On Cohen-Macaulay Hopf Monoids in Species

In this paper, by Jacob White, the focus is on the study of Cohen-Macaulay Hopf monoids in the category of species. Some insights from the abstract: “The goal is to apply techniques from topological combinatorics to the study of polynomial invariants arising from combinatorial Hopf algebras. Given a polynomial invariant arising from a linearized Hopf monoid, we show that under certain conditions it is the Hilbert polynomial of a relative simplicial complex. If the Hopf monoid is Cohen-Macaulay, we give necessary and sufficient conditions for the corresponding relative simplicial complex to be relatively Cohen-Macaulay, which implies that the polynomial has a nonnegative h-vector. We apply our results to the weak and strong chromatic polynomials of acyclic mixed graphs, and the order polynomial of a double poset.”

This is interesting for me for several reasons. In a new project I’m working on with Anton Mellit, we are categorifying a formula which arises from Möbius inversion, but which also arises from combinatorial species. In particular, in the theory of species one is able to interpret the plethystic exponentiation of a generating function as a sort of composition of species. One goal in our work is to understand the theory of species at a categorified (homological) level. I am curious if this paper provides some insights into what we are looking for.

Alex Chandler
Alex Chandler
Krener Assistant Professor

My research interests include machine learning, algebraic combinatorics, categorification, graph theory, knot theory, low dimensional topology, topological combinatorics.

Related