Algebra Prelim Problems
Spring, 2015

Instructions:

1. All problems are worth 10 points. Explain your answers clearly.

Unclear answers will not receive credit. State results and theorems you are using.
2. Use separate sheets for the solution of each problem.

Problem 1.

Show that if M is a nondiagonalizable complex matrix and M^{n} is diagonalizable then $\operatorname{det}(M)=0$.

Problem 2.

Find the degree of the field extension $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$ over \mathbb{Q}.

Problem 3.

Show that if G is an infinite simple group then every proper subgroup has infinitely many conjugates. Use this to conclude that G has an infinite automorphism group.

Problem 4.

Find a quotient ring of $Z[x]$ which is a principal ideal domain but not a field.

Problem 5.

Let $R=\mathbb{Q}[X] /\left(X^{3}-2\right)$.
(a) Is R a field? Explain.
(b) Run the extended Euclidean algorithm on $X^{3}-2$ and $X^{2}-X+1$ to find polynomials $A(x)$ and $B(x)$ with

$$
A(X)\left(X^{3}-2\right)+B(X)\left(X^{2}-X+1\right)=\operatorname{gcd}\left(X^{3}-2, X^{2}-X+1\right)
$$

(c) Does $\left[X^{2}-X+1\right]$ have a multiplicative inverse in R ? If yes, find it.

Problem 6.

Let G be a finite group and $\rho: G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ a representation.
(a) Show: $\delta: G \rightarrow \mathbb{C}, g \mapsto \operatorname{det}(\rho(g))$ is a linear character of G (i.e. a group homomorphism to the multiplicative group).
(b) Show: If $\delta(g)=-1$ for some $g \in G$, then G has a normal subgroup of index 2 .
(c) Show: If G has order $2 k, k$ odd, then G has a normal subgroup of index 2.
(d) Let $\chi(g)=\operatorname{tr}(\rho(r))$ and $g \in G$ an involution. Show: (i) $\chi(g)$ is an integer; (ii) $\chi(g) \equiv \chi(1) \bmod 2$; (iii) if G has no normal subgroup of index 2 , then $\chi(g) \equiv \chi(1) \bmod 4$.

