Return to Colloquia & Seminar listing
On flux of Lagrangian isotopies and applications
Geometry/TopologySpeaker: | Renato Vianna, Universidade Federal do Rio de Janeiro |
Related Webpage: | http://www.im.ufrj.br/renato/index.html |
Location: | 3106 MSB |
Start time: | Tue, Oct 22 2019, 1:30PM |
Symplectic flux measures the areas of cylinders swept in the process of a Lagrangian isotopy. We study flux via a numerical invariant of a Lagrangian submanifold that we define using its Fukaya algebra. The main geometric feature of the invariant is its concavity over isotopies with linear flux.
We derive constraints on flux, Weinstein neighbourhood embeddings and holomorphic disk potentials for Gelfand-Cetlin fibres of Fano varieties in terms of their polytopes. We show that Calabi-Yau SYZ fibres have unobstructed Floer theory under a general assumption. Time permitting, we also describe the space of fibres of almost toric fibrations on the complex projective plane up to Hamiltonian isotopy, and provide other applications.