Preliminary Exam in Analysis Spring, 2017

Instructions:

- (1) All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- (2) Use separate sheets for the solution of each problem.

Problem 1. Define $f_n : [0, \infty) \to \mathbb{R}$ by

$$f_n(x) = \sin\sqrt{x + 4n^2\pi^2},$$

and let $\mathcal{F} = \{f_n : n \in \mathbb{N}\} \subset C([0,\infty)).$

(a) Show that \mathcal{F} is equicontinuous in $C([0,\infty))$.

(b) Show that the sequence (f_n) converges pointwise but not uniformly on $[0, \infty)$.

(c) Is \mathcal{F} totally bounded in the space $C_b([0,\infty))$ of bounded, continuous functions $f : [0,\infty) \to \mathbb{R}$, equipped with the sup-norm?

Problem 2. Suppose that X is a metric space with metric d such that every continuous function $f: X \to \mathbb{R}$ is bounded. Prove that X is complete.

Problem 3. Let A be a linear operator on a Banach space B that maps any strongly converging sequence into a weakly converging one. Prove that A is a bounded operator.

Problem 4. Let K(x, y) be a continuous function on the unit square. Prove that A is a compact operator acting on $L^{2}[0, 1]$, where

$$(Af)(x) = \int_0^1 K(x, y) f(y) dy.$$

Problem 5. Prove the Riemann-Lebesgue Lemma, namely if $f \in L^1(\mathbb{R}^n)$ then $\widehat{f}(\xi) \to 0$ as $|\xi| \to \infty$, where

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} e^{-2\pi i \xi \cdot x} f(x) dx.$$

Problem 6. Give an example of a sequence of functions that converges weakly in L^2 , strongly in L^1 , but does not converge strongly in L^2 . Be sure to justify all of your assertions.