Return to Colloquia & Seminar listing
Commensurability classes of (-2,3,n) -pretzel knots
Geometry/TopologySpeaker: | Thomas Mattman, Chico State University |
Location: | 2112 MSB |
Start time: | Tue, Mar 10 2009, 4:10PM |
Let K be a hyperbolic (-2,3,n) pretzel knot and M = S^3-K its complement. For these knots, we verify a conjecture of Reid and Walsh: there are at most three knot complements in the commensurability class of M. Indeed, if n \neq 7, we show that M is the unique knot complement in its class. We include examples to illustrate how our methods apply to a broad class of Montesinos knots. This is joint work with Melissa Macasieb.