Return to Colloquia & Seminar listing
Counting hyperbolic multi-geodesics with respect to the lengths of individual components
Geometry/TopologySpeaker: | Francisco Arana Herrera, Stanford |
Location: | Zoom |
Start time: | Tue, May 19 2020, 1:40PM |
In her thesis, Mirzakhani showed that on any closed hyperbolic surface of genus g, the number of simple closed geodesics of length at most L is asymptotic to a polynomial in L of degree 6g-6. Wolpert conjectured that analogous results should hold for more general countings of multi-geodesics that keep track of the lengths of individual components. In this talk we will present a proof of this conjecture which combines techniques and results of Mirzakhani as well as ideas introduced by Margulis in his thesis.
Zoom meeting ID: 120-952-219. There will be an informal "teatime" before the talk starting at 1:15pm. You are welcome to join us. The password is the same for all seminars. Email mtrnkova@math.ucdavis.edu if you need it.