Return to Colloquia & Seminar listing
F fields
Algebraic Geometry and Number TheorySpeaker: | David Treumann, Boston College |
Location: | 2112 MPS |
Start time: | Wed, Jan 10 2018, 11:00AM |
An F-field on a manifold M is a local system of algebraically closed fields of characteristic p. You can study local systems of vector spaces over this local system of fields. On a 3-manifold, they're rigid, and the rank one local systems are counted by the Alexander polynomial. On a surface, they come in positive-dimensional moduli (perfect of characteristic p), but they are more stable than ordinary local systems, in the GIT sense. When M is symplectic, maybe an F-field should remind you of a B-field, it can be used to change the Fukaya category in about the same way. On S^1 x R^3, this version of the Fukaya category is related to Deligne-Lusztig theory, and I found something like a cluster structure on the Deligne-Lusztig pairing varieties by studying it.