Return to Colloquia & Seminar listing
Invariant Low-Dimensional Subspaces in Gradient Descent for Learning Deep Networks
Mathematics of Data & DecisionsSpeaker: | Qing Qu, University of Michigan (EECS) |
Location: | 1025 PSEL |
Start time: | Mon, Mar 4 2024, 4:10PM |
Over the past few years, an extensively studied phenomenon in training deep networks is the implicit bias of gradient descent towards parsimonious solutions. In this work, we first investigate this phenomenon by narrowing our focus to deep linear networks. Through our analysis, we reveal a surprising "law of parsimony" in the learning dynamics when the data possesses low-dimensional structures. Specifically, we show that the evolution of gradient descent starting from orthogonal initialization only affects a minimal portion of singular vector spaces across all weight matrices. In other words, the learning process happens only within a small invariant subspace of each weight matrix, even though all weight parameters are updated throughout training. This simplicity in learning dynamics could have significant implications for both efficient training and a better understanding of deep networks. First, the analysis enables us to considerably improve training efficiency by taking advantage of the low-dimensional structure in learning dynamics. We can construct smaller, equivalent deep linear networks without sacrificing the benefits associated with the wider counterparts. Moreover, we demonstrate the potential implications for efficient training deep nonlinear networks. Second, it allows us to better understand deep representation learning by elucidating the progressive feature compression and discrimination from shallow to deep layers. The study paves the foundation for understanding hierarchical representations in deep nonlinear networks.