Math 21C Practice Midterm III Solutions Spring 2024

You may not use a calculator.
You may use one page of notes.
You may not use the textbook.
Please do not simplify answers.

1. (15 pts: Partial Derivatives)

Consider $z=3 x+\ln \left(x^{2}+y\right)$. Compute the partial derivatives:
(a) z_{x}
(b) z_{y}
(c) $z_{x x}$

ANS:
(a) $z_{x}=3+\frac{2 x}{x^{2}+y}$
(b) $z_{y}=\frac{1}{x^{2}+y}$
(c) $z_{x x}=\frac{2\left(x^{2}+y\right)-(2 x)(2 x)}{\left(x^{2}+y\right)^{2}}$
2. (21 pts: Differential)

Consider the surface given by $z=x y+y^{3}-x^{2}$ and the point $P(2,1)$.
(a) What is the maximum possible value of $D_{\vec{u}} f$ at P and for this maximum in what direction is \vec{u} ?
(b) Find a point Q so that the directional derivative at $P(2,1)$ in direction $\overrightarrow{P Q}$ is zero.
(c) Find an equation for the tangent plane to the surface at the point $(2,1)$.

ANS: The surface is the graph of the function $f(x, y)=x y+$ $y^{3}-x^{2}$. Start with the gradient vector for f at $P . \vec{f}=\left\langle f_{x}, f_{y}\right\rangle=$ $\left\langle y-2 x, x+3 y^{2}\right\rangle$ so $\vec{f}(2,1)=\langle-3,5\rangle$.
(a) The maximum directional derivative of f at P will occur in the direction of $\vec{f}(2,1)=\langle-3,5\rangle$ which is $\vec{u}=\frac{1}{\sqrt{9+25}}\langle-3,5\rangle$. The maximum possible value is $D_{\vec{u}} f(2,1)=\vec{u} \cdot \vec{f}(2,1)=$ $\frac{1}{\sqrt{9+25}}\langle-3,5\rangle \cdot\langle-3,5\rangle=\frac{9+25}{\sqrt{9+25}}$.
(b) The directional derivative $D_{\vec{v}} f(2,1)=0$ if \vec{v} is perpendicular to $\overrightarrow{\nabla f}(2,1)=\langle-3,5\rangle$ such as the direction of $\langle 5,3\rangle$ so choose $Q(7,4)$ so that $\overrightarrow{P Q}=\langle 5,3\rangle$. (Any other point except P on the line containing P and Q would also work for Q.)
(c) $f(2,1)=2+8-4=6$ so the plane is given by $z=6-$ $3(x-2)+5(y-1)$.
3. (14 pts: Extant Limit)

Evaluate the following limit:

$$
\lim _{(x, y) \rightarrow(1,-1)} \frac{1-\sqrt{x+y+1}}{x+y} .
$$

ANS: The function is not defined at $(1,-1)$ so direct substitution fails. Try multiplication by conjugates and simplification $\frac{1-\sqrt{x+y+1}}{x+y}=\frac{(1+\sqrt{x+y+1})(1-\sqrt{x+y+1})}{(1+\sqrt{x+y+1})(x+y)}=\frac{1-(x+y+1)}{(1+\sqrt{x+y+1})(x+y)}=-\frac{x+y}{(1+\sqrt{x+y+1})(x+y)}=$ $\frac{-1}{(1+\sqrt{x+y+1})}$ on the domain of the given function and hence the limit is $\frac{-1}{(1+\sqrt{1-1+1})}=\frac{-1}{2}$.
4. (14 pts: Nonexistant Limit)

Verify that the following limit does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{4}+y^{4}}
$$

ANS: Use the two line method. If $y=0$ the imit is $\lim _{x \rightarrow 0} \frac{0}{x^{4}+0}=$ 0 . If $y=x$ the imit is $\lim _{x \rightarrow 0} \frac{x^{4}}{x^{4}+x^{4}}=\frac{1}{2}$. These are not equal so the limit does not exist.
5. (15 pts: Chain Rule)

Consider $z=f(x, y), x=3 r+s^{2}$ and $y=r s$.
Use the chain rule to find the second-order partial derivative $\frac{\partial^{2} z}{\partial s^{2}}$. Express your answer in terms of r, s and partial derivatives of z with respect to x and y.

ANS: $\frac{\partial^{2} z}{\partial s^{2}}=z_{s s}=\left(z_{s}\right)_{s}=\left(z_{x} x_{s}+z_{y} y_{s}\right)_{s}=\left(2 s z_{x}+r z_{y}\right)_{s}=2 z_{x}+$ $2 s\left(\left(z_{x}\right)_{s}\right)+r\left(\left(z_{y}\right)_{s}\right)=2 z_{x}+2 s\left(z_{x x} x_{s}+z_{x y} y_{s}\right)+r\left(z_{y x} x_{s}+z_{y y} y_{s}\right)=$ $2 z_{x}+(2 s)(2 s) z_{x x}+(2 s)(r) z_{y x}+(r)(2 s) z_{x y}+(r)(r) z_{y y}$.

6. (21 pts: Critical Points)

Consider the function $f(x, y)=x^{3}-3 x y+y^{3}$.
(a) Find all its local maxima.
(b) Find all its local minima.
(c) Find all its saddle points.

ANS: First find the critical points for f using the first derivatives $f_{x}=3 x^{2}-3 y$ and $f_{y}=-3 x+3 y^{2}$. Solve for $0=f_{x}=f_{y}$. Use $0=f_{x}=3\left(x^{2}-y\right)$ to get $y=x^{2}$. Then use $0=f_{y}=-3 x+3 y^{2}=$ $-3 x+3\left(x^{2}\right)^{2}=3\left(x^{4}-x\right)=3 x(x-1)\left(x^{2}+x+1\right)$ to get $x=0$ or $x=1$. Hence the two critical points are $(0,0)$ and $(1,1)$.

Next use the second derivative test to identify the type of each critical point. This requires the second deriatives $f_{x x}=6 x, f_{x y}=$ $-3=f_{y x}$ and $f_{y y}=6 y$.
(a) There are no local Maxima.
(b) At $(1,1)$ the discriminant is $f_{x x} f_{y y}-f_{x y}^{2}=36-9>0$ and $f_{x x}>0$ so there is a local minimum.
(c) At $(0,0)$ the discriminant is $f_{x x} f_{y y}-f_{x y}^{2}=-9<0$ so there is a saddle point.
7. (10 pts: Extra Credit... you may skip this problem)

