Return to Colloquia & Seminar listing
Numerical Algebraic Geometry in Algebraic Statistics
Algebra & Discrete MathematicsSpeaker: | Jose Rodriguez, UC Berkeley, Dept. of Mathematics |
Location: | 1147 MSB |
Start time: | Thu, Mar 21 2013, 3:10PM |
Maximum likelihood estimation is a fundamental computational task in statistics and involves beautiful geometry. We discuss this task for determinantal varieties (matrices with rank constraints) and show how numerical algebraic geometry can be used to maximize the likelihood function. Our computational results with the software Bertini led to surprising conjectures and duality theorems. This is joint work with Jan Draisma, Jon Hauenstein, and Bernd Sturmfels.