Math 21C Practice Midterm III Spring 2024

You may not use a calculator.
You may use one page of notes.
You may not use the textbook.
Please do not simplify answers.

1. (15 pts: Partial Derivatives)

Consider $z=3 x+\ln \left(x^{2}+y\right)$. Compute the partial derivatives:
(a) z_{x}
(b) z_{y}
(c) $z_{x x}$
2. (21 pts: Differential)

Consider the surface given by $z=x y+y^{3}-x^{2}$ and the point $P(2,1)$.
(a) What is the maximum possible value of $D_{\vec{u}} f$ at P and for this maximum in what direction is \vec{u} ?
(b) Find a point Q so that the directional derivative at $P(2,1)$ in direction $\overrightarrow{P Q}$ is zero.
(c) Find an equation for the tangent plane to the surface at the point $(2,1)$.
3. (14 pts: Extant Limit)

Evaluate the following limit:

$$
\lim _{(x, y) \rightarrow(1,-1)} \frac{1-\sqrt{x+y+1}}{x+y} .
$$

4. (14 pts: Nonexistant Limit)

Verify that the following limit does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{4}+y^{4}} .
$$

5. (15 pts: Chain Rule)

Consider $z=f(x, y), x=3 r+s^{2}$ and $y=r s$.
Use the chain rule to find the second-order partial derivative $\frac{\partial^{2} z}{\partial s^{2}}$. Express your answer in terms of r, s and partial derivatives of z with respect to x and y.
6. (21 pts: Critical Points)

Consider the function $f(x, y)=x^{3}-3 x y+y^{3}$.
(a) Find all its local maxima.
(b) Find all its local minima.
(c) Find all its saddle points.
7. (10 pts: Extra Credit... you may skip this problem)

