
MAT 127B
HW 8 Solutions(5.3.3/5.3.4/5.3.7)

Exercise 1 (5.3.3)

Let h be a differentiable function defined on the interval [0, 3], and assume that h(0) =
1, h(1) = 2, and h(3) = 2.

a) Argue that there exists a point d ∈ [0, 3] where h(d) = d.

b) Argue that at some point c we have h′(c) = 1/3.

c) Argue that h′(x) = 1/4 at some point in the domain.

Proof.

a) Consider the function
g(x) = h(x)− x.

Then, g is a differentiable function on [0, 3] and g(0) = 1, g(1) = 1 and g(3) = −1.

Since g is differentiable, and hence continuous so there exists a ′′c′′ ∈ [1, 3] ⊂ [0, 3] such
that g(c) = 0.

This implies
g(c) = 0 =⇒ h(c) = c.

with c ∈ [0, 3].

b)
h(0) = 1;h(3) = 2.

By Mean Value Theorem, there exists c ∈ [0, 3],
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h′(c) =
h(3)− h(1)

3− 1
=

1

3
.

c) Consider the function

g(x) = h(x)− x

4
− 5

4
.

As before g is a differentiable function on [0, 3], and

g(0) = −1

4
, g(1) =

1

2
and g(3) = 0.

Now, since g is differentiable and hence continuous, there exists c ∈ [0, 1] such that
g(c) = 0 (from a)).

Now g(3) = 0 and g(c) = 0.

By Rolle’s Theorem there exists a c̃ ∈ [c, 3] ∈ [0, 3] such that g′(c̃) = 0.

Since g′(c̃) = 0, hence for c̃ ∈ [0, 3] we have

0 = g′(c̃) = h′(c̃)− 1

4
=⇒ h′(c̃) =

1

4
.

Exercise 2 (5.3.4)

Let f be differentiable on an interval A containing zero, and assume (xn) is a sequence in A
with (xn) −→ 0 and xn 6= 0.

a) If f(xn) = 0 for all n ∈ N, show f(0) = 0 and f ′(0) = 0.

b) Add the assumption that f is twice-differentiable at zero and show that f ′′(0) = 0 as
well.

Proof.
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a) Since f is differentiable on A, hence is continuous on A, hence

xn −→ 0 =⇒ f(xn) −→ 0.

Since by assumption, f(xn) = 0 for all n ∈ N hence f(0) = 0.

Now since f is differentiable on A hence we have f ′(0) exists.

f ′(0) = lim
h→0

f(h)− f(0)

h
.

Since the limit exists, hence for any sequence hn −→ 0, (hn 6= 0) the following sequence
must converge to f ′(0). [f(0) = 0]

f(hn)

hn

−→ f ′(0).

Let hn = xn, then the sequence

f(xn)

xn

= 0 −→ 0 = f ′(0).

b) We have f(xn) = 0. for all n and f(0) = 0.

For each n,

f(xn) = 0 = f(0).

Then by Rolle’s Theorem, there exists yn ∈ (xn, 0) or yn ∈ (0, xn), depending on xn < 0
or xn > 0 such that f ′(yn) = 0. Note that yn 6= 0.

Also since 0 < |yn| < |xn| and xn −→ 0, implies yn −→ 0.

Hence we have a sequence yn −→ 0 and yn 6= 0 with f ′(yn) = 0.

Since f ′ is differentiable at 0 hence we have f ′′(0) exists.

f ′′(0) = lim
h→0

f ′(h)− f ′(0)

h
.

Since the limit exists, hence for any sequence hn −→ 0, (hn 6= 0) the following sequence
must converge to f ′′(0). [f’(0) = 0]
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f ′(hn)

hn

−→ f ′′(0).

Let hn = yn, then the sequence

f ′(yn)

yn
= 0 −→ 0 = f ′′(0).

Exercise 3 (5.3.7)

A fixed point of a function f is a value x where f(x) = x. Show that if f is differentiable on
an interval with f ′(x) 6= 1, then f can have at most one fixed point.

Proof.
We need to show that f(x) cannot have more than 1 fixed point. Let x1 6= x2 be two fixed
points of f(x). Say f(x) is differentiable on the interval A and x1, x2 ∈ A.

Consider the function
g(x) = f(x)− x.

The function g(x) is a differentiable function on an interval and we have

g′(x) = f ′(x)− 1 6= 0.

We have
g(x1) = 0 = g(x2).

By Mean Value Theorem there exists a ′c′ ∈ A between x1 and x2 such that

0 = [g(x1)− g(x2)] = g′(c)[x1 − x2].

This implies g′(c) = 0 which is a contradiction to the fact that g′(x) 6= 0 for x ∈ A.

Hence there can be atmost 1 fixed point of f in A.
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