Math 21C Midterm II Friday, May 10 Spring 2024

You may use one page of notes but not a calculator or textbook. Please do not simplify your answers.

1. (12 pts: Power Series)

Determine the x values for which the following power series converges:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{(n+1)\left(\frac{x}{3}-1\right)^{n+1}}{n\left(\frac{x}{3}-1\right)^{n}}\right|=\left|\frac{x}{3}-1\right| \lim _{n \rightarrow \infty}\left|\frac{n+1}{n}\right|=\left|\frac{x}{3}-1\right|<1 \\
& -1<\frac{x}{3}-1<1 \Rightarrow 0<\frac{x}{3}<2 \Rightarrow 0<x<6 \\
& x=0, \\
& \sum_{m=0}^{\infty} m(-1)^{m} .
\end{aligned}
$$

diverges by with form
diverges by nth term
\Longrightarrow Power series converges ulen

$$
x \in(0,6)
$$

2. (11 pts for each part: Taylor Polynomials)

Find the first three nonzero terms for the Taylor series associated to:
(a) $f(x)=\ln (x)$ about $x=1$.

$$
\begin{aligned}
& f(1)=0 \\
& f^{\prime}(x)=\frac{1}{x}, f^{\prime}(1)=1 \\
& f^{\prime \prime}(x)=\frac{-1}{x^{2}}, f^{\prime \prime}(1)=-1 \\
& f^{\prime \prime \prime}(x)=\frac{2}{x^{3}}, f^{\prime \prime \prime}(1)=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { First three nonzero: } \\
& \frac{1(x-1)}{1!}-\frac{1(x-1)^{2}}{2!}+\frac{2(x-3)^{3}}{3!}
\end{aligned}
$$

(b) $f(x)=e^{x} \cos (5 x)$ about $x=0$.

$$
\begin{aligned}
e^{x}= & \frac{x^{n}}{n!}, \cos (5 x)=\sum \frac{(-1)^{n}(5 x)^{2 n}}{(2 n)!} \\
& \left(1+x+\frac{x^{2}}{2}\right)\left(1-\frac{25 x^{2}}{2}\right)
\end{aligned}
$$

$$
=1-\frac{25 x^{2}}{2}+x+\frac{x^{2}}{2} \text { (Mount include cubic fevers) } \begin{aligned}
& \text { Decease vectuoly see Beige } \\
& \text { parers) }
\end{aligned}
$$

$$
=1+x-12 x^{2}
$$

3. (11 pts: Taylor Remainder)

Estimate the error if the Maclauren polynomial $P_{1}(x)$ associated to $f(x)=\sqrt{1-x}$ is used to estimate $\frac{1}{\sqrt{2}}$.
(Recall that the Maclauren polynomial is the Taylor polynomial

$$
\begin{aligned}
& f(x)=\sqrt{1-x}=\frac{1}{\sqrt{2}}, \Rightarrow x=\frac{1}{2} \\
& \left.\left.R_{1}\left(\frac{1}{2}\right) \leq\left|M \frac{\left(\frac{1}{2}\right)^{2}}{2}\right|, M\right) \geqslant\left|f^{\prime \prime}(t)\right|, f \operatorname{botan} x=0\right), 1 / 2 \\
& f^{\prime}(x)=\frac{-1}{2}(1-x)^{-1 / 2}, f^{\prime \prime}(x)=\frac{-1}{4}(1-x)^{-3 / 2}
\end{aligned}
$$

note: $f^{\prime \prime}(x)<Q$ for $x \in[0,1 / 2]$

$$
\begin{aligned}
& \text { note: } f^{\prime \prime}(x)<Q \text { for } x \in[0,1 / 2] \\
& f^{\prime \prime}(0)=\frac{-1}{9}, f^{\prime \prime}\left(\frac{1}{2}\right)=\frac{-1}{9}(1 / 2)^{-3 / 2}=-\left(\frac{1}{2}\right)^{1 / 2}
\end{aligned}
$$

So,

$$
\begin{aligned}
& M \geq \sqrt{1 / 2} \text {. Thus, } \\
& R_{1}(1 / 2) \leq\left|\sqrt{1 / 2} \frac{(1 / 2)^{2}}{2}\right|=\left|\frac{1}{8 \sqrt{2}}\right|
\end{aligned}
$$

4. (11 pts: Vectors)

Let $\mathbf{u}=\langle 1,1,1\rangle$ and $\mathbf{v}=\langle 1,2,3\rangle$ and write θ for an angle between them.
(a) Find $\sin (\theta)$.

$$
\begin{array}{r}
\left|\begin{array}{ccc}
i & j & k \\
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right|=i(3-2)-j(3-1)+k(2-1) \\
=i-2 j+k,|u \times v|=\sqrt{6} \\
\Rightarrow \sin \theta=\frac{\sqrt{6}}{\sqrt{42}}
\end{array}
$$

$$
\operatorname{Cos} \theta=\frac{u \cdot v}{|w||v|}=\frac{1+2+3}{\sqrt{3} \sqrt{14}}=\frac{6}{\sqrt{42}}
$$

5. (11 pts: Forces)

Consider a weight suspended by two wires. The force vector for one wire is $\vec{F}_{1}=\langle 2,1\rangle$ Newtons. The direction vector of the second is $\vec{v}=\frac{1}{\sqrt{5}}\langle-1,2\rangle$ (so the second force vector \vec{F}_{2} is a multiple of the vector \vec{v})
Find the magnitude in Newtons of the weight that is suspended.
Equilibrium: $\vec{F}_{1}+\vec{F}_{2}+\vec{w}=0$ so
First
Second
Components
Components

$$
\begin{gathered}
2+f_{2}\left(\frac{-1}{\sqrt{5}}\right)=0 \\
2=\frac{f_{2}}{\sqrt{5}} \\
2 \sqrt{5}=f_{2} \\
S_{0} \\
\vec{F}_{2}=\langle-2,4\rangle
\end{gathered}
$$

$$
\begin{aligned}
& \text { Let } w=\text { downards cong of } \\
& \text { of neiofht } \omega \text {. }
\end{aligned}
$$

$$
\text { of weight } W \text {. }
$$

$$
1+4+w=0
$$

$$
\Rightarrow \text { magnitude osneight }
$$

6. (11 pts: Lines)

Find parametric equations for the line passing through the two
points $P(1,3,5)$ and $Q(2,4,6)$.
Let $\vec{p}=\langle 1,3,5\rangle$, and

$$
\vec{d}=\overrightarrow{P Q}=\langle 2-1,4-3,6-5\rangle=\langle 1,1,1\rangle
$$

So

$$
\begin{gathered}
\vec{r}(t)=\langle 1+t, 3+t, 5+t\rangle \\
O R \\
\vec{r}(t)=\langle 1,3,5\rangle+t\langle 1,1,1\rangle \\
O R \\
x=1+t, \quad y=3+t, z=5+t
\end{gathered}
$$

$$
\overrightarrow{P Q}=\langle 1,1,1\rangle, \stackrel{\rightharpoonup P}{P R}=\langle-1-1, Q-3,1-5\rangle=\langle-2,-3,-4\rangle
$$

7. (11 pts: Planes) Consider the three points $P(1,3,5), Q(2,4,6)$ and $R(-1,0,1)$.
(a) Find an equation for the plane containing P, Q and R.

$$
\vec{n}=\left|\begin{array}{ccc}
i & 1 & k \\
1 & 1 & 1 \\
1 & 1 & 1 \\
-2 & -3 & -4
\end{array}\right|
$$

$$
=\langle-1,2,-1\rangle
$$

So, $\quad-x+2 y-z+d=0$
$P=(1,3,5)$ is an plane, so

$$
\begin{aligned}
& -1+2(3)-5+d=0 \\
& 6-6+d-0 \Rightarrow d=0
\end{aligned}
$$

Plane is $-x+2 y-z=0$
(b) Find the area of the triangle with corners at P, Q and R.

Aren $\Delta=\frac{|\overrightarrow{P Q} \times \overrightarrow{P B}|}{2}$

$$
=\frac{\sqrt{6}}{2}
$$

8. (11 pts: Functions)

Consider the function $f(x, y)=\sqrt{4-x^{2}}+\sqrt{9-y^{2}}$.
(a) Determine and sketch the domain of f in the plane.

Damian:

$$
\begin{aligned}
4-x^{2} & \geq 0 \\
|x| & \leqslant 2 \\
9-y^{2} & \geq 0 \\
(y) & \leq 3
\end{aligned}
$$

(b) Determine the range of f.

Range: $\sqrt{-} \notin 0$, so min is O. maximum achieved
$\sqrt{4-x^{2}}$ halfcinde, mexat $x=0$
$\sqrt{q-y^{2}}$ half circle, mex at $y=0$
9. (10 pts: Extra Credit... you may skip this problem) Consider the five points: $P(2,0,0), Q(0,4,0), R(0,2,1), S(1,-2,2)$ and $T(2,-4,2)$.

Find the area of the pentagon with edges:
$\overline{P Q}, \overline{Q R}, \overline{R S}, \overline{S T}$ and $\overline{T P}$.

$$
\begin{aligned}
& \overrightarrow{P Q}=\langle-2,4,0\rangle \\
& \overrightarrow{P R}=\langle-2,2,1\rangle \\
& \overrightarrow{P S}=\langle-1,-2,2\rangle \\
& \overrightarrow{P T}=\langle 0,-4,2\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
\left|\begin{array}{rrr}
i & j & k \\
-2 & 4 & 0 \\
-2 & 2 & 1
\end{array}\right||=|i(4)-j(-2)+k(-4+8)|=|\langle 4,2,4\rangle|=\sqrt{36}=6 \\
\text { So oven }(\triangle P Q R)=3
\end{array} \\
& \left|\begin{array}{ccc}
i & j & k \\
-2 & 2 & 1 \\
-1 & -2 & 2
\end{array}\right||=|i(4+2)-j(-4+1)+k(4+2)|=|\langle 6,3,6\rangle|=\sqrt{81}=9 \\
& \left|\begin{array}{rrr}
i & j & k_{1} \\
-1 & -2 & 2 \\
0 & -4 & 2
\end{array}\right||=|i(-4+8)-j(-2)+k(4)|=|\langle 4,2,4\rangle|=\sqrt{36}=6 \\
& \operatorname{Thus}, \operatorname{Aren}(\geqq P Q R S T)=3+3+\frac{9}{2}=\frac{21}{2}
\end{aligned}
$$

