
Dmitry Fuchs

NOTES ON LIE GROUPS
AND LIE ALGEBRAS (261)

1. Lie groups and their Lie algebras.
1.1 Definition and examples of Lie groups.
1.1.1. Definition. A Lie group is a set furnished with two structures: that of a group

and that of a smooth1) manifold. This two structures are supposed to be compatible in
the sense that the maps

µ: G×G → G, µ(g, h) = gh,

η: G → G, η(g) = g−1

are smooth.
Exercise 1. Prove that the condition of the maps µ, η being smooth is equivalent to

the condition of smoothness of a single map G×G → G, (g, h) #→ g−1h.
The identity element of a Lie group is commonly denoted as e.
1.1.2. Basic examples. A. Rn with the usual operations of addition and additive

inversion.
B. The circle S1 with the usual operations of addition and inversions of angles.
C. The general linear groups GL(n, R) and GL(n, C) of invertible real or complex

n× n matrices. Topologically, both groups are open sets in Euclidean spaces, whence the
manifold structure.

D. The special linear groups SL(n, R) and SL(n, C) of real or complex n×n matrices
with determinant 1. These groups are defined in the Euclidean spaces of all n×n matrices

by the equation det X = 1, and if xij are entries of X , then
∂ det
∂xij

= ±det Xij where Xij is

the (n−1)× (n−1) submatrix of X complementary to xij . If det X %= 0, then det Xij %= 0
for some i, j, and hence the equation det X = 1 is non-degenerate. Hence SL(n, R) and
SL(n, C) are submanifolds of Euclidean spaces.

E. The groups O(n) and U(n) of orthogonal or unitary matrices of order n.
Exercise 2. Prove that O(n) and U(n) are manifolds (submanifolds of Euclidean

spaces) of dimensions, respectively,
n(n− 1)

2
and n2.

F. The groups SO(n) and SU(n) of orthogonal or unitary matrices with determinant

1. (The dimensions are
n(n− 1)

2
and n2 − 1.)

1.1.3. Components and products. The easiest way to obtain a new Lie group
from a Lie group G works in the case, when G is disconnected: you can take the component

1) We will understand “smooth” as C∞, although it is more common in the Lie theory
to interprete “smooth” as real analytic.
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G0 of e ∈ G with the same group operation as in G. Examples: SO(n) is the component
of O(n); the component of e ∈ GL(n, R) is the group GL+(n, R) of real n × n matrices
with positive determinants.

Exercise 3. Prove that G0 is a normal subgroup of G. (The quotient G/G0 is called
the group of components of G; in particular, for each of O(n), GL(n, R), the group of
components id the cyclic group of order 2).

If G1 and G2 are Lie groups, then G1×G2 also has a natural structure of a Lie group.
It is worth mentioning that it may happen that a Lie group G is diffeomorphic to the
product of two Lie groups, G1 ×G2, but not isomorphic to it. An example is contained in
the next exercise.

Exercise 4. Prove that the following pairs of Lie groups are diffeomorphic, but not
isomorphic. (a) U(n) and SU(n) × S1 (n ≥ 2); (b) O(n) and SO(n) × Z2 (n ≥ 2); (c)

GL(n, R) and O(n)×Rk, k =
n(n + 1)

2
(n ≥ 2).

1.1.4. Coverings. Coverings are studied in topology. Understanding of the construc-
tion below requires some familiarity with this topological theory; to make the life easier
for a reader not possessing this knowledge, I will give a brief description of the definitions
and results needed in a footnote2).

2) A covering (Y, p, X) is a triple consisting of two path connected topological spaces,
X and Y , and a continuous map p: Y → X such that every point x ∈ X possesses a
neighborhood U ⊂ X such that the inverse image p−1(U) ⊂ Y is a disjoint union

⋃
α Uα

of open sets in Y such that for every α, the restriction p|
Uα

is a homeomorphism of Uα
onto U .

Technically, the main result of the covering theory is the following Lemma of Lifting
Paths: If s: [0, 1] → X is a path with s(0) = x0 and y0 ∈ Y is a point with p(y0) = x0

then there exists a unique path s̃: [0, 1] → Y such that s̃(0) = y0 and p ◦ s̃ = s. The lifting
operation is homotopy invariant: if paths s1, s2 are homotopic (by definition, a homotopy
of paths is endpoints fixed), then the lifted paths s̃1, s̃2 are also homotopic; in particular,
s̃1(1) = s̃2(1).

If s is a loop (that is, s(1) is also x0), then s̃ may be also a loop (in which case we
say that s is covered by a loop starting at y0) or not a loop (that is, s̃(1) ∈ p−1(x0)− y0);
this property of the loop s may depend on y0. The property of being covered by a loop is
also homotopy invariant: two homotopic loops possess it simultanously.

Consider the diagram

Y Y ′

X X ′

...................................................... ................................

....................................................................................................................................................
...............
.................
...............

....................................................................................................................................................
...............
.................
...............

................................................................................................................................................................... ................................

p p′

F

f

y0 ∈

x0 ∈

* y′
0

* x′
0

.........................................................................

in which p: Y → X and p′: Y ′ → X ′ are coverings and f : X → X ′ is a continuous map.
Assume that p(y0) = x0, p′(y′

0) = x′
0, f(x0) = x′

0. We want to construct a continuous map
F : Y → Y ′ such that F (y0) = y′

0 and p′ ◦F = f ◦p. Claim: if F with this properties exists,
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Now let G be a Lie group, and let (G̃, p, G) be a covering. Fix an ẽ ∈ G̃ such that
p(ẽ) = e. Then G̃ possesses a unique structure of a Lie group with the identity element ẽ
such that p: G̃ → G is a group homomorphism. To prove this, we apply the proposition in
the footnote 2) to the diagrams

G̃× G̃ G̃

G×G G

...................................................... ................................

....................................................................................................................................................
...............
.................
...............

....................................................................................................................................................
...............
.................
...............

................................................................................................................................................................... ................................

p× p p

µ̃

µ

(ẽ, ẽ) ∈

(e, e) ∈

* ẽ

* e

......................................................................... G̃ G̃

G G

...................................................... ................................

....................................................................................................................................................
...............
.................
...............

....................................................................................................................................................
...............
.................
...............

................................................................................................................................................................... ................................

p p

η̃

η

ẽ ∈

e ∈

* ẽ

* e

.........................................................................

and

Let us check for these diagrams the condition concerning to covering loops by loops.
A loop s: [0, 1] → G×G is the same as pair of loops in G: s(t) = (s1(t), s2(t)). This loop
is covered by a loop starting at (ẽ, ẽ) if and only if each of the loops s1, s2: [0, 1] → G is
covered by a loop starting at ẽ. The composition µ ◦ s is the loop t #→ s1(t)s2(t). Apply
to the last loop the homotopy which compresses the argument at s1 to the interval [0, 1/2]
and the argument at s2 to the interval [1/2, 1]. The resulting loop (homotopic to µ ◦ s) is

t #→
{

s1(2t)s2(0) = s1(2t) for t ≤ 1/2
s1(1)s2(2t− 1) = s2(2t− 1) for t ≥ 1/2,

that is, the loop obtained by consecutive passing the loops s1 and s2. Certainly, this loop
is covered by a loop starting are ẽ: first, we lift s1, the endpoint of the lifted loop will be
again Ẽ, and then lift s2. Thus, we obtain the map µ̃: G̃× G̃ → G̃.

For the second diagram, we assume that a loop s: [0, 1] → G is covered by a loop
starting at ẽ. We state that the loop η ◦ s is homotopic to a loop t #→ s(1 − t), that is,
the same loop s passed in the opposite direction. Indeed, our previous construction shows
that the constant loop t #→ s(t)η ◦ s(t) = e is homotopic to a loop obtained by coinsecutive
passing loops s and η ◦ s, which means precisely that the loop η ◦ s is homotopic to the
loop homotopically inverse to s, that is, to the loop t #→ s(1− t). The latter is covered by
a loop simultaneously with s.

It is obvious that the maps µ̃ and η̃ are smooth (since p and p× p are local diffeomor-
phisms). The checking of the group axioms for G̃ is based on the uniqueness property in
the footnote 2) proposition. For example, the diagrams

((ẽ, ẽ), ẽ)
∩ |

ẽ
∩|

(G̃× G̃)× G̃
µ̃ ◦ (µ̃× id)

G̃.......................................................................................................................................................................................................................................................................................................................................................... ..........................................

(G×G)×G
µ ◦ (µ× id)

G.......................................................................................................................................................................................................................................................................................................................................................... ..........................................

.............................................................................................................................

.................
.........
................
.................
.........

.............................................................................................................................

.................
.........
................
.................
.........

(p× p)× p p

((e, e), e)
∪ |

e
∪|

(ẽ, (ẽ, ẽ))
∩ |

ẽ
∩|

G̃× (G̃× G̃)
µ̃ ◦ (id×µ̃)

G̃.......................................................................................................................................................................................................................................................................................................................................................... ..........................................

G× (G×G)
µ ◦ (id×µ)

G.......................................................................................................................................................................................................................................................................................................................................................... ..........................................

.............................................................................................................................

.................
.........
................
.................
.........

.............................................................................................................................

.................
.........
................
.................
.........

p× (p× p) p

(e, (e, e))
∪ |

e
∪|

and

it is unique; F exists, if and only if f takes every loop of X starting at x0 and covered by
a loop starting at y0 into a loop of X ′ covered by a loop starting at y′

0.
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are commutative, and since the multiplication in G is associative, that is, µ ◦ (µ × id) =
µ ◦ (id×µ), we have also µ̃ ◦ (µ̃× id) = µ̃ ◦ (id×µ̃), which means that the multiplication
in G̃ is also associative. The other group axioms for G̃ are checked in a similar way.

There are some obvious examples for the covering construction. For example, there is
a well known covering (R, p, S1). Since S1 is a Lie group, we obtain a Lie group structure
for R, which is not interesting, since it coincides with the usual Lie group structure on R.
A more interesting example is provided by the two-fold covering of SO(n), n > 2 (“two-
fold” means that the inverse image of every point of SO(n) consists of two points), whose
existence follows from the classification theory of coverings in topology. The covering group
is called the spinor group and is denoted as Spin(n, R); it turns out that Spin(3, R) ∼=
SU(2), but all the other spinor groups are not among our basic examples (Section 1.1.2)3).

Notice in conclusion that if (G̃, p, G) is a covering of a Lie group by a Lie group, then
Ker p is a central, in particular, Abelian, subgroup of G̃. This follows from the following,
more general statement.

Proposition. Every discrete normal subgroup of a connected Lie group is central.
Proof. Let H and Γ be a Lie group and a subgroup as in Proposition. Then, for

every γ ∈ Γ, the set H−1γH is contained in Γ (because Γ is normal) and is connected
(because H is connected). Since Γ is discrete, its connected subset must be one-point,
hence H−1γH = γ, hence h−1γh = γ, that is, γh = hγ for every h ∈ H.

1.1.5. Lie homomorphisms and Lie subgroups. A homomorphism of a Lie
group G into a Lie group H is a map G → H which is simultaneously a smooth map and
a group homomorphism. A Lie subgroup of a Lie group G is a closed subset of G which
is simultaneously a submanifold and a subgroup of G. There is Cartan’s theorem which
state that every subgroup of a Lie group G which is closed (in the topology of G) is a Lie
subgroup of G; in particular, the kernel of any Lie group homomorphism G → H is a Lie
subgroup of G. We will prove Cartan’s theorem in Section 1.2.5.

Exercise 5. Prove that the kernel of a Lie homomorphism G → H is a Lie subgroup
of G. (Later on, we will use this fact, so the reader has to take care of the proof of it, or,
at very least, to believe that it is true.)

On the contrary, the image of a Lie homomorphism G → H is not, in general, a
Lie subgroup of H, in particular, because it does not have to be closed (later, in Section
1.3.4.B, we will show that the image of a Lie homomorphism belongs to a wider class of
“virtual Lie subgroups”).

The “basic examples” of Lie groups from Section 1.1.2 provide a huge amount of
examples of Lie subgroups. Here are the most important of them (we restrict ourselves to
the compact case):

SO(n) ⊂ O(n), SU(n) ⊂ U(n), SO(n) ⊂ SU(n), U(n) ⊂ SO(2n);

for m < n,

SO(m) ⊂ SO(n), O(m) ⊂ O(n), SU(m) ⊂ SU(n), U(m) ⊂ U(n);

3) There are also “complex spinor groups” Spin(n, C), but they are not defined as
coverings.
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also
O(m)×O(n) ⊂ O(m + n)

(this subgroup of O(m+n) consists of block diagonal matrices with two orthogonal diagonal
blocks of the sizes m×m and n× n), and similarly for O, SU, and U . More generally,

O(n1)× . . .×O(nk) ⊂ O(n1 + . . . + nk),

and similarly for O, SU, and U .

1.1.6. Homogeneous spaces. Let H be an m-dimensional Lie subgroup of an n-
dimensional Lie group G. We are going to show that the set G/H of left cosets of H has
a natural structure of a manifold of dimension n−m.

Let W be a transverse to H (n−m)-dimensional submanifold of a small neighborhood
of e ∈ G. Let us show that if W is sufficiently small, then µ: W ×H → G, (w, h) #→ wh,
is an embedding. First notice that the differential d(e,h)µ is non-degenerate, which implies
that µ is a local embedding at every point of e×H. Hence, it is sufficient to prove that, for
a sufficiently small W, µ is one-to-one. Otherwise, there exist sequences (wi, hi), (w′

i, h
′
i) ∈

W ×H such that (wi, hi) %= (w′
i, h

′
i), lim

i→∞
wi = lim

i→∞
w′

i = e, and wihi = w′
ih

′
i. But in this

case, ki = h′
ih

−1
i = w′

i
−1wi has the limit e, and the equality wie = w′

iki contradicts to the
fact that µ is an embedding in some neighborhood of (e, e) ∈ W ×H.

Assume that W is this small. Then the map W = W × e
µ−−→G

proj.−−→G/H is one
to one, and so is the map W = W × e

µ−−→G
g·−−→G

proj.−−→G/H for an arbitrary g ∈ G.
These maps form an atlas of the set G/H; this atlas can be made countable, if we restrict
it for g from some countable dense subset of G.

Exercise 6. Prove that these charts are compatible and satisfy the Hausdorff axiom.

Thus, G/H is a manifold; it is clear that the transitive action of G in G/H is a
smooth action by difeomorphisms and that H is the isotropy subgroup of {H} ∈ G/H.
The manifold G/H with this transitive action of G is called a homogeneous space (of G).

The other approach to homogeneous spaces is possible: we consider a smooth manifold
M with a smooth transitive action G × M → M by diffeomorphisms. For every fixed
x0 ∈ M , the isotropy subgroup H = {g ∈ G | gx0 = x0} is a Lie subgroup of G, and we
can identify M with the manifold G/H constructed above.

Exercise 7. Construct diffeomorphisms SO(n+1)/SO(n) = Sn, SU(n+1)/SU(n) =
S2n+1, SO(n+1)/O(n) = RPn, SU(n+1)/U(n) = CPn (for the last two diffeomorphisms,
you will need also to construct the appropriate embeddings O(n) → SO(n+1) and U(n) →
SU(n + 1)), O(m + n)/(O(m)×O(n)) = G(m + n, n) (the Grassman manifold).

1.2. Tangent vectors and vector fields. The tangent space TeG of a Lie group G
at the identity element e ∈ G plays a very special role in the Lie theory. As we will see in
Section 1.3, it possesses a specific structure of a Lie algebra, and the study of Lie groups
in many cases is reduced to a purely algebraic consideration of Lie algebras. Let us first
discuss some relations between the properties of G and TeG not related, at least explicitly,
to this algebraic structure.
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1.2.1. Multiplication in G and addition in TeG. Proposition. Let γ1 and γ2

be two parametrized curves in G with γ1(0) = γ2(0) = e. Let γ(t) = γ1(t)γ2(t). Then
γ̇(0) = γ̇1(0) + γ̇2(0).

Proof. Consider the curves in G×G:

γ̃1(t) = (γ1(t), e), γ̃2(t) = (e, γ2(t)), γ̃(t) = (γ1(t), γ2(t)).

Obviously, ˙̃γ(0) = ˙̃γ1(0)+ ˙̃γ2(0), and µ◦ γ̃1 = γ1, µ◦ γ̃2 = γ2, µ◦ γ̃ = γ. Since dµ: T(e,e)(G×
G) → TeG is a linear map, Proposition follows.

1.2.2. Left and right invariant vector fields. Let G be a Lie group, and let
g ∈ G. There arise three transformations of G:

left translation λg: G → G, λg(h) = gh,

right translation ρg: G → G, ρg(h) = hg,

conjugation αg: G → G, αg(h) = ghg−1 (or αg = ρg−1 ◦ λg).

Notice that λg ◦ ρg′ = ρg′ ◦ λg. Also λg ◦ λg′ = λgg′, ρg ◦ ρ′g = ρg′g, αg ◦ αg′ = αgg′, and
λe = ρe = αe = id, λg−1 = λ−1

g , ρg−1 = ρ−1
g , αg−1 = α−1

g . In other words, λ comprises a
left action of G on itself by difeomorphisms, ρ determines a right action of G on itself by
difeomorphisms, and α produces a left action of G on itself by Lie group automorphisms.
The first two actions are free and transitive.

The transformations αg are group automorphisms; they will be very important for us
later, but now we will concentrate our attention on the left and right translations λg and
ρg. Obviously, they are diffeomorphisms.

Any diffeomorhism ϕ: M → M of any manifold M acts on vector fields: if X ∈ VectM
is a vector field on M , then, by definition, ϕ∗X(f) = X(f ◦ϕ) f ∈ C∞M ; equivalently, for
a p ∈ M , (ϕ∗X)ϕ(p) = dpϕ(Xp). A vector field X is called ϕ-invariant (or invariant with
respect to ϕ), if ϕ∗X = X .

A vector field on G is called left (right) invariant, if it is invariant with respect to all
left (right) translations. Both left and right invariant vector fields on G form subspaces
of the vector space VectG invariant with respect the commutator operation (that is, if
vector fields X, Y ∈ Vect G are left (right) invariant, then so is the commutator [X, Y ]).
The notations:Vect#−inv G and Vectr−inv G.

There are canonical isomorphisms Vect#−inv G ∼= TeG and Vectr−inv G ∼= TeG. The
constructions are as follows. For a ξ ∈ TeG, define vector fields Lξ, Rξ ∈ Vect G by the
formulas

(Lξ)g = deλg(ξ), (Rxi)g = deρg(ξ) or (Lξf)(g) = ξ(f ◦ λg−1), (Rξf)(g) = ξ(f ◦ ρg−1)

(in other words, we define the vector fields Lξ and Rξ by spreading the vector ξ to the
whole G by left or right translations). It is clear that Lξ is left invariant and Rξ is right
invariant. Indeed, to prove the invariance of Lξ with respect to λg, we need to check that
for every h ∈ G, dhλg(Lξ(h)) = Lξ(λg(h)); but this follows from the definitions:

dhλg(Lξ(h)) = dhλg(deλh(ξ)) = de(λg ◦ λh)(ξ) = deλgh(ξ) = Lξ(gh) = Lξ(λg(h));
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Thus we have a map TeG → Vect#−inv G, ξ #→ Lξ. Since (Lξ)e = ξ, this map is one-to-one.
If X is a left invariant vector field, then, obviously, X = LXe , so this map is onto. We
obtain the promised isomorphism TeG ∼= Vect#−inv G. The proof for Rξ is the same.

1.2.3. One-parameter subgroups. A one-parameter subgroup of a Lie group G is,
by definition, a Lie homomorphism R → G. Obviously, for a continuous homomorphism
γ: R → G, there are three possibilities for Ker γ: it can be 0, R, or Za for some a ∈ R.
(Indeed, if Ker γ is not descrete, then for every ε > 0 there exists a t ∈ Ker γ with
0 < t < ε; but in this case nt ∈ Ker γ for all n ∈ Z, which shows that Ker γ is dense in
R; however for a continuous γ, Ker γ must be closed, so in this case Ker γ = R. If Ker γ
is discrete, then either Ker γ = 0, or Ker γ contains an a = inf(Ker γ ∩ R>0); in the last
case, Ker γ = Za.) Thus, Im γ is either e, or a closed curve (in which case γ is periodic),
or an embedded curve. Notice that in the last two cases, γ must be an immersion: for
every t ∈ R, γ(t + u) = λγ(t)γ(u) (as well as ργ(t)γ(u)), so the velocity vectors of the
parametrized curve γ are taken into each other by isomorphisms dγ(t)λγ(u), and are all
zeroes or non-zeroes simultaneously.

Notice that the classical term “one-parameter subgroup” does not fully correspond
to the notion of a Lie subgroup (or even of a subgroup). If γ: R → G is a one parameter
subgroup of G, then the image γ(R) is a subgroup of G (in the algebraic sense), but the
parameter change t → kt, k %= 1 changes the one-parameter subgroup, but not the image.
On the other hand, if γ is one-to-one, then the image of γ can be not closed, even dense;
the simplest example is R β−−→R2 π−−→S1 × S1 where β(t) = (at, bt) with irrational b/a
and π is the projection R2 → R2/Z2 = S1 × S1.

Theorem. For every ξ ∈ TeG there exists a unique one-parameter subgroup γ: R → G
with γ̇(0) = ξ.

Thus, there arises a one-to-one correspondence between one-parameter subgroups of
G and tangent vectors to G at e; we will denote the one-parameter subgroup of G corre-
sponding to a ξ ∈ TeG by γξ.

Proof of Theorem. The only one-parameter subgroup with γ̇(0) = 0 is the constant
map γ(R) = e. Let ξ ∈ TeG be non-zero. Consider the left invariant vector field Lξ. Since
(Lξ)e %= 0, there exists a unique (up to the choice of ε, ε′ > 0) integral curve γ: (−ε′, ε) → G
of Lξ with γ(0) = e. Since Lξ is left invariant, the curve λg ◦ γ: (−ε′, ε) → G for g ∈ G is
also an integral curve of Lξ. Thus, for every u ∈ (ε′, ε) we have two integral curves of Lξ:
Lγ(u)◦γ and (−ε′−u, ε−u) → G, t #→ γ(u+t), both taking 0 to γ(u). By uniqueness, these
two curves coincide where they are both defined, which shows that γ(u + t) = γ(u)γ(t)
(if t, u, t + u ∈ (−ε′, ε)). Also, these two curves merge into a curve defined on the union
(−ε′, ε)∪ (−ε′ − u, ε− u), and using this trick we can extend our the domain of our curve
to an arbitrarily large interval, eventually to the whole line R. In this way we define a
one parameter subgroup of G with the required property. On the other hand, if γ is a one
parameter group of G, then λγ(u)γ(t) = γ(u + t) which implies that dλγ(u)γ̇(t) = γ̇(u + t),
that is, γ is an integral curve of the vector field Lξ with ξ = γ̇(0). Hence, the uniqueness
of the integral curve implies the uniqueness of a one-parameter subgroup γ with a given
γ̇(0).

Notice that in this proof we could use the vector fields Rξ instead of Lξ; this means
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that the vector fields Lξ and Rξ have the same integral curves starting at e; in general
they have different integral curves starting at other points: these are left and right cosets
of the same one-parameter subgroup.

1.2.4. Exponential maps. The exponential map exp: TeG → G for a Lie group G
is defined by the formula

exp(ξ) = γξ(1)

(in particular, exp(0) = e). Since γξ(t) = γtξ(1), the exponential map takes straight lines
passing through 0 ∈ TeG to one-parameter subgroups of G. Here are two most obvious
properties of exp. First, the differential

d0 exp: T0(TeG) = TeG → TeG is idTeG .

In particular, exp is a local diffeomorphism, that is, it maps a neighborhood of 0 in TeG
diffeomorphically onto a neighborhood of e in G. Second, for a Lie homomorphism f : G →
H, the diagram

TeG
def−−→ TeH

%exp

%exp

G
f−−→ H

is commutative.
Examples. 1. G = GL(n, R). Since GL(n, R) is an open set in the space Matn(R)

of real n × n matrices, we can identify TIGL(n, R) with Matn(R). There are explicitly
constructed one-parameter subgroups of GL(n, R). Namely, for A ∈ Matn(R) put

exp(A) = I + A +
A2

2!
+

A3

3!
+

A4

4!
+ . . .

It is obvious that the series converges for every A. The equality exp(A) exp(B) = exp(A+
B) is true and is proved in the usual way under the condition that A and B commute. In
particular, exp(tA) exp(uA) = exp((t + u)A), so

γA: Matn(R) → GL(n, R), γA(t) = exp(tA)

is a one-parameter subgroup of GL(n, R), and γ̇A(0) = A. Thus, GL(n, R) has no other
one parameter subgroups, and the exponential map TIGL(n, R) → GL(n, R) acts by the
formula A #→ exp(A). The same formula describes the exponential map for every Lie
subgroup of G (because of the commutativity of the diagram above). These facts provide
an explanation for the term exponential.

2. G = SL(n, R). A matrix A belongs to TISL(n, R) if and only if the line {tA} is

tangent to SL(n, R), that is, if
d

dt
det(I + tA)|t=0 = 0. If λ1, . . . , λn are eigenvalues of A,

then det(I+tA) = (1+tλ1) . . . (1+tλn). Hence,
d

dt
det(I + tA)|t=0 = λ1+ . . .+λn = Tr A.

Thus,
TISL(n, R) = {A ∈ Matn(R) | TrA = 0}.
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(This means, in particular, that det exp(A) = 1 if and only if TrA = 0.)
Exercise 8. Prove that the map exp: TISL(2, R) → SL(2, R) is not onto; describe

its image.

3. G = O(n). A matrix A belongs to TIO(n) if and only if the line {tA} is tangent to

O(n), that is, if
d

dt
((I + tA)t − (I + tA)−1) = 0. But (I + tA)−1 = I − tA + t2A2 − . . ., so

derivative we want to compute is At + A and

TIO(n) = {A ∈ Matn(R) | A is skew symmetric}.

(In particular, a matrix expA is orthogonal if and only if the matrix A is skew-symmetric.)
4. The complex case is similar to the real case. Namely, TIGL(n, C) = Matn(C),

TISL(n, C) is the space of matrices with zero trace, TIU(n) is the space of skew-Hermitian

matrices, that is, of complex matrices A such that A−1 = A
t (it is a real subspace of a

complex vector space Matn(C)), and TISU(n) is the space of skew-Hermitian matrices with
zero trace. There is also a Lie group O(n, C) of complex orthogonal matrices satisfying
the equation A−1 = At. The space TIO(n, C) is the (complex) vector space of complex
skew-symmetric n× n matrices.

Exercises 9. Prove that the map exp: TISL(2, C) → SL(2, C) is onto.

10. Prove that any neighborhood of e in a connected Lie group generates this group
(in the algebraic sense).

1.2.5. Closed subgroups of a Lie group are Lie subgroups. Theorem (E.
Cartan). Let H be a subgroup of a Lie group G closed with respect to topology of G. Then
H is a Lie subgroup of G.

Proof. It is sufficient to prove that H is a submanifold of G (the maps µ: H×H → H
and η: H → H are restrictions of the similar maps for G, and they will be automatically
smooth). This means that for every h ∈ H there exists a chart ϕ: U → G such that
ϕ(U) * h and ϕ−1(H) = U ∩ Rm where m = dimH. It is sufficient to prove this for
h = e; indeed, if ϕ: U → G is a chart with properties required for h = e, then the chart
λh ◦ ϕ: U → G satisfies the conditions posted for an arbitrary h ∈ H (where λh is a left
translation of G). And for this it is sufficient to prove that there exist a subspace W ⊂ TeG
and a neighborhood U of e in TeG such that U ∩ exp−1(H) = U ∩W . The proof consists
of five steps.

Step 1. Fix an arbitrary Euclidean metric in TeG, and let S = {ξ ∈ TeG | ‖ξ‖ = 1}
be the “sphere”. A vector ξ ∈ S is called a unit virtual tangent vector to H, if there exists

a sequence {hi} in exp(G) ∩ (H − e) such that lim
i→∞

hi = e and lim
i→∞

exp−1(hi)
‖ exp−1(hi)‖

= ξ. A

vector of the form λξ where λ ∈ R and ξ is a unit virtual tangent vector to H is called a
virtual tangent vector to H. Let W ⊂ TeG be the set of all virtual tangent vectors to H.

Step 2. If γ: (−ε′, ε) → G is a smooth curve such that γ(0) = e and γ(−ε′, ε) ⊂ H,
then γ̇(0) ∈ W . Indeed, if 0 ∈ W , so we can assume that γ̇(0) %= 0. In this case, we
can choose a sequence {ti} in (0, ε) such that hi = γ(ti) %= e and lim

i→∞
hi = e. Obviously,

9



lim
i→∞

exp−1(hi)
‖ exp−1(hi)‖

is a unit vector tangent to the curve γ. Thus this vector, as well as γ̇(0)

is virtual tangent to H.
Step 3. Next, we will prove that if ξ is a virtual tangent vector to H, then the whole

one-parameter subgroup γξ is contained in H. If ξ = 0, then γξ is just e, so we need to
consider the case when ξ %= 0. We can assume that ‖ξ‖ = 1. Then ξ = lim

i→∞
ξi, ξi =

ηi

‖ηi‖
, hi = exp(ηi) ∈ H − e, and lim

i→∞
hi = e. The one parameter subgroups γξi converge

to γξ in the sense that lim
i→∞

γξi(ti) = γξ(t), if lim
i→∞

ti = t. We want to prove now that
γξ(t) ∈ H for every t. Let hi = γξi(ti). Then lim

i→∞
ti = 0, and we can find integers ni

such that lim
i→∞

niti = t. Hence, lim
i→∞

hni
i = lim

i→∞
γξi(niti) = γξ(t), and γξ(t) ∈ H, because

hni
i ∈ H and H is closed.

Step 4. Now we can prove that W is a subspace of the vector space TeG. Since W ,
by construction, is closed with respect to multiplication by real numbers, we need only to
prove that W is closed with respect to addition, that is, if ξ′, ξ′′ ∈ W , then ξ = ξ′+ξ′′ ∈ W .
Since γξ′ , γξ′′ ⊂ H (Step 3), the curve t #→ γξ′(t)γξ′′(t) is contained in H. The velocity
vector of this curve at 0 is ξ′ + ξ′′ = ξ (Section 1.2.1) and hence ξ ∈ W (Step 2).

Step 5. We already know that exp(W ) ⊂ H (Step 3), and it remains to prove that, at
least at some neighborhood of e, H has no elements not in exp(W ). Let Z = W⊥. In some
neighborhood of e, G is the product exp(W ) exp(Z) (meaning that the map exp(W ) ×
exp(Z) → G, ((h, j) #→ hj is a local diffeomorphism). We want to prove that the following
is impossible: there exists a sequence {hi} such that every hi ∈ H ∩ (G − exp(W )) and
lim

i→∞
= e. But if such a sequence exists, we can project it (maybe, starting from some term)

onto exp(Z), and we get a new sequence, {h◦
i } such that every h◦

i ∈ H ∩ (exp(Z)− e) and

lim
i→∞

h◦
i = e. Since S ∩ Z is compact, some subsequence of the sequence

{
exp−1(h◦

i )
‖ exp−1(h◦

i )‖

}

has a limit, this limit is virtually tangent to H and does not belong to W . This is a
contradiction, which completes the proof of Theorem.

1.3. The Lie algebra of a Lie group.

1.3.1. An algebraic introduction. Let L be a real or complex4) vector space. It
is called a Lie algebra, if there given a bilinear multiplication L × L → L (traditionally
denoted by the symbol [x, y] and called the commutator) satisfying the axioms

(1) [x, y] = −[y, x],
(2) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

The most visible example is provided by actual commutators in associative algebras:
if L is an associative algebra, then the same space L is a Lie algebra with respect to the
operation [x, y] = xy − yx. Another example (this time, infinite dimensional) is the space
VectM of vector fields on a smooth manifold M with the classical commutator operation.
A more elementary example is provided by the cross-product in R3.

4) Actually, any ground field of characteristic 0 will work. The case of finite characteristic
is also possible (with some complications), but this characteristic should not be 2.
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Exercise 11. Check the Lie algebra axioms for these three examples.
The usual algebraic terminology is applied to Lie algebras: homomorphisms, subalge-

bras, ideals, etc.
We will return to the algebraic theory of Lie algebras when we need it.
1.3.2. Lie algebra structure in TeG. Let G be a Lie group. For ξ, η ∈ TeG

there arise right invariant vector fields Rξ, Rη, and their commutator [Rξ, Rη] is also right
invariant, and hence has the form Rζ for a uniquely defined ζ ∈ TeG. This ζ is taken
for the commutator [ξ, η] of the chosen elements of TeG. The space TeG with this com-
mutator operation is a Lie algebra (the Lie algebra axioms follow from these axioms for
commutators of vector fields); it is called the Lie algebra of the Lie group G and is denoted
as Lie G. Also, if a Lie group is denoted by an upper case Roman letter, its Lie algebra
is usually denoted by the same lower case Fraktur (German) letter. So, the Lie alge-
bras of GL(n, R), GL(n, C), SL(n, R), SL(n, C), O(n), SO(n), U(n), SU(n) are denoted
as gl(n, R), gl(n, C), sl(n, R), sl(n, C), o(n), so(n), u(n), su(n).

In Analysis, there is a direct limit formula for the commutator of vector fields. Namely,
a vector field X on a manifold M determines, locally with respect to both M and parameter,
a flow ϕt: M → M such that, for a p ∈ M , Xp is a velocity vector at p of the curve
t #→ ϕt(p). Then, if X and Y are vector fields on M , and ϕt, ψt are corresponding flow,
then [X, Y ]p is the velocity vector at p of the curve t #→ ψ−

√
t ◦ϕ−

√
t ◦ψ√

t ◦ϕ√
t(p) (defined

for t ≥ 0).If we apply these rules to the vector fields Rξ, Rη and p = e, we will obtain the
following procedure for finding [ξ, η]: we should take the one-parameter subgroups γξ and
γη, then compute

γξ(
√

t)γη(
√

t)γξ(−
√

t)γη(−
√

t)

and take the velocity vector for this at t = 0. For G = GL(n, R) or GL(n, C), and
ξ = A, η = B, the last product is

exp(A
√

t) exp(B
√

t) exp(−A
√

t) exp(−B
√

t)

=
(

I + A
√

t +
A2

2
t + . . .

)(
I + B

√
t +

B2

2
t + . . .

)
·

(
I − A

√
t +

A2

2
t− . . .

)(
I −B

√
t +

A2

2
t− . . .

)

= I + (A + B −A−B)
√

t+
(

AB − A2 − AB −BA−B2 + AB +
A2

2
+

B2

2
+

A2

2
+

B2

2

)
t + . . .

= I + (AB −BA)t + . . .

Thus, the commutator in gl(n, R) and gl(n, C) is defined by the habitual formula [A, B] =
AB −BA, and is defined by the same formula for the Lie algebras of all Lie groups listed
above. By the way, this shows that the spaces of matrices with zero trace, as well as
the spaces of skew symmetric and skew-Hermitian matrices, are closed with respect to
the commutator operation (actually, the commutator of any two matrices has zero trace).
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This fact is, certainly, obvious, but still it should be noted, that neither symmetric, nor
Hermitian matrices form a space closed with respect to commutators.

Remark. In our description of the commutator in TeG we can replace one-parameter
subgroups by any smooth curves: if γ1, γ2: (−ε, ε) → G are smooth curves with γ1(0) =
γ2(0) = e, then the velocity vector of the curve t #→ γ1(

√
t)γ2(

√
t)γ1(−

√
t)γ2(−

√
t) is

[γ̇1(0), γ̇2(0)]; this follows from the fact that every parametrized smooth curve through e
is tangent (as a parametrized curve) to some one-parameter subgroup.

1.3.3. Lie group homomorphisms and Lie algebra homomorphisms. A.
Main statement. Let f : H → G be a Lie homomorphism. Then there arises a linear
map def : TeH → TeG, and it is easy to understand that it is, actually, a Lie algebra
homomorphism Lie H → Lie G. Indeed, f takes one-parameter subgroups of H into one-
parameter subgroups of G, and the description of commutators in Lie algebras of Lie
groups shows that def takes commutators into commutators. We will denote the Lie
algebra homomorphism constructed simply by df , or, sometimes, by Lie f . Notice that, in
particular, the Lie algebra LieH of a Lie subgroup H of a Lie group G is a Lie subalgebra
of Lie H.

The goal of this Section is to show that, essentially, the homomorphisms f and Lie f
determine each other. Thanks to this (and to the fact that every finite-dimensional Lie
algebra is a Lie algebra of a certain Lie groups; we will discuss this later), the theory of
Lie groups can be, essentially, reduced to the pure algebraic theory of Lie algebras, which
leads to many important results concerning Lie groups.

Here is our main statement. (Some additional statements will appear in the proof.)
Theorem. (a) let f, f ′: H → G be Lie homomorphisms, and let H be connected. If

Lie f = Lie f ′, then f = f ′.
(b) Let G, H be Lie groups, and let H be connected. Let also ϕ: LieH → LieG be a

Lie algebra homomorphism. Then there exist a covering H̃ → H and a (unique by Part
(a)) Lie homomorphism f : H̃ → G such that Lie f = ϕ. (Recall that H̃ is a Lie group (see
Section 1.1.4) and (obviously) Lie H̃ = Lie H.) In particular, if H is simply connected,
then H̃ = H.5).

B. Proof of (a). Let Lie f = Lie f ′, and let A = {g ∈ G | f(g) = f ′(g)}. Since f and
f ′ are continuous, A is closed. Since Lie homomorphisms take one-parameter subgroup,
and every element of the Lie algebra is a velocity vector of precisely one one-parameter
subgroup, f and f ′ must coincide on every one-parameter subgroup; in particular they
coincide on a neighborhood U of e where exp−1 is a diffeomorphism. If g ∈ A, then f and
f ′ coincide on every element of gU , so gU , which is a neighborhood of g, is contained in
A. Thus, A is also open, and, since G is connected, A = G (A is non-empty, since e ∈ A).

5) A path connected topological space M is called simply connected, if every two paths
s, s′: [0, 1] → M with s(0) = s′(0), s(1) = s′(1) are homotopic. A theorem in theory of cov-
erings (see footnote2)) states that every sufficiently good topological space, in particular,
every manifold, possesses a unique with respect to a natural equivalence simply connected
covering. This covering is also a covering over any other covering of M , and by this reason
it is called universal. For example, a simply connected space is its own universal covering,
and hence simply connected spaces have no other coverings.
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C. Proof of local version of (b). There exists a local version of the theory of Lie
groups: we will turn to it from time to time; now we will need two definitions. A local Lie
subgroup of a Lie group G is a connected submanifold H of a neighborhood U of e ∈ G
such that (1) if h1, h2 ∈ H and h1h2 ∈ U , then h1h2 ∈ H; (2) if h ∈ H and h−1 ∈ U ,
then h−1 ∈ H. A local Lie homomorphism of a Lie group G into a Lie group H is a
smooth map f of a neighborhood U of e ∈ G into H such that (1) if g1, g2, g1g2 ∈ U , then
f(g1g2) = f(g1)f(g2); (2) if g, g−1 ∈ U , then f(g−1) = f(g)−1. It is clear that if H is
a local Lie subgroup of a Lie group G, then TeH is a Lie subalgebra of the Lie algebra
Lie G (we can denote this subalgebra as LieH). Also, if f is a local Lie homomorphism
of a Lie group G into a Lie group H, then there arises a Lie algebra homomorphism
Lie f : LieG → Lie H.

Lemma 1. Let h be a Lie subalgebra of the Lie algebra g = Lie G of a Lie group G.
Then there exists a local Lie subgroup H of G such that Lie H = h.

Proof is based on the following Frobenius Integrability Criterion. Let M be an n-
dimensional manifold, and let 0 < m < n. Suppose that for every p ∈ M there fixed an
m-dimensional subspace Sp of TpM in such a way that Sp depends smoothly on p (that is,
the union

⋃
p Sp is a smooth submanifold of the manifold TM =

⋃
p TpM of tangent vectors

to M). Such a family S = {Sp} is called an m-dimensional distribution on M . A vector
field X ∈ Vect M is called subordinated to the distribution S, if Xp ∈ Sp for every p ∈ M .
A distribution S is called integrable, if for every point p ∈ M there exists an m-dimensional
submanifold Np of a neighborhood of p such that for every point q ∈ N, TqNp = Sq; such
a submanifold is called an integral submanifold. It is obvious that an integral submanifold
is locally unique, that is, if two ijntegral submanifolds have a common point, then they
match in a neighborhood of this point.

Exercise 12. Prove that the following two (codimension one) distributions (which
are, actually, essentially the same) are not integrable.

(a) M = R2n+1, for p = (x◦
1, . . . , x

◦
2n+1) the equation of the space Np ⊂ TpR2n+1 =

R2n+1 is x2n+1 =
∑n

i=1 x◦
n+ixi.

(b) M = S2n+1 ⊂ R2n+2 = Cn+1, for a p ∈ M Np is the (unique) n-dimensional
complex subspace of the real (2n + 1)-dimensional space TpM (otherwise, Np = TpM ∩
iTpM). Another statement of the same problem: for no holomorphic function f in a
neighborhood of p ∈ Cn+1 the manifold {f = 0} is contained in S2n+1.

The Frobenius integrability criterion says that a distribution S is integrable if and
only if for every two vector fields X, Y subordinated to S their commutator [X, Y ] is also
subordinated to S 6).

6) Let us briefly discuss the proof of this statement. In one direction, it is obvious: if S
is integrable, then a vector field X is subordinated to S if and only if for every integral
submanifold Np the restriction of X to Np is tangent to Np; but if two vector fields on
M are tangent to some submanifold N of M , then so is their commutator; hence, the
commutator of two vector fields subordinated to S is subordinated to S. The proof in the
opposite direction is more involved, and we restrict ourselves to its schematic presentation.
To begin with, let m = 2; let X and Y be two vector fields subordinated to S such that,
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Consider the distribution S = {Sg}, Sg = dλg(h) on G. Let us show that S satisfies
the condition in the integrability criterion. Let η1, . . . ηm be a basis in h. Then the
vector fields Lη1 , . . . , Lηm are subordinated to S, and the commutators [Lηj , Lηk ] are linear
combinations (with coefficients in R) of the vector fields Lηi . Furthermore, every vector
field subordinated to S is the linear combination of the vector fields Lηi with functional
coefficients. If X =

∑
i fjLηi and Y =

∑
k gkLηi , then

[X, Y ] =
∑

jk

(
fjgk[Lηj , Lηk ] + fjLηj gkLηk − gkLηkfjLηj

)
,

which is subordinated to S. Thus, S is integrable, and, in particular, S possesses an
integral m-dimensional manifold H * e in a neighborhood of e tangent to S. Since S is
left invariant, the images λg(H) are also integral manifolds of S. In particular, if h ∈ H,
then λh(H) matches with H in a neighborhood of h, that is, for h′ ∈ H sufficiently close
to e, hh′ ∈ H. This means that H is a local Lie subgroup of G with Lie H = h.

Lemma 2. Let ϕ: LieH → LieG be a Lie algebra homomorphism. Then there exists
a local Lie homomorphism f of H into G such that Lie f = ϕ.

Proof. Consider the “graph of ϕ”, that is, the subspace

gr(ϕ) = {(ξ, η) ∈ h× g | η = ϕ(ξ)}

of the Lie algebra h× g = Lie(H ×G). This is a Lie subalgebra of h× g: for η, η′ ∈ h,

[(η, ϕ(η)), (η′, ϕ(η′))] = ([η, η′], [ϕ(η), ϕ(η′)]) = ([η, η′], ϕ[η, η′]) ∈ gr(ϕ).

in a neighborhood of p, the vectors Xq, Yq form a basis of Sq. Choose a small (n − 2)-
dimensional disk D ⊂ M centered at p and transverse to Sq for every q ∈ D. Then, for
every q ∈ D take the trajectory φq: (−ε, ε) → M of X with ϕq(0) = q, after which, for every
q ∈ D and t ∈ (−ε, ε), take the trajectory ψd,t: (−ε, ε) → M of Y with ψd,t(0) = ϕd(t). If
D and ε are sufficiently small, then the formula (d, t, u) #→ ψd,t(u) provides an embedding
D × (−ε, ε) × (−ε, ε) → M ; we will show that the surfaces d × (−ε, ε) × (−ε, ε) (d ∈ D)
are integral for the distribution S, which will mean that this distribution is integrable.
We need to prove that if a function F : D × (−ε, ε) × (−ε, ε) → R is constant on every
d× (−ε, ε)× (−ε, ε), then XF = 0 and Y F = 0. What we already know, is that Y F = 0
(the trajectories of Y are contained in the surfaces d× (−ε, ε)× (−ε, ε)) and XF = 0 on
D × (−ε, ε) × 0 (which is made of trajectories of X). On the other hand, our condition
for the commutators means that, on D × (−ε, ε) × (−ε, ε), [X, Y ] = fX + gY where f
and g are two functions. Hence, X(Y F )− Y (XF ) = f(XF )+ g(Y F ), which means, since
Y F = 0, that Y (XF )+ f(XF ) = 0. This is a first order differential equation for XF , and
the condition XF |D×(−ε,ε)×0 = 0 makes the solution unique; since XF = 0 is a solution,
we have XF = 0.

The proof in the case m > 2 is basically the same: the square (−ε, ε) × (−ε, ε) is
replaced by the m-dimensional cube (−ε, ε) × . . . × (−ε, ε), the vector fields X, Y are
replaced by m vector fields X1, . . . , Xm, and the two-step construction of the embedding
D × (−ε, ε) × (−ε, ε) → M is replaced by an m-step construction of the embedding D ×
(−ε, ε) × . . . × (−ε, ε) → M . All the rest is the same as before (each of the equalities
X2F = 0, . . . , XmF = 0 is proved with the help of a first order differential equation).
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Hence, by Lemma 1, there exists a local Lie subgroup GR(ϕ) of H ×G with LieGR(ϕ) =
gr(ϕ). This local subgroup can be regarded as the graph of a local Lie homomorphism f
of H into G with Lie f = ϕ.

D. A globalization: proof of Statement (b). In this proof, we will use not just Lemmas
1 and 2, but also some details of their proofs. In the proof of Lemma 2, we constructed a Lie
subalgebra gr(ϕ) of Lie(H×G), and, according to proof of Lemma 1, this subalgebra gives
rise to an left invariant integrable distribution S = {S(h,g) = dλ(h,g)(gr(ϕ))} on H × G.
There arises an integral manifold GR ⊂ H ×G which we can assume to be diffeomorphic
to the ball Dm (m = dim H) centered at (e, e) ∈ H × G; this manifold has a one-to one
projection on H. All manifolds λ(h,g)(GR) are integral manifold of H×G with a one-to-one
projection onto H; if two such integral manifold have a common point, then they match
in a neighborhood of this point. We introduce a new topology in H ×G (which may look
monstrous): a base of this topology is formed by open subsets of manifolds λ(h,g)(GR).
This topology arises from the m-dimensional atlas {GR, λ(h,g)|GR} of H ×G which could
make H ×G into an m-dimensional manifold, if the topology had been second countable,
which it is not. But this difficulty disappears, if we restrict ourselves to a path component
(with respect to this topology) of (e, e) which we denote by H̃. This component, with
respect to the topology described, is an m-dimensional manifold; indeed, the projection
H̃ → H is (obviously) a covering, so H̃ is not just a manifold, but also a Lie group. The
inclusion map H̃ → H × G is a one-to-one Lie homomorphism (although H̃ is not a Lie
subgroup of H×G, since, in general, it is not closed; it may be even dense). The restriction
f : H̃ → G of the projection H ×G → G is a Lie homomorphism whose restriction to GR
is the graph of a local Lie homomorphism of H into G constructed in the proof of Lemma
2. In particular Lie f = ϕ, which completes the proof of Statement (b), and, hence, of
Theorem 7).

E. The language of representation. A (complex, N -dimensional) representation of a
(connected) Lie group G is, by (not the most popular) definition a Lie homomorphism G →
GL(N, C); a (complex, N -dimensional) representation of a Lie algebra g is a Lie algebra
homomorphism g → gl(N, C). The constructions above can be applied to representations.
If R: G → GL(N, C) is a representation of a Lie group G, then there arises a representation
ρ: g = Lie R: LieG → gl(N, C). On the other side, a representation ρ: g = Lie G → gl(N, C)
gives rise to a representation R: G̃ → GL(N, C) of some covering G̃ of G. For example, a
representation of sl(n) (with n ≥ 2) gives rise to a representation of not, in general, the

7) The construction in this proof has a broadly known generalization. An m-dimensional
integrable distribution on an n-dimensional manifold M gives rise to a new topology on M ,
with respect to which M possesses an m-dimensional atlas without the second countabil-
ity. Path component of this topology become m-dimensional manifolds, with one-to-one
immersions into M . The images are not, in general, submanifolds of M , they may be even
dense in M . The whole structure is called a foliation, the described immersed manifolds
are called leaves of the foliation. Foliations are studied in Dofferential Topology, there
are books about them (for example, I. Tamura, ”Topology of foliations: an introduction,”
Translations of Math. Monographs, Vol. 97, Amer. Math, Soc, 1992). We will not consider
them in these lectures any seriously.
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group SO(n), but rather of the group Spin(n).
1.3.4. Lie subalgebras of Lie algebras and Lie subgroups of Lie groups. A.

A question and a negative answer. Let G be a Lie group, and let h be a Lie subalgebra of
its Lie algebra g = Lie G. There arises a question: is there a Lie subgroup H of G with
Lie H = h? The immediate answer is no, because of the following, very simple example. Let
G = S1×S1 be a torus. There is a covering R2 → S1×S1, and Lie(S1×S1) = Lie R2 = R2

with zero commutator (we will usually refer to a Lie algebra with a zero commutator as
to a commutative Lie algebra). Every subspace of a commutative Lie algebra is a Lie
subalgebra. Let L ⊂ R2 be a one dimensional subspace of 2 (a line). Obviously, L = Lie L
(the Lie algebra of itself). The same L regarded as a subalgebra of Lie(S1 × S1) can be a
Lie algebra only of the image of L with respect to the projection R2 → S1×S1. This image,
however, may be not closed in S1 × S1; actually, if the slope of L in R2 is irrational, then
the image of L in S1×S1 is dense. This construction has a generalization: a subalgebra L
of the Lie algebra Lie(S1 × . . .× S1

︸ ︷︷ ︸
n

) = Lie (Rn) = Rn is the Lie algebra of the same L in

Rn, but, in general, is not a Lie algebra of any Lie subgroup of the “torus” S1 × . . .× S1:
the image of L in the torus is, in general, not closed; its closure may be a “subtorus” of
some dimension between n and m = dim L, maybe, even, the whole torus S1 × . . .× S1.

Although this example looks very convincing, we must say that in some (maybe, rather
loose) sense there are no other examples. The explanation of this is the goal of this Section.

B. Useful terminology: virtual subgroups. A virtual Lie subgroup of a Lie group G is,
by definition, the image of a one-to-one Lie homomorphism H → G where H is another
Lie group. The examples above are examples of virtual Lie subgroups of tori. Usually
we will denote the image of such a homomorphism H → G by the same letter H. Thus,
a virtual subgroup of a Lie group is a subgroup in the algebraic sense, and it has a Lie
group structure of its own. In particular, it has a Lie algebra, which is a subalgebra of a
Lie algebra of the ambient Lie group. The only reason why we cannot count it as a Lie
subgroup of G is that it is not closed in G.

Proposition. Every subalgebra of the Lie algebra of a Lie group G is the Lie algebra
of some (unique, if we assume it path connected) virtual Lie subgroup of G.

Proof is basically known to us. A subalgebra h of a Lie algebra g = Lie G is included
in the left invariant distribution {deλg(h), the integral manifolds of this distribution from
a new topology in G (see Proof of Lemma 2 and footnote 7)), and the path component H
of e with respect to this topology is a virtual subgroup of G whose Lie algebra is h.

Exercise 13. Prove that images and inverse images of virtual Lie subgroups with
respect to Lie homomorphisms are virtual Lie subgroups. (Compare with the remark after
Exercise 4.) Prove also that the Lie algebras of images and inverse images of a virtual Lie
subgroup H (of a Lie group) are images and inverse images of LieH.

C. Commutator subgroups of Lie groups and commutator subalgebras of Lie algebras.
The commutator subalgebra (also called the derived subalgebra) g′ of a Lie algebra g is
the subspace of g spanned by all commutators [g, h], d, h ∈ g.

Exercise 14. Prove that g′ is a Lie subalgebra, moreover, an ideal in g. Prove also
that the Lie algebra g/g′ is commutative.
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The commutator subgroup G′ of a Lie group G is its commutator subgroup in the
algebraic sense.

Proposition. Let G be a Lie group, and let g = LieG. If G is connected, then G′ is
a virtual Lie subgroup of G. If G is simply connected, then G′ is a Lie subgroup of G. In
both cases, Lie G′ = g′.

Proof. We begin with the case when G is simply connected. Since g′ is an ideal in g
and g/g′ = Lie Rn (with some n), the projection g → Lie Rn is the differential of some Lie
homomorphism p: G → Rn (Part (b) of Theorem in Section 1.3.3). Let H = Ker p; it is a
Lie subgroup of G and Lie H = g′. We will show that H = G′.

The inclusion G′ ⊂ H holds, since Rn is commutative. Moreover, since Rn is simply
connected and G is connected, H is also connected: if H0 is the component of e in H, then
G/H0 is a covering over Rn = G/H, hence H0 = H.

To prove that G′ ⊃ H, we notice that G′ contains the curves γξ(t)γη(t)γξ(−t)γη(−t)
(for ξ, η ∈ g) and also product of such curves. From this, G′ contains the exponential
image of a neighborhood of 0 in g′ = Lie H, thus, it contains a neighborhood of e in H,
thus it contains the component of e in H (see Exercise 10), thus it contains H.

If G is not simply connected, then we consider the universal covering p: G̃ → G. Since
G′ = p(G̃′) (because g̃ = g and hence g̃′ = g′), G′ is a virtual Lie subgroup of G (the image
of a Lie homomorphism (G̃)′ → G.

D. The structure of virtual Lie subgroups. Let G be a connected Lie group, g = Lie G
be the corresponding Lie algebra, h ⊂ g be a Lie subalgebra, H be a virtual subgroup of
G with Lie H = h. Our goal is ti investigate, how much H is different from Lie subgroups
of G.

Let HM be the closure of H; it is a Lie subgroup of G, the intersection of all Lie
subgroups of G which contain H. Let Lie HM = hM ⊃ h; it is a Lie subalgebra of g, it is
called the Malcev closure of h.

Lemma 3. (hM )′ = h′ ⊆ h.
Proof is contained in subsection F below.
Thus h is squeezed between hM and (hM )′. There arises a diagram

hM → hM/(hM )′ = Rn

∪

h → h/h′ = Rm

The upper row gives rise to a Lie homomorphism f : H̃M → Rn and, obviously, H =
p(f−1(Rm)) (where p: H̃M → HM is the universal covering). This shows that an arbitrary
virtual subgroup of G is obtained by a construction which is a direct generalization of
construction in Subsection A.

E. Ad and ad. There are two important representations, one of a Lie group G and
another one of its Lie algebra g. They are called adjoint and denoted accordingly.

For a g ∈ G, we define a linear automorphism AdG g = Ad g: g → g as deαg (where
αg: G → G, αg(h) = ghg−1, see Section 1.2.2). The correspondence AdG: G → GL(g) is a
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(real) representation of G in the space g. There arises a representation of Lie G = g which
we denote as adg: g → gl(g). (For a vector space V, GL(V ) denotes the Lie group of linear
automorphisms of V , and gl(V ) = Lie GL(V ) is the Lie algebra of linear endomorphisms
of V .

Lemma 4 (a major fact). For ξ, η ∈ g, (ad ξ)η = [ξ, η].
Proof.

(ad ξ)η = lim
t→0

(Ad γξ(t))η − η
t

= lim
t→0
u→0

γξ(t)γη(u)γξ(−t)γη(−u)
tu

= lim
t→0

γξ(t)γη(t)γξ(−t)γη(−t)
t2

= [ξ, η].

(We identify neighborhoods of e ∈ G and 0 ∈ g by means of the map exp.)
F. Proof of Lemma 3. We will use (twice) the following construction. Let V ⊃ W ⊃ Z

be a triple of vector spaces. Put

GL(V ; W, Z) = {A ∈ GL(V ) | (A− I)W ⊂ Z};

then
gl(V ; W, Z) = Lie GL(V ; W, Z) = {A ∈ gl(V ) | AW ⊂ Z};

thus the matrices from GL(V ; W, Z) and gl(V ; W, Z) have the block form
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













GL(V ; W, Z) gl(V ; W, Z)

︸ ︷︷ ︸
Z

︸ ︷︷ ︸
Z

W︷ ︸︸ ︷ W︷ ︸︸ ︷

Z

{ 



W

(the diagonal blocks of a matrix from GL(V ; W, Z) must be non-degenerate). For a repre-
sentation (a Lie homomorphism) ϕ: G → GL(V ),

H = ϕ−1GL(V ; W, Z) = {g ∈ G | (ϕ(g)− id)W ⊂ Z},
h = LieH = {ξ ∈ g | dϕ(ξ)W ⊂ Z}

(where g = Lie G).
First, let ϕ = Ad, V = g, W = h, Z = h′. Then

H1 = {g ∈ G | (Ad g − id)h ⊂ h′},
h1 = {ξ ∈ g | [ξ, h] ⊂ h′}.
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Thus, h1 ⊃ h, hence h1 ⊃ hM , and hence [hM , h] ⊂ h′.
Second, let ϕ = Ad, V = g, W = hM , Z = h′. Then

H2 = {g ∈ G | (Ad g − id)hM ⊂ h′},
h2 = {ξ ∈ g | [ξ, hM ] ⊂ h′}.

By the previous remark, h2 ⊃ h, hence, h2 ⊃ hM and hence (hM )′ = [hM , hM ] ⊃ h′.
Since h ⊂ hM ⇒ h′ ⊂ (hM )′, this proves Lemma 3.
1.4 Additional facts.
Below, we formulate three classical theorem from the Lie theory with short comments

concerning their proofs. The reader can consider this section as a sequence of challenging
exercises.

1.4.1. The Ado theorem. Every finite dimensional real or complex Lie algebra is
isomorphic to a Lie subalgebra of the Lie algebra gl(N, R or C).

Differently speaking, this means that every finite-dimensional Lie algebra g has an
exact finite dimensional representation, that is, such a representation ρ: g → gl(V ) that
for every non-zero ξ ∈ g there exists a v ∈ V such that (ρ(ξ))(v) %= 0. In many important
cases it is obvious. For example, if g has no center, then the adjoint representation ad: g →
gl(g) has this property. Also, it is not hard to construct an exact infinite dimensional
representation: this is the canonical representation of g in the so called universal enveloping
algebra of g (which we will have to consider later). The proof in the general case is more
involved, but the reader can try to find it (if nowhere else, then in the literature).

We must notice that there is no similar result for Lie groups. Namely, there are
Lie groups not embeddable into groups GL(N, R) for any N . The first example arises in
dimension 3: the universal covering over the Lie group SL(2, R) is not Lie isomorphic to
a Lie subgroup of a group GL(N, R), whatever N is.

1.4.2. The third Lie theorem. I prefer to avoid answering the question what the
First and the Second Lie theorems are; certainly, both are covered by this course.

Theorem. Every finite-dimensional (real) Lie algebra is a Lie algebra of some Lie
group.

Comments. (1) Certainly, this follows from the Ado theorem: a Lie subalgebra of
gl(N, R) is a Lie algebra of some virtual Lie subgroup of GL(N, R), hence, it is a Lie
algebra of some Lie group.

(2) For a Lie algebra g without center, there is a simple proof. Let Aut g be the group
of automorphisms of the Lie algebra g; this is a closed subgroup of GL(g) and hence a
Lie group. It is easy to show that Lie Aut g is Der g, the Lie algebra of derivations of g (a
derivation of g is a linear map d: g → g such that d[ξ, η] = [dξ, η]+[ξ, dη]; it is easy to check
that the commutator of two derivations is a derivation which makes Der g a Lie algebra:
a Lie subalgebra of gl(g)). For any ξ ∈ g, there is the inner derivation of g: η #→ [ξ, η] (it
is a derivation by the Jacobi identity). Thee arises a homomorphism g → Der g which is
one-to-one, if g has no center. Thus, in this case, g ⊂ Der g = Lie Aut g which makes g a
Lie algebra of a virtual Lie subgroup of Aut g.
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(3) A proof of the Third Lie theorem in the general case is based on the notion of
an universal enveloping algebra U(g) of g. There is a canonical Hopf algebra structure in
U(g), and the set {x ∈ U(g) | ∆(x) = x ⊗ x} (where ∆ is the “comultiplication”) has a
structure of a Lie group with the Lie algebra g.

1.4.3. The Baker-Campbell-Hausdorff formula. The exponential map identifi-
cation of a neighborhood of 0 ∈ g with a neighborhood of e ∈ G makes the multiplication
in G a locally defined operation in g:

ξ ◦ η = exp−1(exp ξ exp η).

This operation is determined by the commutator operation in g, and, no wonder, can be
presented by a series involving the commutators. There exists an explicit formula for this
series:

ξ ◦ η =
∑

m>0

∑

(p1,...,pm;q1,...,qm)
pi≥0,qi≥0,pi+qi>0

(−1)m−1 [ξp1 , [ηq1 , . . . [ξpm , ηqm ] . . .]]
m
∑

i(pi + qi)
∏

i(pi!qi!)

where [xk, y] = (adx)ky and it is supposed that either qm = 1 or pm = 1, qm = 0 (in
which case [ξpm , ηqm ] = ξ). This formula is called the Baker-Campbell-Hausdorff formula
(in this form it was first written by E. B. Dynkin (“A computation of the coefficients in
the Campbell-Hausdorff formula” (Russian), Doklady AN SSSR, 57 (1947), 323–326.)

The main inconvenience arising when one tries to use the formula above is that it
contains a lot of like terms. For example, the part of this sum consisting of terms with∑

i(pi + qi) is

η + ξ +
1
2
[ξ, η]− 1

4
[ξ, η]− 1

4
[η, ξ] +

1
6
[ξ, [ξ, η]]− 1

6
[η, [ξ, η]]− 1

6
[ξ, [ξ, η]]− 1

12
[ξ, [ξ, η]]

+
1
9
[η, [ξ, η]] +

1
9
[ξ, [ξ, η]]− 1

12
[η, [η, ξ]]− 1

6
[[ξ, [η, ξ]] +

1
9
[η, [η, ξ]] +

1
9
[ξ, [η, ξ]]

(we omitted terms with [ξ, ξ] and [η, η]) which gives, after combining like terms,

ξ ◦ η = ξ + η +
1
2
[ξ, η] +

1
12

[ξ, [ξ, η]]− 1
12

[η, [ξ, η]] + . . .

(in which form the formula is contained in many textbooks). By the way, to prove the last
formula, we need only to check, up to the terms of degree 3, the equality

exp(X) exp(Y ) = exp
(

X + Y +
1
2
[X, Y ] +

1
12

[X, [X, Y ]]− 1
12

[Y, [X, Y ]]
)

for non-commuting variables X, Y using the usual series for exp. The left hand side (up
to degree 3) is

exp(X) exp(Y ) =
(

1 + X +
X2

2
+

X3

6

)(
1 + Y +

Y 2

2
+

Y 3

6

)

= 1 + X + Y +
X2 + 2XY + Y 2

2
+

X3 + 3X2Y + 3XY 2 + Y 3

6
;
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the right hand side (again, up to degree 3) is

1 +
(

X + Y +
1
2
[X, Y ] +

1
12

[X, [X, Y ]]− 1
12

[Y, [X, Y ]]
)

+
1
2

(
X2 + XY +

1
2
X [X, Y ] + Y X + Y 2 +

1
2
Y [X, Y ] +

1
2
[X, Y ]X +

1
2
[X, Y ]Y

)

+
1
6
(X3 + X2Y + XY X + Y X2 + XY 2 + Y XY + Y 2X + Y 3) =

1 + (X + Y ) +
XY − Y X + X2 + XY + Y X + Y 2

2

+
X2Y −XY X −XY X + Y X2

12
− Y XY − Y 2X −XY 2 + Y XY

12

+
X2Y −XY X + Y XY − Y 2X + XY X − Y X2 + XY 2 − Y XY

4

+
X3 + X2Y + XY X + Y X2 + XY 2 + Y XY + Y 2X + Y 3

6
,

and, after combining the like terms, the two sides become the same.

2. Nilpotent, solvable, and semisimple Lie algebras.
It is seen from the results of the first part (and will be still more clear later) that in

many cases the study of Lie groups, which may involve deep results from topology and
analysis, can be reduced to a pure algebraic study of Lie algebras. This part is fully devoted
to Lie algebras, Lie groups will not even mentioned. All vector spaces (in particular, all
Lie algebras and their representations) considered will be finite dimensional, the ground
field will be R or C; we can use a generic notation K for this ground field.

Speaking of a representation ρ: g → gl(V ) of a Lie algebra, we will often omit the
notation of the representation: for ξ ∈ g and v ∈ V , we may use a brief notation ξv for
(ρ(ξ))(v).

2.1. Nilpotent Lie algebras.
2.1.1. Definitions. A linear operator A: V → V is called nilpotent, if Ak = 0 for

some k. In other words, A is nilpotent, if and only if all eigenvalues of A are zeroes. In still
other words, A is nilpotent, if with respect to some basis of V the matrix of A is strictly
upper triangular, 



0 a12 a13 · · · a1n

0 0 a23 · · · a2n

0 0 0 · · · a3n

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0





If W ⊂ V is a subspace invariant with respect to a nilpotent operator A, then the restriction
W → W and the quotient V/W → V/W of A are also nilpotent.

Exercise 1. Prove that if the operator A: V → V is nilpotent, then Ak = 0 for every
k ≥ dimV .
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A representation ρ: g → gl(V ) of a Lie algebra g is called nilpotent, if ρ(ξ) is a nilpotent
operator for every ξ ∈ g. It is clear that any subrepresentation or quotientrepresentation
of a nilpotent representation of a Lie algebra, as well as a restriction of a nilpotent repre-
sentation to a Lie subalgebra, is nilpotent.

A Lie algebra g is called nilpotent, if the adjoint representation ad: g → gl(g) is
nilpotent. In other words, g is nilpotent, if there exists a k such that for every ξ, η ∈ g,

[ξ, . . . [ξ︸ ︷︷ ︸
k

, η] . . .] = 0.

Exercise 2. Show that (a) not every representation of a nilpotent Lie algebra must
be nilpotent; (b) a non-nilpotent Lie algebra may have nilpotent representations.

Still, the following is true.
Proposition 1. If a Lie algebra possesses a faithful8) nilpotent representation, then

it is nilpotent.
Proof. Let ρ: g → gl(V ) be a faithful nilpotent representation, let ξ, η ∈ g, and

let ρ(ξ) = A, ρ(η) = B. Then A = ρ(ξ) is nilpotent, so Ak = 0 for some k. For
ρ([ξ, . . . [ξ︸ ︷︷ ︸

m

, η] . . .]) = [A, . . . [A︸ ︷︷ ︸
m

, B] . . .], there is a formula

[A, . . . [A︸ ︷︷ ︸
m

, B] . . .] =
m∑

p=0

(−1)p

(
m

p

)
Am−pBAp

(proved by an obvious induction; we leave this to the reader). The last expression is 0, if
m ≥ 2k. Thus, for such m, [A, . . . [A︸ ︷︷ ︸

m

, B] . . .] = 0 and hence ([ξ, . . . [ξ︸ ︷︷ ︸
m

, η] . . .]) = 0 (since ρ is

faithful).
It is obvious that a Lie subalgebra of a nilpotent Lie algebra and a quotient of a

nilpotent Lie algebra over an ideal are nilpotent Lie algebras. The following is also true.
Proposition 2. If a quotient of a Lie algebra over a central ideal is nilpotent, then

it is nilpotent itself.
Proof. Let i be a central ideal of a Lie algebra g, and let g/i be nilpotent. Let ξ, η ∈ g

and let ξ and η be projections of ξ and η onto g/i. Then, for some k, (ad ξ)kη = 0. This
means that (ad ξ)kη ∈ i and hence (ad ξ)k+1η = [ξ, (ad ξ)kη] = 0.

2.1.2. The Engel Theorem. Let ρ: g → gl(V ) be a nilpotent representation. Then
there exists a chain of subspaces

0 ⊂
+=

V0 ⊂
+=

V1 ⊂
+=

V2 . . .⊂
+=

Vk = V

8) A representation ρ: g → gl(V ) is called faithful, if Ker ρ = 0, that is, if for every
non-zero ξ ∈ g, there exists a v ∈ V such that (ρ(ξ))(v) %= 0.
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such that gVi ⊂ Vi−1. In other words, there exists a k ≤ dim V + 1 such that for every
ξ1, . . . , ξk ∈ g and v ∈ V ,

ξ1 . . . ξkv = 0.

In still other words, a basis in V with respect to which the operator ρ(ξ) has a upper strictly
triangular matrix may be chosen simultaneously for all ξ ∈ g.

Applying the Engel Theorem to the representation ad, we get the following
Corollary 1. For a nilpotent Lie algebra g, there exists a chain of ideals

0 ⊂
+=

g0 ⊂
+=

g1 ⊂
+=

g2 . . .⊂
+=

gk = g

such that [g, gi] ⊂ gi−1. In other words, there exists a k ≤ dim g + 1 such that for every
ξ1, . . . , ξk ∈ g,

[ξ1, [ξ2, . . . [ξk−1, ξk] . . .]] = 0.

Notice that the Engel Theorem and Corollary 1 provide criteria of nilpotency of a Lie
algebra or of a representation: they can be formulated in the form: a Lie algebra, or a
representation of a Lie algebra, is nilpotent if and only if, etc.

A proof of the Engel Theorem is based on the following lemma (in some books, the
term “Engel Theorem” is attributed to this lemma).

Lemma. For every nilpotent representation of a Lie algebra g in a space V , there
exists a non-zero vector v ∈ V such that ξv = 0 for all ξ ∈ g.

Proof of Lemma. We can assume that the representation is faithful: if ρ: g → gl(V )
is not faithful, we can consider, instead of ρ the representation of g/ Ker ρ. Thus, the Lie
algebra g is nilpotent by Proposition 1.

We use the induction with respect to dim g. If dim g = 1, then a representation of g
is the same as one nilpotent operator, and there is a non-zero vector which is annihilated
by this operator. Assume that Lemma is true for representations of nilpotent Lie algebras
of dimensions < dim g.

We begin with proving the following auxiliary statement: the Lie algebra g has a
codimension 1 ideal. Take an arbitrary Lie subalgebra b ⊂

+=
g; then there exists a Lie

subalgebra c of g such that b ⊂ c ⊂ g, codimc b = 1, b is an ideal in c. Indeed, the
representation of b in g/b is nilpotent; thus, there is a non-zero vector v ∈ g/b which is
annihilated by b. Then, for a representative ṽ ∈ g − b of v, [b, ṽ] ∈ b and we can put
c = b + Kṽ. Now, the prove our auxiliary statement, we take an arbitrary b (for example,
0) and apply this construction sufficiently many times: b ⊂ c1 ⊂ c2 ⊂ . . . ⊂ cm−1 ⊂ cm = g
(m = dim g− dim b). Then h = cm−1 is a codimension 1 ideal in g = cm.

Now, return to Lemma. Let h be a codimension 1 ideal in g. Let then W ⊂ V be the
space of all vectors which are annihilated by h; then dim W > 0. For a ξ ∈ g−h, ξ(W ) ⊂ W ;
indeed, for w ∈ W, ξ ∈ g, and η ∈ h, η(ξw) = ξ(ηw) + [η, ξ]w = 0 since η, [η, ξ] ∈ h; thus,
ξw ∈ W . So, ξ: W → W is a nilpotent operator, and hence there is a non-zero vector
w ∈ W which is annihilated by ξ. Then gw = 0.

Proof of the Engel Theorem. Let V0 is the space of 0-vectors of the representation ρ.
By lemma, V0 %= 0. There arises a representation of g in V/V0, also nilpotent. Take the
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space of zero vectors of this representation, and let V1 be the inverse image of this space
in V . Then g(V1) ⊂ V0. In particular, V1 is an invariant subspace of V . There arises a
representation of g in V/V1, take for V2 the inverse image of this space in V . And so on.

2.1.3. Further corollaries. Corollary 2. Every nilpotent Lie algebra has a
non-zero center.

This is g0 from Corollary 1.
If we iterate this statement, we arrive at the following result.
Corollary 3. A Lie algebra is nilpotent if and only if it is obtained from 0 by a

sequence of central extensions9).
And the last one.
Corollary 4. A nilpotent Lie algebra g contains ideals of all dimensions between 1

and dim g− 1.
Indeed, every subspace of g between gi and gi−1 (where g−1 = 0) is an ideal of g.

2.2. A deviation: some generalities concerning Lie algebra representations.
2.2.1. Irreducible representations. A representation ρ: g → gl(V ) of real or

complex Lie algebra is called irreducible, if there are no proper subrepresentations, that is,
proper subspaces of V invariant with respect to g. For example, the adjoint representation
ad: g → gl(g) is irreducible if and only if g is simple, that is, does not contain proper ideals.

Proposition. Let ρ: g → gl(V ) be a (real or complex) representation. Then there
exists a chain

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vr−1 ⊂ Vr = V

of subrepresentations such that every quotient Vi/Vi−1 is irreducible.
Proof: induction by dimV . If dimV = 1, then ρ itself is irreducible, and we have

nothing to do. Assume that Proposition is true for all representations of g of dimensions
< dimV . Let dimV > 1. Again, if ρ is irreducible, then we have nothing to do. If ρ
is reducible, then there are proper invariant subspaces in V . Choose a proper invariant
subspace W ⊂ V of maximal possible dimension. On one hand, the quotient V/W is
irreducible: otherwise, there is a proper invariant subspace Z ⊂ V/W , and the inverse
image of Z with respect to the projection V → V/W is a proper invariant subspace of
V with dimZ > dim W , in contradiction of our choice of W . On the other hand, be the
induction hypothesis, there exists a chain

0 = W0 ⊂ W1 ⊂ . . . ⊂ Ws−1 ⊂ Ws = W

with irreducible quotients Wi/Wi−1, and we can take r = s+1, Vi = Wi for i = 0, . . . , r−
1, Vr = V .

2.2.2. Weights and weight spaces. Let ρ: g → gl(V ) be a complex representation
of a complex Lie algebra g. For a linear function λ: g → C, put

Vλ = {v ∈ V | ρ(ξ)v = λ(ξ) · v for all ξ ∈ g}.

9) A Lie algebra g̃ is called a central extension of a Lie algebra g, if there is a fixed
isomorphism g ∼= g̃/c where c is a central ideal of g̃ (that is, [c, g̃] = 0).
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If Vλ %= 0, then λ is called a weight for ρ, and Vλ is called a weight space.
Proposition. Let g, ρ, and V be as above and let h be an ideal in g. If λ: h → C is a

weight of the representation ρ|h, then the space Vλ is invariant with respect to g, that is,
ρ(ξ)Vλ ⊂ Vλ for every ξ ∈ g.

Proof. Let v ∈ V be a non-zero vector, and let ξ ∈ g, η ∈ h. Then

ρ(η)(ρ(ξ)v) = ρ(ξ)(ρ(η)v) + ρ([ξ, η])v = λ(η) · ρ(ξ)v + λ([ξ, η]) · v

(we observe that [ξ, η] ∈ h, since h is an ideal in g). To prove Proposition, we need to show
that λ([ξ, η]) = 0 for all ξ ∈ g, η ∈ h.

Let m be the biggest integer for which the vectors v, ρ(ξ)v, ρ(ξ)2v, . . . , ρ(ξ)mv are lin-
early independent, and let W = span(v, ρ(ξ)v, ρ(ξ)2v, . . . , ρ(ξ)mv). Let us prove that W is
invariant with respect to h and, moreover, for every η ∈ h the matrix of the transformation
W

ρ(η)−−→W with respect to the basis v, ρ(ξ)v, ρ(ξ)2v, . . . , ρ(ξ)mv is an upper triangular
matrix with all the diagonal entries being λ(η).

First of all, ρ(η)v = λ(η) ·v, so the first column of the matrix is (λ(η), 0, . . . , 0). Then,
by induction on the columns,

ρ(η)(ρ(ξ)i+1v) = ρ([ξ, η])(ρ(ξ)iv + ρ(ξ)(ρ(η)(ρ(ξ)iv)) = λ(η) · ρ(ξ)i+1v + u

where u ∈ span(v, ρ(ξ)v, . . . , ρ(ξ)iv because [ξ, η] ∈ h and the induction hypothesis.
Thus, the space W is invariant with respect to h and ξ; so, it is invariant with respect

to h+span(ξ). For every η ∈ h, the commutator [ξ, η] is contained in h, so the matrix of its
action in W is an upper triangular matrix with the diagonal entries λ([ξ, η]. On the other
hand, this matrix is the commutator of the matrices of transformations ρ(ξ) and ρ(η),
hence its trace is zero. Therefore, λ([ξ, η]) = 0, which completes the proof of Proposition.

2.3. Solvable Lie algebras. A Lie algebra g is called solvable, if the sequence

g, g′, (g′)′, ((g′)′)′, . . .

ends with 0. Equivalently: g is solvable, if there exists a chain of subalgebras

0 = g0 ⊂ g1 ⊂ . . . ⊂ gr = g

such that for every i = 1, . . . , r, gi−1 is an ideal in gi and the quotient Lie algebra gi/gi−1 is
commutative. Example: the Lie algebra b ⊂ gl(n, R or C) of all upper triangular matrices.

In particular, every nilpotent Lie algebra is solvable. However, not every solvable Lie
algebra is nilpotent, as the following exercise shows.

Exercises 3. Prove that the Lie algebra b from the example above is not nilpotent.
4. Let h be an ideal in a Lie algebra g. Prove that if g is solvable, then h and g/h are

solvable. Prove also that if h and g/h are solvable, then g is solvable.
2.3.1. Lie’s theorem. Let ρ: g → gl(V ) be a representation of a complex solvable

Lie algebra g in a complex vector space V . Then there exists a basis e1, . . . , en in V such
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that for every ξ ∈ g, the matrix of the transformation ρ(ξ): V → V with respect to this
basis is upper triangular, that is, (ρ(ξ))(ek) ∈ span(e1, . . . , ek).

Remark. For real Lie algebras a similar statement does not hold. For example, if
dim g = 1, then g is commutative, and hence, solvable. But a representation ρ: g → gl(V )
is reduced to one operator ρ(ξ), ξ %= 0, which is arbitrary. If not all the eigenvalues of this
operator are real, then it can be represented by an upper triangular matrix in any basis.

Like the Engel Theorem, the Lie Theorem is almost equivalent to a lemma similar to
the lemma in the proof of the Engel Theorem. Sometimes, the term “the Lie Theorem” is
attributed to this lemma.

Lemma. Let ρ: g → gl(V ) be a complex representation of a complex solvable Lie
algebra. Then there exists a linear function λ: g → C and a non-zero vector v ∈ V such
that for any ξ ∈ g, (ρ(ξ))(v) = λ(ξ) · v. In other word, ρ possesses at least one weight.

Proof of Lemma: induction by dim g. If dim g = 1, then, for a fixed ξ ∈ g, there
exists a non-zero v ∈ V and a λ ∈ C, such that ρ(ξ)v = λv. We put λ(cξ) = cλ and have
ρ(cξ)v = cρ(ξ)v = cλv = λ(cξ)v. Assume that dim g > 1 and that Lemma holds for all
nilpotent Lie algebras of dimensions < dim g.

Since [g, g]⊂
%=

g, there exists a subspace h of g such that h ⊃ [g, g] and dim h = dim g−1.

Then h is an ideal, in particular, a Lie subalgebra, in g: [g, h] ⊂ [g, g] ⊂ h. Thus, h is a
solvable Lie algebra, and, by the induction hypothesis, there exists a weight µ: h → C with
a non-zero weight space Wµ = {v ∈ V | ρ(η)v = µ(η) · v for all η ∈ h}.

Let ζ ∈ g − h. By Proposition in Section 2.2.2, Wµ is ρ(ξ)-invariant. The trans-

formation Wµ
ρ(ζ)−−→Wµ has an eigenvector w ∈ Wµ, ρ(ζ)w = ν · w, ν ∈ C. Define

λ: g = h ⊕ Cζ → C by the formula λ(η + cζ) = µ(η) + cν (η ∈ h, c ∈ C). Then
ρ(η+ cζ)w = ρ(η)w + cρ(ζ)w = (µ(η) + cν)w = λ(η+ cζ) ·w which completes the proof of
Lemma.

Proof of Lie’s theorem: induction with respect to dim V . If dim V = 1, then we
have nothing to prove, since every 1 × 1 matrix is upper triangular. Assume now that
Theorem holds for all representations of g of dimensions < n = dim V . By Lemma,
there exists a vector e1 ∈ V such that ρ(ξ)e1 is a multiple of e1, and, in particular,
the space Ce1 = V1 ⊂ V is invariant with respect to the action of g. In other words,
V1 is a subrepresentation of V , and we can form the quotient representation σ of g in
W = V/V1 with a g-projection p: V → V/W . By the induction hypothesis, there exists
a basis f1, . . . , fn−1 such that σ(ξ)f# ∈ span(f1, . . . , f#). Choose e2, . . . , en ∈ V such that
p(ei) = fi−1 for i = 2, . . . n. Obviously, e1, . . . , en is a basis of V with the properties
required.

2.3.2. Relations between solvability and nilpotency. We already know that
every nilpotent Lie algebra is solvable. Now we can say more.

Proposition 1. Let ρ be a representation of a solvable Lie algebra g over C or R.
Then n = {ξ ∈ g | ρ(ξ) is nilpotent} is an ideal in g containing g′.

Proof: the case of C. By the Lie Theorem, there exists a basis in the space V of the
representation, such that
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the matrix of ρ(ξ) =





λ1(ξ)

λn(ξ)




.

.
.

.0

This matrix is nilpotent, that is, ξ ∈ n, if and only if all λi(ξ) = 0; if ξ ∈ g′, then our
matrix is the commutator of matrices of the same form, and hence all λi(ξ) = 0. Hence,
n ⊃ g′, and hence n is an ideal in g.

The case of R. Apply the complexification. Let gC = g⊗R C; then (gC)′ = (g′)C and
g′ = g′C ∩ g. Let also ρC = ρ⊗R C. We have already proved that

{ξ ∈ gC | ρC(ξ) is nilpotent} ⊃ (gC)′.

Hence,

{ξ ∈ g | ρ(ξ) is nilpotent} = {ξ ∈ gC | ρC(ξ) is nilpotent} ∩ g ⊃ (gC)′ ∩ g = g′.

Proposition 2. A (real or complex) Lie algebra g is solvable, if and only if g′ is
nilpotent.

Proof. If g′ is nilpotent, then it is solvable and the sequence g′, (g′)′, . . . ends with zero;
hence, g is solvable. If g is solvable, then g′ is contained in {ξ ∈ g | ad(ξ) is nilpotent}.
Thus, g′ is nilpotent.

2.3.3. Nilpotent radicals. Proposition. Let ρ: g → gl(V ) be a representation
of a (complex or real) Lie algebra. Let N be the set of all ideals n ⊂ g such that ρ(ξ) is
nilpotent for every ξ ∈ n. Then there exists an nρ ∈ N such that n ∈ N if and only if
n ⊂ nρ.

Proof. Case 1: ρ is irreducible. In this case n ∈ N if and only if ρn = 0. Indeed,
since the representation ρn is nilpotent, the space W = {v ∈ V | ρ(η)v = 0 for all η ∈ n}
is not zero by Engel’s theorem. This space is g-invariant: if ξ ∈ g, η ∈ n, and w ∈ W , then
ρ(η)(ρ(ξ)w) = ρ(ξ)(ρ(η)w)+ρ([η, ξ])w = 0 ([η, ξ] ∈ n, because n is an ideal; hence, W = V
and ρ|n = 0. This shows that we can put nρ = Ker ρ.

Case 2: general. According to Proposition of Section 2.2.1, there is a chain of subrep-
resentations

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vr−1 ⊂ Vr = V

with irreducible subsequent quotients; we denote the representation in Vi/Vi−1 by ρi. Our
claim is nρ =

⋂
i Ker ρi. Indeed, every Ker ρi is an ideal, hence

⋂
i Ker ρi is an ideal. If

ξ ∈
⋂
ρi, then ρ(ξ)(Vi) ⊂ Vi−1, and hence ρ(ξ)r=0. Hence,

⋂
i Ker ρi ∈ N . On the other

hand, as follows from the first part of the proof, ρi|n = 0 for every n ∈ N , which shows
that n ⊂

⋂
i Ker ρi.

Definition. The ideal nad is called the nilpotent radical of g and is denoted as
nil rad(g).

Remark. In general, it is not the set of all ξ ∈ g with nilpotent ad ξ.
Exercise 5. Prove that nil rad g is a nilpotent ideal in g which contains all other

nilpotent ideals.
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2.3.4. Radicals. Proposition. Let g be a (real or complex) Lie algebra. If h and k
are solvable ideals in g, then h + k is also a solvable ideal.

Proof. It is obvious that h + k is an ideal. It is solvable, because h∩ k and (h + k)/h =
k/(h ∩ h) are solvable.

This proposition shows that every Lie algebra contains a unique maximal solvable
ideal (which can be described, for example, as the sum of all solvable ideals). The maximal
solvable ideal of a Lie algebra g is called the radical of g and is denoted as rad g.

Obviously, (rad g)′ ⊂ nil rad g ⊂ rad g.
2.3.5. Introducing semisimple Lie algebras. A Lie algebra g is called semisimple

if it does not have non-zero solvable ideals. In other words, g is semisimple, if rad g = 0.
A simple Lie algebra does not have proper ideals at all; so, it is semisimple, if it is not

solvable itself. But a solvable Lie algebra is simple, only if it is one-dimensional. Thus, a
simple Lie algebra of dimension > 1 is semisimple. Also, the following holds.

Proposition. Let h be an ideal in a Lie algebra g. If h and g/h are both semisimple,
then g is semisimple.

Proof. Let k be a solvable ideal in g. Then k ∩ h is an ideal in g, hence in both k and
h. The first implies that k ∩ h is solvable, after which the second implies that k ∩ h = 0
(because h is semisimple). Hence the image of k in g/h is an ideal isomorphic to k, which
shows that k = 0 (because g/h is semisimple).

Corollary. A direct sum of semi-simple Lie algebras is semisimple.
We will study semisimple Lie algebras in details, starting with Section 2.4. We will see,

in particular, that a semisimple Lie algebra is always a direct sum of simple Lie algebras
of dimensions > 1.

2.4 Killing forms.
2.4.1. Definition and basic properties. Let ρ: g → gl(V ) be a representation of a

(real or complex) Lie algebra g. Put

Bρ(ξ, η) = Tr(ρ(ξ) ◦ ρ(η)).

Obviously, Bρ is a symmetric bilinear form (notice that even in the complex case the form
Bρ is symmetric, not Hermitian). It is called the Killing form of the representation ρ.

Proposition 1. The form Bρ possesses the following invariance property:

Bρ([ξ, η], ζ) = Bρ(ξ, [η, ζ]) for every ξ, η, ζ ∈ g.

Proof. Bρ([ξ, η], ζ) = Tr(ρ(ξ) ◦ ρ(η) ◦ ρ(ζ))− Tr(ρ(η) ◦ ρ(ξ) ◦ ρ(ζ)) = Tr(ρ(ξ) ◦ ρ(η) ◦
ρ(ζ))−Tr(ρ(ξ) ◦ ρ(ζ) ◦ ρ(η)) = Bρ(ξ, [η, ζ]).

Proposition 2. The orthogonal complement h⊥ = h⊥ρ of an ideal h ⊂ g with respect
to the Killing form Bρ is also an ideal.

Proof. ξ ∈ h⊥, if Bρ(ξ, η) = 0 for all η ∈ h. But then, for a ζ ∈ g, Bρ([ξ, ζ], η) =
Bρ(ξ, [ζ, η]) = 0 (since [ζ, η] ∈ h). Thus, [ξ, ζ] ∈ h⊥.

Corollary. The kernel Ker Bρ of the form Bρ is an ideal.
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Indeed, Ker Bρ = 0⊥ρ .
The form B = Bad is called the Killing form of the Lie algebra g. We will use for it

the notation Bg and also notations 〈 , 〉 and 〈 , 〉g.
The Killing form Bg possesses a strong invariance property which generalizes, for this

form, Proposition 1. Recall that a derivation of a Lie algebra g is a linear map D: g → g such
that D[ξ, η] = [Dξ, η] + [ξ, Dη] for all ξ, η ∈ g. For every ζ ∈ g, ad ζ: g → g is a derivation
(this is equivalent to the Jacobi identity); such derivations are called inner. In principle,
Lie algebras may possess derivations which are not inner; for example, if g is isomorphic
an ideal in some Lie algebra f, then every ζ ∈ f gives rise to a derivation adf ζ: g → g which
does not need to be inner. The following is a generalization of Proposition 1 from inner
derivations to all derivations (only for the forms Bg).

Proposition 3. For every derivation D: g → g and every ξ, η ∈ g,

Bg(Dξ, η) = −Bg(ξ, Dη).

Proof. By definition of a derivation, ad(Dξ) = D ◦ ad ξ − ad ξ ◦D. Hence,

Bg(Dξ, η) = Tr(ad(Dξ) ◦ ad η) = Tr(D ◦ ad ξ ◦ ad η)−Tr(ad ξ ◦D ◦ ad η)
= Tr(ad ξ ◦ ad η ◦D)−Tr(ad ξ ◦D ◦ ad η) = −Tr(ad ξ ◦ ad(Dη)) = −Bg(ξ, Dη).

Proposition 4. If h is an ideal of g, then Bh is the restriction of Bg to h.

Proof. Choose a basis e1, . . . , em in h and supplement it by em+1, . . . , en to a basis
in g. Let ξ ∈ h. With respect to this basis, the transformation adg ξ: g → g has a matrix
‖aij‖1≤i,j≤n with aij = 0 for i > m (since the image of this adξ is contained in h). For the
same ξ, the transformation adh ξ: h → h has the matrix ‖aij‖1≤i,j≤m. For an η ∈ h, we
use the same notations with b instead of a. Then

Bg(ξ, η) = Tr(ad gξ◦adg η) =
n∑

i=1

n∑

j=1

aijbji =
m∑

i=1

m∑

j=1

aijbji = Tr(adh ξ◦adh η) = Bh(ξ, η).

2.4.2. Main results. Theorem 1. Let ρ: g → gl(V ) be a representation of a Lie
algebra g, and let n be an ideal in g such that the representation ρ|n is nilpotent. Then
n ⊂ Ker Bρ.

Proof. Engel’s Theorem provides a chain

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vr−1 ⊂ Vr = V

such that ρ(η)Vi ⊂ Vi−1 for every i. We can assume that for every i, Vi−1 = span{ρ(η)Vi |
η ∈ n}. Then an induction shows that every Vi is invariant with respect to g. Indeed, it is
true for Vr, and if it is true for Vi, then for every η ∈ n, ξ ∈ g, and v ∈ Vi, ρ(ξ)(ρ(η)v) =
ρ(η)(ρ(ξ)v)+ρ([ξ, η])v ∈ Vi−1; thus, ρ(ξ)Vi−1 ⊂ Vi−1. Consequently, for every ξ ∈ g, η ∈ n,
ρ(ξ) ◦ ρ(η)Vi ⊂ Vi−1, hence, the operator ρ(ξ) ◦ ρ(η) is nilpotent and Bg(ξ, η) = Tr(ρ(ξ) ◦
ρ(η)) = 0.
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Corollary: nil rad g ⊂ Ker Bg; in particular, if the Lie algebra g is nilpotent, then
Bg = 0.

Theorem 2. Let ρ: g → gl(V ) be a representation. Then the algebra ρ(g) is solvable
if and only if g′ ⊂ Ker Bρ.

This statement is called Cartan’s criterion of solvability. Its proof is longer and will
be presented in Section 2.4.3.

Corollary. The Lie algebra g is solvable if and only if g′ ⊂ Ker Bg. In particular,
if Bg = 0, then g is solvable.

Theorem 3: rad g = (g′)⊥.
Proof. Let (g′)⊥ = h; this is an ideal in g (Proposition 2 of 2.4.1), thus Bh is a

restriction of Bg to h (Proposition 4 of 2.4.1). Since every element of h′ ⊂ g′ is Bg-
orthogonal to h, it is also Bh-orthogonal to h. Thus, (h)′ ⊂ Ker Bh, hence h is solvable
(Theorem 2), and hence (g′)⊥ = h ⊂ rad g. We will not need the opposite inclusion, and
we leave it to a reader as an exercise:

Exercise 6. Prove that rad g ⊂ (g′)⊥. Moreover, prove that for every representation
ρ of g, Bρ(rad g, g′) = 0.

Theorem 4. A Lie algebra g is semisimple if and only if the Killing form Bg is
non-degenerate.

Proof. If g is semisimple, that is, rad g = 0, then, by Theorem 3, (g′)⊥ = 0. Therefore,
Ker Bg = 0 (it is contained in the Bg-orthogonal complement of anything), so Bg is non-
degenerate. If Ker Bg = 0, then nil rad g = 0 (Corollary to Theorem 1). Hence (rad g)′ = 0
(see Proposition 2 in Section 2.3.2 or a remark in Section 2.3.4), hence rad g is commutative,
hence it is nilpotent, hence it is contained in nil rad g, hence it is 0.

2.4.3. Proof of Cartan’s criterion. It is sufficient to prove Theorem 2 in the
complex case. Indeed, real Lie algebra may be complexified to become a complex Lie
algebra gC = g ⊗R C. Representations also may be complexified: ρC = ρ ⊗ C: gC →
gl(V ⊗ C). It is true also that (gC)′ = (g′)C, in particular, the Lie algebra g is solvable if
and only if gC is solvable. Finally, the Killing form BρC is the complexification of Bρ; the
same is true for the kernels of these forms. Thus, the Cartan criterion for real Lie algebras
follows from the Cartan criterion for the complex Lie algebas.

2.4.3.1. A linear algebra preparation. A. Semisimple and nilpotent parts of a
linear endomorphism. Lemma 1. Let f : V → V be a linear endomorphism of a complex
vector space. Then there exists a unique pair of linear endomorphisms s, n: V → V such
that: (1) f = s+n; (2) s is semisimple, that is, diagonalizable, n is nilpotent; (3) [s, n] = 0.

Proof. Let V =
⊕

i Vi be the decomposition of V into the sum of invariant subspaces
(all eigenvalues of the restriction fi: Vi → Vi of f are equal to some eigenvalue λi of f).
Then we define s as ·λi on Vi and put n = f − s. All the properties of s and n, as well as
the uniqueness, are obvious.

The endomorphisms s and n are called semisimple and nilpotent parts of f .
B: s as a function of f . Lemma 2. For every f , there exists a polynomial p of one

variable without a constant term such that s = p(f).
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Proof. Obviously, for f, s, and n as in Lemma 1 and for any polynomial p,

p(f) = p(s) + p′(s)n +
1
2
p′′(s)n2 + . . . +

1
k!

p(k)(s)nk

where k is such that nk+1 = 0 (it is sufficient to check this for a monomial, p(f) = fm).
Thus, all we need is to find a polynomial p without a constant term such that p(s) = s
and p′(s) = p′′(s) = . . . = p(k)(s) = 0. For this, we can take a polynomial p such that
p(0) = 0, and p(λi) = λi, p′(λi) = p′′(λi) = . . . = p(k)(λi) = 0 for all eigenvalues λi of s
(that is, of f): if we apply a polynomial to a diagonal matrix D, then we get a diagonal
matrix whose diagonal entries are obtained by application of the same polynomial to the
diagonal entries of D.

C. Semisimple and nilpotent parts of ad f . For an endomorphism f : V → V of a
complex vector space, consider ad f : EndV → EndV, ad f(g) = [f, g].

Lemma 3. The semisimple and nilpotent parts of ad f are ad s and ad n where s and
n are semisimple and nilpotent parts of f .

Proof. (1) ad s is semisimple: choose a basis e1, . . . , en in V with s(ei) = λiei. Let
Eij ∈ EndV is defined by the formulas Eij(ei) = ej , Eij(ek) = 0 for k %= i. These Eij

form a basis in End V . Then [s, Eij] = (λi − λj)Eij, thus the matrix of ad s with respect
to the basis {Eij} is diagonal, thus ad s is semisimple.

(2) ad n is nilpotent:

(adn)mh =
m∑

#=0

(−1)#
(

m

1

)
n#hnm−#

which is zero, if nk+1 = 0 and m > 2k.
(3) ad s and ad n commute:

ad s ◦ ad n(h) = [s, [n, h]] = −[n, [h, s]]− [h, [s, n]] = [n, [h, s]] = adn ◦ ad s(h).

2.4.3.2. Main Lemma. Let V be a complex vector space, and let B ⊂ A ⊂ EndV
be subspaces. Let

T = {X ∈ EndV | [X, Y ] ∈ B for every Y ∈ A}.

If Z ∈ T and Tr(ZU) = 0 for all U ∈ T , then Z is nilpotent.
Proof. Let Z = s + n be the decomposition of Z as in Lemma 1; thus there is a basis

{ei} of V such that s(ei) = λiei (λi ∈ C). Let L ⊂ C be the set of all rational linear
combinations

∑
riλi, ri ∈ Q; that is, L is a rational vector subspace of C. Let f : L → Q

be an arbitrary Q-linear form. Our goal is to prove that f = 0 (this would imply L = 0,
hence s = 0, hence Z = n).

Let t ∈ End V, t(ei) = f(λi)ei. Then

(ad s)Eij = (λi − λj)Eij ⇒ (ad t)Eij = (f(λi)− f(λj))Eij.
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Choose a polynomial q without a constant term such that q(λi−λj) = f(λi)−f(λj) (such
a polynomial exists, because if λi−λj = λk−λ#, then, since f is Q-linear, f(λi)−f(λj) =
f(λk) − f(λ#)). Then ad t = q(ad s). On the other side, it follows from Lemmas 2 and 3
that ad s = p(ad Z) for some polynomial p without a constant term. Thus,

(ad Z)(A) ⊂ B ⇒ (ad s)(A) ⊂ B ⇒ (ad t)(A) ⊂ B ⇒ t ∈ T.

Hence, by our assumption, Tr(Zt) = 0. But the matrix of Z (with respect to the basis
{ei}) is an upper triangular matrix with the diagonal entries λi, and the matrix of t is the
diagonal matrix with entries f(λi). Hence 0 = Tr(Zt) =

∑
λif(λi) and 0 = f(Tr(Zt)) =

f
(∑

λif(λi)
)

=
∑

f(λif(λi)) =
∑

f(λi)2, so f(λi) = 0 for all i and f = 0.

2.4.3.3. The end of the proof. We can assume that the representation ρ is faithful,
that is, ρ: g ⊂−−→ EndV . Indeed, ρ(g)′ = ρ(g′) and Ker ρ ⊂ Ker Bρ. Hence, g′ ⊂ Ker Bρ

if and only if ρ(g)′ = ρ(g′) ⊂ ρ(Ker Bρ) = Bρ(g).
The only if part. If g is solvable, then it follows from the Lie theorem that ρ|g′ is

nilpotent. Hence g′ ⊂ Ker Bρ by Theorem 1.
The if part. Apply Main Lemma to A = g, B = g′. Thus,

T = {X ∈ EndV | [X, g] ⊂ g′}.

Let U ∈ T and ξ, η ∈ g; let also Z = [ξ, η]. Then [U, ξ] ∈ g′ and hence

Tr(ZU) = Tr(UZ) = Tr(U [ξ, η]) = Tr([U, ξ]η) = Bρ([U, ξ], η) = 0

and since U ∈ T is arbitrary, Main Lemma implies that Z is nilpotent. In the same way, we
prove that an arbitrary sum of commutators in g is nilpotent. Thus, g′ consists of nilpotent
operators, that is, g′ is nilpotent, and hence g is solvable (Proposition 2 of Section 2.3.2).
This completes the proof of the Cartan criterion.

2.4.4. Final comments. Technically, the Cartan criterion is the main result of
the theory of Lie algebras, and, consequently, of the theory of Lie groups. Geometrically
better justified results, in particular, the whole theory of semisimple Lie algebras, can
be derived from it without much efforts (a good example is provided by Theorem 4 of
Section 2.4.2, but it will be more clear in Section 2.5 below). On the other hand, the proof
of Cartan criterion is based by some specific linear algebra (mostly the Main Lemma of
Section 2.4.3.2) which was mainly created by E. Cartan and is usually reffered to as the
theory of replicas.

We did not mention replicas above, but we often showed that a linear operator can be
replaced by another linear operator with very similar properties (like f and s in Section
2.4.2, t and s in Section 2.4.3.2, etc.). The formal definition of a replica is as follows. An
endomorhism f : V → V induces, for all p and q, endomorphisms of spaces of tensors:

fp,q = f ⊗ . . .⊗ f︸ ︷︷ ︸
p

⊗ f∗ ⊗ . . .⊗ f∗
︸ ︷︷ ︸

q

: V ⊗ . . .⊗ V︸ ︷︷ ︸
p

⊗ V ∗ ⊗ . . .⊗ V ∗
︸ ︷︷ ︸

q

→ V ⊗ . . .⊗ V︸ ︷︷ ︸
p

⊗V ∗ ⊗ . . .⊗ V ∗
︸ ︷︷ ︸

q

.
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An endomorphism g is called a replica of an endomorphism f , if Ker fp,q ⊂ Ker gp,q for all
p, q. An example (which was, actually used above): g is a replica of f , if g = p(f) where
p is a polynomial without a constant term.

Exercise 7. Prove that the relation “g is a replica of f” is transitive, but not
symmetric.

Once the Cartan criterion has been proved, we will not need replicas any seriously
(although we can mention them for a couple of times).

2.5. Semisimple Lie algebras.
2.5.1. Ideals of semisimple Lie algebras. Let g be a real or complex semisimple

Lie algebra. Then the Killing form B = Bg is non-degenerate; the symbol ⊥ in this Section
denotes the orthogonality with respect to this form (in particular, if A is a subspace of g,
then dim A + dim A⊥ = dim g).

Proposition 1. If h is an ideal of g, then [h, h⊥] = 0, h ∩ h⊥ = 0, g = h⊕ h⊥ (as a
Lie algebra).

Proof. We already know that h⊥ is an ideal of g (Proposition 2 of Section 2.4.1). Let
ξ ∈ g, η ∈ h⊥, ζ ∈ h. Then B([η, ζ], ξ) = B(η, [ζ, ξ]) = 0 (since η ∈ h⊥ and [ζ, ξ] ∈ h).
Hence, [η, ζ] ∈ Ker B, which shows that [η, ζ] = 0.

Since [h, h⊥] = 0, the intersection h ∩ h⊥ is a commutative, hence solvable, ideal in g,
hence h ∩ h⊥ = 0.

Since dim h + dim h⊥ = dim g and h ∩ h⊥ = 0, there is a vector space decomposition
g = h ⊕ h⊥. Also, since [h, h⊥] = 0, for η, η′ ∈ h⊥ and ζ, ζ ′ ∈ h, [ζ + η, ζ ′ + η′] =
[ζ, ζ ′] + [ζ, η′] + [η, ζ ′] + [η, η′] = [ζ, ζ ′] + [η, η′], hence the decomposition g = h ⊕ h⊥ is a
Lie algebra decomposition.

Corollary 1. An ideal of a semisimple Lie algebra is semisimple. An ideal of an
ideal of a semisimple Lie algebra g is an ideal of g.

Proof. If h is an ideal of g, then g = h⊕ h⊥. Hence, and ideal of h is an ideal of g, in
particular, no non-zero ideal of h is solvable.

Corollary 2. If g is semisimple, then g′ = g.
Proof: (g′)⊥ ∼= g/g′ is a commutative ideal of g, hence g/g′ = 0, hence g′ = g.
Proposition 2. A semisimple Lie algebra is a direct sum of non-commutative simple

Lie algebras. moreover, this decomposition is unique (that is, if g = h1 ⊕ . . . ⊕ hn =
k1 ⊕ . . . ⊕ km are two decompositions of a semisimple Lie algebra into the sum of simple
Lie algebras, then m = n and (k1, . . . , km) is a permutation of (h1, . . . , hm)).

Proof. If a semisimple Lie algebra g is not simple, then it has an ideal h, and g = h⊕h⊥

is a decomposition of g into the sum of two semisimple Lie algebras. Then we apply the
same arguments to h and h⊥, until g is decomposed into the sum of simple Lie algebras.
To prove the uniqueness of such decomposition, we use the following obvious statement:
if h and k are ideals of a Lie algebra g (semisimple or not) and h ∩ k = 0, then [h, k] = 0
(indeed, [h, k] is contained in both h and k, hence is contained in h ∩ k = 0). If there are
two decomposition as above, then k1 cannot have zero intersection with all hi: otherwise,
[k1, hi] = 0 for all i, hence [k1, g] = 0, that is, k1 is contained in the center of g which is zero,
since g is semisimple. Hence, there is a non-zero intersection k1 ∩ hi. But this intersection
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is an ideal in both k1 and hi, and hence it coincides with both, since k1 and hi are both
simple. In the same way, we see that each of kj coincides with one of hi and each of hi

coincides with some of kj .
Exercises. 8. Prove that every ideal of a semisimple Lie algebra is a subsum of a

decomposition of this Lie algebra into the sum of simple Lie algebras.
9. Deduce from these that if two ideals of a semisimple Lie algebra have zero inter-

section, then they are orthogonal to each other.
2.5.2. Uniqueness of the invariant form. Proposition 3. Let g be a simple Lie

algebra, and let A, B be two invariant symmetric bilinear forms on g, and B %= 0. Then
A = λB for some constant λ.

Proof. The forms A and B are described by symmetric matrices with respect to
an arbitrary basis in g, and we will denote these matrices also by A and B. Consider
det(A − λB); this is a polynomial of degree dim g in λ, and it is well known that in the
real case (that is, when g is a real Lie algebra), all its roots are real. Let λ0 be one of these
roots. Then C = A−λ0B is a degenerate invariant form, Ker C %= 0, and it follows from the
invariance that it is an ideal of g (if ξ, η ∈ g, ζ ∈ Ker C, then C([ζ, ξ], η) = C(ζ, [ξ, η]) = 0,
so [ζ, ξ] ∈ Ker C). But g is simple, so Ker C = g, hence A = λ0B.

In other words, every invariant symmetric bilinear form on g is proportional to the
Killing form. In particular, it is true for the forms Bρ. Notice that if ρ %= 0, then Bρ %= 0
(indeed, since Ker ρ is an ideal of g, if it is not g, is has to be 0; by the Cartan criterion,
if Bρ = 0, then ρ(g) ∼= g is solvable, a contradiction).

If the Lie algebra g is semisimple, so, by Proposition 2, it is a direct sum of simple Lie
algebras hi, then an invariant symmetric bilinear form on g is proportional to the Killing
form on every hi, but the proportianlity coefficients may be different for different hi. In
other words, the dimension of the space of invariant forms on g equals the number of
summands hi.

For a representation ρ of g, Ker ρ is the sum of those hi, for which Bρ|hi
= 0. In other

words, the form Bρ is non-degenerate on (Ker ρ)⊥.
2.5.3. Casimir operators.
2.5.3.1. Definition and main properties. Let g be a (real or complex) semisimple

Lie algebra. Let {g1, . . . , gm} be a basis in g and {g1, . . . , gm} be the dual basis with respect
to the Killing form (meaning that B(gi, gj) = δj

i ). This means, in particular, that for any
g ∈ G, g =

∑
i B(gi, g)gi =

∑
i B(gi, g)gi. The element C of the tensor product g ⊗ g

defined by the formula C =
∑

i gi ⊗ gi is called the Casimir element.
Let us show that C does not depend on the choice of the basis {gi}. If {g′

j} is a
different basis and gi =

∑
j ujig′

j, then for the dual basis {′gk} we have gk =
∑
# vk#

′g#

where
∑

s uisvsj = δij . Hence
∑

i

gi ⊗ gi =
∑

i,j,k

ujivikg′
j ⊗ ′g

k =
∑

j,k

δjkg′
j ⊗ ′g

k =
∑

j

g′
j ⊗ ′g

j

For a representation ρ: g → gl(V ), there arises a Casimir operator

ρ(C) =
∑

i

ρ(gi) ◦ ρ(gi): V → V
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and the previous arguments show that ρ(C) also does not depend on the choice of the
basis.

Theorem. The Casimir operator commutes with the operators of the representation:

ρ(C) ◦ ρ(g) = ρ(g) ◦ ρ(C)

for every g ∈ g.
Proof. Obviously,

∑

i

ρ(gi) ◦ ρ(gi) ◦ ρ(g) =
∑

i

ρ(gi) ◦ ρ([gi, g])+
∑

i

ρ([gi, g]) ◦ ρ(gi) +
∑

i

ρ(g) ◦ ρ(gi) ◦ ρ(gi),

so we need to check that
∑

i ρ(gi) ◦ ρ([gi, g]) +
∑

i ρ([gi, g]) ◦ ρ(gi) = 0 which is the same
as
∑

i gi ⊗ [gi, g] +
∑

i[gi, g]⊗ gi = 0. We have:

∑
i gi ⊗ [gi, g] =

∑
i,k gi ⊗B(gk, [gi, g])gk =

∑
i,k B(gk, [gi, g])gi ⊗ gk,

∑
k[gk, g]⊗ gk =

∑
k,i B(gi, [gk, g])gi ⊗ gk,

and we need only to check the equality B(gk, [gi, g])+B(gi, [gk, g]) = 0 which follows from
the invariance of the Killing form.

Corollary 1. If the representation ρ is irreducible, then ρ(C) is a multiplication by
some number.

Proof. In the complex case, we find a eigenvector v ∈ V of some ρ(C) with some
eigenvalue. But then every ρ(gi1) ◦ . . . ◦ ρ(gik)v is an eigenvector of ρ(C) with the same
eigenvalue. Such vectors (with all k, i1, . . . , ik) span a subrepresentation of ρ which is the
whole space V , if ρ is irreducible. The transition to the real cases is done by means of the
complexification of a real representation.

There is a small generalization of the previous construction. If ρ: g → gl(V ) is a
representation of a semisimple Lie algebra, then, as was mentioned above, the form Bρ is
non-degenerate on Ker ρ⊥. For a basis g1, . . . , gm of Ker ρ⊥ we can form the dual basis
g1, . . . , gm with Bρ(gi, gj) = δj

i and then define a ρ-Casimir operator Cρ: V → V as∑
i ρ(gi)◦ρ(gi). The independence of Cρ of the choice of the basis and its commuting with

all the operators ρ(g) are proved as before. One more property:
Proposition: Tr Cρ = dim(g/ Ker ρ).
Proof. For every i, Tr(ρ(gi) ◦ ρ(gi) = Bρ(gi, gi) = 1.
Corollary 2. If ρ %= 0, then the operator Cρ is not nilpotent.
2.5.3.2. An application to invariants of representations. Let again ρ: g →

gl(V ) be a representation of a semisimple Lie algebra. A vector v ∈ V is called an invariant
of ρ, if ρ(g)v = 0 for every g ∈ g. The space of all invariants of ρ is denoted as V ρ. The
notation Vρ is used for the space

∑
g∈g gV (elements of the space V/Vρ are called sometimes

coinvariants of ρ).
Theorem. The spaces V ρ and Vρ are subrepresentations of ρ, and V = V ρ ⊕ Vρ.
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Lemma (from Linear Algebra). Let f : V → V be an endomorphism of a (real or
complex) vector space V . Let

W1 =
⋃

k≥1

Ker fk, W2 =
⋂

k≥1

Im fk.

Then V is a direct sum of W1 and W2.
Proof. We begin with the complex case. For a For a λ ∈ C, put

V (f, λ) = V λ = {v ∈ V | (f − λ · id)nv = 0 for some n}

(one can take n = dimV ). Obviously, (f − λ · id)V λ ⊂ V λ.
It is known that V λ %= 0 if and only if λ is an eigenvalue of f , and V =

⊕
λ V λ. It is

also obvious that W1 = V 0 and W2 =
⊕
λ+=0 V λ, which proves Lemma.

In the real case we apply the previous result to f ⊗ C: V ⊗ C → V ⊗ C and observe
that the spaces W1 and W2 related to f ⊗ C are W1 ⊗ C and W2 ⊗ C.

Proof of Theorem. The invariance of V ρ and Vρ with respect to the action of g is
obvious, let us prove the direct sum decomposition. We use the induction with respect
to dim V . If dim V = 0, then we have nothing to prove; let dimV > 0. Consider the
decomposition of V from Lemma with respect to the operator Cρ:

W1 =
⋃

k≥1

Ker(Cρ)k, W2 =
⋂

k≥1

Im(Cρ)k.

Since Cρ commutes with the representation operators, both spaces are subrepresentations
of ρ, and, by Lemma, V = W1⊕W2. If both W1 and W2 are non-zero, the statement holds
for them by the induction hypothesis, hence it holds for V . If ρ = 0, then V ρ = V, Vρ = 0,
and the statements holds. If ρ %= 0, then Cρ is not nilpotent (see Corollary 2 in Section
2.5.3.1), so W1 %= V, W2 %= 0, and it remains to consider the case when W1 = 0. In this
case, Cρ must be invertible. Then for every v ∈ V ,

v = Cρ(Cρ)−1v =
∑

i

ρ(gi) ◦ ρ(gi) ◦ (Cρ)−1v ∈ Vρ,

so Vρ = V , and if v ∈ V ρ, then Cρv =
∑

i ρ(gi) ◦ ρ(gi)v = 0, so v ∈ W1 = 0, so V ρ = 0.
Thus V = V ρ ⊕ Vρ, which completes the proof.

3. Cartan algebras, weights, and roots.
3.1. General theory.
3.1.1. Weight space decomposition. Let ρ: h → gl(V ) be a representation of a

nilpotent complex Lie algebra. (Several first definitions do not require either nilpotency
of h, or the ground field being C.) A linear form λ: h → C is called a weight of ρ, if there
exists a non-zero vector v ∈ V such that ρ(h)v = λ(h) · v for every h ∈ h. (This definition
appeared in Section 2.2.2 above; the Lie theorem asserts that a weight exists for every
representation of a complex solvable Lie algebra.)
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For a representation ρ and a λ ∈ V ∗, put

V (h, λ) = V λ =
⋂

h∈h

V (ρ(h), λ(h))

(we use the notations from Section 2.5.3.2).
Proposition. Let h be a nilpotent algebra over C. Then
(1) ρ(h)V λ ⊂ V λ;
(2) if V λ %= 0, then λ is a weight;
(3) V =

⊕
λ V λ.

Proof. (1) We will prove a little bit more (and it will be needed for Part (3)): for
every g, h ∈ h,

ρ(g)V (ρ(h), λ(h)) ⊂ V (ρ(h), λ(h)).

Since h is nilpotent, (adh)kg = 0 for some k. We use the induction with respect to k. If
k = 0, then g = 0. Assume that k > 0 and the statement is true for the less values of k.
It is obvious that

(ρ(h)−λ(h))n ◦ρ(g) = ρ(g)◦ (ρ(h)−λ(h))n +
n−1∑

s=0

(ρ(h)−λ(h))n−s−1ρ([h, g])(ρ(h)−λ(h))s.

Take n > 2 dimV (ρ(h), λ(h)) and apply the both sides of the last equality to a vector
v ∈ V (ρ(h), λ(h)). The first summand gives 0, the second summand gives 0 for s >
dim V (ρ(h), λ(h)). If 0 ≤ s ≤ dimV (ρ(h), λ(h)), then (ρ(h) − λ(h))sv ∈ V (ρ(h), λ(h)),
and V (ρ(h), λ(h)) is invariant with respect to ρ([h, g]) by the induction hypothesis (since
(ad h)k−1[h, g] = (adh)kg = 0) and V (ρ(h), λ(h)) is annihilated by (ρ(h) − λ(h))n−s−1.
Hence ρ(g)v ∈ Ker(ρ(h)− λ(h))n = V (ρ(h), λ(h)).

(2): Lie’s theorem.
(3) First of all, the sum of V λ is direct (take h ∈ h such that all λi(h) are different,

and we see that if vectors vi ∈ V λi are linearly dependent, then they all are zeroes).
Then we apply the induction with respect to dim V . If for every h the operator ρ(h) has
only one eigenvalue, λ(h), then V = V λ; if for at least one h, there are more than one
eigenvalue, then the representation is reducible, and we can apply the induction hypothesis
to a subrepresentation and the quotient.

3.1.2. Roots. Let g be a Lie algebra, and let h be a nilpotent Lie subalgebra of h.
The weights of the representation adg |h: h → gl(g) are called roots of the Lie algebra g

with respect to h. Thus, g =
⊕

α∈roots
gα; the spaces gα are called root spaces.

Example. Let g = gl(n, C), h = {diagonal matrices}. Then








λ1 0

. . .
0 λn



 , Eij



 = (λi − λj)Eij .
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Thus, roots are λi − λj (i %= j) and 0. Obviously, g0 = h and dim gα = 1 for all non-zero
roots.

It is also obvious that h ⊂ g0; moreover, g0 contains any nilpotent subalgebra k of g
such that k ⊃ h (indeed, g0 is the set of g ∈ g such that (adh)kg = 0 for all h ∈ h and
k ≥ dim g).

Proposition 1: [gα, gβ] = gα+β .
(If γ is not a root, then gγ is 0.)
Proof of Proposition 1. Let g1 ∈ gα, g2 ∈ gβ . Then, for every h ∈ h,

(adh− (α+ β)(h))[g1, g2] = [[h, g1], g2] + [g1, [h, g2]]− α(h)[g1, g2]− β(h)[g1, g2]
= [[h, g1], g2] + [g1, [h, g2]]− [α(h)g1, g2]− [g1, β(h)g2]
= [(adh− α(h))g1, g2] + [g1, (adh− β(h))g2].

An n-fold application of this formula gives:

(adh− (α+ β)(h))n[g1, g2] =
n∑

p=0

(
n

p

)[
(ad h− α(h))pg1, (adh− β(h))n−pg2

]

which is zero for a sufficiently large n.
Corollary: g0 is a Lie subalgebra of g.
In conclusion, let us mention two obvious properties of roots.
Proposition 2. If α: h → C is a root, then α|h′ = 0.

Proof. For h1, h2 ∈ h and g ∈ gα, α([h1, h2])g = ad[h1, h2]g = adh1(ad2 g) −
ad h2(adh1g) = (α(h1)α(h2)− α(h2)α(h1))g = 0.

For a root α, let d(α) = dim gα.
Proposition 3. For h, h′ ∈ h,

〈h, h′〉 =
∑

α∈{roots}

d(α)α(h)α(h′).

Proof. Since the both sides of this equality are symmetric bilinear forms, it is sufficient
to prove it for h′ = h. Let us do this: 〈h, h〉 = Tr(adh)2 =

∑
α Tr

(
(adh)2|gα

)
=∑

α d(α)α(h)2.
3.1.3. Cartan algebras. Definition 1. If g0 = h, then h is called a Cartan algebra

of g.
In particular, a Cartan algebra is a maximal nilpotent subalgebra of g.
Definition 2. An element g of g is called regular, if dim g(ad g, 0) is minimal (that

is, does not exceed dim g(ad g′, 0) for any g′ ∈ g).
The following description of regular elements of g shows that the set of regular

elements is a dense open subset (actually, a Zariski open subset) of g. Let p(λ) =
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λm + pm−1(g)λm−1 + . . .+ p1(g)λ+ p0(g) (where m = dim g) be the characteristic polyno-
mial of ad g. Obviously, p0(g) ≡ 0 (since g ∈ Ker ad g). Let 1 be the minimal number, for
which p#(g) %≡ 0. Then g is regular, if and only if p#(g) %= 0. (Indeed, for a linear operator
f : V → V the dimension of V (f, 0) is the multiplicity of the root 0 of the characteristic
polynomial of f .)

Exercise 1. Prove that A ∈ gl(n, C) is regular if and only if all eigenvalues of A are
pairwise different.

Theorem. Let g be a regular element of g. Then g(ad g, 0) is a Cartan algebra of g.

Proof. Let h = span(g). With respect to h,

g = g0 ⊕
⊕

α +=0
gα

︸ ︷︷ ︸
g̃

; g0 = g(ad g, 0).

Since [g0, gα] ⊂ gα, then [g, g̃] ⊂ g̃.
For a ξ ∈ g0, put d(ξ) = det(ad ξ: g̃ → g̃). This is a polynomial function of g0,

and d(g) %= 0 (indeed, the eigenvalues of ad g on g̃ are α(g), all different from 0), so
{ξ ∈ g0, d(ξ) %= 0} is dense in g0. Let η ∈ g0, d(η) %= 0. Then ad η: g̃ → g̃ is non-
degenerate, so g(ad η, 0) ⊂ g0 = g(ad g, 0). But dim g(ad g, 0) ≤ dim g(ad η, 0), because
g is regular (see the definition of regularity). Hence g(ad η, 0) = g0. This shows that
ad ξ: g0 → g0 is nilpotent whenever d(ξ) %= 0, but then it is nilpotent for every ξ ∈ g0, since
the set {d(ξ) %= 0} is dense in g0.

Thus, g0 is nilpotent and g0 ⊂ g(g0, 0). But also g0 ⊃ h, hence g(g0, 0) ⊂ g(h, 0) = g0.
So, g0 = g(g0, 0), and g0 is a Cartan algebra.

Exercise 2. Prove that if a Cartan algebra h ⊂ g contains a regular element g ∈ g,
then it is g(ad g, 0). In particular, if two Cartan algebras share a regular element, then
they coincide.

Actually, it is true that every Cartan algebra contains a regular element. and hence
every Cartan algebra has the form g(ad g, 0) for a regular g. In addition to this, if g = Lie G,
then all Cartan algebras are obtained from each other by transformations Ad g, g ∈ G. We
will not need this, and we will not prove this (at least, in this generality).

3.1.4. Root series. From now on, speaking of roots of a Lie algebra g we always
mean roots with respect to some fixed Cartan algebra h ⊂ g.

Let α, β be roots and α %= 0. Then there a a maximal p %= 0 and a minimal q %= 0 such
that [g−α, gβ+pα] %= 0, [gα, gβ+qα] %= 0. The set of roots {β + kα | p ≤ k ≤ q} is called a
root series.

Proposition. For an h ∈ [gα, g−α] ⊂ g0 = h,

β(h) = −rα(h) where r =
∑q

k=p kd(β + kα)
∑q

k=p d(β + kα)
.
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Proof. The space V =
⊕q

k=p gβ+kα is both ad gα-invariant and ad g−α-invariant. Let
g1 ∈ gα and g2 ∈ g−α, and let h = [g1, g2]. Then

0 = Tr(adh|V ) =
q∑

k=p

d(β + kα)(β(h) + kα(h)

which proves our proposition.
3.2. Lie algebra cohomology. Below, K denotes R or C (actually, any field of

characteristic zero will do).
3.2.1. Basic definitions. Let ρ: g → gl(V ) be a representation of a Lie algebra g

(equivalently, V is a g-module). We put

Cq(g; V ) or Cq(g; ρ) = HomK(Λqg, V ),

the space of skew-symmetric q-linear forms on g with values in V ; these forms are called
cochains of g with values in V of degree (or dimension) q. In particular,

C0(g; V ) = V,

C1(g; V ) = HomK(g, V ).

The differential
δ = δq: Cq(g; V ) → Cq+1(g; V )

is defined by the formula

δqc(g1, . . . , gq+1) =
∑

1≤s<t≤q+1

(−1)s+t−1c([gs, gt], g1, . . . ĝs . . . ĝt . . . , gq+1)

+
∑

1≤u≤q+1

(−1)uguc(g1, . . . ĝu . . . , gq+1).

Examples. (1) If c = v ∈ C0(g; V ) = V , then δ0c(g) = −gv.
(2) δ1c(g1, g2) = c([g1, g2])− g1c(g2) + g2c(g1).
(3) δ2c(g1, g2, g3) = c([g1, g2], g3) + c([g2, g3], g1) + c([g3, g1], g2)

−g1c(g2, g3)− g2c(g3, g1)− g3c(g1, g2).
Proposition. For all q, δq+1 ◦ δq = 0.
Proof: direct verification.
Exercise 3. Do this verification (do it at least for q = 0, 1).
Definition of cohomology10) (of degree or dimension q):

Hq(g; V ) = Ker δq/ Im δq−1.

10) The terminology used for the Lie algebra cohomology has, mostly, a topological ori-
gin. The words cochain, cohomology, dimension are the most obvious examples; but also
cochains from Ker δ are called cocycles, the cochains from Im δ are called coboundaries,
cocycles are called cohomologous, if their difference is a coboundary, and the differential δ
itself is often called the coboundary operator.
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We will not use the cohomology of dimensions > 2 any seriously.
3.2.2. Cohomologies of dimensions 0,1,2. The cohomology of dimensions ≤ 2

(and a little bit of dimension 3) have direct algebraic interpretations. We list some of them
below (mostly as exercises). We must warn the reader that almost nothing of the material
of this section will be used later. It may be of some interest to a reader who wants to get
some additional understanding of the beautiful theory of cohomology of Lie algebras.

Exercises. 4. Construct a natural11) isomorphism

H0(g; V ) ∼= V g = {v ∈ V | gv = 0 for all g ∈ g}

(elements of V g are called invariants of the representation).
5. Construct a natural isomorphism

H1(g; K) ∼= (g/g)∗.

(In particular, H1(g; K) = 0 if and only if g′ = g; for example, H1(g; K) = 0, if the Lie
algebra g is semisimple: see Corollary 2 in Section 2.5.1).

Remind (see Comment (2) in Section 1.4.2) that a linear endomorphism D: g → g of
a Lie algebra is called a derivation, if D[ξ, η] = [Dξ, η] + [ξ, Dη] for all ξ, η ∈ g. The space
Der g of all derivations of g possesses a natural structure of a Lie algebra. There are inner
derivations ad ξ. Elements of the cokernel of ad, Der g/ ad(g) are called outer derivations,
and the space of outer derivations of g is denoted as Out g.

Exercises. 6. Construct a natural isomorphism

H1(g; ad) ∼= Out g.

(Hint: cochains in C1(g; ad) are the same as linear endomorphisms of g; cocycles are the
same as derivations of g; coboundaries are the same as inner derivations of g.)

7. For an arbitrary g-module V construct a natural bijection between H1(g; V ) and
the set of equivalence classes of g-modules W containing V as a codimension 1 submodule
such that gW ⊂ V for every g ∈ g. (Equivalence relation: W ′ ⊃ V is equivalent to
W ′′ ⊃ V if there exists an isomorphism W ′ → W ′′ which is the identity on V ).

Definition (compare footnote9) in Section 2.1.3.) A one-dimensional central exten-
sion of a Lie algebra g is a triple (g̃, z ∈ g̃, π: g̃ → g) where: g̃ is a Lie algebra; z is a non-zero
central element of g̃ (that is, [z, g̃] = 0 for every g̃ ∈ g̃); π is a Lie algebra homomorphism
such that Imπ = g and Kerπ = span(z). An equivalence (g̃1, z1, π1) ∼ (g̃2, z2, π2) is
defined as a Lie algebra isomorphism f : g̃1 → g̃2 such that f(z1) = z2 and π1 = π2 ◦ f .

Proposition-construction. There is a natural bijection between H2(g; K) and the
set CExt(g) of equivalence classes of one-dimensional central extensions of g.

11) An isomorphisms is natural, if it is defined for all representations, and a homo-
morphism between representations gives rise to a commutative diagram involving these
isomorphisms.
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Construction-proof. Let (g̃, z, π) be a one-dimensional central extension of g. Fix
a linear map (not required to be a Lie algebra homomorphism!) σ: g → g̃ such that
π ◦ σ = idg. (It obviously exists.) For every g, h ∈ g,

π([σ(g), σ(h)]− σ([g, h])) = 0

(indeed,π([σ(g), σ(h)]) = [π ◦ σ(g), π ◦ σ(h)] = [g, h] = π ◦ σ([g, h])). Thus,

[σ(g), σ(h)]− σ([g, h]) ∈ Kerπ, that is, [σ(g), σ(h)]− σ([g, h]) = c(g, h)z

for a unique c(g, h) ∈ K. Obviously, the function c: g × g → K is bilinear and skew-
symmetric: c(h, g) = −c(g, h); thus, c ∈ C2(g; K). Also,

[[σ(g), σ(h)], σ(k)]− σ([[g, h], k])
=[[σ(g), σ(h)], σ(k)]− [σ([g, h]), σ(k)] + [σ([g, h]), σ(k)]− σ([[g, h], k])
=[c(g, h)z, σ(k)] + c([g, h], k)z = c([g, h], k)z

(the last equality holds, because z is central). The Jacobi identity shows that

c([g, h], k) + c([h, k], g) + c([k, g], h) = 0,

that is, c is a cocycle. In this construction, there was an arbitrary choice of σ. What
happens, if we make a different choice of σ, that is, replace it by a σ′ with π ◦σ′ = id? We
will have π ◦ (σ′−σ) = 0, that is (σ′−σ)g ⊂ Ker π = span(z), that is, σ′(g) = σ(g)+ b(g)z
for some function b: g → K which is obviously linear. Consider the function c′: g× g → K
which is constructed from σ′ as c was constructed from σ. We have:

c′(g, h)z = [σ′(g), σ′(h)]− σ′([g, h]) = [σ(g) + b(g)z, σ(h) + b(h)z] − σ([g, h])− b([g, h])z
= [σ(g), σ(h)]− σ([g, h])− b([g, h])z = (c(g, h)− b([g, h]))z,

which shows that c′ = c − δb. We see that the cohomology class of the cocycle c is
determined by the central extension, and, obviously, by its equivalence class. Thus, we
have a well defined natural map CExt(g) → H2(g; K).

To show that it is a bijection, we will construct an inverse map H2(g; K) → CExt(g).
Let γ ∈ H2(g; K be a cohomology class, and let c ∈ C2(g; K) be a cocycle from the class
γ. Let g̃, as a vector space, be g × K, let z = (0, 1) and let π: g × K → g be the usual
projection. We define the commutator in g̃ by the formula [(g, x), (h, y)] = ([g, h], c(g, h)).
Bilinearity and skew-symmetricity are obvious, the Jacobi identity follows from the fact
that c is a cocycle:

[[(g, x), (h, y)], (k, w)] = [([g, h], c(g, h)), (k,w)] = ([[g, h], k], c([g, h], k)),

and

[[(g, x), (h, y)], (k,w)]+ [[(h, y), (k, w)], (g, x)]+ [[(k, w), (g, x)], (h, y)]
=([[g, h], k] + [[h, k], g] + [[k, g], h], c([g, h], k)+ c([h, k], g) + c([k, g], h)) = (0, 0).
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It remains to check that the equivalence class of this central extension does not depend
on the choice of a cocycle c within γ. Let c′ = c − δb, b ∈ C1(g; K) be a different choice.
The new extension differs from the old extension only be the commutator; we denote the
new commutator by the symbol [ , ]′. Define f : g × K → g × K by the formula f(g, x) =
(g, x + b(g)). Obviously, this is a linear isomorphism (f−1(g, x) = (g, x− b(g))), it takes
(0, 1) into (0, 1) and is compatible with the projection g× K → g. Let us check that it is
compatible with the commutators.

[f(g, x), f(h, y)]′ = [(g, x + b(g)), (h, y + b(h))]′ = ([g, h], c′(g, h))
= ([g, h], c(g, h) + δb(g, h)) = ([g, h], c(g, h) + b([g, h])
= f([g, h], c(g, h)) = f([g, x], [h, y]).

Thus, we have a well defined map H2(g; C) → CExt(g), and it is obvious that the
maps CExt(g) ←→ H2(g; C) are inverse to each other.

Exercise 8. Let V be a g-module. Define a V -extension of g as a Lie algebra g̃
with a commutative ideal W and isomorphisms g̃/W → g and V → W (the latter is a
g-isomorphism with respect to the structure gw = [g, w] of a g-module in W ). Construct a
natural bijection between the set of equivalence classes of V -extensions of g and H2(g; V ).

A deformation of a Lie algebra g is a family (continuous, smooth, algebraic, formal,
etc.) of commutators [ , ]t in the space of g such that [ , ]0 is the commutator in g. Two
deformations, [ , ]t and [ , ]′t, are called equivalent, if there exists a family ft: g → g of
linear isomorphisms (belonging to the same class with respect to t, as the families of
commutators) such that [g, h]′t = f−1

t [fth, fth]t. An infinitesimal deformation is the family
[ , ]t which satisfies the Jacobi identity up to the terms of order t2. A more algebraic
(and more general) definition: if A is an associative algebra over K with an augmentation
ε: A → K, then the deformation of g with the base A (or spec A) is a A-Lie algebra
structure on A ⊗ g such that ε ⊗ id: A ⊗ g → g is a Lie algebra homomorphism. The
definition of an A-Lie algebra structure is as follows: g must be a left A-module, and
a[g, h] = [ag, h] + [g, ah] for all a ∈ A, g, h ∈ g. An equivalence between deformations
becomes an A-Lie isomorphism. A continuous, smooth, algebraic, formal deformation is
a deformation with the base, respectively, C(K, K), C∞(K, K), K[t], K[[t]]. An infinitesimal
deformation is a deformation with the base K[t]/(t2).

A more direct description of an infinitesimal deformation of a Lie algebra g is a
skew-symmetric bilinear function α: g × g → g such that the “commutator” [g, h]t =
[g, h] + tα(g, h) satisfies the Jacobi identity up to terms of degree ≥ 2. Two infinitesimal
deformations, α and β are (infinitesimally) equivalent, if there exists a linear function
ϕ: g → g such that, modulo terms of degree ≥ 2, the equality [g + tϕ(g), h + tϕ(h)] +
tα(g, h) = [g, h] + t(ϕ([g, h]) + β(g, h)) holds.

Exercises. 9. Construct a natural bijection between equivalence classes of infinites-
imal deformations of g and H2(g; ad).

10. For a cochain c ∈ C2(g; ad), we can form a cochain d = [c, c] ∈ C3(g, ad) by the
following formula: d(g, h, k) = c(c(g, h), k) + c(c(h, k), g) + c(c(k, g), h).

(a) Prove that if c is a cocycle, then [c, c] is a cocycle.
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(b) Prove that if c, c′ are cohomologous, then [c, c], [c′, c′] are cohomologous.
Thus, for a cohomology class γ ∈ H2(g; ad) there arises a cohomology class [γ, γ] ∈

H3(g; ad).
(c) Prove that an infinitesimal deformation corresponding (in the sense of Exercise 9)

to γ ∈ H2(g; ad) can be extended to a deformation over K[t]/(t3) is and only if [γ, γ] = 0.
This theory has an infinite continuation, but we have to stop here.
3.2.3. The operators ι(g) and π(g). Let g ∈ g. We define homomorphisms

ι(g): Cq(g; V ) → Cq−1(g; V ) and π(g): Cq(g; V ) → Cq(g; V )

by the formulas

(ι(g)c)(g1, . . . , gq−1) = c(g, g1, . . . , gq−1),

(π(g)c)(g1, . . . , gq) =
q∑

j=1

c(g1, . . . , [g, gj], . . . , gq)− gc(g1, . . . , gq).

Proposition 1. (1) π is a Lie algebra representation (that is, π([g, h]) = π(g)◦π(h)−
π(h) ◦ π(g)).

(2) π(g) = ι(g) ◦ δq + δq−1 ◦ ι(g).
(3) π(g) commutes with δ.
Proof of (1). (π(g) ◦ π(h)c)(g1, . . . , gq) =

∑

j +=k

(c(g1, . . . [g, gj] . . . [h, gk], . . . , gq) +
q∑

i=1

c(g1, . . . , [g, [h, gi]], . . . , gq)

−
q∑

i=1

(
gc(g1, . . . [h, gi] . . . gq) + hc(g1, . . . [g, gi] . . . gq)

)
+ ghc(g1, . . . , gq);

(π(h) ◦ π(g)c)(g1, . . . , gq) =
∑

j +=k

(c(g1, . . . [g, gj] . . . [h, gk], . . . , gq) +
q∑

i=1

c(g1, . . . , [h, [g, gi]], . . . , gq)

−
q∑

i=1

(
gc(g1, . . . [h, gi] . . . gq) + hc(g1, . . . [g, gi] . . . gq)

)
+ hgc(g1, . . . , gq);

(π([g, h])c)(g1, . . . , gq) =
q∑

i=1

c(g1, . . . , [[g, h], gi], . . . , gq)− [g, h]c(g1, . . . , gq).

It is seen from this formula that π([g, h])c = π(g) ◦ π(h)c − π(h) ◦ π(g)c (checking
involves the equality [g, h] = gh− hg and the Jacobi identity).

Proof of (2).

δq−1ι(g)c(g1, . . . , gq) =
∑

1≤s<t≤q

(−1)s+t−1c(g, [gs, gt], g1, . . . ĝs . . . ĝt . . . , gq)

+
∑

1≤u≤q

(−1)uguc(g, g1, . . . ĝu . . . , gq);
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ι(g)δqc(g1, . . . , gq) = δqc(g, g1, . . . , gq)

=
∑

1≤t≤q

(−1)1+(t+1)−1c([g, gt], g1, . . . ĝt . . . , gq)

+
∑

1≤s<t≤q

(−1)(s+1)+(t+1)−1c([gs, gt], g, g1, . . . ĝs . . . ĝt . . . , gq)

− gc(g1, . . . , qq) +
∑

1≤u≤q

(−1)u+1guc(g, g1, . . . ĝu . . . , gq).

In the sum δq−1ι(g)c(g1, . . . , gq)+ι(g)δqc(g1, . . . , gq), the two terms in the first formula
cancel with the second and fourth terms in the second formula. What remains is

∑

1≤t≤q

(−1)t+1c([g, gt], g1, . . . ĝt . . . , gq)− gc(g1, . . . , gq) = π(g)c(g1, . . . , gq).

Proof of (3). We want to prove that the diagram

Cq−1(g; V )
π(g)−−→ Cq−1(g; V )

%δq−1

%δq−1

Cq(g; V )
π(g)−−→ Cq(g; V )

is commutative. Here is the proof: π(g) ◦ δq−1 = (ι(g) ◦ δq + δq−1 ◦ ι(g)) ◦ δq−1 = δq−1 ◦
ι(g) ◦ δq−1 and δq−1 ◦ π(g) = δq−1 ◦ (ι(g) ◦ δq−1 + δq−2 ◦ ι(g)) = δq−1 ◦ ι(g) ◦ δq−1.

Since π provides a structure of a g-module in the cochain spaces of g and this siructure
is compatible with the coboundary operator, there arises a g-module structure in the
cohomology of g. However, this structure is always trivial.

Proposition 2. For every γ ∈ Hq(g; V ) and every g ∈ g, π(g)γ = 0.
Proof. We need to show that if c ∈ Cq(g : V ) is a cocycle, then for every g ∈ g, π(g)c

is a coboundary. Here is a proof:

π(g)c = ι(g)δc + δι(g)c = δι(g)c.

3.2.4. Cohomology of semisimple Lie algebras. Whitehead’s lemma. Here
is a brief account of results concerning the cohomology of semisimple Lie algebras. First of
all, there is a theorem known as the Second Whitehead Lemma which states that for every
representation V of a semisimple Lie algebra g (both are assumed finite dimensional) the
inclusion map V ρ → V of the invariant space induces a cohomology isomorphism: for any
q ≥ 0,

Hq(g; V ) ∼= Hq(g; V ρ) = Hq(g; K)⊕ . . .⊕Hq(g; K)︸ ︷︷ ︸
dim V ρ

.

As to Hq(g; R), if g is the Lie algebra of a compact Lie group G, then

Hq(g; R) = Hq
DR(G)

45



(de Rham cohomology of the manifold G). (A reader familiar with the de Rham cohomol-
ogy will be able to prove this using the group averaging.) We will prove later (in Section
4.2) that for a real semisimple Lie algebra g, there exists a compact Lie group G such that
there is an isomorphism between the complexifications:

(LieG)⊗ C ∼= g⊗ C,

which shows that
Hq(g; R) ∼= Hq

DR(G);

for example,
sl(n; R)⊗ C = su(n) = gl(n; C),

and, consequently,

Hq(sl(n, R); R) = Hq(su(n); R) = Hq
DR(SU(n)) = Hq

DR(S3 × S5 × . . .× S2n−1).

Also,
Hq(sl(n, C); C) = Hq

DR(SU(n); C) = Hq
DR(S3 × S5 × . . .× S2n−1; C).

It is true also that for every real and complex semisimple Lie algebra its cohomology with
coefficients in the trivial 1-dimensional module is the same as the de Rham cohomology of
a product of spheres of odd dimensions ≥ 3. In particular, Hq(g; V ) = 0 for any semisimple
g, any (finite-dimensional) V , and q = 1, 2. This statement is called the First Whitehead
Lemma, and this is what we are going to prove here.

Theorem. For any semisimple g and any V , H1(g; V ) = H2(g; V ) = 0.
Proof for H1. Let Ker δ1 = Z, Im δ0 = B. By Theorem from Section 2.5.3.2, as a

g-module, Z = Zπ ⊕ Zπ. If c ∈ Z and g ∈ g, then π(g)c = δ0ι(g)c ∈ B, so Zπ ⊂ B (we
already noticed this in the proof of Proposition 2 in Section 3.2.3). Furthermore, if C ∈ Zπ

then for g, h ∈ g, δ0ι(g)c(h) = c([g, h]) = 0, thus c(g′) = 0 and hence c = 0, since g′ = g
(Corollary 2 in Section 2.5.1). Thus, Zπ = 0, Z ⊂ B, and Z/B = H1(g; V ) = 0.

Proof for H2. Let Ker δ2 = Z, Im δ1 = B. As before, Z = Zπ ⊕ Zπ and Zπ ⊂ B.
Let c ∈ Zπ. Then, for a g ∈ g, π(g)c = 0, hence δ1ι(g) = 0, and, since H1(g; V ) = 0,
ι(g)c = δ0a for some a ∈ C0(g; V ) = V . This b is defined up to an element of Ker δ0 = V ρ

(ρ is the representation of g in V ), hence, a becomes unique, if we require that a ∈ Vρ.
In other words, there exists a (unique) linear map b: g → Vπ such that ι(g)c = δ0b(g) for
every g ∈ g. This b may be regarded as an element of C1(g; Vρ) ⊂ C1(g; V ). We are going
to show that c = −δ1b. From this it will follow that Zπ ⊂ B, and H2(g; V ) = 0.

The equality π(g)c(h, k) + π(h)c(k, g) + π(k)c(g, h) = 0 means that

c([g, h], k) + c(h, [g, k])− gc(h, k)
+c([h, k], g) + c(k, [h, g])− hc(k, g)
+c([k, g], h) + c(g, [k, h])− kc(g, h) = 0.

The first and the third column add up to δ2c(g, h, k) = 0. Thus,

c(h, [g, k]) + c(k, [h, g]) + c(g, [k, h]) = 0

46



or
c(h, [g, k]) + c([g, h], k) = c(g, [h, k]).

Plugging this into the equality π(g)c(h, k) = c([g, h], k) + c(h, [g, k])− gc(h, k) = 0, we get

c(g, [h, k]) = gc([h, k]).

We want to prove that

c = δ1b, that is, c(g, h) = −b(g, h]) + gb(h)− hb(g),

and we have
ι(g)c = δ0b(g), that is, c(g, h) = −hb(g).

Together, this means that
−b([g, h]) + gb(h) = 0

and, since the left hand side of his equality belongs to Vρ, it is sufficient to prove that is
belongs to V ρ. Here is a proof:

k(−b([g, h]) + gb(h)) = c([g, h], k)− kc(h, g)
= c([g, h], k)− c(k, [h, g]) = 0.

3.3. Two important applications of the Lie algebra cohomology.
3.3.1. The Weyl theorem. Every (finite-dimensional) representation of a semisim-

ple Lie algebra Is decomposable into a direct sum of irreducible representations.
Proof. We need to prove the following statement: if ρ: g → gl(V ) is a representation of

a semisimple Lie algebra and W ⊂ V is a subrepresentation, then there exists a g-module
projection of V onto W , that is a linear map p: V → V such that p(V ) = W, p2 = p and
[p, ρ(ξ)] = 0 for every ξ ∈ g. Indeed, for such p, Ker p is also a subrepresentation of ρ, and
V = W ⊕Ker p.

Choose an arbitrary linear projection q of V onto W (that is, q: V → V, q(V ) =
W, q2 = q). Then all other projections have the form q + r where r: V → V satisfies the
properties r(V ) ⊂ W, r(W ) = 0; let R ⊂ gl(V ) be the space of maps with these properties.
For a ξ ∈ g and an r ∈ R, [ρ(ξ), r] ∈ R; indeed, [ρ(ξ), r](V ) ⊂ ρ(ξ)r(V ) + r(V ) ⊂ W and
[ρ(ξ), r](W ) ⊂ r(W ) = ρ(ξ)r(W ) = 0. Hence σ(ξ)r = [ρ(ξ), r] is a representation of g in
R. Thus, if V is not irreducible, it is a sum of two non-zero subrepresentations, and we
proceed by induction with respect to dim V .

For a ξ ∈ g, [q, ρ(ξ)] ∈ R; indeed, [q, ρ(ξ)](V ) ⊂ q(V ) + ρ(ξ) ⊂ W and [q, ρ(ξ)](W ) ⊂
q(W ) + ρ(ξ)q(W ) = 0. Hence, a function c(ξ) = [q, ρ(ξ)] is a cochain from C1(g; R). This
is a cocycle:

c([ξ, η]) = [q, ρ([ξ, η])] = [q, [ρ(ξ), ρ(η)]] = [[q, ρ(ξ)], ρ(η)]+ [ρ(ξ), [q, ρ(η)]]
= [ρ(ξ), [q, ρ(η)]]− [ρ(η), [q, ρ(ξ)] = σ(ξ)c(η)− σ(η)c(ξ).

By the Whitehead lemma, there exists some r ∈ R = C0(g; ) such that δ0r(ξ) = σ(ξ)r =
c(ξ), that is, [ρ(ξ), r] = [q, ρ(ξ)], that is, [q+r, ρ(ξ)] = 0 for all ξ, and we can put p = q+r.
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3.3.2. The Levi decomposition. Let h be a (real or complex) Lie algebra. The
quotient g = h/ radh is semisimple (if s is a non-trivial solvable ideal of g, then p−1(s),
where p is a projection h → g, is a solvable ideal of h which is not contained in radh).

Theorem. There exists a Lie algebra homomorphism ν: g → h such that p ◦ ν = id;
in other words, there exists a Lie subalgebra g̃ of h such that the restriction of p to g̃ is a
Lie algebra isomorphism g̃ → g.

In algebra, this situation is described by by the words: h is a semi-direct product of
rad h and g; thus, every Lie algebra is a semi-direct product of a solvable Lie algebra and
a semisimple Lie algebra.

Proof of Theorem. Case 1: radh is commutative. For a ξ ∈ g, choose a ξ̃ ∈ h such
that p(ξ̃) = ξ. Then, for an ω ∈ rad h, [ξ̃, ω] ∈ radh does not depend on the choice of ξ̃; if
ξ̃′ is a different choice, then ξ̃′− ξ̃ ∈ rad h and [ξ̃′, ω]− [ξ̃, ω] = [ξ̃′− ξ̃, ω] = 0. The formula
ρ(ξ)ω = [ξ̃, ζ] determines a representation ρ of g in rad h.

Let µ: g → h is a linear map (not necessarily a Lie algebra homomorphism) such that
p ◦ µ = id. (Thus, ρ(ξ)ω = [µ(ξ), ω].) For ξ, η ∈ g put

θ(ξ, η) = [µ(ξ), µ(η)]− µ([ξ, η]);

we can consider θ as a cochain in C2(g; radh) where rad h is furnished by a structure of a
g-module by the representation ρ; thus, µ is a Lie algebra homomorphism if and only if
θ = 0.

Let us prove that θ is a cocycle:

δ2θ(ξ, η, ζ) = [µ([ξ, η]), µ(ζ)]− µ([[ξ, η], ζ])− [µ(ξ), [µ(η), µ(ζ)] + [µ(ξ), µ([η, ζ])]
+ [µ([η, ζ]), µ(ξ)]− µ([[η, ζ], ξ])− [µ(η), [µ(ζ), µ(ξ)] + [µ(η), µ([ζ, ξ])]
+ [µ([ζ, ξ]), µ(η)]− µ([[ζ, ξ], η])− [µ(ζ), [µ(ξ), µ(η)] + [µ(ζ), µ([ξ, η])] = 0

(the first column cancels with the last column, and two middle columns sum up to zeroes
by the Jacobi identity).

By the Whitehead lemma, θ = δ1τ for some τ ∈ C1(g; radh) = Hom(g, radh) that is,

θ(ξ, η) = τ([ξ, η])− [µ(ξ), τ(η)] + [µ(η), τ(ξ)].

Thus,

[µ(ξ), µ(η)] + [µ(ξ), τ(η)] + [τ(ξ), µ(η)]− µ([ξ, η])− τ([ξ, η])
= [(µ + τ)(ξ), (µ + τ)(η)]− (µ + τ)([ξ, η]) = 0

(we use the fact that [τ(ξ), τ(η)] = 0), and we can take µ + τ for ν.
Case 2: rad h is not commutative. We use the induction with respect to dim radh (if

this is 0, then h = g and we have nothing to prove). Consider h̃ = h/(radh)′ ((radh)′
is an ideal in h; actually, it is true that if k is an ideal in a Lie algebra h, then (k)′ is
also an ideal in h: is ξ, η ∈ k, ζ ∈ h, then [ζ, [ξ.η]] = [[ζ, ξ], η] + [ξ, [ζ, η]] ∈ k′). Since
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h̃/((radh)/(radh)′) = h/ radh = g is semisimple, and rad h/(radh)′ is solvable (commuta-
tive), rad h̃ = rad h/(radh)′. Then, by the induction hypothesis (or by Case 1), there exists
a Lie algebra homomorphism ν̃: g → h̃ whose composition with the projection h̃ → g is the
identity. Let g̃ ⊂ h be the inverse image of ν̃(g) with respect to the projection h → h̃. Then
g̃/(rad h)′ = ν̃(g) ∼= g is semisimple, hence rad g̃ = (radh)′, and, again by the induction
hypothesis, there exists a Lie homomorphism λ: ν̃(g) → g̃ ⊂ h whose composition with the
projection g̃ → ν̃(g) is the identity. It remains to put ν = λ ◦ ν̃.

3.4. Roots and Cartan algebras for a semisimple Lie algebra. Let g be a
complex semisimple Lie algebra, and let h ⊂ g be a Cartan algebra.

Theorem 1. Let α, β be two roots of g. Then
(1) if α+ β %= 0, then gα ⊥ gβ;
(2) if α+ β = 0, then the form 〈gα, gβ〉 is non-degenerate.
Proof of (1). For g1 ∈ gα, g2 ∈ gβ , the composition ad g1 ◦ad g2 maps gγ into gγ+α+β .

Hence, if α + β %= 0, then the matrix of the operator ad g1 ◦ ad g2 with respect to a basis
composed of bases of the root spaces has no non-zero diagonal entries, and its trace is 0.

Proof of (2). If 〈g, g′〉 = 0 for some g ∈ gα and all g′ ∈ g−α, then g ⊥ g, and hence
g = 0 (the Killing form of a semisimple Lie algebra is non-degenerate).

Corollary of (2): d(α) = d(−α); in particular, if α is a root, then −α is a root.
Theorem 2. (1) The restriction of the Killing form to h is non-degenerate;
(2) roots span h∗;
(3) h is commutative.
Proof. (1) follows from part (2) of Theorem 1. If for an h ∈ h, α(h) = 0 for all roots

α, then Proposition 3 of Section 3.1.2 shows that 〈h, h〉 = 0 which implies, in virtue of
(1), that h = 0; this yields (2). Finally, every root is zero on h′ (Proposition 2 of Section
3.1.2), which shows, by (2), that h′ = 0.

The restriction of the Killing form to h (non-degenerate by Part (1) of Theorem 2)
gives rise to the canonical isomorphism h∗ ↔ h (λ ∈ h∗ ↔ hλ ∈ h, λ(h) = 〈hλ, h〉). This
gives a non-degenerate symmetric bilinear form on h∗: 〈λ, µ〉 = 〈hλ, hµ〉 = λ(hµ) = µ(hλ).

Theorem 3. (1) If α is a non-zero root and e ∈ gα, f ∈ g−α, then [e, f ] = 〈e, f〉hα.
In particular, hα ∈ [gα, g−α].

(2) If α is a non-zero root, then 〈α, α〉 %= 0.
Proof. (1) For an h ∈ h, 〈h, [e, f ]〉 = 〈[h, e], f〉 = α(h)〈e, f〉 = 〈h, 〈e, f〉hα〉. Thus

[e, f ] = 〈e, f〉hα. Since 〈e, f〉 %= 0 for some e ∈ gα, f ∈ g−α (Part (2) of Theorem 1),
hα ∈ [gα, g−α].

(2) 〈α, α〉 = α(hα). Proposition in Section 3.1.4 if α(hα) = 0, then β(hα) = 0 for an
arbitrary root β. Thus, in this case hα = 0, a contradiction.

Theorem 4. Let α be a non-zero root. Then (1) dim gα = 1 and (2) kα is a root only
if k = −1, 0, 1.

Proof. Choose arbitrary e ∈ gα and f ∈ g−α with 〈e, f〉 = 1, that is, [e, f ] = hα.
Consider the space V = Cf ⊕ Chα ⊕

[⊕
k≥1 gkα

]
⊂ g. Obviously, V is invariant with
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respect to e, f, and hα. Hence,

0 = Tr hα|V = α(hα)(−1 + 0 + d(α) + 2d(2α) + 3d(3α) + . . .)

(where, as before, d(β) = dim gβ) which shows, since α(hα) = 〈α, α〉 %= 0, that d(α) =
1, d(kα) = 0 for k > 1.

Theorem 5. A subalgebra h of a complex semisimple Lie algebra g is a Cartan algebra,
if and only if it satisfies two conditions: (A) h is a maximal commutative subalgebra of g;
(B) for every h ∈ h, the operator ad h: g → g is diagonalizable.

Proof. Cartan ⇒ (A)&(B). If h is a Cartan algebra, then it is commutative by Part
(3) of Theorem 2, and is maximal commutative, because it is maximal nilpotent. Since
all root spaces (except h) are one-dimensional, we can form a basis in g from an arbitrary
basis of h adding one non-zero vector from every gα, α %= 0. For every h ∈ h, the operator
ad h has a diagonal matrix in this basis.

(A)&(B) ⇒ Cartan. If h satisfies Conditions (A) and (B), then, with respect to h,
g = g0⊕

[⊕
α +=0

]
, from (B) follows that gα consists of eigenvectors of ad h with eigenvalue

α(h) for every h ∈ h, hence, g0 commutes with h, and if there is a g ∈ g0 − h, then h + Cg
is commutative, in contradiction with (1).

We will finish this section by making more explicit a construction which was implicitly
used in several proofs above. Let α be a nonzero root. Let

sα = gα ⊕Chα ⊕ g−α ⊂ g.

This 3-dimensional subspace of g is a Lie subalgebra. Moreover, this Lie subalgebra is
isomorphic to sl(2, C). Indeed, choose eα ∈ gα and e−α ∈ g−α such that 〈eα, e−α〉 = −1.
Then [eα, e−α] = −hα, [hα, eα] = 〈α, α〉eα, [hα, e−α] = −〈α, α〉e−α. The Lie algebra

sl(2, C) has a basis e =
[

0 1
0 0

]
, h =

[
1 0
0 −1

]
, f =

[
0 0
1 0

]
with the commutator rela-

tions [e, f ] = h, [h, e] = 2e, [h, f ] = −2f , and the formulas eα #→ λe, hα #→ µh, e−α #→ νf

with µ =
〈α, α〉

2
, λν = −µ establish an isomorphism sα ∼= sl(2, C).

3.5. A deviation: representations of sl(2). The last observation in the previous
section shows that every complex semisimple Lie algebra g contains subalgebras isomorphic
to sl(2, C), so there arise representations of sl(2, C) is g. We can expect (and these ex-
pectations will come true) that the representation theory of sl(2, C) may be important for
studying semisimple Lie algebras. We will give here a full description of finite-dimensional
representations of sl(2, C). Actually, similar results exist for sl(2, F) for any field F of zero
characteristic (we will briefly address this subject in exercises in the end of the section).

By the Weyl theorem (Section 3.3.1), every representation of sl(2, C) is a direct sum
of irreducible representations, so we can restrict ourselves to studying irreducible repre-
sentations. Remind that sl(2, C) has a basis f, e, h with the commutator [e, f ] = h, [h, e] =
2e, [h, f ] = −2f .

Let n ≥ 0. We define an (n + 1)-dimensional representation Vn as the space of homo-
geneous polynomials of two variables x, y of degree n with e, f, h acting as, respectively,
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y
∂

∂x
, x
∂

∂y
, x
∂

∂x
− y

∂

∂y
. If we denote xkyn−k as vk (0 ≤ k ≤ n), then the action of e, f, h

becomes evk = kvk−1, fvk = (n − k)vk+1, hvk = (n − 2k)vk. This representation is ir-
reducible: if a subrepresentation W of V contains a polynomial p(x, y) = xkyn−k + . . .
where “. . .” is the sum of monomials of degrees less than k in x, then W also contains

yn =
1
k!

(
y
∂

∂x

)k

p, and also x#yn−# (for every 1) as
n!

(n− 1)!

(
x
∂

∂y

)#
yn.

Theorem. Every irreducible representation of sl(2, C) is isomorphic to one of the
representations Vn.

Proof. Let V be an irreducible representation of sl(2, C). Let w be an eigenvector
of the operator h, hw = µw. Then hew = ehw + 2ew = (µ + 2)ew, thus ew also is an
eigenvector of h with an eigenvalue µ + 2. Similarly, fw is an eigenvector of h with the
eigenvalue µ− 2. Hence, emw and fmw are eigenvectors of h with eigenvalues µ + 2m and
µ − 2m. Since the operator h has finitely many eigenvalues, the sequence w, ew, e2w, . . .
becomes zero after some emw %= 0, that is, em+1w = 0. Put emw = v and consider the
sequence v, fv, f2v, . . .; it also becomes a sequence of zeroes after some fnv %= 0, that is,
fn+1v = 0. The vectors v, fv, . . . , fnv are linearly independent (they are eigenvalues of h
with different eigenvalues, λ, λ−2, . . . , λ−2n where λ = µ+2m) and they span an (n+1)-
dimensional subspace of V invariant with respect to e, f, h. Since our representation is
irreducible, this subspace must be V , and {v, fv, f2v, . . . , fnv} is a basis in it. Obviously,
for k = 1, . . . , n, e(fkv) = akfk−1v for some ak ∈ C. There are relations between these
ak:

akfk−1v = efkv = (ef)fk−1v = (fe + h)fk−1v = (ak+1 + λ− 2(k − 1))fk−1v

which yields the equation
ak − ak−1 = λ− 2(k − 1). (∗)

Also,

hv = λv = (ef − fe)v = a1v, hfnv = (λ− 2n)fnv = (ef − fe)fnv = −anfnv

which shows that
a1 = λ, an = 2n− λ.

Thus,
ak = λ+ (λ− 2) + (λ− 4) + . . . + (λ− 2(k − 1)) = kλ− k(k − 1)

and the equality an = 2n−λ becomes nλ−n(n−1) = 2n−λ, that is, (n+1)λ = n(n+1),
that is, λ = n, so hfkv = (λ−2k)fkv = (n−2k)fkv and ak = kn−k(k−1) = k(n−k+1).
Put vk = (n− k)!fkv; we have:

evk = (n− k)!efkv = (n− k)!k(n− k + 1)fk−1v = k(n− k + 1)!fk−1v = kvk−1;

fvk = (n− k)!ffkv = (n− k)!fk+1v = (n− k)(n− k − 1)!fk+1v = (n− k)vk+1;

hvk = (n− k)!hfkv = (n− k)!(n− 2k)fkv = (n− 2k)(n− k)!fkv = (n− 2k)vk.
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Thus, our representation is isomorphic to Vn.
Exercises 11. Generalize Theorem to the case of an arbitrary field of zero charac-

teristic. (In the case of an algebraically closed field, no changes are needed; in general
case, λ will belong to the algebraic closure of the given field, which requires an additional
attention.)

12. For an integer n, consider an (infinite-dimensional) representation of sl(2, C)
spanned by vectors fkv, k ≥ 0, with the obvious action of f and the action of e and h
given by the familiar formulas h(fkv) = (n− 2k)fkv, e(fkv) = k(k−n− 1)fk−1v (thus, if
ev = 0). Prove that if n < 0, then this representation is irreducible. If n ≥ 0, then there is
precisely one subrepresentation. It is spanned by fkv with k > n. The quotient over this
subrepresentation is our Vn. Since the whole representation is not decomposable into any
direct sum of representations, this example shows that the Weyl theorem does not hold
for infinite-dimensional representations, even of sl(2, C).

13. The case of the finite characteristic is more complicated. The previous theorem
holds for representations of dimensions less that the characteristic of the field. Consider
the case of the field Fp = Z/pZ. Show by examples that neither the previous classification
nor the Weyl theorem, are valid for (finite-dimensional) representations of sl(2, Fp).

In conclusion, let us discuss arbitrary (maybe, reducible) finite-dimensional represen-
tations of sl(2, C). Let V be such a representation. Then, by Theorem,

V = Vn1 ⊕ Vn2 ⊕ . . .⊕ Vnm (∗∗)

where we can assume that n1 ≥ n2 ≥ . . . ≥ nm. The operator h: V → V is diagonalizable,
and all its eigenvalues are integers. Moreover, if dk(V ) is the multiplicity of the eigenvalue
k, then dk(V ) = d−k(V ) and, for every k, dk(V ) ≥ dk+2 (this is true for V , because it is
true for every Vn).

Proposition. The number of occurrences of Vn in the decomposition (∗∗) equals
dn(V )− dn+2(V ).

Proof. Indeed, dn(Vn)−dn+2(Vn) = 1 and dk(Vn)−dk+2(Vn) = 0 for all non-negative
k not equal to n.

Exercises 14. Prove that if n ≥ m, then

Vn ⊗ Vm
∼= Vn+m ⊕ Vn+m−2 ⊕ Vn+m−4 ⊕ . . .⊕ Vn−m+2 ⊕ Vn−m.

(The tensor product of representations of a Lie algebra has a natural structure of a repre-
sentation of the same Lie algebra: g(v ⊗ w) = gv ⊗ w + v ⊗ gw.)

15. Find the decomposition of the representations S2Vn and Λ2Vn into the sums of
irreducible representations.

3.6 Applications to roots of complex semisimple Lie algebras. Let α, β be
roots of a complex semisimple Lie algebra g, and α %= 0. Following section 3.1.4, consider
the root series {β + kα}, pβ,α = p ≤ k ≤ q = qβ,α where p ≤ 0 and q ≥ 0 are inte-
gers. Let gβ,α =

⊕q
k=p gβ+kα ⊂ g. This space is invariant with respect to the operators

ad eα, adhα, ad fα and, hence, is a space of representation of the Lie algebra sl(2, C) =
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span(e, h, f) where e and f are multiples of ad eα and ad fα, and h =
2

〈α, α〉 adhα. The

operator adhα acts on gβ+kα as the multiplication by (β + kα)(hα) = 〈β + kα, α〉 =

〈β, α〉 + k〈α, α〉, hence, h ∈ sl(2, C) acts on gβ+kα as the multiplication by
2〈β, α〉
〈α, α〉

+ 2k.

According to Section 3.5, the last number must be an integer. Moreover, the results of
Section 3.5 provide a computation of this integer. Indeed, our representation of sl(2, C) is
Vn where n = qβ,α − pβ,α. The space gβ+qα is annihilated by ad eα and gβ = f qgβ+qα.
Hence

2〈β, α〉
〈α, α〉 = (qβ,α − pβ,α)− 2qβ,α = −(pβ,α + qβ,α),

so
〈β, α〉 = −pβ,α + qβ,α

2
〈α, α〉.

This is true for any two roots β, α of g with α %= 0. Notice also that the two extreme
eigenvalues of h in gβ,α are pβ,α − qβ,α and qβ,α − pβ,α.

Let us derive some immediate corollaries from our results.
Proposition 1. Let β, α be roots, and α %= 0.
(1) If β + α is a root, then [gβ, gα] = gβ+α.
(2) If neither of β ± α is a root, then 〈β, α〉 = 0.
Proof: (1) follows from the description of action of e in Vn given in Section 3.5; in the

case (2), pβ,α = qβ,α = 0.
Proposition 2. Let α be a non-zero root of g, and let λα with some λ ∈ C be also a

root. Then λ = 0 or ±1.

Proof. Since
2〈λα, α〉
〈α, α〉

= 2λ ∈ Z, λ must be an integer or a half-integer. The case

of λ ∈ Z was settled by Theorem 4 of Section 3.4. Let λ be a half-integer, that is, 2λ is
odd. The set of eigenvalues of h in gλα,α has the form . . . , 2λ− 2, 2λ, 2λ+ 2, . . ., and it is

symmetric in 0. Thus, it contains 1, which means that
1
2
α is a root. But then α is not a

root, a contradiction.
Now, let us do some additional computations. For an arbitrary ξ ∈ h,

〈ξ, ξ〉 =
∑

β∈roots

(
dim gβ

)
β(ξ)2 =

∑

β∈roots

β(ξ)2.

In particular, fro a root α,

〈α, α〉 = 〈hα, hα〉 =
∑

β∈roots

β(hα)2 =
∑

β∈roots

〈β, α〉2 =
∑

β∈roots

(
pβ,α + qβ,α

2

)2

〈α, α〉2,

thus

〈α, α〉 =




∑

β∈roots

(
pβ,α + qβ,α

2

)2



−1

.
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We see that 〈α, α〉 ∈ Q>0 for every non-zero root α and 〈β, α〉 ∈ Q for all roots β, α.
Let hR and hQ be the sets of all real and all rational linear combinations of hα for all

roots α.
Proposition 3. (1) dimR hR = dimQ hQ = dimC h.
(2) The restriction of the Killing form to hQ is rational and positive definite; hence

the restriction of the Killing form to hR is real and positive definite.
Proof. Let r = dim h, and let α1, . . . , αr be such roots that hα1 , . . . , hαr is a basis in

h (exists by Part (2) of Theorem 2 in Section 3.4). Then every root is a rational linear
combination of α1, . . . , αr: indeed, if β =

∑
uiαi, then (u1, . . . , ur) is a solution of rational

system
∑

j〈αi, αj〉uj = 〈αi, β〉, i = 1, . . . , r, and hence all ui are rational. This implies
(1). To prove (2), notice that if ξ ∈ hQ, then β(ξ) is rational for every root β, and hence

〈ξ, ξ〉 =
∑

β∈roots

β(ξ)2

is rational and is positive, if ξ %= 0. The statement for hR follows (or can be proven in the
same way).

The number r = dim h is called the rank of the semisimple Lie algebra g and is denoted
as rank g. For a real semisimple Lie algebra g, we put rank g = rank(g⊗C). For example,
rank sl(n, R or C) = n− 1 and rank su(n) = n− 1.

Exercise 16. Prove that rank so(n) =
[n
2

]
.

3.7. Geometry of roots. Part (2) of Proposition 3 in Section 3.6 gives us a pos-
sibility to apply to roots of a semisimple Lie algebra the notions of the usual Euclidean
geometry. Some things can be deduced from the formulas of the previous section immedi-
ately. Below we assume that some semisimple real or complex Lie algebra g is fixed, and,
speaking of roots we mean roots of this Lie algebra or (if it is real) of its complexification.

Proposition. (1) The angle between two non-collinear roots must be one of the
following: 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, 150◦.

(2) If the angle between two roots is 60◦ or 120◦, their lengths are the same; If the
angle between two roots is 45◦ or 135◦, then the ratio of their length is

√
2; If the angle

between two roots is 30◦ or 150◦, then the ratio of their length is
√

3.
(3) The length of a series of roots never exceeds 4.
Proof. If β, α are two non-collinear roots, then

cos2 + (β, α) =
〈β, α〉
〈α, α〉

· 〈α, β〉
〈β, β〉

is the product of two integers or half-integers, and hence is some integer divided by 4.

Since it is less than 1, it can be 0,
1
4
,
1
2
, or

3
4
. This proves (1).

The square of the ratio of the lengths of α and β is (if 〈β, α〉 %= 0) the ratio of these

two numbers. If the angle is 60◦ or 120◦, then these two numbers are both
1
2

or −1
2
, and
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the ratio is 1. If the angle is 45◦ or 135◦, then the two numbers are 1,
1
2

or −1,−1
2
, and the

ratio is 2. Finally, if the angle is 30◦ or 150◦, then the two numbers are
1
2
,
3
2

or −1
2
,−3

2
,

and the ratio is 3. This proves (2).
To prove (3), it is sufficient to notice that, according to the preceding computations,

the absolute value of
2〈β, α〉
〈α, α〉 = −(pβ,α + qβ,α) never exceeds 3.

If r = 1, then we have, according to Proposition 2 of Section 3.6, only one possi-
bility for the roots: α, 0,−α. The pairs (pβ,α, qβ,α) for β = α, 0,−α are, respectively,
(−2, 0), (−1, 1), (0, 2) which makes

〈α, α〉 =
(
(−1)2 + 0 + 12)

)−1 =
1
3
.

This the root system of the Lie algebra sl(2).
If our Lie algebra is a product of two or more simple Lie algebras, then the root system

is reducible: the Cartan algebra is the sum of Cartan algebras of these simple Lie algebras,
and the root system is the union of roots system of several mutually orthogonal spaces.
We will restrict our attention to irreducible root systems.

Suppose that α, β are two roots which form the angle of 120◦, 135◦, 150◦, and the
length of β equals the length of α times, respectively, 1,

√
2,
√

3. Then the root series
determined by β and α is β, β + α, . . . , β + qα with q, respectively, being 1, 2, 3. The
configurations of roots arising are shown below.

• • • • • •

• • • • • • • • •

α α α

β β + α
β β + α β + 2α

β β + α β + 2α β + 3α
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Fig. 1

Consider the case r = 2. Let us show that there are three possibilities for an irreducible
root system, and they are the ones shown in Figure 2 below.

If the maximal obtuse angle between the roots is 120◦, then the root system must
contain the configuration in Figure 1, left, and also the roots −β,−β − α,−α. Any addi-
tional non-zero root would create an obtuse angle between roots exceeding 120◦, so in this
case we must have a root system shown in Figure 2, upper left.

If the maximal obtuse angle is 135◦, then the root system contains the central configu-
ration of Figure 1. Also it contains the four roots opposite to the roots of this configuration
and again no more non-zero roots. This gives the upper right system of Figure 2.

Finally, in the case when this angle is 150◦, the root system must contain the config-
uration in Figure 1 left, and also five roots opposite to the roots of this configuration. But
this is not all. The roots −β−2α and β+3α also form an angle of 150◦. This leads to the
roots series β + 3α, α,−β − α,−2β − 3α and, hence, a new root −2β − 3α. The opposite
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root 2β + 3α also must appear, and we obtain a system of 12 non-zero roots shown in
Figure 2, bottom. Again, there are no more non-zero roots.
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β

−β

β + α β + 2α β + 3α

2β + 3α

−β − α−β − 2α−β − 3α

−2β − 3α

sl(3)
〈α, α〉 = 1

3

〈β, β〉 = 1
3

so(5)
〈α, α〉 = 1

6

〈β, β〉 = 1
3

〈α, α〉 = 1
12

〈β, β〉 = 1
3

G2

Fig. 2
In the upper left diagram, (pγ,α, qγ,α), for γ = α, β + α, and so on counterclockwise,

is (−2, 0), (−1, 0), (0, 1), (0, 2), (0, 1), and (−1, 0), so

〈α, α〉 =
(

4 · 1
4

+ 2 · 1
)−1

=
1
3
,

and 〈β, β〉 is the same. In the upper right diagram, these pairs are (for γ ordered coun-
terclockwise starting with α) are (−2, 0), (−2, 0), (−1, 1), (0, 2), (0, 2), (0, 2), (−1, 1), and
(−2, 0), so

〈α, α〉 = (6 · 1)−1 =
1
6
,

and 〈β, β〉 is twice as large. Finally, in the bottom diagram these pairs are (−2, 0), (−3, 0),
(−2, 1), (0, 0), (−1, 2), (0, 3), (0, 2), (0, 3), (−1, 2), (0, 0), (−2, 1), (−3, 0), so

〈α, α〉 =
(

4 · 9
4

+ 2 · 1 + 4 · 1
4

)−1

=
1
12

,
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and 〈β, β〉 is three times as large.
The dimensions of the corresponding Lie algebras can be found as dim h = 2 plus the

number of non-zero roots. For the three diagrams of Figure 2, these are 8, 10, and 14. It
is easyn to see that the first diagram corresponds to the Lie algebra sl(3). The second
diagram correspond to the 10-dimensional Lie algebra so(5); the verification of this can
be regarded as an extension of Exercise 16. The 14-dimensional Lie algebra of the last
diagram is the simplest of the five so-called exceptional Lie algebras; its standard notation
is G2. We will consider exceptional Lie algebras at the appropriate moment later (see
Section XX).

If the reader has an impression that it is possible, in a pure geometric way, to classify
all the root systems of simple complex Lie algebras, we can say that not only this is
right, but we are going to do this right away. Our classification will be actually, not a
classification of root systems, but rather a classification of simple complex Lie algebras.

We finish this Section with a brief description of irreducible root systems in the 3-
dimensional space. There are three of them.

Exercise 17. Give a description of the three irreducible root system in R3. To make
it easier, let me give a geometric description of the final result.

The first of the three systems contains 12 non-zero roots, all of the same lengths. The
convex hull of the set of roots is shown in Figure 3 below. It is the semiregular polyhedron
with 14 faces, of which 6 are squares and 8 are equilateral triangles. The center of this
polyhedron is the origin of the Euclidean space h∗, and the vertices correspond to the
roots. The corresponding Lie algebra is sl(4) ∼= so(6).
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Fig. 3

The other two systems of roots have 18 non-zero roots each. The convex hull of one
of them is the same as in the previous example, but the set of roots is different: besides
the vertices of the polyhedron is also includes the centers of the square faces (Fig 4, keft).
The other one is represented by a regular octahedron; the roots are the vertices and the
midpoints of the edges (Fig. 4, right). The corresponding Lie algebras are, respectively,
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so(7) and sp(3) (we will consider these Lie algebras later.
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Fig. 4

3.8. Dynkin diagrams. In this section, we will give a solution of a problem which,
actually, is equivalent to a description of root systems for arbitrary complex simple Lie
algebras. We will consider not full root systems, but rather their subsystems consisting of
simple positive roots.

3.8.1. Simple positive roots. Choose an arbitrary hyperplane in {F = 0} ⊂ h∗
R

(where F is a linear form) not passing through any non-zero root. Call a non-zero root α
positive, if α(F ) > 0 and negative otherwise. Thus, every non-zero root is either positive
or negative, and is α is positive, then −α is negative, and vice versa. A positive root is
called a simple positive root, if it is not a sum of two other positive roots.

Proposition 1. If α, β are two different simple positive roots, then 〈α, β〉 ≤ 0.
Proof. If 〈α, β〉 > 0, then pβ,α+ qβ,α < 0 (see Section 3.6), and hence, β−α is a root,

as well as −(β − α) = α − β. One of these roots must be positive, let it be β − α. Then
β = (β − α) + α is a sum of two positive roots, so it is not simple.

Proposition 2. Simple positive roots are linearly independent.
Proof. Let α1, . . . , αr be all simple positive roots, and let

∑
i uiαi = 0 for some real

ui. Let I+ = {i | ui > 0} and I− = {j | uj < 0}. Let γ =
∑

i∈I+
uiαi =

∑
j∈I−

(−uj)αj.
Then 〈γ, γ〉 =

∑
i∈I+

∑
j∈I−

(−uiuj)〈αi, αj〉 ≤ 0, thus actually 〈γ, γ〉 = 0, so γ = 0. But
a non-empty linear combination of positive roots with positive coefficients, as well as with
negative coeficients, cannot be zero (because the value of F is not zero). Thus the initial
linear combination has all the coefficients zero.

Proposition 3. Simple positive roots form a basis in h∗
R. Moreover, every positive

(negative) root is a linear combination of simple positive roots with all coefficients non-
negative (non-positive). In particular, a linear cimbination of simple positive roots with
coefficients of both signs is never a root.

Proof. Let α be a positive root with the smallest value of F (α) which is not a
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positive linear combination of simple positive roots. Then it is not a sum of two positive
roots, hence it is a simple positive root, which is a contradiction.

3.8.2. Admissible system of vectors and their Dynkin diagrams. Let V be
a Euclidean space, and let Π = {v1, . . . , vr} ⊂ V . We call Π an admissible system, if the
vectors v1, . . . , vr are linearly independent and for every different i, j,

2〈vi, vj〉
〈vi, v1〉

= 0,−1,−2,−3;

in other words, the angle + (v1, vj) is equal to 90◦, 120◦, 135◦, 150◦, and in the last three
cases the ratio of lengths of vi and vj is equal to, respectively, 1,

√
2,
√

3. Obviously, a
subset of an admissible system is an admissible system. The system Π is called irreducible,
if there is no decomposition Π = Π′ ∪Π′′ with v′ ⊥ v′′ for all v ∈ Π′, v′′ ∈ Π′′.

The Dynkin diagram of an admissible system v1, . . . , vr is a graph with r vertices
with a fixed bijection with v1, . . . , vr in which vi and vj are joined by 1, 2, or 3 edges, if
the angle + (vi, vj) is, respectively, 120◦, 135◦, or 150◦ (in particular, if vi ⊥ vj , then the
corresponding vertices are not joined by any edges. If two vertices are joined by two or
three edges, • • or • • , then one of the two vectors involved is

√
2 or

√
3

times longer, than the other one; to indicate this on the diagram, we can use notations
like • •.......................................................... . Obviously, an admissible system is irreducible, if and only if its Dynkin
diagram is connected,

Theorem. The Dynkin diagram of an irreducible admissible system is one of the fol-
lowing (the notations Ar, . . . , E8 are commonly used notations for these Dynkin diagrams;
in particular, the subscript denotes the number of vertices, that is, the number of vectors
in the system):

• • • •

• • • •

• • • •

• • •
•
•

• •

• • • •

• • • • •

•
• • • • • •

•
• • • • • • •

•

................................................

................................................

........................................................................................................................................................................................................................

. . .

. . .

. . .

. . .

(Ar)

(Br)

(Cr)

(Dr)

(G2)

(F4)

(E6)

(E7)

(E8)

Proof will consist of five steps.

Step One. Dynkin diagram is a tree (possibly, with multiple edges). Put w =
∑

i

vi

‖vi‖
;

this is a non-zero vector (since the vectors vi are linearly independent). Let S be the set
of pairs (i, j) with i < j and 〈vi, vj〉 %= 0 (that is the set of all connections in the Dynkin
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diagram). Notice that if (i, j) ∈ S, then cos + (vi, vj) ≤ −1
2
. We have:

0 < 〈w, w〉 =
∑

i

〈vi, vi〉
‖vi‖2

+
∑

(i,j)∈S

2〈vi, vj〉
‖vi‖ · ‖vj‖

= r +
∑

(i,j)∈S

2 cos + (vi, vj) ≤ r − card(S).

Hence card(S) < r, that is, card(S) ≤ r − 1, which means that actually card(S) = r − 1
and our graph is a tree.

Step Two. No more, than three edges at every vertex (edges are counted with their
multiplicities). Consider a vertex in the Dynkin diagram with all its connections; the
picture looks like this:

• •

••

•

• •

..............................................................................................................................................................................
...................
...................
...................
...................
...................
...................
...................
..................
...................
....

...................
...................
...................
...................
...................
...................
..................
...................
...................
.....

...................
...................
...................
...................
...................
...................
...................
...................
...................
.



..............................................................................................................................................................................

..............................................................................................................................................................................

..............................................................................................................................................................................

vi vj1

vj2vj3

vjk

...

. . .

(we label every vertex as a vector from our system to which it is assigned). The vectors
vj1 , . . . , vjk are all orthogonal to each other (no cycles in the Dynkin diagram!); on the
contrary, the vector vi is not orthogonal to any of vjs , but is not their linear combination
(the vectors of our system are linearly independent!). In the (k + 1)-dimensional space
span(vi, vj1 , . . . , vjk) take a non-zero vector w orthogonal to all vjs (it is not vector from
our system). Then

cos2 + (vi, w) +
k∑

s=1

cos2 + (vi, vjs) = 1.

But cos2 + (vi, w) > 0 and cos2 + (vi, vjs) is one quarter of the number of edges connecting
vi with vjs . Thus the total number of edges emanating from vi cannot exceed 3.

In particular, we see that if our diagram contain a triple edge, then it cannot contain
anything else; so it must be G2.

Step Three: excluding three more configurations. Let us prove now that our Dynkin
diagram cannot have a subdiagram of any of the following shapes:

• • • • • •

• • • • •
•
•

•
•

• • • •
•
•

........................................................................................................................................................................................................

........................................................................................................................................................................................................

........................................................................................................................................................................................................

. . .

. . .

. . .

If the Dynkin diagram of some admissible system of vectors contains a subdiagram

• • • •. . .
vi1 vi2 vik−1 vik , then we will obtain another admissible system of vectors by
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replacing all the vectors vis by their sum, v = vi1 + . . . + vik . Indeed, all the vectors vis

have the same length; let 〈vis , vis〉 = a. Then 〈vis , vis+1〉 = −a

2
and

〈v, v〉 =
k∑

s=1

〈vis , vis〉+ 2
k−1∑

s=1

〈vis , vis+1〉 = ka− (k − 1)a = a,

and if some vj from our system (not one of vis) has a non-zero inner product with some vis ,
then there can be only one such vis and therefore 〈vj , v〉 = 〈vj , vis〉. Thus we can collapse

the subdiagram • • • •. . .
vi1 vi2 vik−1 vik into one point to obtain a Dynkin diagram of

another admissible system. But this will turn the three configurations shown above into
the configurations

• • • • •
•
•

•
•

•
•
•

........................................................................................................................................................................................................

........................................................................................................................................................................................................

........................................................................................................................................................................................................

already prohibited in Step Two.
After Step Three, we have, for a Dynkin diagram of an irreducible admissibly system

only the following possibilities: G2, Ar and two more:

• • • • • •

• • • •
• • •
• • •

vi1 vi2 vip vjq vj2 vj1

vi1 vi2 vip−1

vjq−1 vj2 vj1

vkr−1 vk2 vk1

v# ................................................
.................................................

..................................................
.................................................

....

................................................................
. . .

. . .

. . .

. . .

. . .

(Xpq)

(Ypqr)

Consider these last possibilities.

Step Four: diagram Xpq. Let 〈vis , vis〉 = a. Then 〈vis , vis+1〉 = −a

2
, 〈vjs , vjs〉 =

2a, 〈vjs , vis+1〉 = −a, 〈vip , vjq = −a. Put w =
∑

s svis , z =
∑

s svjs . Then

〈w, w〉 = a
[
(12 + 22 + . . . + p2)− (1 · 2 + 2 · 3 + . . . + (p− 1)p)

]
=

p(p + 1)
2

a,

similarly, 〈z, z〉 = q(q + 1), and, obviously, 〈w, z〉 = −pqa. Apply the Cauchy-Schwarz

inequality:
p(p + 1)

2
·q(q+1) > p2q2, hence (p+1)(q+1) > 2pq, pq−p−q < 1, (p−1)(q−1) <

2. Thus, either p = 0, or q = 0, or p = q = 1. This corresponds to the diagrams Br, Cr,
and F4.

Step Five: diagram Ypqr. All the vectors have the same length, let the inner square
of each be a. Put x =

∑
s svis , y =

∑
s svjs , z =

∑
s svks . Then, as in Step Four, 〈x, x〉 =

p(p− 1)
2

· a, 〈y, y〉 =
q(q − 1)

2
· a, 〈z, z〉 =

r(r − 1)
2

· a. Also, 〈x, w〉 = −(p− 1)
a

2
, 〈y, w〉 =

−(q − 1)
a

2
, 〈z, w〉 = −(r − 1)

a

2
. Hence, cos2 + (x, w) =

(p− 1)2a2

4 · p(p−1)
2 a2

=
p− 1
2p

and similarly

cos2 + (y, w) =
q − 1
2q

, cos2 + (z, w) =
r − 1
2r

. Since the vectors x, y, z are orthogonal to each
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other, the sum of this squares of cosines is less than 1 (it would have been 1, if w were a
linear combination of x, y, z). Thus,

p− 1
2p

+
q − 1
2q

+
r − 1
2r

< 1 =⇒ 1
p

+
1
q

+
1
r

> 1.

If we assume that 1 < p ≤ q ≤ r, this inequality holds, if p = q = 2 and r is arbitrary, and
if p = 2, q = 3, r = 3, 4, or 5. This corresponds to diagrams Dr+2, E6, E7, and E8.

This completes the proof of Theorem.
3.9. Classification of complex semisimple Lie algebras. Our goal in this

section is to show that the classification of admissible system of vectors given in Section
3.8 provides, actually a full isomorphism classification of complex semisimple Lie algebras.
We already know that, for a complex semisimple Lie algebra, simple positive roots form
an admissible system of vectors. According to Section 3.8, this assigns to a complex
semisimple Lie algebra a Dynkin diagram, which is a disjoint union of diagrams of the
types Ar, . . . , E8 as listed above. We want two show that if two complex semisimple Lie
algebras have identical Dynkin diagrams, then they are isomorphic.

3.9.1. A transition from Dynkin diagrams to root systems. First, we show
that is two complex semisimple Lie algebras, g and g′ (we hope that the reader will not
confuse this notation with the notation for the commutator subalgebra) with Cartan sub-
algebras h and h′, have identical Dynkin diagrams that there exists an isometry h → h′

which establishes a bijection between the sets of roots.
First, we reduce the general case to the irreducible case. We leave the following

statement to the reader as an exercise.
Exercise 18. Prove that the system Π of simple positive roots of a complex semisim-

ple Lie algebra g is reducible, Π = Π′ ∪Π′′, Π′ ⊥ Π′′, then g = g′ ⊕ g′′ with the systems of
simple positive roots of g′, g′′ being Π′, Π′′.

Next, the full system of roots is determined by the system of simple positive roots. In-
deed, if two simple Lie algebras have the same system of simple positive roots (with respect
to some isometry between the Cartan subalgebras preserving the positivety/negativity),
then they have the same system of roots. Indeed, consider the first difference between
the two system of roots, that is let α be a positive root of one of the two Lie algebras
which is not a root of the other one, and (α) where F is the linear form determining the
positivity/negativity (see Section 3.8.1) be the smallest possible. But then α is not simple,
α = β + γ where β, γ are positive roots for the both algebras. But the numbers pβ,γ , qβ,γ

are determined by the inner products, so they must be the same for the two Lie algebras,
and if β + γ is a root of one of them, it must be also a root of the other one.

Finally, If simple complex Lie algebras g, g′ with Cartan subalgebras h, h′ have identical
Dynkin diagrams, then there exists an isometry h → h′ which establishes a bijection
between roots. Indeed, a bijection between Dynkin diagrams is a bijection between simple
positive roots, and since simple positive roots form a basis in the Cartan subalgebra, this
bijection provides an isomorphism between the Cartan subalgebras. The only additional
observation we need is that a Dynkin diagram determines inner products of simple positive
roots only up to a (rational) factor, so our isomorphism could be rather a similarity than
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an isometry. But the formula 〈α, β〉 =
∑

γ∈{roots}
〈γ, α〉〈γ, β〉 shows that root systems cannot

be proportional without being identical.
3.9.2. Isomorphism between the root systems implies isomorphism be-

tween Lie algebras. The following is the main result of this Section.
Theorem. Let g, g′ be two semisimple complex Lie algebras, and let h, h′ be their

Cartan subalgebras. If a linear map h → h′ establishes a bijection between the roots of g
and g′, then it can be extended to a Lie algebra isomorphism g → g′.

Before proving Theorem, let us consider one semisimple complex Lie algebra g with a
Cartan subalgebra h. For every pair of opposite non-zero roots α,−α, fix eα ∈ gα, e−α ∈
g(−α) such that [eα, e−α] = −hα. If α, β, α + β are non-zero roots, then there exists a
non-zero Nα,β such that [eα, eβ ] = Nα,βeα+β . If α and β are non-zero roots, but α+ β is
not a non-zero root, then we put Nα,β = 0.

Lemma. The numbers Nα,β satisfy the following relations.
(1) Nβ,α = −Nα,β.
(2) If α, β, γ are non-zero roots and α+ β + γ = 0, then Nα,β = Nβ,γ = Nγ,α.
(3) If α, β, γ, δ are non-zero roots, the sum of no two of them is zero, and α+β+γ+δ =

0, then Nα,βNγ,δ + Nβ,γNα,δ + Nγ,αNβ,δ = 0.

(4) Nα,βN−α,−β =
1
2
〈α, α〉q(1− p) where p = pα,β, q = qα,β (see Section 3.6).

Proof of Lemma. (1) is obvious.
To prove (2), let us use the Jacobi identity:

0 = [eα, [eβ, eγ ]] + [eβ , [eγ, eα]] + [eγ , [eα, eβ ]]
= [eα, Nβ,γe−α] + [eβ , Nγ,αe−β ] + [eγ , Nα,βe−γ ]
= −(Nβ,γhα + Nγ,αhβ + Nα,βhγ).

But hα + hβ + hγ = 0 and the vectors hα, hβ , hγ are not collinear. Hence, Nα,β = Nβ,γ =
Nγ,α.

To prove (3), we notice that

[eα, [eβ, eγ ]] = [eα, Nβ,γeβ+γ ] = Nα,β+γNβ,γe−δ = Nδ,αNβ,γe−δ

(the last equality follows from (2), since α + (β + γ) + δ = 0). Thus [eα, [eβ, eγ ]] =
−Nβ,γNα,δe−δ , and (3) follows from the Jacobi identity.

To prove (4), we use formulas for the action of sl(2, C) in the space
⊕q

k=p gβ+kα. In

the notation of Section 3.5, this space is Vq−p, eβ ∈ Cvq , and ad e−α◦ad eα is −1
2
〈α, α〉f ◦e,

and f ◦ e(vq) = q(q − p− (q − 1))vq = q(1− p)vq. Thus

[e−α, [eα, eβ]] = −1
2
〈α, α〉q(1− p)eβ .
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On the other hand,

[e−α, [eα, eβ]] = [e−α, Nα,βeβ+α] = N−α,α+βNα,βeβ = N−β,−αNα,βeβ

(the last equality follow from (2), since −α+(α+β)+(−β) = 0). The equality (4) follows.
Proof of Theorem. As before, we assume that there are eα ∈ gα such that [eα, e−α] =

−hα and [eα, eβ ] = Nα,βeα+β , if α, β, α+ β are non-zero roots of g. Also, there is a linear
map ϕ: h → h′ which establishes a bijection between the root systems ∆, ∆′ of g and g′.
For (ϕ∗)−1(α) we use the notation α′. We want to find, for every α, an e′α′ ∈ g′(α

′) ⊂ g′

such that
[e′α′ , e′β′ ] = Nα,βe

′
α′+β′ . (∗)

Then the map ϕ will be extended by eα #→ e′α′ to a Lie algebra isomorphism g → g′, so
g′ ∼= g.

First remark that the map ϕ must be an isometry. Indeed, since ϕ is linear, the
lengths of root series are the same for ∆ and ∆′, so pα,β = pα′,β′ and qα,β = qα′,β′ . Hence

−2〈β, α〉
〈α, α〉 = pα,β + qα,β = pα′,β′ + qα′,β′ = −2〈β′, α′〉

〈α′, α′〉

which shows that the inner products are proportional: 〈α, β〉 = λ〈α′, β′〉 for all α, β. But
then

〈α, β〉 = 〈hα, hβ〉 =
∑

γ

γ(hα)γ(hβ) =
∑

γ

〈γ, α〉〈γ, β〉 =
∑

γ′

λ〈γ′, α′〉λ〈γ′, β′〉 = λ2〈α′, β′〉,

so λ2 = λ and λ = 1.
Now let us make a choice of e′α′ . We assume that the roots are ordered by the values of

the function F from Section 3.8.1 (we suppose that these values are different for different
roots). For a positive root ρ, put Σρ = {α ∈ ∆ | −ρ < α < ρ}. If σ is the root next after
ρ, then Σσ = Σρ ∪ {−ρ, ρ}.

Induction hypothesis: (∗) holds, if α, β, α+β ∈ Σρ. We want to extend this to Σσ. If ρ
is a simple positive root, then we choose e′ρ′e

′
−ρ′ under the only condition [e′ρ′ , e

′
−ρ′ ] = −hρ′ .

Otherwise, take any α, β ∈ Σρ with α+β = ρ and define e′ρ′ from the formula (∗) and e′−ρ′
from the condition [e′ρ′ , e

′
−ρ′ ] = −hρ′ . Now, e′α′ is defined for all α ∈ Σσ, and it remains

to verify that if γ, δ, γ + δ ∈ Σσ, and [e′γ′ , e′δ′ ] = N ′
γ′,δ′e

′
γ′+δ′ , then N ′

γ′,δ′ = Nγ,δ.
If γ, δ, γ + δ ∈ Σρ, then N ′

γ′,δ′ = Nγ,δ by the induction hypothesis.
If γ + δ = ρ and {γ, δ} = {α, β}, then N ′

γ′,δ′ = Nγ,δ by the definition of e′ρ′ .
If γ + δ = ρ, γ, δ ∈ Σρ and {γ, δ} %= {α, β}, then α + β + (−γ) + (−δ) = 0, pairwise

sums are not zero, and, by Part (3) of Lemma,

Nα,βN−γ,−δ + Nβ,−γNα,−δ + N−γ,αNβ,−δ = 0,

Nα,βN
′
−γ′,−δ′ + Nβ,−γNα,−δ + N−γ,αNβ,−δ = 0

(no primes in the second equality, because each of β − γ, α− δ, α− γ, β − δ is either not a
root, or belongs to Σρ, and we can use the statements in the previously considered cases);
thus, N ′

−γ′,−δ′ = N−γ,−δ, and N ′
γ′,δ′ = Nγ,δ in virtue of Part (1) of Lemma.
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The case of γ + δ = −ρ is similar.
Finally, of γ, δ,−(γ + δ) no more than one is ±ρ, their sum is zero, and we can finish

the proof, using Part (2) of Lemma.
In particular, Theorem can be applied to the case g′ = g and ϕ = − id. There arises

a Lie algebra automorphism ω: g → g with ω(eα) = ραe−α. Put ẽα = √
ραeα. Then the

numbers Nα,β arising from the condition [ẽα, ẽβ] = Nα,β ẽα+β satisfy, in addition to the
equalities from Lemma, the equality N−α,−β = Nα,β . These vectors ẽα form, together with
an arbitrary basis of h, a basis in g which is called the Weyl basis. Remark that for a Weyl
basis ẽα the numbers Nα,β are all real: by Part (4) of Lemma, N2

α,β = Nα,βN−α,−β =
1
2
〈α, α〉q(1− p) ∈ Q≥0.

3.9.3. Classical and exceptional Lie algebras. To finish the classification, we
need to show that for each of the diagrams displayed in Theorem of Section 3.8.2, there
exists a simple complex Lie algebra with this Dynkin diagrams. In this section, we will do
a part of this work; the reader will find the rest elsewhere.

3.9.3.1. The series Ar.
• • • • •. . .

The corresponding Lie algebra is sl(r + 1), the Lie algebra of matrices of order r + 1
with zero trace. For the Cartan algebra h, we choose the space of diagonal matrices which
can be described as {(λ1, . . . , λr+1) ∈ Cr+1 | λ1 + . . . + λr+1 = 0}. The Killing form in
h is (proportional to) the restrictin to h of the standard (bilinear) dot-product in Cr+1,
〈(λ1, . . . , λr+1), (µ1, . . . , µr+1)〉 = λ1µ1 + . . . + λr+1µr+1. To see this it is better to take
the Killing form not for the adjoint representation, but for the natural representation of h
in Cr+1: indeed,

Tr




λ1

. . .
λr+1








µ1

. . .
µr+1



 = λ1µ1 + . . . + λr+1µr+1.

The root spaces are CEij , i %= j (where Eij is a one-entry matrix), and the corresponding
root is (λ1, . . . , λr+1) #→ λi−λj . For positive roots we can take the roots λi−λj with i < j
(to check this, we need to verify that for every non-zero root α, precisely one of α,−α is
positive, and if the sum of two roots is a root, then it is a positive root). Then the simple
positive roots are αi = λi − λi+1, i = 1, . . . , r. Obviously,

〈αi.αj〉 =

{−1, if j = i ± 1,
2, if i = j,
0 otherwise.

Thus, all αi have the same lengths, and the angle between αi and αj (with i %= j) is 120◦,
if j = i ± 1 and is 90◦ otherwise. This corresponds to the Dynkin diagram above.

3.9.3.2. The series Dr (r ≥ 4).

• • • •
•

•
. . .

....................................................................................................................................................................................................................................................................................
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The corresponding Lie algebra is o(2r), the Lie algebra of skew-symmetric matrices
of order 2r. For the Cartan subalgebra, we can take the space of block diagonal skew-
symmetric matrices with r diagonal 2× 2 blocks. The most convenient basis in h consists
of matrices hk = i(E2k−1,2k − E2k,2k−1).

Exercise 19. (a) Prove that the Killing form with respect to this form is (propor-
tional to) the standard dot product.

(b) Prove that the roots are ±λi ± λj , 1 ≤ i < j ≤ r.
(c) Prove that for positive roots we can take the roots λi ± λj , 1 ≤ i < j ≤ r.
(d) Prove that the simple positive roots are λ1 − λ2, . . . , λr−1 − λr, λr−1 + λr. Check

that the corresponding Dynkin diagram is the one shown above.
3.9.3.3. The series Br.

• • • • •. . . ............................................

The corresponding Lie algebra is o(2r+1), the Lie algebra of skew-symmetric matrices
of order 2r + 1. For the Cartan subalgebra, we can take the same space as before in
o(2r) ⊂ o(2r + 1), with the same basis (and inner product) as before.

Exercise 20. (a) Prove that the Killing form with respect to this form is proportional
to the standard dot product.

(b) Prove that the roots are ±λi ± λj(1 ≤ i < j ≤ r) and ±λi (1 ≤ i ≤ r).
(c) Prove that for positive roots we can take the roots λi ± λj , 1 ≤ i < j ≤ r and

λi (1 ≤ i ≤ r).
(d) Prove that the simple positive roots are λ1 − λ2, . . . , λr−1 − λr, λr. Check that

the corresponding Dynkin diagram is the one shown above.
3.9.3.4. The series Cr.

• • • • •. . . ............................................

The corresponding Lie algebra sp(2r) is defined in the following way. Let 〈 , 〉 be a
non-degenerate skew-symmetric bilinear form in C2r. Such a form is, actually, unique up
to an automorphism of C2r, but it will be convenient to us to have an explicit definition
with respect to a basis. For a basis in C2r, we will use the notation p1, . . . , pr, q1, . . . , qr,
and the form is defined by the equalities

〈pi, pj〉 = 0, 〈pi, qj〉 = δij ,
〈qi, pj〉 = −δij , 〈qi, qj〉 = 0.

A linear transformation f : C2r → C2r is called canonical, if 〈f(x), f(y)〉 = 〈x, y〉 for all
x, y ∈ C2r. Canonical transformations form a (complex) Lie group denoted as Sp(2r, C)
and the corresponding Lie algebra is sp(2r). It consists of linear transformations ϕ: C2r →
C2r such that 〈ϕ(x), y〉+ 〈x, ϕ(y)〉 = 0 for all x, y ∈ C2r (it is seen from this description,
if from nothing else, that sp(2r) is a complex Lie algebra. More directly, sp(2r) can be
described as the Lie algebra of block matrices (with r × r blocks)

[
A B
C −At

]
with Bt = B, Ct = C.
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A Cartan subalgebra is an r-dimensional space with coordinates λ1, . . . , λr; it consists of
diagonal matrices with the diagonal entries λ1, . . . , λr,−λ1, . . . ,−λr.

Exercise 21. (a) Prove that the Killing form with respect to this form is proportional
to the standard dot product.

(b) Prove that the roots are λi − λj (i %= j) and ±(λi + λj) (i ≤ j).
(c) Prove that for positive roots we can take the roots λi − λj , 1 ≤ i < j ≤ r and

λi + λj (1 ≤ i ≤ j ≤ r).
(d) Prove that the simple positive roots are λ1 − λ2, . . . , λr−1 − λr, 2λr. Check that

the corresponding Dynkin diagram is the one shown above.
3.9.3.5. Exceptional Lie algebras. There exist constructions of the simple complex

Lie algebras with Dynkin diagrams G2, F4, E6, E7, and E8 (and the corresponding Lie
groups). These Lie algebras are called exceptional. Their dimensions (respectively) are 14,
52, 78, 133, and 248.

The Lie algebra of the type G2 may be constructed as the complexification of the Lie
algebra of derivations of the octonion algebra: a non-asociative 8-dimensional real division
algebra. The constructions of the other exceptional Lie algebras (and corresponding Lie
groups) are more complicated; they can be easily found in the literature (see, for example,
“Exceptional Lie algebras” by N. Jacobson).

4. Real Lie algebras.
4.1 Complexification and decomplexification. If g is a real Lie algebra, then

the complexification Cg = g ⊗ C is a complex Lie algebra. Certainly, g ⊂ Cg. If g
is (semi)simple, then Cg is also (semi)simple, and the complexification of any Cartan
subalgebra of g is a Cartan subalgebra of Cg.

Moving backward, for a complex Lie algebra g, we may want to find a real subalgebra
gR, of which g is a complexification. This gR is called a real form of g. It is known from
linear algebra that if W is a real vector subspace of a complex vector space V such that
dimR W = dimC V and V = spanC W , then V ∼=R W ⊕ iW , and the complex conjugation
operator σ = idW ⊕(− idiW ): V → V is an antilinear automophism such that σ2 = id and
W = Fix(σ). For Lie algebras, we just need to add the requirement that σ is a Lie algebra
automorphism: conjugation classes of real forms of a complex Lie algebra g correspond
bijectively to antilinear involutive (square = id) automorphisms of g.

There are well known examples of pairs g, Cg. The Lie algebra sl(n, C) is the com-
plexification of each of real subalgebras sl(n, R) and su(n): the corresponding antilinear
involutions are A #→ A, A #→ −A

t
. The Lie algebra o(n, C) of complex skew-symmetric

n × n matrices is the complexification of the Lie algebra o(n, R) of real skew-symmetric
matrices. Also, o(n, C) is the complexification of the Lie algebra o(p, q) where p + q = n;
this is the Lie algebra of matrices A satisfying the condition 〈Av, w〉p,q + 〈v, Aw〉p,q for all
v, w ∈ Rn where 〈 , 〉p,q is a symmetric bilinear form of signature (p, q). This Lie algebra
has a convenient matrix description: it consists of matrices of the form

..................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................

A B

C D

p

q

, At = −A, Bt = C, Dt = −D.
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Exercise 1. Prove that Co(p, q) = o(n, C).
4.2. Compact Lie algebras.
4.2.1. Definition and the most important properties. A real Lie algebra is

called compact, if its Killing form is negative definite. (Question: why not positive definite?
Answer: the Killing form cannot be positive definite: if it is positive definite, then it is non-
degenerate, hence, the Lie algebra is semisimple; but according to Theorem 1 in Section
3.4, every root space corresponding to a non-zero root is orthogonal to itself, which is
impossible for a positive definite form.) In particular, the Killing form of a compact Lie
algebra is non-degenerate, so every compact Lie algebra is semisimple.

Theorem. (a) If G is a compact Lie group, then the Killing form of LieG is non-
positive. If G is compact and semisimple (which means that Lie G is semisimple), then
Lie G is compact.

(b) Every compact Lie algebra is a Lie algebra of a compact group.
Proof. (a) If G is compact, then TeG possesses an Ad-invariant Euclidean structure.

Indeed, take an arbitrary Euclidean structure, 〈 , 〉′, on TeG, and take its average:

〈v, w〉 =

∫

G
〈Ad(g)v, Ad(g)w〉′dg

volG

where dg is an invariant measure on G (its existence is a classical analytical fact; we will not
prove it here). Then Ad(g) ⊂ O(dim g) and hence, with respect to an orthonormal basis in
g = TeG, the image of ad: g → gl(g) consists of skew-symmetric matrices. But the trace of
the square of a real skew-symmetric matrix,

∑
i,j aijaji = −

∑
ij a2

ij is never positive. If,
in addition, he Lie algebra g is semisimple, then the Killing form is non-degenerate, and,
hence, negative definite.

(b) Let G be a Lie group with LieG = g. As we have seen before, there arises
a homomorphism Ad: G → O(dim g), and the differential ad: g → gl(g) has no kernel
(because g is semisimple). The kernel Γ = Ker Ad ⊂ G is a central subgroup, and it is
discrete (since Ker ad = 0). The image Ad(G/Γ) is a virtual subgroup of O(dim g) with
the Lie algebra g, and, since g′ = g, it is a Lie subgroup (this can be easily deduced from
the description of virtual subgroups given in Section 1.3.4.D). Thus, G/Γ is compact, and
Lie(G/Γ) = g.

4.2.2. The existence of a compact real form. Theorem. Every complex
semisimple Lie algebra possesses a compact real form.

Proof. Let g = h⊕ [
⊕
α gα] be a root decomposition of our Lie algebra. Let {hi (1 ≤

i ≤ r), eα (α ∈ {roots}} be a basis in g consisting of an arbitrary basis in hR ⊂ h and the
Weyl basis {eα ∈ gα} (Sections 3.6 and 3.9.2). Define a map σ: g → g by the formula

σ
(∑

i
µihi +

∑
α
λαeα

)
= −

∑
i
µihi +

∑
α
λαe−α.

It is obvious that σ is antilinear and that σ2 = id. Let us prove that σ is a Lie algebra
automorphism and that the restriction of the Killing form to Fixσ is negative definite.
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To prove that σ is a Lie algebra automorphism, it is sufficient to prove that

[σ(hi), σ(hj)] = σ[hi, hj], [σ(eα), σ(hi)] = σ[eα, hi], [σ(eα), σ(eβ)] = σ[eα, eβ].

The first is obvious: the both sides of the equality are equal to zero. Prove the second:

[σ(eα), σ(hi)] = [e−α,−hi] = −α(−hi)e−α = α(hi)e−α,

σ[eα, hi] = σ(α(hi)eα) = α(hi)e−α,

and the two results match, since α(hi) is real (see Section 3.6). Prove the third:

[σ(eα), σ(eβ)] = [e−α, e−β] = N−α,−βe−α−β ,

σ[eα, eβ] = σ(Nα,βeα+β) = Nα,βe−α−β ,

and the two results match, since Nα,β is real and coincides with N−α,−β .
To prove that the restriction of the Killing form to Fixσ is negative definite, take

ξ =
∑

i µihi +
∑
α λαeα and compute 〈ξ, σ(ξ)〉, that is

〈∑
i µihi +

∑
α λαeα,−

∑
i µihi +

∑
α λαe−α

〉
.

This expression is the sum of four inner products. The first is

〈
∑

i µihi,−
∑

i µihi〉 = −
∑
α α (

∑
i µihi)α (

∑
i µihi) = −

∑
α |α (

∑
i µihi)|2 < 0

(we used the fact that α(hi) is real, see Section 3.6). Next,
〈∑

α λαeα,
∑
α λαe−α

〉
=
∑
α λαλα〈eα, e−α〉 = −

∑
α |λα|2 < 0

(we used the facts that 〈eα, e−α〉 = −1 and 〈eα, eβ〉 = 0, if α + β %= 0, see Section 3.4).
And the remaining two inner products are zeroes, since for α %= 0, eα is orthogonal to h
(see again Theorem 1 of Section 3.4).

Remarks. (1) The last part of Proof shows, actually, that x, y #→ 〈x, σ(y)〉 is a
negative definite Hermitian form on g.

(2) Obviously, σ does not depend on the choice of a basis in hR.
(3) The most important result in Theorem is that the real form constructed is compact.

Without the requirement of compactness, it is very easy to find a real (even a rational)
form: take, for example, the space of all real (or rational) linear combinations of hα’s and
eα’s.

Exercise 2. Prove that for sl(n, C), the compact real form constructed in the last
proof is su(n), while the real and rational forms from Remark (3) above are sl(n, R) and
sl(n, Q).

4.3. Some further results. In this section we will discuss some further results
concerning real forms of complex semisimple Lie algebras. The reader can regard these
facts as exercises. The proofs and a lot of additional information is contained in a book
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by A. Onishchik and E. Vinberg “Lie groups and algebraic groups,” Springer Verlag, 1990
(available on the Web).

Proposition 1. For a complex semisimple Lie algebra, its compact form is unique
up to a conjugation.

This means the following. If σ, σ′: g → g are two antilinear involutions of a semisimple
complex Lie algebra g = Lie G with compact Fixσ, Fixσ′, then there exists a g ∈ G such
that the automorphism Ad g: g → g takes σ into σ′, that is, σ′ = Ad g ◦ σ ◦ Ad g−1.
Consequently, Ad g takes Fixσ into Fixσ′, in particular, the compact real Lie algebras
Fixσ, Fixσ′ are isomorphic.

A full classification of real forms of (semi)simple complex Lie algebras is known. Be-
fore stating the results, we will describe the most important technical means for this
classification.

Two real forms corresponding to antilinear involutions σ, τ : g → g are compatible, if
σ ◦ τ = τ ◦ σ (equivalently, σ(Fix τ) ⊂ Fix τ, τ(Fixσ) ⊂ Fixσ).

Proposition 2. Every linear form of a semisimple complex Lie algebra is compatible
with a unique compact real form. More precisely, for every antilinear involution σ: g → g
there exists a unique antilinear involution τσ: g → g such that σ ◦ τσ = τσ ◦ σ and Fix τσ is
compact.

For a given σ, the composition σ ◦ τσ is a complex Lie algebra involution.
Proposition 3. The correspondence σ #→ σ ◦ τσ provides a bijection between the

conjugacy classes of real forms of a semisimple complex Lie algebra and involutive auto-
morphisms of this Lie algebra.

Involutive automorhisms can be classified in terms of root systems. We will formulate,
at least for classical Lie algebras, a final result. We will denote by H the quaternion algebra,
by En the identity matrix of order n and also use the following notations:

Sm =

...........................................................................................................................................................................................................

0

Em 0

−Em

...........................................................................................................................................................................................................

; Ip,q =

...........................................................................................................................................................................................................

Ep

0 −Eq

0
...........................................................................................................................................................................................................

; Kp,q =

...........................................................................................................................................................................................................

Ip,q

Ip,q

0

0

...........................................................................................................................................................................................................

.

Proposition 4. The following involutive automorphisms θ: g → g form full systems of
representatives of conjugacy classes of involutive automorphisms of classical simple complex
Lie algebras.

(1) g = sl(n, C), n ≥ 2:
(a) θ(X) = −Xt;
(b) θ(x) = −AdSm(Xt) (n = 2m);
(c) θ = Ad Ip,n−p (p = 0, 1, . . . , [n/2]).

(2) g = so(n, C), n = 3 or n ≥ 5:
(a) θ = Ad Ip,n−p (p = 0, 1, . . . , [n/2]);
(b) θ(x) = AdSm (n = 2m).

(3) g = sp(n, C), n = 2m ≥ 2:
(a) θ(x) = Ad Sm (n = 2m).
(b) θ = Ad Kp,m−p (p = 0, 1, . . . , [m/2]).
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The corresponding real forms (or, at least, the notations for them) are listed in the
following statement.

Proposition 5. Every real form of the simple complex Lie algebra g is isomorphic
to precisely one of the following.

(1) g = sl(n, C), n ≥ 2:
(a) sl(n, R);
(b) sl(m, H) (n = 2m);
(c) su(p, n− p) (p = 0, 1, . . . , [n/2]).

(2) g = so(n, C), n = 3 or n ≥ 5:
(a) so(p, n− p) (p = 0, 1, . . . , [n/2]);
(b) u(m, H) (n = 2m).

(3) g = sp(n, C), n = 2m ≥ 2:
(a) sp(n, R) (n = 2m).
(b) sp(p, m− p) (p = 0, 1, . . . , [m/2]).

Real forms of exceptional complex Lie algebras are also all known. Here, we restrict
ourselves to mentioning that the numbers of non-isomorphic real forms of the Lie algebras
of the types G2, F4, E6, E7, E8 are, respectively, 1, 2, 4, 4, 2.

5. Survey of the representation theory. In this section, we will briefly discuss
some classical results regarding finite-dimensional representations of finite-dimensional
semisimple complex Lie algebra. We may occasionally mention the infinite-dimensional
case, but, if the opposite is not explicitly stated, g denotes a finite-dimensional semisimple
complex Lie algebra, h denotes a Cartan subalgebra with a specified sets of positive and
negative roots: this sets will be denoted as ∆+ and ∆−. Then g = n− ⊕ h ⊕ n+ where
n± = ⊕α∈∆±gα. These n−, h, n+ are subalgebras of g, n− and n+ are nilpotent, h is com-
mutative, and [h, n±] ⊂ n±. If the opposite is not stated, we assume the representations
considered finite-dimensional.

5.1. Weights and highest weights.
5.1.1. Definitions and main results. Let V be a representation of g, and let

λ: h → C be a linear map. A non-zero vector v ∈ V is called a weight vector of type λ,
or a vector of weight λ, if hv = λ(h)v for every h ∈ h (this definition should replace a
definition of weights considered in Sections 2 and 3). The set V λ of all vectors of a given
weight λ (plus the zero vector) is called the weight space. We will refer to λ’s with V λ %= 0
as to weights of the representation. A weight vector v is called a highest weight vector, if,
in addition of the assumption above, gv = 0 for every g ∈ n+.

Proposition 1. If dimV < ∞, then V contains a highest weight vector.
Proof. First, we construct a weight vector. Let h1, h2, . . . hr be a basis in h. The

operator h1: V → V has at least one eigenvector; let the corresponding eigenvalue be λ1.
Let V1 = {v ∈ V | h1v = λ1v}; this is a non-zero subspace of V . Since [h1, h2] = 0, the
space V1 is h2-invariant: for v ∈ V1, h1(h2v) = h2(h1v) = h2(λ1v) = λ1h2v, so h2v ∈ V1.
The operator h2: V1 → V1 has at least one eigenvector; let the corresponding eigenvalue be
λ2 and let V2 = {v ∈ V1 | h2v = λ2v}; this is a non-zero subspace of V2. Proceeding in the
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same way with h3, . . . , hr, we obtain a chain of subspaces V ⊃ V1 ⊃ V2 ⊃ . . . ⊃ Vr %= 0
and numbers λ1, λ2, . . . , λr such that hiv = λiv for every v ∈ Vr and every i. Then every
non-zero element of Vr is a vector of weight λ where λ(hi) = λi.

Now let us pass to highest weight vectors. Choose an h0 ∈ hR ⊂ h such that α(h0) is a
positive real number for every α ∈ ∆+. Choose a non-zero eα in every gα (we can use a Weyl
basis, but it is not necessary at the moment). Let v ∈ V be a vector of weight λ. If eαv = 0
for every α ∈ ∆+, then v is a highest weight vector, and we have nothing to do. Let eαv %= 0
for some α ∈ ∆+. Then the vector eαv is a weight vector of type λ + α. Indeed, heαv =
eαhv +[h, eα]v = eα(λ(h)v)+α(h)eαv = (λ(h)+α(h))eαv. Again, if eβ(eαv) = 0 for every
β ∈ ∆+, or there arises a weight vector eβeαv of type λ+α+β. We iterate this process with
two possible results. Either we arrive, at some step, at a highest weight vector eω . . . eβeαv,
or we obtain an infinite sequence v, eαv, eβeαv, eγeβeαv, . . . of weight vectors of types
λ, λ+α, λ+α+β, λ+α+β+γ, . . .. In particular, vectors in our sequence are eigenvectors
of h0 with eigenvalues λ(h), λ(h)+α(h), λ(h)+α(h)+β(h), λ(h)+α(h)+β(h)+γ(h), . . .,
and all these eigenvalues are different. This contradicts to the finite-dimensionality of V .
Thus, our procedure yields a highest weight vector.

Proposition 2. If the representation V is irreducible, then a highest weight vector
in V is unique up to a proportionality.

Proof. Let v ∈ V be a highest weight vector. Consider all vectors e−αk . . . e−α2e−α1v
for all sequences α1, . . . , αk of positive roots and for all k ≥ 0. Let W ⊂ V be a subspace
spanned by all these vectors. We state that W is a subrepresentation of V .

Indeed, W is invariant with respect to h (since e−αk . . . e−α2e−α1v is a weight vector
of type λ − α1 − . . .− αk. In is obviously invariant with respect to n−. Now let us prove
that it is invariant with respect to n+. We want to prove that for all α, α1, . . . , αk ∈ ∆+,
w = eα(e−αk . . . e−α1v) ∈ W . We apply induction with respect to k: for k = 0, w = eαv =
0, since v is a highest weight vector. Let [eα, e−αk ] = aeα−αk (if α−αk is not a root, then
a = 0). Then

w = eα(e−αk . . . e−α1v) = e−αkeαe−αk−1 . . . e−α1v + aeα−αke−αk−1 . . . e−α1v,

and both summands belong to W by the induction hypothesis and invariance of W with
respect to n− and h (whether α−αk is a positive root, a negative root, zero, or not a root
at all).

Since V is irreducible, we conclude that W = V . This shows that V is a direct sum of
weight spaces V µ, and every µ has the form λ−α1− . . .−αk where αi is a positive root (we
use the fact that the sum of weight spaces of different weights has to be direct). The space
V λ is one-dimensional and is generated by v; for all other weight spaces V µ, µ(h0) < λ(h0).

Let now w ∈ V be another highest weight vector. It belongs to a weight space V µ. If
µ = λ, then w is proportional to v. Otherwise, µ(h0) < λ(h0). Apply to w the construction
from the beginning of this proof. We will obtain a subrepresentation of V which is spanned
by weight vectors of types ν with ν(h0) ≤ µ(h0). Hence, this subrepresentation does not
contain v, and it cannot exist, because V is irreducible. This completes our proof.

Remark. Proposition
Proposition 3. Every finite-dimensional representation of a finite-dimensional semi-

simple complex Lie algebra is decomposed into a direct sum of weight spaces.
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Proof. For irreducible representations, this was stated and proved in the previous
proof. In general case, it is true, because every finite-dimensional representation is a direct
sum of irreducible representations (the Weyl theorem, Section 3.3.1).

Notice that Proposition 2 provides an algorithm for decomposing of a given finite-
dimensional representation into the sum of irreducible representation: it is sufficient to
find all highest weight vectors and then choose a maximal family of linear independent
highest vectors. The vectors of this family will generate the irreducible components. (This
decomposition is unique if and only if every pair of non-proportional highest weight vectors
have different types.)

5.1.2. Examples. Let g = sl(n, C) (n ≥ 2), and let V be (the space of) the natural
n-dimensional representation of g. Fix a basis e1, . . . , en in V . Then n−, h, n+ consist,
respectively, of strictly low triangular, diagonal, and upper triangular matrices. The al-
gebra n+ is generated by Ei = Ei,i+1, i = 1, . . . , n − 1; the algebra n− is generated by
Fi = Ei+1,i, i = 1, . . . , n−1; the algebra h has a basis Hi = Ei,i−Ei+1,i+1, i = 1, . . . , n−1.
Obviously, Eiek = δi,k−1ek−1, Fiek = δikek+1, Hiek = (δik − δi,k−1)ek.

Consider the representation V ⊗V (as usual, A(v⊗w) = Av⊗w+v⊗Aw). The vectors
ek⊗e# are all weight vectors (the type λk# of ek⊗e# is λk#(Hi) = δik +δi#−δi,k−1−δi,#−1).

Exercises. 1. Prove that e1 ⊗ e1 and e1 ⊗ e2 − e2 ⊗ e1 are highest weight vectors in
V ⊗ V , and every highest weight vector in V ⊗ V is proportional to one of these two.

2. Prove that the irreducible components of V ⊗ V corresponding to the two highest
vectors of Exercise 1 are S2V and Λ2V .

Consider now tensor products of more than two copies of V .
Exercises 3. Prove that all the highest weight vectors in V ⊗ V ⊗ V are ae1 ⊗ e1 ⊗

e1 (a %= 0); b1e2 ⊗ e1 ⊗ e1 + b2e1 ⊗ e2 ⊗ e1 + b3e1 ⊗ e1 ⊗ e2 (b1 + b2 + b3 = 0, (b1, b2, b3) %=
(0, 0, 0); c(e1⊗ e2 ⊗ e3 − e1 ⊗ e3 ⊗ e2 − e2 ⊗ e1 ⊗ e3 + e2 ⊗ e3 ⊗ e1 + e3 ⊗ e1 ⊗ e2 − e3 ⊗ e2 ⊗
e1) (c %= 0). The first and the last vectors generate, respectively, the subrepresentations
S3V ⊂ V ⊗ V ⊗ V and Λ3V ⊂ V ⊗ V ⊗ V ; vectors from the second family generate
isomorphic representations of g. If we choose two linearly independent vectors from this
family, for example, e2 ⊗ e1 ⊗ e1 − e1 ⊗ e2 ⊗ e1 and e1 ⊗ e2 ⊗ e1 − e1 ⊗ e1 ⊗ e2, then we
obtain two isomorphic subrepresentations of V ⊗ V ⊗ V , and V ⊗ V ⊗ V becomes the sum
of four irreducible representations: these two and also S3V and Λ3V . The dimensions of
the four components are:

n(n + 1)(n + 2)
6

,
(n− 1)n(n + 1)

3
,

(n− 1)n(n + 1)
3

,
(n− 2)(n− 1)n

6
.

(Certainly, we assume that n ≥ 3; if n = 2, then the last component disappears.)
4. In general, V ⊗ . . .⊗ V︸ ︷︷ ︸

k

is a representation of the symmetric groupSk. It is naturally

decomposed into the sum of isotypic components corresponding to the types of irreducible
representations of Sk. Prove that every isotypic component is also a subrepresentation of
g and is a sum of isomorphic irreducible representations of g in the number equal to the
dimension of the corresponding irreducible representation of Sk.
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5.2. Representations with a given highest weight. The main goal of this
Section is to construct, for every linear function λ: h → C an irreducible, possibly infinite-
dimensional, representation of g with a highest weight λ and to show that this represen-
tation is unique up to isomorphism. We will also discuss the conditions which ensure the
finiteness of dimension, and will briefly discuss a generalization of the whole theory to a
class of infinite-dimensional Lie algebras.

5.2.1. Algebraic digression: universal enveloping algebras and induced
representations. Let A be a complex vector space(actually, the ground field may be
arbitrary). Consider the tensor albebra

T (A) =
∞⊕

k=0

(
⊗kA

)
,

that is,
T (A) = C⊕A⊕ (A⊗ A)⊕ (A⊗A⊗ A)⊕ . . . ;

the multiplication is given by the formula (a′
1⊗ . . .⊗ a′

p) · (a′′
1 ⊗ . . .⊗ a′′

q ) = a′
1⊗ . . .⊗ a′

p ⊗
a′′
1 ⊗ . . .⊗ a′′

q . This is a non-commutative (when A %= 0) graded associative unitary algebra
(with the identity element 1 ∈ C ⊂ T (A)).

Let now A be a complex Lie algebra g. In the tensor algebra T (g), consider the
two-sided ideal I(g) generated by all elements of the form

[ξ, η]− (ξ ⊗ η − η ⊗ ξ) ∈ g⊕ (g⊗ g) ⊂T (g), ξ, η ∈ g.

The associative unitary algebra U(g) = T (g)/I(g) is called the universal enveloping algebra
of g. This algebra is not graded any more, but is filtered: FpU(g) is the image in U(g) of⊕p

k=0

(
⊗kg

)
. We will denote the image of ξ1 ⊗ . . .⊗ ξk ∈ T (g) in U(g) as ξ1 . . . ξk.

The importance of the universal enveloping algebra U(g) stems mainly from the tau-
tological fact that a representation of a Lie algebra g is the same as a representation of
U(g), or, in a more traditional algebraic language, a U(g)-module.

For every ξ1, . . . , ξp ∈ g, the natural projection ⊗pg ⊂
⊕p

k=0

(
⊗kg

)
→ FpU(g) maps

ξ1 ⊗ . . .⊗ (ξi−1 ⊗ ξi)⊗ . . .⊗ ξp − ξ1 ⊗ . . .⊗ (ξi ⊗ ξi−1)⊗ . . .⊗ ξp into the same element as
ξ1 ⊗ . . .⊗ [ξi−1 ⊗ ξi]⊗ . . .⊗ ξp, that is, into an element of Fp−1U(g). Thus, there arises a
linear map

Spg → FpU(g)/Fp−1U(g). (∗)

Theorem (Poincaré-Birkhoff-Witt) The map (∗) is an isomorphism.
It is very easy to prove that (∗) is onto; the proof of vanishing the kernel is more

involved (although quite elementary). We will not prove it here; the proof is contained
in many books (see, for example, V. Varadarajan, “Lie groups, Lie algebras, and their
representations,” Springer Verlag Graduate Texts in Mathematics, Vol. 102, Section 3.2).

The Poincaré-Birkhoff-Witt theorem yields a construction of a basis in U(g).
Corollary. Let the Lie algebra g have a finite or countable basis g1, g2, g3, . . .. Then

the monomials gi1gi2 . . . gik with i1 ≥ i2 ≥ . . . ≥ ik form a basis in U(g). In particular,
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such monomials with k ≤ p form a basis in FpU(g). Also in particular, g is naturally
embedded into U(g).

The notion of the universal enveloping algebra is also used in the description of a very
important operation of extending representations of Lie subalgebras to representations of
Lie algebras. The extended representation is called the induced representation. Namely,
if V is a representation of h ⊂ g, that is, a U(h)-module, then we define the induced
U(g)-module as

Indg
h V = U(g)⊗U(h) V

(we use in this construction the fact that U(g) is a two-sided U(h)-module). Informally
speaking, for a g ∈ g − h and v ∈ V , we add to V an element gv, and similarly add all
g1 . . . gkv, taking into account, however, all relations; for example, g1g2v must be the same
as g2g1v + [g1, g2]v.

Notice that both universal enveloping algebras and indused representations may be
described in the language of adjoint functors.

Exercises (for those who are familiar with the notion of adjoint functors). 5. Prove
that the functor U :Lie → Asso (where Lie is the category of (say, complex) Lie algebras
and Asso is the category of associative algebras) is a left adjoint to the functor L:Asso →
Lie which assigns to an assotiative algebra A the Lie algebra A with the commutator
[a, b] = ab− ba.

6. Prove that the functor Indg
h: h-Mod → g-Mod is a left adjoint to the restriction

functor R: g-Mod → h-Mod.
5.2.2. Verma modules. Let g = n− ⊕ h⊕ n+ be a complex semisimple Lie algebra,

and let λ: h → C be a linear function. The function λ gives rise to a one-dimensional
representation Cλ of h: hz = λ(h) · z. The projection h ⊕ n+ → h makes Cλ a (still one-
dimensional) (h⊕ n+)-module. The g-module

M(λ) = Indg
h⊕n+

Cλ

is called the Verma module of type λ1). As an n−-module, the Verma module is a free
U(n−)-module with one generator; thus, if g1, g2, . . . is a basis in n− (one can use the basis
{e−α} with α ∈ ∆+), then a basis in M(λ) consists of gi1 . . . gikv where v = vλ is the
generator (called also the vacuum vector) and k ≥ 0, i1 ≥ . . . ≥ ik. This description may
be converted into an axiomatic definition of the Verma module independent of the inducing
operation: it is a module with a basis as above with an additional property: v is a highest
weight vector of type λ (the action of g in M(λ) described in this way is reconstructed
from the data in the spirit of the Proof of Proposition 2 in Section 5.1.1).

Remark. A description of a Verma module over sl(2, C) may be derived from Exercise
13 in Section 3.5, if an integer n is replaced by an arbitrary complex number λ.

1) J. Dixmier, in his book “Universal enveloping algebras” writes that it would be more
fair to call these modules Bernstein-Gelfand-Gelfand modules, but this term would be too
long. One can notice that, precisely as Poincaré-Birkhoff-Witt is commonly abbreviated
to PBW, Bernstein-Gelfand-Gelfand is commonly abbreviated to BG2.
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The most important (for us now) property of Verma modules lies in their “couniver-
sality.” Let V be an arbitrary (not necessarily finite-dimensional) representation of g, and
let v ∈ V be a highest weight vector of type λ.

Proposition. There exists a unique g-homomorphism ϕ: M(λ) → V which takes vλ
into v.

Proof. This homomorphism ϕ must take gi1 . . . gikvλ into gi1 . . . gikv, which proves
both its existence and uniqueness.

5.2.3. Irreducible representations with a given highest weight. The kernel
Kerϕ of the homomorphism µ of the last Proposition must be a submodule of M(λ) not
containing vλ (and thus not equal to M(λ)). Let us discuss submodules of M(λ). First of
all, M(λ) is, by construction, the direct sum of weight spaces M(λ)µ where every µ has the
form λ−α1−. . .−αk where k ≥ 0, αi1, . . . , αik ∈ ∆+. The space M(λ)λ is one-dimensional
and is generated by vλ. Here are two major properties of submodules of M(λ).

Proposition 1. If L is a submodule of M(λ), then L =
⊕

µ L ∩ M(λ)µ (in other
words, N has a basis consisting of weight vectors).

Proof. Indeed, L is also an h-submodule of the h-module M(λ).
Proposition 2. There exists a unique submodule L(λ) of M(λ) such that
(1) vλ /∈ L(λ),
(2) If L is a submodule of M(λ) not equal to M(λ), then L ⊂ L(λ).
Proof. L(λ) is the sum of all submodules of M(λ) not equal to M(λ). Notice that

a submodule of M(λ) is not equal to M(λ), if and only if it does not contain vλ, or,
equivalently, has zero intersection with M(λ)λ. Hence, the sum of such submodules also
has zero intersection with M(λ)λ.

The submodule L(λ) of M(λ) from Proposition 2 is called the maximal submodule of
M(λ).

Corollary of Proposition 2. The Verma module M(λ) is not irreducible if and
only if it contains a highest weight vector not proportional to vλ, or, equivalently, of type
not equal to λ.

Theorem. (1) M(λ)/L(λ) is an irreducible representation of g with the highest weight
λ.

(2) Every irreducible representation of g with a highest weight λ is isomorphic to
M(λ)#L(λ); in particular, such a representation is unique up to isomorphism.

Proof. Part (1) is obvious, Part (2) follows from Proposition in Section 5.2.2 and
Propositions 1 and 2 above. Indeed, let V be an irreducible representation of g with a
highest weight vector v of type λ. Proposition of Section 5.2.2 provides a homomorphism
ϕ: M(λ) → V with ϕ(vλ) = v and it must be onto, since its image is a subrepresentation of
V which contains v and hence is not zero. Hence V ∼= M(λ)/ Kerϕ. But Kerϕ %* vλ, it is a
submodule of M(λ) and it has to be maximal, since if Kerλ⊂

+=
L %* vλ, then V ⊃

+=
ϕ(L) %= 0,

so V is not irreducible. Thus, Kerϕ = L(λ) and V ∼= M(λ/L(λ).
This result demonstrates a great importance of two problems concerning Verma mod-

ules. First, this is a problem of reducibility/irreducibility. This problem has been fully
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solved for finite-dimensional semisimple Lie algebras and also for some important infinite-
dimensional Lie algebras. Regarding that, I can mention two works: V.G. Kac and D.A.
Kazhdan, “Structure of representations with highest weight of infinite-dimensional Lie
algebras,” Adv. Math., 34 (1978), 97–108, and Feigin B.L. and Fuchs, D.B., “Skew-
symmetric invariant differential operators and Verma modules over the Virasoro algebra,”
Funct. Anal. Appl., 16 (1982), 114–126.

The second problem is to determine whether the quotient M(λ)/L(λ) is finite-dimen-
sional. We will discuss this in the next section.

5.2.4. Finite-dimensional irreducible representations. Let again g be a finite-
dimensional semisimple Lie algebra. Recall that for every positive root α there arises a
subalgebra sα = gα⊕Chα⊕ g−α of g isomorphic to sl(2, C) (se Section 3.4). To make this
isomorphism more explicit, we can choose in it a basis Eα ∈ gα, Hα ∈ h, Fα ∈ g−α which
satisfies the commutator relations of sl(2): [Eα, Fα] = Hα, [Hα, Eα] = 2Eα, [Hα, Fα] =

−2Fα. For the moment, it is important for us that Hα =
2

〈α, α〉
hα (see Section 3.6). We

choose simple positive roots αi and abbreviate the notation Hαi to Hi (as well as Eαi and
Fαi to Ei and Fi; these last notations will be used in the next Section). Thus, H1, . . . , Hr

is a basis in h.
A weight λ: h → C is called integral dominant, if every λ(Hi) is a non-negative integer.
Theorem. The irreducible representation of g with the highest weight λ is finite-

dimensional if and only if the weight λ is integral dominant.
We will not give a full proof of this theorem; we restrict ourselves to the remark that

in one direction it is known to us. If the representation is finite-dimensional, then it is
also a finite-dimensional representation of every sα. We already know (from Section 3.5)
that the eigenvalues of the operator h in every finite-dimensional representation of sl(2)
are integers, and the maximal of them must be non-negative. This means precisely that
the highest weight is integral dominant. It remains to prove that if the highest weight is
integral dominant, then the representation is finite-dimensional. We will not do it here,
although it can be deduced, without much efforts, from our previous results.

Exercise 7. Determine the highest weights of the irreducible components of repre-
sentations V ⊗ V and V ⊗ V ⊗ V as described in Exercises 1, 2, and 3. Try to generalize
this to the representations of Exercise 4.

5.3. Generalizations: Kac-Moody Lie algebras. In Section 5.2.4, we described
elements Hi, Ei, Fi, i = 1, . . . , r (where r = dim h) of a complex semisimple Lie algebra
g. We distinguished the relations Ei, Fi] = Hi, [Hi, Ei] = 2Ei, [Hi, Fi] = −2Fi. Also, we
know that [Hi, Hj] = 0. There are some other relations which are described in terms of
the so called Cartan matrix. This is an r× r matrix A = ‖aij‖ determined by the formula

aij =
2〈αi, αj〉
〈αi, αi〉

where α1, . . . , αr are simple positive roots. The results of Section 3.6 imply that aii = 2
and if i %= j, then aij is a non-positive integer. It is also clear that the Cartan matrix is, in
general, not symmetric, but is symmetrizable, that is the matrix DA is symmetric, where
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D is the diagonal matrix with the diagonal entries 〈αi, αi〉. The Cartan matrix of a simple
Lie algebra is immediately reconstructed from the Dynkin diagram: the diagonal entries
are all 2, and the entry aij is 0, if the verices number i and j are not connected by edges,
are −2 or −3, if they are connected by a double or triple edge with the arrow directed
to the vertex number i, and −1 in all other cases. Thus, the Cartan matrices of the Lie
algebras of types Ar, Br, Cr, Dr are, respectively,

2
2

2
2

2

-1
-1

-1
-1 -1

-1

....
.....

.....

.............................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................

zeroes

zeroes 2
2

2
2

2

-1
-1

-1
-1 -1

-2

....
.....

.....

.............................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................

zeroes

zeroes 2
2

2
2

2

-1
-1

-1
-1 -2

-1

....
.....

.....

.............................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................

zeroes

zeroes 2
2

2
2

2

-1
-1

-1
-1

-1

-1
0

0

....
.....

.....

.............................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................

zeroes

zeroes

, , , ;

the Cartan matrices of the exceptional Lie algebras of types G2, F4, E6, E7, E8 are, respec-
tively,

2 -1
-3 2

2 -1 0 0
-1 2 -1 0
0 -2 2 -1
0 0 -1 2

2 -1 0 0 0 0
-1 2 -1 0 0 0
0 -1 2 -1 0 -1
0 0 -1 2 -1 0
0 0 0 -1 2 0
0 0 -1 0 0 2

2 -1 0 0 0 0 0
-1 2 -1 0 0 0 0
0 -1 2 -1 0 0 0
0 0 -1 2 -1 0 -1
0 0 0 -1 2 -1 0
0 0 0 0 -1 2 0
0 0 0 -1 0 0 2

2 -1 0 0 0 0 0 0
-1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 0 0
0 0 -1 2 -1 0 0 0
0 0 0 -1 2 -1 0 -1
0 0 0 0 -1 2 -1 0
0 0 0 0 0 -1 2 0
0 0 0 0 -1 0 0 2

......................................................................................................................................................................................................

......................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................................................................................
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,
,

, ,
.

The results of Section 3.6 imply that the generators Hi, Ei, Fi of g satisly some addi-
tional relations.

Exercise 8. Prove that the following relations hold:

[Hi, Ej] = aijEj, (adEi)−aij+1Ej = 0,

[Hi, Fj] = −aijFj , (adFi)−aij+1Fj = 0.

Together with relations listed before, these relations compose the following system of
Cartan-Kac-Moody relations between the generators Hi, Ei, Fi:

[Hi, Hj] = 0, [Ei, Fj] = δijHi,

[Hi, Ej] = aijEj, (ad Ei)−aij+1Ej = 0,

[Hi, Fj ] = −aijFj , (ad Fi)−aij+1Fj = 0.

(CKM)

Let now A = ‖aij‖ be an integral r × r symmetrizable matrix (that is, there exists
an integral diagonal matrix D with positive diagonal entries such that the matrix DA
is symmetric) with aii = 2 and aij ≤ 0 when i %= j. Notice that the symmetrizability
condition implies that aij = 0 if and only if aji = 0. We say that A is reducible, if the
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set {1, . . . , r} splits into the union I ∪ J of two non-empty subsets such that aij = 0 for
i ∈ I, j ∈ J , and is irreducible, if it is not reducible.

Definition. The Lie algebra g(A) with 3r generators Hi, Ei, Fi, i = 1, . . . , r and
relations (GKM) is called a Kac-Moody Lie algebra with the Cartan matrix A. The
number r is called the rank of the Lie algebra g(A).

Notice that there exist several, not fully equivalent, definitions of Kac-Moody Lie
algebras. In the most general definition, A is an arbitrary symmetrizable complex r × r
matrix; however, in this case the last two relations must be changed.

Proofs of the most part of results formulated below can be found in the book by V.G.
Kac, “Infinite-dimensional Lie algebras,” Cambridge University Press, 1990.

Theorem 1. The class of complex semisimple Lie algebras coincides with the class
of Kac-Moody algebras g(A) with positive definite symmetrized Cartan matrix DA.

For non-negative integers k1, . . . , kr, not all of which are zeroes, denote by g(A)k1,...,kr

the subspace of g(A) spanned by all commutator monomials [Ei1 , [Ei2 , . . . , [EiN−1, EiN ] . . .]]
such that precisely kj of the indices is is equal to j (thus, k1 + . . . + kr = N). The space
g(A)−k1,...,−kr is defined in the same way with F instead of E. The space spanned by
H1, . . . , Hr is denotes by h.

Theorem 2. The space h is r-dimensional (that is, H1, . . . , Hr are linearly indepen-
dent). The vector space g(A) is a direct sum

[⊕
k1,...kr

g(A)−k1,...,−kr

]
⊕ h⊕

[⊕
k1,...kr

g(A)k1,...,kr

]
,

and this direct sum decomposition determines a Z⊕ . . .⊕ Z grading of g(A).
The first and the last summands of the decomposition in Theorem 2 are subalgebras

of g(A), which can be denoted, in analogy with the finite-dimansional case, as n− and
n+. If the matrix A is non-degenerate, then the decomposition is a root decomposition as
was defined before (the root λ: h → C corresponding to gk1,...,kn is defined by the formula
λ(Hi) =

∑
j aijkj). If the matrix A is degenerate, then g(A) has a center (containing in

h), and the weight decomposition is coarser than the decomposition of Theorem 2.
The case closest to the finite-dimensional case is the case when the matrix DA has

r − 1 positive eigenvalues and one zero eigenvalue.
Theorem 3. The class of Kac-Moody algebras g(A) with the eigenvalues of the matrix

DA being as described above coincides with the class of infinite-dimensional Kac-Moody
algebras with (at most) polynomial growth of dk = dim

⊕
k1+...+kr=k g(A)k1,...,kr .

Kac-Moody algebras of this group are called affine. If r = 2, there are (up to swapping
rows and columns) two matrices A of this class:

[
2 −2

−2 2

]
and

[
2 −1

−4 2

]
.

The spaces g(A)k1,k2 are presented, schematically, in the following diagram. Black dot
correspond to h, the dimension is 2; the basis of h is {H1, H2}, and the element H1 + H2
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for the left diagram and H1 +2H2 for the right diagram is central. White dots correspond
to 1-dimensional spaces.
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Exercises. 8. Prove that after factorizing over the center, the first algebra becomes
isomorphic to sl(2, C)⊗C[t, t−1]. The elements E1, E2, F1, F2 correspond, with respect to
this isomorphism, to

[
0 0
t 0

]
,

[
0 1
0 0

]
,

[
0 t−1

0 0

]
,

[
0 0
1 0

]
.

9. Let A and B be the spaces of skew-symmetric and symmetric matrices in sl(3, C).
Prove that, after factorizing over the center, the second algebra becomes isomorphic to a
subalgebra of sl(3, C) consisting of elements of the form

. . . + t−3b−3 + t−2a−2 + t−1b−1 + a0 + tb1 + t2a2 + t3b3 + . . .

(finite sum) where . . . , b−3, b−1, b1, b3, . . . ∈ B, . . . , a−2, a0, a2, . . . ∈ A.
A full classification of affine Lie algebras is known. There are two kinds of them, both

represented for r = 2. They are either g⊗ C[t, t−1] where g is a finite-dimensional simple
Lie algebra, or are constructed from a finite-dimensional simple Lie algebra and a finite
order automorphism of its Dynkin diagram (this order is 2, except an automorphism of
order 3 of the Dynkin diagram D4).
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For other type of Cartan matrices, the growth of the dimensions dk is exponential.
To demonstrate this phenomenon, we show, in the diagram below, the dimensions of the

spaces g(A)k1,k2 for A =
[

2 −1
−5 2

]
.
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If the Cartan matrix is reducible, then the Kac-Moody algebra splits into a direct sum
of two Kac-Moody algebras. If it is irreducible, then the Kac-Moody algebra is graded
simple, that is, it does not have proper ideals I such that I =

⊕[
I ∩ g(A)k1,...,kr

]
.

Exercise 10. Prove that the Kac-Moody algebras of Exercises 8 and 9 are graded
simple, but not simple.

The theory of Sections 5.2.2 and 5.2.3 can be extended to Kac-Moody algebras without
essential changes. The same is true regarding the definitions and formulas of the next
Section. See details in the book of Kac cited above.

5.4. Formulas for dimensions. We return to the representations of a finite-
dimensional complex semisimple Lie algebra g.

5.4.1. The Weyl dimension formula. Let ρ be one half of the sum of all positive
roots of g and let V (λ) be the space of the irreducible finite-dimension representation of g
with th highest weight λ.

Theorem (Weyl).

dim V (λ) =
∏

α∈∆+

〈λ+ ρ, α〉
〈ρ, α〉 .

Proof see in the books of Varadarajan (see reference on Page 74) or Onishchik–Vinberg
(reference on Page 70). The reader can try to prove it as an exercise.

Exercise 11. Let m1, . . . , mn be positive integers. Prove that the dimension of the
ireducible representation of sl(n + 1, C) with the highest weight λ defined by the formula
λ(Hi) = mi − 1 (where Hi = Eii −Ei+1,i+1) is

∏

1≤i≤j≤n

mi + mi+1 + . . . + mj

j − i + 1
.

Exercise 12. Deduce from this formula the results of Exercises 1–3 of Section 5.1.2.
5.4.2. The Freudenthal formula. The dimension formula of Section 5.4.1 does

not solve the problem of computing the dimensions of the weight spaces. Denote by dµ(λ)
the dimension of the weight space V (λ)µ (if µ is not a weight os a representation V (λ),
then dµ(λ) = 0). We know that dλ(λ) = 1. the following formula provides a recursive
procedure of computing dimensions dµ(λ) when all dν(λ) with ν = µ + α1 + . . . + αk for
α1, . . . , αk ∈ ∆+ are known.

Theorem (Freudenthal).

[〈λ+ ρ, λ+ ρ〉 − 〈µ + ρ, µ + ρ〉]dµ(λ) = 2
∑

α∈∆+,k>0

〈µ + kα, α〉dµ+kα(λ).

Proof; the same references as for the Weyl theorem in Section 5.4.1.
Notice that the Freudental formula cannot be used for computing dµ(λ), if 〈λ+ρ, λ+

ρ〉 = 〈µ + ρ, µ + ρ〉. Notice also that this formula cn be applied for infinite-dimensinal
representations (of a finite-dimensional semisimple Lie algebra) with highest weight.
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Exercise 13. Let g = sl(2). Then there is only one positive root, α, ρ =
α

2
, 〈ρ, ρ〉 =

〈α, α〉
4

=
1
2
. Deduce from the Freudenthal formula that if λ = nρ, µ = mρ, then

dµ(λ) =






0, if n−m /∈ 2Z≥0;
1, if n−m ∈ 2Z≥0, and n /∈ Z≥0;
1, if n ∈ Z≥0, and m = n, n− 2, . . . , 2− n,−n.

5.4.3. The Weyl character formula. We use the notation of Section 5.4.2. The
character of the representation V (λ) with the highest weight λ is, by definition,

Ch V (λ) =
∑

µ

dµ(λ)eµ

where eµ is a symbol satisfying the rule eµeν = eµ+ν . To state the Weyl formula for
Ch V (λ) we need the notion of the Weyl group.

For a non-zero ξ ∈ h∗ we define sξ: h → h as a reflection in the hyperplane {ξ(h) = 0};
for a non-zero root α,

sα(h) = h− α(h)hα.

The Weyl group W = W (g) of g is defined as the subgroup of the group of orthogonal
transformations of h generated by sα, α ∈ ∆+. It is possible to prove that the Weyl group
(for a finite-dimensional semisimple Lie algebra) is always finite.

A better known definition of the Weyl group is given in terms of compact Lie groups.
Let G be a compact semisimple Lie group, and let T bi its “maximal torus”, that is, a
subgroup corresponding to a Cartan subalgebra of LieG. Then W (G) = N(T )/T where
N(T ) is the normalizer of T .

Exercises. 14. For sl(n, C) the Weyl group is isomorphic to the symmetric group
Sn.

15. For o(2n + 1) and sp(n), the Weyl group is isomorphic to the group of transfor-
mations of Cn which permute the vectors e1, . . . , en of the standard basis and change signs
at some of them.

16. For o(2n), the Weyl group is isomorphic to the group of transformations of Cn

which permute the vectors e1, . . . , en of the standard basis and change signs at an even
number of them.

17. Describe the group W (G2) (it must have the order 12).
There is a homomorphism ε: W → {±1} such that ε(sα) = −1 for every α.
Theorem (Weyl)

Ch V (λ) =
∑

w∈W ε(w)ew(λ+ρ)

eρ
∏
α∈∆+(1− e−α)

.

There exists a generalization of the Weyl group and the Weyl character formula (called
the Weyl-Kac character formula) to arbitrary Kac-Moody Lie algebras. This can be found
in the Kac book (mentioned in Section 5.3).

Dixi.
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