Spring 2013: PhD Analysis Preliminary Exam

Instructions:

- 1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 2. Use separate sheets for the solution of each problem.

Problem 1: Consider the Hilbert space $\mathcal{H} = L^2([0,1])$ with inner product $\langle f,h \rangle = \int_0^1 f(x)h(x) dx$. Let

$$V = \{ f \in L^2([0,1]) : \int_0^1 x f(x) dx = 0 \} \subset \mathcal{H}$$

and $g(x) \equiv 1$. Find the closest element to g in V. Justify your answer.

Problem 2: Let (B, ||||) be a Banach space. Recall that the spectrum of a bounded linear operator $A \in \mathcal{L}(B)$ is defined as

$$\sigma(A) = \{ \lambda \in \mathbb{C} : \lambda I - A \text{ is not invertible} \}.$$

Consider a sequence of bounded linear operators $A_n \in \mathcal{L}(B)$ which converges in norm to a bounded linear operator $A \in \mathcal{L}(B)$. Assume that all spectra are the same, i.e. $\sigma_0 := \sigma(A_1) = \sigma(A_2) = \dots$ Show that $\sigma_0 \subset \sigma(A)$.

Problem 3: Consider the function

$$f(x) = \begin{cases} 2\sin(x) + 3, & x > 0\\ -2\sin(x) + c, & x \le 0 \end{cases}$$

Find its distributional derivative $\frac{df}{dx}$ and $\frac{d^2f}{dx^2}$. For which values of c will $f \in W_{loc}^{1,p}(\mathbb{R})$? Justify your answer.

Problem 4: Prove that

$$\lim_{\epsilon \to 0^+} \int_0^\infty \frac{\epsilon}{\epsilon^2 + x} \sin(1/x) dx = 0.$$

Problem 5: Prove that the image of the space $C^k(\mathbb{T})$ of k times continuously differentiable functions on the unit circle under the Fourier transform is contained in the set of sequences satisfying $|c_n| = o(|n|^{-k})$ and contains the set of sequences satisfying $|c_n| = o(|n|^{-k-1-\epsilon})$, $\epsilon > 0$.

(Recall: f(n) = o(h(n)) as $n \to \infty$ means that for every $\delta > 0$ there exists an N such that $|f(n) \leq \delta |g(n)|$ for all n > N).

Problem 6: Let *I* be the interval (0,1) and $q \ge p \ge 1$. Show that there exists a constant C = C(p,q,I) such that

$$\|u\|_{L^{q}(I)} \le C \|u\|_{W^{1,p}(I)}$$

for all $u \in W_0^{1,p}(I)$. (Hint: First show that $||u||_{L^{\infty}(I)} \leq C ||u||_{W^{1,p}(I)}$ for all $u \in W_0^{1,p}(I)$.)