Math 21C Midterm III Solutions Spring 2024 You may use one page of notes but not a calculator or textbook.
Please do not simplify your answers.

1. (16 points: Partial Derivatives) Consider the function $f(x, y)=$ $x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}$. Compute the following partial derivatives:
(a) f_{x}

ANS: $f_{x}=4 x^{3}+3 x^{2} y+2 x y^{2}+y^{3}$.
(b) $f_{x y}$

ANS: $f_{x y}=3 x^{2}+4 x y+3 y^{2}$.
(c) $f_{y x x}$

ANS: $f_{y x x}=f_{x y x}=6 x+4 y$.
(d) $f_{x y y x}$

ANS: $f_{x y y x}=f_{y x x y}=4$.
2. (18 points: Gradient Vector) Consider the function $f(x, y)=x^{2}-3 x y+y^{2}$.
(a) Find the gradient vector $\overrightarrow{\nabla f}(1,2)$.

ANS: $\stackrel{\rightharpoonup}{\nabla f}(1,2)=\left.\langle 2 x-3 y,-3 x+2 y\rangle\right|_{(x, y)=(1,2)}=\langle-4,1\rangle$.
(b) Find the directional derivative $\left(D_{\vec{u}} f\right)(1,2)$ in the direction of the unit vector $\vec{u}=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$.
ANS: $D_{\vec{u}} f(1,2)=\overrightarrow{\nabla f}(1,2) \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle=\langle-4,1\rangle \cdot\left\langle\frac{3}{5}\right\rangle=-\frac{8}{5}$.
(c) Find the largest possible value for the directional derivative $\left(D_{\vec{v}} f\right)(1,2)$ in the direction of any unit vector \vec{v}.
ANS: $|\overrightarrow{\nabla f}(1,2)|=|\langle-4,1\rangle|=\sqrt{17}$.
3. (15 points: Extant Limit) Evaluate the following limit: $\lim _{(x, y) \rightarrow(2,2)} \frac{x^{2}-x y-x+y}{x^{2}-y^{2}}$. ANS: $\lim _{(x, y) \rightarrow(2,2)} \frac{x^{2}-x y-x+y}{x^{2}-y^{2}}=\lim _{(x, y) \rightarrow(2,2)} \frac{(x-y)(x-1)}{(x-y)(x+y)}=\lim _{(x, y) \rightarrow(2,2)} \frac{x-1}{x+y}=$ $\frac{1}{4}$.
4. (15 points: Nonexistent Limit)

Verify that the following limit does not exist: $\lim _{(x, y) \rightarrow(0,0)} \frac{x y(x+y)}{x^{3}+y^{3}}$.
ANS: Along the line $y=0, \lim _{(x, 0) \rightarrow(0,0)} \frac{0}{x^{3}+0^{3}}=0$. Along the line $y=x, \lim _{(x, x) \rightarrow(0,0)} \frac{x x(x+x)}{x^{3}+x^{3}}=\frac{2}{2}=1 \neq 0$. Since the limits along these two lines are different the limit does not exist.
5. (16 points: Chain Rule)

Consider functions with $z=f(x, y), x=u(s, t)$ and $y=v(s, t)$.
(a) Write a chain rule formula for $\frac{\partial z}{\partial t}$. (A branch diagram might help.)
ANS: $\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$.
(b) Two of the functions are $z=f(x, y)=x^{2}+y^{2}$ and $x=$ $u(s, t)=e^{2 s+3 t}$. Consider the point $s=t=0$. At this point $y=v(0,0)=3$ and $y_{t}=\frac{\partial v}{\partial t}(0,0)=7$.
Find $z_{t}=\frac{\partial z}{\partial t}(0,0)$ at the point $s=t=0$.
ANS: At this point $x=e^{0}=1, \frac{\partial z}{\partial x}=2 x=2, \frac{\partial z}{\partial y}=2 y=6$ and $\frac{\partial x}{\partial t}=3 e^{2 s+3 t}=3$ so by the previous part $\frac{\partial z}{\partial t}=(2)(3)+$ $(6)(7)=48$.
6. (20 points: Critical Points) Consider the graph of the function $f(x, y)=2 x^{2}-2 x^{2} y+y^{2}$.
(a) Find the three critical points for this graph.

ANS: $\overrightarrow{\nabla f}=\left\langle 4 x-4 x y,-2 x^{2}+2 y\right\rangle$ which is $\langle 0,0\rangle$ if $f_{x}=$ $f_{y}=0$. To solve this system of equations use the second to get $y=x^{2}$ and substitute into the first to get $0=4 x-4 x^{3}=$ $4 x(1-x)(1+x)$. Thus the critical points are $\langle 0,0\rangle,\langle 1,1\rangle$ and $\langle-1,1\rangle$.
(b) Use the second derivative test to identify which (if any) of these critical points are saddle points.
ANS: $f_{x x}=4-4 y, f_{x y}=f_{y x}=-4 x$ and $f_{y y}=2$. Thus among the three critical points $f_{x x} f_{y y}-f_{x y}^{2}<0$ only at $\langle 1,1\rangle$ and $\langle-1,1\rangle$ which are hence the two saddle points.
7. (10 points: Extra Credit... you may skip this problem)

Consider the function $f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}$.
Determine whether the following limit exists: $\lim _{(x, y) \rightarrow(0,0)}|\overrightarrow{\nabla f}(x, y)|^{2}$.
ANS: $\overrightarrow{\nabla f}(x, y)=\left(x^{2}+y^{2}\right)^{\frac{-3}{2}}\left\langle y^{3}, x^{3}\right\rangle$ so $|\overrightarrow{\nabla f}(x, y)|=\sqrt{\frac{x^{6}+y^{6}}{\left(x^{2}+y^{2}\right)^{3}}}$. Along the line $y=0$ the limit is 1 but along the line $y=x$ the limit is $\frac{1}{2}$ so the limit does not exist. As an asside note that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$ so the function is continuous but not differentiable at the origin.

