightarrow(X, d)$ be a contraction mapping from the metric space (X, d) to itself, so that for some $r<1, d(T x, T y) \leq r d(x, y) \forall x, y \in X$, . Assume that x_{0} is a fixed point of this mapping. Prove that

$$
d\left(x, x_{0}\right) \leq \frac{d(x, T(x))}{1-r}
$$

Problem 4. Let y, y^{\prime} be two elements of a Hilbert space H.
Prove that if $<y, x>=<y^{\prime}, x>$ for every $x \in H$ then $y=y^{\prime}$.
Problem 5. Let L and R be the left shift operator and the right shift operator of $l^{2}(\mathbb{N})$ respectively.So

$$
\begin{gathered}
L\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4} \ldots\right) \\
R\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, x_{2}, x_{3}, x_{4} \ldots\right)
\end{gathered}
$$

Find the point specturm of L and R
Problem 6. Define the following three sequences of functions $[0,+\infty) \rightarrow \mathbb{R}$:
$\left(f_{n}\right)_{n=1}^{\infty}$ given by $f_{n}(x)= \begin{cases}\frac{n^{1 / 2}}{(x+1)^{n}} & \text { if } 0 \leq x \leq n \\ 0 & \text { else }\end{cases}$
$\left(g_{n}\right)_{n=1}^{\infty}$ given by $g_{n}(x)= \begin{cases}\sin (2 \pi n x) & \text { if } n \leq x \leq n+1 \\ 0 & \text { else }\end{cases}$
and $\left(h_{n}\right)_{n=1}^{\infty}$ given by $h_{n}(x)=\sum_{k=1}^{n} \frac{k}{\sqrt{n}} \operatorname{Ind}_{\left[k, k+\left(1 / n^{2}\right)\right]}(x)$.
Consider these sequences with each of the topologies given below and determine whether or not they converge and, if they converge, determine their limits. Explain your assertions.
a. Pointwise on $[0,+\infty)$.
b. Uniformly on $[0,+\infty)$.
c. In the norm topology of $L^{2}([0,+\infty))$.
d. Strongly in $L^{3 / 2}([0,+\infty))$.
e. Weakly in $L^{3 / 2}([0,+\infty))$.

Fall 2003 Mathematics Graduate Program Preliminary Exam

2. Algebra and Linear Algebra

Problem 7. Let G be a group and p a prime. Prove or give a counter example:
a. A group of order p is commutative.
b. A group of order p^{2} is commutative.
c. A group of order p^{3} is commutative.

Problem 8. Let F be a finite field. Show that the number of elements of F is p^{r} for some prime p and positive integer r.
Problem 9. A vector space V contains an n-element set with the following properties:
(i) It is not linearly independent, but contains an $(n-1)$-element linearly independent set;
(ii) It does not span V, but is contained in an $(n+1)$-element spanning set.

Prove that $\operatorname{dim} V=n$
Problem 10. Let B be a symmetric, non-degenerate, not positive definite bilinear form in an n-dimensional real vector space V. Prove that there exists a basis v_{1}, \ldots, v_{n} in V such that $B\left(v_{i}, v_{i}\right)<0$ for all i.
Problem 11. Let $I \subset \mathbb{R}[x]$ be the ideal generated by the polynomial $x^{2}+2 x+3$. Prove that the quotient ring $\mathbb{R}[x] / I$ is isomorphic to the field \mathbb{C} of complex numbers.
Problem 12. Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Find α so that $K=\mathbb{Q}(\alpha)$, and compute the irreducible polynomial of α over \mathbb{Q}.

