Math 21C Midterm III Solutions Spring 2024 You may use one page of notes but not a calculator or textbook. Please do not simplify your answers.

- 1. (16 points: Partial Derivatives) Consider the function $f(x, y) = x^4 + x^3y + x^2y^2 + xy^3 + y^4$. Compute the following partial derivatives:
 - (a) f_x **ANS:** $f_x = 4x^3 + 3x^2y + 2xy^2 + y^3$. (b) f_{xy}

ANS:
$$f_{xy} = 3x^2 + 4xy + 3y^2$$
.

- (c) f_{yxx} **ANS:** $f_{yxx} = f_{xyx} = 6x + 4y$.
- (d) f_{xyyx} **ANS:** $f_{xyyx} = f_{yxxy} = 4.$
- 2. (18 points: Gradient Vector) Consider the function $f(x, y) = x^2 - 3xy + y^2$.
 - (a) Find the gradient vector $\overrightarrow{\nabla f}(1,2)$. **ANS:** $\overrightarrow{\nabla f}(1,2) = \langle 2x - 3y, -3x + 2y \rangle|_{(x,y)=(1,2)} = \langle -4, 1 \rangle.$

(b) Find the directional derivative $(D_{\overrightarrow{u}}f)(1,2)$ in the direction of the unit vector $\overrightarrow{u} = \langle \frac{3}{5}, \frac{4}{5} \rangle$. **ANS:** $D_{\overrightarrow{u}}f(1,2) = \overline{\nabla}f(1,2) \cdot \langle \frac{3}{5}, \frac{4}{5} \rangle = \langle -4,1 \rangle \cdot \langle \frac{3}{5}\frac{4}{5} \rangle = -\frac{8}{5}$.

(c) Find the largest possible value for the directional derivative $(D_{\overrightarrow{v}}f)(1,2)$ in the direction of any unit vector \overrightarrow{v} . **ANS:** $|\overrightarrow{\nabla f}(1,2)| = |\langle -4,1 \rangle| = \sqrt{17}$.

- 3. (15 points: Extant Limit) Evaluate the following limit: $\lim_{(x,y)\to(2,2)} \frac{x^2 xy x + y}{x^2 y^2}$. **ANS:** $\lim_{(x,y)\to(2,2)} \frac{x^2 - xy - x + y}{x^2 - y^2} = \lim_{(x,y)\to(2,2)} \frac{(x-y)(x-1)}{(x-y)(x+y)} = \lim_{(x,y)\to(2,2)} \frac{x-1}{x+y} = \frac{1}{4}$.
- 4. (15 points: Nonexistent Limit) Verify that the following limit does not exist: $\lim_{(x,y)\to(0,0)} \frac{xy(x+y)}{x^3+y^3}$. **ANS:** Along the line y = 0, $\lim_{(x,0)\to(0,0)} \frac{0}{x^3+0^3} = 0$. Along the line y = x, $\lim_{(x,x)\to(0,0)} \frac{xx(x+x)}{x^3+x^3} = \frac{2}{2} = 1 \neq 0$. Since the limits along these two lines are different the limit does not exist.
- 5. (16 points: Chain Rule) Consider functions with z = f(x, y), x = u(s, t) and y = v(s, t).
 - (a) Write a chain rule formula for $\frac{\partial z}{\partial t}$. (A branch diagram might help.) **ANS:** $\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$.
 - (b) Two of the functions are $z = f(x, y) = x^2 + y^2$ and $x = u(s,t) = e^{2s+3t}$. Consider the point s = t = 0. At this point y = v(0,0) = 3 and $y_t = \frac{\partial v}{\partial t}(0,0) = 7$. Find $z_t = \frac{\partial z}{\partial t}(0,0)$ at the point s = t = 0. **ANS:** At this point $x = e^0 = 1$, $\frac{\partial z}{\partial x} = 2x = 2$, $\frac{\partial z}{\partial y} = 2y = 6$ and $\frac{\partial x}{\partial t} = 3e^{2s+3t} = 3$ so by the previous part $\frac{\partial z}{\partial t} = (2)(3) + (6)(7) = 48$.

- 6. (20 points: Critical Points) Consider the graph of the function $f(x, y) = 2x^2 2x^2y + y^2$.
 - (a) Find the three critical points for this graph.
 - **ANS:** $\overrightarrow{\nabla f} = \langle 4x 4xy, -2x^2 + 2y \rangle$ which is $\langle 0, 0 \rangle$ if $f_x = f_y = 0$. To solve this system of equations use the second to get $y = x^2$ and substitute into the first to get $0 = 4x 4x^3 = 4x(1-x)(1+x)$. Thus the critical points are $\langle 0, 0 \rangle$, $\langle 1, 1 \rangle$ and $\langle -1, 1 \rangle$.
 - (b) Use the second derivative test to identify which (if any) of these critical points are saddle points. **ANS:** $f_{xx} = 4 - 4y$, $f_{xy} = f_{yx} = -4x$ and $f_{yy} = 2$. Thus among the three critical points $f_{xx}f_{yy}-f_{xy}^2 < 0$ only at $\langle 1, 1 \rangle$ and $\langle -1, 1 \rangle$ which are hence the two saddle points.
- 7. (10 points: Extra Credit... you may skip this problem) Consider the function $f(x, y) = \frac{xy}{\sqrt{x^2+y^2}}$.

Determine whether the following limit exists: $\lim_{(x,y)\to(0,0)} |\overrightarrow{\nabla f}(x,y)|^2$. **ANS:** $\overrightarrow{\nabla f}(x,y) = (x^2 + y^2)^{\frac{-3}{2}} \langle y^3, x^3 \rangle$ so $|\overrightarrow{\nabla f}(x,y)| = \sqrt{\frac{x^6 + y^6}{(x^2 + y^2)^3}}$. Along the line y = 0 the limit is 1 but along the line y = xthe limit is $\frac{1}{2}$ so the limit does not exist. As an asside note that $\lim_{(x,y)\to(0,0)} f(x,y) = 0$ so the function is continuous but not differentiable at the origin.