Return to Colloquia & Seminar listing
Coxeter cones and their h-vectors
Algebra & Discrete MathematicsSpeaker: | John Stembridge, U. Michigan |
Location: | 2112 MSB |
Start time: | Fri, May 2 2008, 1:10PM |
Abstract: Understanding the h-vectors of various classes of simplicial complexes has been a topic of longstanding interest in topological combinatorics. A particular focus of attention has been the identification of natural conditions that force unimodality of the h-vector. In this talk, we will discuss results of this type for "Coxeter cones". These are simplicial fans formed by intersecting the nonnegative sides of a subset of root hyperplanes in some root system. They are (shellable) subcomplexes of the Coxeter complex, and their h-vectors record the distribution of descents among their chambers. We identify a natural class of "graded" Coxeter cones with the property that their h-vectors are symmetric and unimodal, thereby generalizing recent theorems of Reiner-Welker and Brändén about the Eulerian polynomials of graded partially ordered sets.