Math 21C Practice Midterm II Answers Spring 2024

You may not use a calculator.
You may use one page of notes.
You may not use the textbook.
Please do not simplify answers.

1. (12 pts: Power Series)

Determine the x values for which the following power series converges:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} 2^{n}}{n}(x-1)^{n}
$$

See soln to 1 on practice exam 2.
2. (11 pts for each part: Taylor Polynomials)

Find the first three nonzero terms for the following Taylor series associated to
(a) $f(x)=\sqrt{x}$ about $x=4$

See soln to 2 on practice exam 2 .
(b) $f(x)=\cos (\sqrt{x}) \sin (2 x)$ about $x=0$.

Hint: For this one you can use shortcuts and not compute any derivatives.

See soln to 3 on practice exam 2.
3. (11 pts: Taylor Remainder)

Estimate the error if the Maclauren polynomial $P_{1}(x)=x$ associated to $f(x)=\int_{t=0}^{x} e^{-\sin (t)} d t$ is used to make the estimate of $\frac{1}{3}$ for the integral $\int_{t=0}^{\frac{1}{3}} e^{-\sin (t)} d t$.

The quantity being estimated is $f\left(\frac{1}{3}\right)$. The Taylor remainder theorem gives a bound of $M \frac{\left(\frac{1}{3}\right)^{2}}{2!}$ for any M such that $M \geq\left|f^{(2)}(t)\right|$ with t between 0 and $\frac{1}{3}$. Here $f^{\prime}(t)=e^{-\sin (t)}$ by the FTC so $f^{(2)}(t)=-\cos (t) e^{-\sin (t)}$ and hence I can choose $M=e>\left|f^{(2)}(t)\right|$ for every t value. This is true because $|\sin (t)|$ and $|\cos (t)|$ are both at most 1 .
The estimate is thus $e \frac{\left(\frac{1}{3}\right)^{2}}{2!}$.
4. (11 pts: Vectors)

Let $\mathbf{u}=\langle 1,-2\rangle$ and $\mathbf{v}=\langle 3,4\rangle$.
Find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

See soln to 5 on practice exam 2.
5. (11 pts: Forces)

Consider a 100 N weight suspended by two wires with slopes -1 and 2.
Find the magnitudes of the force vectors on the two wires.
The three force vectors must add to zero so $\langle 0,0\rangle=\langle 0,-100\rangle+$ $A\langle-1,1\rangle+B\langle 1,2\rangle=\langle-A+B, A+2 B-100\rangle$ so $A=B=\frac{100}{3}$ and the force vectors on the two wires are $\frac{100}{3}\langle-1,1\rangle$ and $\frac{100}{3}\langle 1,2\rangle$ which have magnitudes $\frac{100}{3} \sqrt{2}$ Newtons and $\frac{100}{3} \sqrt{5}$ Newtons respectively.
6. (11 pts: Lines)

Consider the following two intersecting lines: L_{1} is given by $x=$ $1+t, y=2 t$ and $z=-1+3 t . L_{2}$ is given by $x=3+2 s, y=1+s$ and $z=-2-s$.
(a) Find their point (x, y, z) of intersection.
(b) Find the angle between the lines.

See soln to 7 on practice exam 2. 100pt
7. (11 pts: Planes)

Compute the distence from the origin $(0,0,0)$ to the plane $2 x+$ $y-2 z=6$.

See soln to 8 on practice exam 2.
8. (11 pts: Functions)

Consider the function $f(x, y)=4-\sqrt{y-x^{2}}$.
(a) Determine and sketch the domain of f in the plane.
(b) Determine the range of f.

See soln to 5 on practice exam 3 .
9. (10 pts: Extra Credit... you may skip this problem)

