Fall 2012: MA Algebra Preliminary Exam

Instructions:

- 1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 2. Use separate sheets for the solution of each problem.

Problem 1.

a) Can a vector space V over an infinite field be a finite union

$$V = \bigcup_{i=1}^{k} V_i,$$

where for each $i, V_i \neq V$?

b) Can the group $\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$ be a union of finitely many proper subgroups?

Problem 2. Let G be an abelian group with n generators. Show that every subgroup $H \subset G$ has a generating set consisting of at most n elements.

Problem 3. Let F be a field and let $P \subset F$ be the intersection of all subfields in F. Show that:

a) If F has characteristic 0 then $P \cong \mathbb{Q}$,

b) If F has characteristic p > 1 then $P \cong \mathbb{F}_p$.

Problem 4. Let R be a commutative ring and I an ideal in R. Prove or disprove: The set $\sqrt{I} = \{ a \in R : \exists n \in \mathbb{N}, n > 0, a^n \in I \}$ is an ideal.

Problem 5. Find the number of field homomorphisms $\phi : \mathbb{Q}(\sqrt[3]{2}) \to \mathbb{C}$.

Problem 6.

Consider the dihedral group $D_4 = \langle r, s : s^2 = r^4 = 1, rs = sr^{-1} \rangle$ of order 8.

a) Find the conjugacy classes of D_4 .

b) Find the character table of D_4 .