Math 127BA Midterm Exam May 4, 2020- 9:00-9:50
To receive full credit you must show all of your work.

1. (8 pts: Derivative)
Consider the following function:
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(a) Show that f(z) is continuous at 0.
(b) Show that f(z) is not differentiable at 0.

2. Consider the following sequence of differentiable functions on R:
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(a) Find the pointwise limit of the sequence (fy(x)).
(b) Find the pointwise limit of the derivative sequence ([ (z)).
(¢) Determine which one (a or b) converges uniformly and which only

pointwise.

3. (8 pts: Mean Value)
Consider a power series F(z) = Y 2, axz”.
Assume that ag = 0 and
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lim F(x) = Zak =1.
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Show that there is some ¢ with F’(c) = 1.

4. (8 pts: Taylor Lagrange)
Find a number e so that if |x| < € then |cos(x) — 1+ %2| < %20.
5. (8 pts: M-Test)
Find the radius of convergence for the power series
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6. (8 pts: Smooth)
Find a sequence ay, so that if F(z) = 3.7, arz® is the associated power
series then
lim F™(0) = 3.
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Be sure to justify the fact that F(™)(0) exists.



