Math 127C Practice Midterm II Spring 2024

1. (Torsion) Consider the function

$$
f((x, y, z))=\left[\begin{array}{c}
y \cos (x) \\
z \cos (y) \\
2 x \cos (z)
\end{array}\right] .
$$

Find

$$
(f \circ f \circ f)^{\prime}\left((0,0,0) ;\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right) .
$$

2. (IFT) Consider the function

$$
f((x, y))=\left[\begin{array}{l}
x^{2} \sin (y) \\
x^{2} \cos (y)
\end{array}\right] .
$$

Find a point in the plane which has a neighborhood on which f is invertible. Call this inverse function g. Choose a point (a, b) and find $(D g)(a, b)$.
3. (Absolute) Show that if $f: Q \rightarrow \mathbb{R}$ is any bounded function on a rectangle then

$$
\overline{\int_{Q}} f-\int_{\underline{Q}} f \geq \bar{\int}_{Q}|f|-\int_{\underline{Q}}|f| .
$$

Use this to show that if f is integrable over Q then so is $|f|$.
4. (Ideal) Assume that $S \subseteq \mathbb{R}^{n}$ is bounded while $f: S \rightarrow \mathbb{R}$ and g : $S \rightarrow \mathbb{R}$ are both bounded and both continuous. Write $f g: S \rightarrow$ \mathbb{R} for the pointwise product function with $(f g)(x)=f(x) g(x)$. Show that if f is integrable over S then $f g$ is also.

