7.3.2 Recall the Thomae's function

$$t(x) = \begin{cases} 1 & \text{if } x = 0\\ \frac{1}{n} & \text{if } x = \frac{m}{n} \in \mathbb{Q} \setminus \{0\} \text{ is in lowest terms with } n > 0\\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

has a countable set of discontinuities occurring at precisely every rational number. Follow these steps to prove t(x) is integrable on [0, 1] with $\int_0^1 t = 0$.

(a) First argue that L(t, P) = 0 for any partition P of [0, 1].

It suffices to show $\inf\{f(x) : x \in [a,b]\} = 0$ for any $0 \le a < b \le 1$. Fix arbitrary pair of $a, b \in [0,1]$ with a < b, we know there exists $q \in [0,1] \setminus \mathbb{Q}$ such that a < q < b. Then $\inf\{f(x) : x \in [a,b]\} = f(q) = 0$.

(b) Let $\epsilon > 0$, and consider the set of points $D_{\frac{\epsilon}{2}} = \{x \in [0,1] : t(x) \ge \frac{\epsilon}{2}\}$. How big is $D_{\frac{\epsilon}{2}}$?

For the case $\epsilon > 2$, we have $|D_{\frac{\epsilon}{2}}| = 0$ because $\sup t(x) = 1$. For $0 < \epsilon \le 2$, we know from the Archimedean property that there exists $N \in \mathbb{N}$ such that $\frac{1}{n} \le \frac{\epsilon}{2}$ for all n > N and $\frac{1}{n} > \frac{\epsilon}{2}$ for $n = 1, \dots, N$. Together with t(0) = 1, we obtain $|G_{\frac{\epsilon}{2}}| \le \frac{(1+N)N}{2} + 1$, where the inequality follows from the fact that we might count fractions that are not of the lowest terms. (More precisely, we have $|G_{\frac{\epsilon}{2}}| = \sum_{n=1}^{N} \phi(n) + 1$, where $\phi(n)$ is the Euler's toitent function.)

(c) To complete the argument, explain how to construct a partition P_{ϵ} of [0,1] so that $U(t, P_{\epsilon}) < \epsilon$.

With the same notations as in part (b), we see that $|G_{\frac{\epsilon}{2}}| \leq 2N^2$. We construct a partition such that the length of any subinterval containing a point in $D_{\frac{\epsilon}{2}}$ is $\frac{\epsilon}{4N^2}$. One possible partition is

$$P_{\epsilon} = \bigcup_{1 \le m < n \le N} \left\{ \frac{m}{n} - \frac{\epsilon}{8N^2}, \frac{m}{n} + \frac{\epsilon}{8N^2} \right\} \bigcup \{0, 1\}$$

Denote the interval $\left[\frac{m}{n} - \frac{\epsilon}{8N^2}, \frac{m}{n} + \frac{\epsilon}{8N^2}\right]$ by I_{mn} . It is easy to check that I_{mn} 's are disjoint for $1 \le m < n \le N$. Computing $U(t, P_{\epsilon})$ by summing over all I_{mn} 's first and then over all other subintervals, we obtain

$$U(t, P_{\epsilon}) \le \sum_{n=1}^{N} \sum_{m=1}^{n} \frac{|I_{mn}|}{N} + (1-0)\frac{\epsilon}{2} \le |G_{\frac{\epsilon}{2}}||I_{mn}| + \frac{\epsilon}{2} \le 2N^{2}\frac{\epsilon}{4N^{2}} + \frac{\epsilon}{2} < \epsilon$$

7.3.3 Let

$$f(x) = \begin{cases} 1 & \text{if } x = \frac{1}{n} \text{ for some } n \in \mathbb{N} \\ 0 & \text{othewise.} \end{cases}$$

Show that f is integrable on [0, 1] and compute $\int_0^1 f$.

It is easy to see that L(f, P) = 0 for any partition. Now we show U(f, P) = 0. For any $\epsilon > 0$, consider the partition $P_{\epsilon} = \bigcup_{n=1}^{\infty} \{\frac{1}{n} - \frac{\epsilon}{4 \cdot 2^n}, \frac{1}{n} + \frac{\epsilon}{4 \cdot 2^n}\} \cup \{0, 1\}$ and denote the interval $[\frac{1}{n} - \frac{\epsilon}{4 \cdot 2^n}, \frac{1}{n} + \frac{\epsilon}{4 \cdot 2^n}]$ by I_n . We then have

$$U(f, P_{\epsilon}) = \sum_{n=1}^{\infty} 1 \cdot |I_n| + 0 \cdot \left| [0, 1] \setminus \bigcup_{n=1}^{\infty} I_n \right| = \sum_{n=1}^{\infty} \frac{\epsilon}{2 \cdot 2^n} = \frac{\epsilon}{2} \sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{\epsilon}{2} < \epsilon$$

Therefore, f in integrable on [0, 1] and $\int_0^1 f = 0$

Remark. We can also pick partitions for which the subintervals containing $\frac{1}{n}$ has length $\frac{1}{cn^{\alpha}}$ for $\alpha > 1$ and for some appropriate constant c. Note here we need $\alpha > 1$ because the harmonic series diverges.

7.3.4 Let f and g be functions defined on (possibly different) closed intervals, and assume the range of f is contained in the domain of g so that the composition $g \circ f$ is properly defined.

(a) Show, by example, that it is not the case that f and g are integrable, then $g \circ f$ is integrable.

Consider the Thomae's function restricted to [0,1] from exercise 7.3.2 and denote it by f(x). Consider $g(x): [0,1] \to \mathbb{R}$ given by g(0) = 0 and g(x) = 1 otherwise. We then have

$$(g \circ f)(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ 0 & \text{if } x \in [0, 1] \setminus \mathbb{Q} \end{cases}$$

By the density of \mathbb{Q} in \mathbb{R} and its consequences, we can show that $U(g \circ f) = 1$ and $L(g \circ f) = 0$, so $g \circ f$ is not integrable on [0, 1]. However, f and g are both integrable on [0, 1]. (For g, consider the partition $\{0, \frac{\epsilon}{2}, 1\}$ for the corresponding $\epsilon > 0$).

Now decide the validity of each of the following conjecture, supplying a proof or conterexample as appropriate.

(b) If f is increasing and g is integrable, then $g \circ f$ is integrable.

We prove the above statement. Fix $\epsilon > 0$. Because g is integrable, we can find a partition $P_g = \{x_0 < \cdots < x_n\}$ of $\operatorname{Rng}(f) \subseteq \operatorname{Dom}(g)$ such that $U(g|_{\operatorname{Rng}(f)}, P_g) - L(g|_{\operatorname{Rng}(f)}, P_g) < \epsilon$. Because f is increasing, it is one-to-one so $f^{-1} : \operatorname{Rng}(f) \to \operatorname{Dom}(f)$ is well-defined and is also increasing. This means that the set $P = \{f^{-1}(x_0), \cdots, f^{-1}(x_n)\}$ is a partition of $\operatorname{Dom}(f)$. We then have

$$U(g \circ f, P) - L(g \circ f, P) = \sum_{k=1}^{n} (\underbrace{\sup_{\{x_{k-1}, x_k\}} g \circ f}_{=(g \circ f)(f^{-1}(x_k))} - \underbrace{\inf_{\{x_{k-1}, x_k\}} g \circ f}_{=(g \circ f)(f^{-1}(x_{k-1}))}) [x_k - x_{k-1}]$$

= $U(g|_{\operatorname{Rng}(f)}, P_g) - L(g|_{\operatorname{Rng}(f)}, P_g) < \epsilon$

Therefore, g is integrable.

(c) If f is integrable and g is increasing, then $g \circ f$ is integrable.

The example in part (a) is an counterexample for this statement.