Categorified Möbius Inversion

\newcommand\fsnmod{\fS_n\mathrm{-mod}} \newcommand\fS{\mathfrak{S}} \newcommand{\thin}{\mathrm{thin}} \newcommand{\KR}{\mathrm{KR}} \newcommand{\Exp}{\mathrm{Exp}} \newcommand{\sheaf}{\mathrm{sheaf}} \newcommand{\Aut}{\mathrm{Aut}} \newcommand{\Ind}{\mathrm{Ind}} \newcommand{\bad}{\mathrm{bad}} \newcommand{\cyc}{\mathrm{cyc}} \newcommand{\red}{\mathrm{red}} \newcommand{\im}{\mathrm{im}\,} \newcommand{\MBC}{\mathrm{M}_{\mathrm{BC}}} \newcommand{\ldp}{\lessdot^\prime} \newcommand{\simp}{\mathrm{simp}} \newcommand{\Ch}{\mathrm{Ch}} \newcommand{\ch}{\mathrm{ch}} \newcommand{\gr}{\mathrm{gr}} \newcommand{\FCH}{F^{\mathrm{Ch}}} \newcommand{\HCH}{H^{\mathrm{Ch}}} \newcommand{\FCS}{F^{\mathrm{CS}}} \newcommand{\HCS}{H^{\mathrm{CS}}} \newcommand{\FKH}{F^{\mathrm{Kh}}} \newcommand{\FVAND}{F^{\mathrm{Vand}}} \newcommand{\HVAND}{H_F^{\mathrm{Vand}}} \newcommand{\NBC}{\mathrm{NBC}} \newcommand{\BCC}{\mathrm{BC}} \newcommand{\cell}{\mathrm{cell}} \newcommand{\Kh}{\mathrm{Kh}} \newcommand{\hb}{\mathrm{hb}} \newcommand{\RGF}{\mathrm{RA}} \newcommand{\rank}{\mathrm{rank}} \newcommand{\Ob}{\mathrm{Ob}} \newcommand{\Decat}{\mathrm{Decat}} \newcommand{\qdim}{q\mathrm{dim} } \newcommand{\op}{\mathrm{op}} \newcommand{\Br}{\mathrm{Br}} \newcommand{\id}{\mathrm{id}} \newcommand{\Hom}{\mathrm{Hom}} \newcommand{\Int}{\mathrm{Int}} \newcommand{\Funct}{\mathrm{Funct}} \newcommand{\OP}{\mathcal{OP}} \newcommand{\PP}{\mathcal{P}} \newcommand{\rk}{\mathrm{rk}} \newcommand{\qrk}{q\mathrm{rk}} \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\zp}{\mathbb{Z}_p} \newcommand{\pinch}{\hspace{.5mm}\usebox\opinch\hspace{.5mm}} \newcommand{\vcplx}{\mathcal{C}^*(D,\vec{x})} \newcommand{\vkcplx}{\mathcal{C}^k(D,\vec{x})} \newcommand{\vhcplx}{\mathcal{H}^*(D,\vec{x})} \newcommand{\vkhcplx}{\mathcal{H}^k(D,\vec{x})} \newcommand{\tvcplx}{\mathcal{C}^*(T_{2,n},\vec{x})} \newcommand{\tvkcplx}{\mathcal{C}^k(T_{2,n},\vec{x})} \newcommand{\tvhcplx}{\mathcal{H}^*(T_{2,n},\vec{x})} \newcommand{\tvkhcplx}{\mathcal{H}^k(T_{2,n},\vec{x})} \newcommand{\vsdiag}{[\![D]\!]} \newcommand{\inv}{\mathrm{inv}} \newcommand{\fix}{\mathrm{fix}} \newcommand{\sgn}{\mathrm{sgn}} \newcommand{\bott}{\mathrm{bot}} \newcommand{\topp}{\mathrm{top}} \newcommand{\ins}{\mathrm{ins}} \newcommand{\Zndiag}{\Z^n_+\mathrm{-}\mathbf{diag}} \newcommand{\Mor}{\mathrm{Mor}} \newcommand{\Cone}{\mathrm{Cone}} \newcommand{\wtilde}[1]{{\stackrel{\sim}{\smash{#1}\rule{0pt}{1.1ex}}}} \newcommand{\mc}[1]{\mathcal{#1}} \definecolor{forest}{rgb}{0.03, 0.47, 0.19} \newcommand{\ACcom}[1]{{\textcolor{forest}{{\sf AC:} #1}}} \newcommand{\Zmod}{\Z\textbf{-mod}} There are many ways to imagine categorifying Möbius functions on posets, and Möbius inversion. [This paper](https://arxiv.org/abs/1402.2131) gives quite a good survey of the methods which have previously been explored. For my research, I find that I require a homological categorification. By this, I mean replacing the incidence algebra on a locally finite poset $P$ by a category of functors from intervals of $P$ to the homotopy category $K(\mathcal{A})$ of bounded chain complexes over an abelian category $\mathcal{A}$. If you'd like, just take $\mc{A}$ to be the category of abelian groups and homomorphisms, or a more general module category if that would be preferable. Note: The ideas here do not turn out to quite give the machinery I am looking for, which is why I am publishing it on my blog as opposed to on the arXiv. However, I hope this post will eventually lead to a proper article. Please share any thoughts you might have or ideas to improve the construction. **Definition** Let $P$ be a locally finite poset, and let $\Int(P)$ denote the poset of intervals of $P$ partially ordered by inclusion. Let $\mc{A}$ be a monoidal abelian category. The *incidence category* of $P$ is the functor category $$\mc{I}(P)=[\Int(P),K(\mc{A})]$$ whose objects are functors from $\Int(P)$ to $K(\mc{A})$ and whose morphisms are natural transformations. We will use the shorthand notation $F([a,b])=F(a,b)$. Next we define a monoidal structure on $\mc{I}(P)$ which categorifies the multiplication in the incidence algebra. Note for any functor $F:P\to \mc{A}$, where $\mc{A}$ is monoidal abelian, we can always define the *dual functor* $F^*:P^*\to\mc{C}$ via $F^*(x)=\Hom(F(x),1)$ where $1$ is the monoidal identity in $\mc{A}$. For $a\leq b$ in $P$, define $$F^*(b\leq a):\Hom(F(b),1)\to\Hom(F(a),1)$$ by sending $g:F(b)\to 1$ to $g\circ F(a\leq b):F(a)\to 1$. **Definition** Define the *convolution* functor $*:\mc{I}(P)\times\mc{I}(P)\to\mc{I}(P)$ via $$(F*G)(a,b)=\bigoplus_{z\in[a,b]}F(a,z)\otimes G^*(z,b)$$ with differential \ACcom{maybe this should use the differentials in $F(a,z)$ and $G(z,b)$ instead of the functors action on morphisms, and the last part uses functors action on morphisms} $$d=\sum_{a\leq z\lessdot w\leq b}F\bigg([a,z]\subseteq[a,w]\bigg)\otimes G^*\bigg([z,b]\supseteq[w,b]\bigg)$$ and $(F*G)\bigg([a,b]\subseteq [c,d]\bigg)$ is determined by its matrix elements $(F*G)\bigg([a,b]\subseteq [c,d]\bigg)_{z,w}$ for $z\in[a,b],w\in[c,d]$, where $$(F*G)\bigg([a,b]\subseteq [c,d]\bigg)_{z,w}=\delta_{z\leq w}F([a,z]\subseteq[c,w])\otimes G([w,b]\subseteq[z,d]))$$ where $\delta_{z\leq w}$ is $1$ if $z\leq w$ and $0$ otherwise. Given a morphism $(\eta_1,\eta_2):(F_1,G_1)\to (F_2,G_2)$, where $\eta_1:F_1\to G_1,\eta_2:F_2\to G_2$ are natural transformations on functors $F_1,F_2:\Int(P)\to K(\mc{A})$, $G_1,G_2:\Int(P^*)\to K(\mc{A})$, define $\eta_1 *\eta_2:F_1*G_1\to F_2*G_2$ as follows. Given $x\in P$ define $$(\eta_1*\eta_2)_x=(\eta_1)_x\otimes(\eta_2)_x.$$ To show that $\eta_1*\eta_2$ is a natural transformation, we must show the following diagram commutes \begin{tikzcd} (F_1*G_1)(X\otimes Y)\arrow[r,"f"]\arrow[d]&F_2*G_2\arrow[d]\\ C\arrow[r]&D \end{tikzcd} **Lemma** Suppose that the functors $F$ and $G$ assign complexes with trivial differential. Then the convolution $F*G$ is well defined. **Example** Given any functor $F\in \mc{I}(P)$, applying homology $H^*$ gives a new functor $H^*F\in\mc{I}(P)$, where $(H^*F)(a,b)=H^*(F(a,b))$ is interpreted as having all zero differentials. \ACcom{since we are in the homotopy category, do we have $F=H^*F$? Or do we need to pass to the derived category?} **Example** Suppose $F\in\Funct(P,\mc{A})$. Define $\hat{F}\in\mc{I}(P)$ via $\hat{F}(a,b)=C^*_{\sheaf}(F|_{[a,b]})$, where the action on inclusions of intervals is the induced one. **Example** Define the functor $1_{\mc{A}}^P=1$ sending each $x\in P$ to the monoidal identity $1_{\mc{A}}$ and for any $x\leq y\in P$, $1(x\leq y)$ is the identity map on $1_{\mc{A}}$. Then we get a functor $\hat{1}=\hat{1}_{\mc{A}}^P\in\mc{I}(P)$. **Example** Define the *delta functor* $\Delta:\Int(P)\to K(\mc{A})$ via $\Delta(a,a)=1_{\mc{A}}$ $\Delta(a,b)=0_{\mc{A}}$ if $a\neq b$. **Example** Define the *Zeta functor* $Z:\Int(P)\to K(\mc{A})$ sending each nonempty interval $[a,b]$ to $1_{\mc{A}}$ and each inclusion of intervals to the identity map on $1_{\mc{A}}$. Notice that $Z=1_{\mc{A}}^{\Int(P)}$. **Definition** A *Möbius functor* for $P$ (with respect to $\mc{A}$) is a functor $M\in\mc{I}(P)$ such that $$M*Z=D=Z*M.$$ Recall for a poset $P$ and $a,b\in P$, the Möbius function $\mu$ satisfies that $\mu(a,b)$ is equal to the reduced Euler characteristic of the order complex $\Delta(a,b)$, the simplicial complex whose elements are subsets $S\subseteq (a,b)$ which are totally ordered in $P$. This suggests the categorified version $M$ of $\mu$ should satisfy $M(a,b)=H^*(\Delta(a,b))$ or even associate to $(a,b)$ the poset homology complex $C^*((a,b),1)$ where $1$ is the functor $1:(a,b)\to\mc{A}$ sending each element to the monoidal identity and all arrows to identity maps. In the case that $P$ is thin, the complex $C^*((a,b),1)$ is much simpler than the chain complex associated to the order complex, but is homotopy equivalent in the case of $\Zmod$ (derived equivalent in general?). **Definition** Define the contravariant functor $M:\Int(P)\to K(\mc{A})$ as follows: $M(a,a)=\Z_{(0)}$, $M(a,b)=\Z_{(1)}$ for $a\lessdot b$, and $M(a,b)=H^*(\Delta(a,b))$ for $a
Alex Chandler
Alex Chandler
Krener Assistant Professor

My research interests include machine learning, algebraic combinatorics, categorification, graph theory, knot theory, low dimensional topology, topological combinatorics.

Related