Return to Colloquia & Seminar listing
Stable Signatures for Dynamic Networks via Zigzag Persistence.
Mathematical BiologySpeaker: | Facundo Mémoli, Ohio State University |
Related Webpage: | https://people.math.osu.edu/memoli.2/ |
Location: | 2112 MSB |
Start time: | Mon, Oct 22 2018, 3:10PM |
When studying flocking/swarming behaviors in animals one is interested in quantifying and comparing the dynamics of the clustering induced by the coalescence and disbanding of animals in different groups. In a similar vein, studying the dynamics of social networks leads to the problem of characterizing groups/communities as they form and disperse throughout time.
Motivated by this, we study the problem of obtaining persistent homology based summaries of time-dependent data. Given a finite dynamic graph (DG), we first construct a zigzag persistence module arising from linearizing the dynamic transitive graph naturally induced from the input DG. Based on standard results, we then obtain a persistence diagram or barcode from this zigzag persistence module. We prove that these barcodes are stable under perturbations in the input DG under a suitable distance between DGs that we identify.
More precisely, our stability theorem can be interpreted as providing a lower bound for the distance between DGs. Since it relies on barcodes, and their bottleneck distance, this lower bound can be computed in polynomial time from the DG inputs.
Along the way, we propose a summarization of dynamic graphs that captures their time-dependent clustering features which we call formigrams. These set-valued functions generalize the notion of dendrogram, a prevalent tool for hierarchical clustering. In order to elucidate the relationship between our distance between two DGs and the bottleneck distance between their associated barcodes, we exploit recent advances in the stability of zigzag persistence due to Botnan and Lesnick, and to Bjerkevik.
This is joint work with Woojin Kim.
https://research.math.osu.edu/networks/formigrams/
Faculty host: Mariel Vazquez Please contact Professor Vazquez if you would like to meet with the speaker or join the dinner after the talk (mariel@math.ucdavis.edu).