Return to Colloquia & Seminar listing
Special Seminar: Combinatorics and complexity of Kronecker coefficients
Special EventsSpeaker: | Dr. Greta Panova , University of California, Los Angeles |
Location: | 1147 MSB |
Start time: | Fri, Jan 24 2014, 4:10PM |
Kronecker coefficients lie at the intersection of representation theory, algebraic combinatorics and, most recently, complexity theory. They count the multiplicities of irreducible representations in the tensor product of two other irreducible representations of the symmetric group. While their study was initiated almost 75 years, remarkably little is known about them. One of the major problems of algebraic combinatorics is to find an explicit positive combinatorial formula for these coefficients. Recently, this problem found a new meaning in the field of Geometric Complexity Theory, initiated by Mulmuley and Sohoni, where certain conjectures on the complexity of computing and deciding positivity of Kronecker coefficients are part of a program to prove the "P vs NP" problem. In this talk we will give an overview of this topic and we will describe several problems with some results on different aspects of the Kronecker coefficients. We will explore Saxl conjecture stating that the tensor square of certain irreducible representation of S_n contains every irreducible representation, and present a criterion for determining when a Kronecker coefficient is nonzero. In a more combinatorial direction, we will show how to prove certain unimodality results using Kronecker coefficients, including the classical Sylvester's theorem on the unimodality of q-binomial coefficients (as polynomials in q). We will also present some results on complexity in light of Mulmuley's conjectures. The presented results are based on joint work with Igor Pak and Ernesto Vallejo.
A Department Tea will follow the Talk in the Alder Room.