Return to Colloquia & Seminar listing
Theta surfaces
Algebraic Geometry and Number TheorySpeaker: | Bernd Sturmfels, UC Berkeley and MPI Leipzig |
Related Webpage: | https://math.berkeley.edu/~bernd/ |
Location: | Zoom |
Start time: | Wed, Apr 22 2020, 1:10PM |
A theta surface in affine 3-space is the zero set of a Riemann theta function in genus 3. This includes surfaces arising from special plane quartics that are singular or reducible. Lie and Poincaré showed that theta surfaces are precisely the surfaces of double translation, i.e. obtained as the Minkowski sum of two space curves in two different ways. These curves are parametrized by abelian integrals, so they are usually not algebraic. This paper offers a new view on this classical topic through the lens of computation. We present practical tools for passing between quartic curves and their theta surfaces, and we develop the numerical algebraic geometry of degenerations of theta functions.
Notes: https://www.math.ucdavis.edu/~egorskiy/AGADM/Sturmfels_notes.pdf
Please join us to this virtual seminar at https://ucdavisdss.zoom.us/j/827266947. Room opens at 1pm. Email Eugene Gorsky or Jose Simental Rodriguez for password.