Mathematics Colloquia and Seminars

Return to Colloquia & Seminar listing

Chain of Thought Empowers Transformers to Solve Inherently Serial Problems

Mathematics of Data & Decisions

Speaker: Zhiyuan Li, TTIC
Location: 1025 PDSB
Start time: Tue, Nov 19 2024, 3:10PM

Instructing the model to generate a sequence of intermediate steps, a.k.a., a chain of thought (CoT), is a highly effective method to improve the accuracy of large language models (LLMs) on arithmetics and symbolic reasoning tasks. However, the mechanism behind CoT remains unclear. This work provides a theoretical understanding of the power of CoT for decoder-only transformers through the lens of expressiveness. Conceptually, CoT empowers the model with the ability to perform inherently serial computation, which is otherwise lacking in transformers, especially when depth is low. Given input length n, previous works have shown that constant-depth transformers with finite precision poly(n) embedding size can only solve problems in TC0 without CoT. We first show an even tighter expressiveness upper bound for constant-depth transformers with constant-bit precision, which can only solve problems in AC0, a proper subset of TC0. However, with T steps of CoT, constant-depth transformers using constant-bit precision and O(logn) embedding size can solve any problem solvable by boolean circuits of size T. Empirically, enabling CoT dramatically improves the accuracy for tasks that are hard for parallel computation, including the composition of permutation groups, iterated squaring, and circuit value problems, especially for low-depth transformers.

This is a joint work with Hong Liu, Denny Zhou, and Tengyu Ma.