## — Exercises —

Exercise 7.1. Use the definition of the derivative to find the derivatives of the following functions. For each, let the domain be the positive real numbers.

(a) 
$$f(x) = \sqrt{x+3}$$

(b) 
$$g(x) = \frac{1}{x}$$

(b) 
$$g(x) = \frac{1}{x}$$
 (c)  $h(x) = 4x + \frac{1}{x^2}$ 

**Exercise 7.2.** Assume f and g are functions defined on (a,b), both of which are differentiable at a point  $c \in (a, b)$ . Also, let  $\alpha, \beta \in \mathbb{R}$ . Apply the definition of the derivative to the function  $(\alpha f + \beta g)$  to prove that  $(\alpha f + \beta g)'(c) = \alpha f'(c) + \beta g'(c)$ .

**Exercise 7.3.** Let  $f: \mathbb{R} \to \mathbb{R}$  be defined by f(x) = |x|, and let C be the collection of points on which f is differentiable. Determine C and determine the function f'(which is a function from C to  $\mathbb{R}$ ).

**Exercise 7.4.** Prove that there do not exist differentiable function f and g for which f(0) = g(0) = 0 and x = f(x)g(x).

Exercise 7.5. Prove the quotient rule (Theorem 7.12).

Exercise 7.6. Is

$$f(x) = egin{cases} rac{1}{2}x & ext{if } x \in \mathbb{Q}, \ x & ext{if } x 
otin \mathbb{Q} \end{cases}$$

differentiable at 0?

**Exercise 7.7.** Use induction to prove that  $\frac{d}{dx}x^n = nx^{n-1}$  for all  $n \in \mathbb{N}$ , which is the natural number case of the power rule.

Exercise 7.8. Let

$$f_a(x) = \begin{cases} x^a & \text{if } x \ge 0\\ 0 & \text{if } x < 0. \end{cases}$$

- (a) For which values of  $a \in \mathbb{R}$  is  $f_a$  continuous at 0?
- (b) For which values of  $a \in \mathbb{R}$  is  $f_a$  differentiable at 0?

**Exercise 7.9.** Assume  $f: \mathbb{R} \to \mathbb{R}$ .

- (a) Let  $t \in (1, \infty)$ . Prove that if  $|f(x)| \le |x|^t$  for all x, then f is differentiable at 0.
- (b) Let  $t \in (0,1)$ . Prove that if  $|f(x)| > |x|^t$  for all x, and f(0) = 0, then f is not differentiable at 0.
- (c) Give a pair of examples showing that if |f(x)| = |x| for all x, then either conclusion is possible.

**Exercise 7.10.** Recall that a function is even if f(-x) = f(x) for all x, and is odd if f(-x) = -f(x) for all x. The below two properties are true. Give two proofs of each—one using the definition of the derivative, and one using a result from this chapter—and also draw a picture of each to model the property.

- (a) If  $f: \mathbb{R} \to \mathbb{R}$  is even and differentiable, then f'(-x) = -f'(x).
- (b) If  $f: \mathbb{R} \to \mathbb{R}$  is odd and differentiable, then f'(-x) = f'(x).

## Exercise 7.11.

- (a) Prove that if f is differentiable at some c for which  $f(c) \neq 0$ , then |f| is also differentiable at c.
- (b) Give an example showing that part (a) no longer holds if f(c) = 0.

**Exercise 7.12.** Suppose f is a polynomial of degree n, and  $f \geq 0$  (that is,  $f(x) \geq 0$  for all x). Prove that

$$f + f' + f'' + \dots + f^{(n)} \ge 0.$$

You may use, without proof, that  $f \geq 0$  implies n is even, and you may use standard properties of even-degree, positive polynomials (e.g. f has a minimum value and  $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = \infty.$ 

**Exercise 7.13.** Assume that I is an interval and  $f: I \to \mathbb{R}$  is differentiable. Prove that if f' is bounded, then f is uniformly continuous.

Exercise 7.14. Give an example of an interval I and a differentiable function  $f: I \to \mathbb{R}$  which is uniformly continuous and for which f' is unbounded.

**Definition 7.28.** A function f is called Lipschitz continuous if there exists some  $C \in \mathbb{R}$  where

$$|f(x) - f(y)| \le C \cdot |x - y|$$

for all x and y.

**Exercise 7.15.** Let  $f:[a,b]\to\mathbb{R}$  be differentiable, and assume f' is continuous on [a, b]. Prove that f is Lipschitz continuous on [a, b].

**Exercise 7.16.** Let I be an interval and  $f: I \to \mathbb{R}$  be differentiable. Show that f is Lipschitz on I if and only if f' is bounded on I.

252

Make sure to give a *proof* that your answer is correct—don't just quote your calculator. Feel free to use facts you learned in calculus about  $\ln(x)$ ... and perhaps consider the function  $f(x) = \frac{\ln(x)}{x}$ .

Exercise 7.18. In this exercise you will explore why each of the three main assumptions in Rolle's theorem is necessary. To that end, give an example of a function f which satisfies of each of the following conditions, and yet  $f'(c) \neq 0$  for all  $c \in (a, b)$ .

- (a) A function f which is continuous on [a, b] and differentiable on (a, b) (but we don't assume f(a) = f(b)).
- (b) A function f which is continuous on [a, b] and f(a) = f(b) (but we don't assume f is differentiable on (a, b)).
- (c) A function f which is differentiable on (a, b) and f(a) = f(b) (but we don't assume f is continuous on [a, b]).

**Exercise 7.19.** Use the derivative to find all values of a for which  $|x-a| = (x-2)^2$ .

**Exercise 7.20.** Suppose f and g are differentiable functions with f(a) = g(a) and f'(x) < g'(x) for all x > a. Prove that f(b) < g(b) for any b > a.

**Exercise 7.21.** A fixed point of a function f is a value c for which f(c) = c. Prove that if  $f : \mathbb{R} \to \mathbb{R}$  is differentiable for all x, and  $f'(x) \neq 1$  for all  $x \in [0, 1]$ , then f can have at most one fixed point in [0, 1].

**Exercise 7.22.** Prove that if f is differentiable and  $f'(x) \ge M$  for all  $x \in [a, b]$ , then  $f(b) \ge f(a) + M(b-a)$ .

## Exercise 7.23.

- (a) Suppose that  $g:[0,5] \to \mathbb{R}$  is differentiable, g(0)=0, and  $|g'(x)| \leq M$ . Show for all  $x \in [0,5]$  that  $|g(x)| \leq Mx$ .
- (b) Suppose that  $h: [0,5] \to \mathbb{R}$  is twice-differentiable (meaning that it's differentiable, and its derivative is differentiable), that h'(0) = h(0) = 0 and  $|h''(x)| \le M$ . Show for all  $x \in [0,5]$  that  $|h(x)| \le Mx^2/2$ .
- (c) Can you give a geometric interpretation of the previous two parts?

**Exercise 7.24.** Assume that f(0) = 0 and f'(x) is an increasing function. Prove that g(x) = f(x)/x is an increasing function on  $(0, \infty)$ .

**Exercise 7.25.** Let f be a differentiable function on the interval [0,3] satisfying that f(0) = 1, f(1) = 2 and f(3) = 2.

- (a) Show that there is some point  $c \in (0,3)$  such that f(c) = c.
- (b) Show that there is some point  $d \in [0,3]$  with  $f'(d) = \frac{1}{3}$ .

REAL ANALYSIS, A LONG-FORM TEXTBOOK

(c) Show that there is some point  $e \in [0,3]$  with  $f'(e) = \frac{1}{4}$ .

**Exercise 7.26.** Assume  $f:(a,b)\to\mathbb{R}$  is differentiable at some point  $c\in(a,b)$ . Prove that if  $f'(c)\neq 0$  there exists some  $\delta>0$  such that  $f(x)\neq f(c)$  for all  $x\in(c-\delta,c+\delta)$ .

Exercise 7.27. Prove that among all rectangles with a perimeter of p, the square has the greatest area.

Exercise 7.28. Show that the sum of a positive number and its reciprocal is at least 2.

Exercise 7.29. Prove the Cauchy mean value theorem (Theorem 7.26), which says this:

If f and g are continuous on [a,b] and differentiable on (a,b), then there is a number  $c \in (a,b)$  such that

$$[f(b) - f(a)] \cdot g'(c) = [g(b) - g(a)] \cdot f'(c).$$

(Note that the mean value theorem (Theorem 7.22) is a special case of this, in which g(x) = x.)

**Exercise 7.30.** Suppose f is a strictly monotone continuous function (guaranteeing f's inverse function,  $f^{-1}$ , exists) on (a, b). Prove that if  $f'(x_0)$  exists and is non-zero, then  $f^{-1}$  is differentiable at  $f(x_0)$  and

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}.$$

Use this to produce the familiar formula for the derivative of the square-root function.

Exercise 7.31. Prove that Thomae's function is not differentiable at any point.

**Exercise 7.32.** Prove *Leibniz's rule*. That is, prove that if f and g have  $n^{\text{th}}$  order derivatives on (a,b) and  $h=f\cdot g$ , then for any  $c\in (a,b)$ ,

$$h^{(n)}(c) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(c) g^{(n-k)}(c).$$

**Exercise 7.33.** Prove the following " $\infty/\infty$ " case of l'Hôpital's rule. That is, prove that if  $f:(a,b)\to\mathbb{R}$  and  $g:(a,b)\to\mathbb{R}$  are differentiable functions and  $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=\infty$ , then

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \quad \text{implies} \quad \lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

Exercise 7.34. In this exercise you will derive the formulas  $\frac{d}{dx}\cos(x)$ ,  $\frac{d}{dx}\sin(x)$  and  $\frac{d}{dx}\tan(x)$ .

First, do you know where  $\tan(x)$  got its name? Consider a circle of radius 1, a vertical tangent line, and a ray emanating from the origin at an angle of  $\theta$  from the positive x-axis.





We will focus on just a part of this tangent, and ask for the length of the line segment. Call this length y, and decorate this picture (using the definition of a sine and cosine).

Do you see the similar triangles? The ratio of corresponding sides are thus equal:

$$\frac{\sin(\theta)}{\cos(\theta)} = \frac{y}{1}.$$

But  $tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$ . So we have deduced that

$$y = \tan(\theta)$$
.

Remember where y came from: it was a tangent line. So now you see why the  $\tan(\theta)$  function is call "tangent"—it's the length of a tangent! You will use this diagram to in this exercise:



(a) Notice that there is a triangle in this diagram whose base has length 1, and whose height has length  $\sin(\theta)$ . Notice that this triangle's area is less than the area of the portion of the circle in the  $\theta$  angle, which is in turn less than the largest triangle's area. Use this reasoning to show that

$$\frac{1}{2}\sin(\theta) < \frac{1}{2}\theta < \frac{1}{2}\tan(\theta).$$

(b) Do some algebra to the above to show that

$$1 \ge \frac{\sin(\theta)}{\theta} \ge \cos(\theta).$$

(c) Use the above and the sequence squeeze theorem to prove that

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1.$$

(d) Prove that

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0$$

by multiplying the numerator and denominator of this limit by  $1 + \cos(x)$  and, after some quick algebra, applying part (c).

Alternative definition of the derivative. The derivative of f is

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

- (e) You will now use the above equivalent definition of the derivative to show that  $\frac{d}{dx}\sin(x) = \cos(x)$ . Here are the small steps:
  - (i) Write  $\frac{d}{dx}\sin(x)$  by applying the equivalent definition.
  - (ii) Rewrite what you have by using the algebraic identity  $\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$ .

- (iii) Do some algebra so that you can apply the limits from parts (c) and (d).
- (iv) Conclude that  $\frac{d}{dx}\sin(x) = \cos(x)$ .
- (f) Now that you know  $\frac{d}{dx}\sin(x)=\cos(x)$ , use the algebraic identity  $\cos(x)=\sin(\pi/2-x)$  to show that  $\frac{d}{dx}\cos(x)=-\sin(x)$ .
- (g) Now that you know  $\frac{d}{dx}\sin(x)=\cos(x)$  and  $\frac{d}{dx}\cos(x)=-\sin(x)$ , show that  $\frac{d}{dx}\tan(x)=\sec^2(x)$ .

## — Open Question —

Question. Notice that the formula for the area of a circle is  $\pi r^2$ . Differentiating this with respect for r gives  $\frac{d}{dr}\pi r^2=2\pi r$ , the formula for perimeter of the circle. The formula for the area of a square with side length 2r (so that its "radius" is r) is  $(2r)(2r)=4r^2$ . Differentiating this with respect to r gives  $\frac{d}{dr}4r^2=8r$ , which is the perimeter of the square.

Classify all shapes where this property holds (including the higher-dimensional analogues, where you differentiate the volume formula to get the surface area formula). What other geometric interpretations of "radius" are there that give this property?