7.3.2 Recall the Thomae's function

$$
t(x)= \begin{cases}1 & \text { if } x=0 \\ \frac{1}{n} & \text { if } x=\frac{m}{n} \in \mathbb{Q} \backslash\{0\} \text { is in lowest terms with } n>0 \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

has a countable set of discontinuities occurring at precisely every rational number. Follow these steps to prove $t(x)$ is integrable on $[0,1]$ with $\int_{0}^{1} t=0$.
(a) First argue that $L(t, P)=0$ for any partition P of $[0,1]$.

It suffices to show $\inf \{f(x): x \in[a, b]\}=0$ for any $0 \leq a<b \leq 1$. Fix arbitrary pair of $a, b \in[0,1]$ with $a<b$, we know there exists $q \in[0,1] \backslash \mathbb{Q}$ such that $a<q<b$. Then $\inf \{f(x): x \in[a, b]\}=f(q)=0$.
(b) Let $\epsilon>0$, and consider the set of points $D_{\frac{\epsilon}{2}}=\left\{x \in[0,1]: t(x) \geq \frac{\epsilon}{2}\right\}$. How big is $D_{\frac{\epsilon}{2}}$?

For the case $\epsilon>2$, we have $\left|D_{\frac{\epsilon}{2}}\right|=0$ because sup $t(x)=1$. For $0<\epsilon \leq 2$, we know from the Archimedean property that there exists $N \in \mathbb{N}$ such that $\frac{1}{n} \leq \frac{\epsilon}{2}$ for all $n>N$ and $\frac{1}{n}>\frac{\epsilon}{2}$ for $n=1, \cdots, N$. Together with $t(0)=1$, we obtain $\left|G_{\frac{\epsilon}{2}}\right| \leq \frac{(1+N) N}{2}+1$, where the inequality follows from the fact that we might count fractions that are not of the lowest terms. (More precisely, we have $\left|G_{\frac{\epsilon}{2}}\right|=\sum_{n=1}^{N} \phi(n)+1$, where $\phi(n)$ is the Euler's toitent function.)
(c) To complete the argument, explain how to construct a partition P_{ϵ} of $[0,1]$ so that $U\left(t, P_{\epsilon}\right)<\epsilon$.

With the same notations as in part (b), we see that $\left|G_{\frac{\epsilon}{2}}\right| \leq 2 N^{2}$. We construct a partition such that the length of any subinterval containing a point in $D_{\frac{\epsilon}{2}}$ is $\frac{\epsilon}{4 N^{2}}$. One possible partition is

$$
P_{\epsilon}=\bigcup_{1 \leq m<n \leq N}\left\{\frac{m}{n}-\frac{\epsilon}{8 N^{2}}, \frac{m}{n}+\frac{\epsilon}{8 N^{2}}\right\} \bigcup\{0,1\}
$$

Denote the interval $\left[\frac{m}{n}-\frac{\epsilon}{8 N^{2}}, \frac{m}{n}+\frac{\epsilon}{8 N^{2}}\right]$ by $I_{m n}$. It is easy to check that $I_{m n}$'s are disjoint for $1 \leq m<n \leq N$. Computing $U\left(t, P_{\epsilon}\right)$ by summing over all $I_{m n}$'s first and then over all other subintervals, we obtain

$$
U\left(t, P_{\epsilon}\right) \leq \sum_{n=1}^{N} \sum_{m=1}^{n} \underbrace{\frac{\left|I_{m n}\right|}{N}}_{\leq\left|I_{m n}\right|}+(1-0) \frac{\epsilon}{2} \leq\left|G_{\frac{\epsilon}{2}}\right|\left|I_{m n}\right|+\frac{\epsilon}{2} \leq 2 N^{2} \frac{\epsilon}{4 N^{2}}+\frac{\epsilon}{2}<\epsilon
$$

7.3.3 Let

$$
f(x)= \begin{cases}1 & \text { if } x=\frac{1}{n} \text { for some } n \in \mathbb{N} \\ 0 & \text { othewise }\end{cases}
$$

Show that f is integrable on $[0,1]$ and compute $\int_{0}^{1} f$.
It is easy to see that $L(f, P)=0$ for any partition. Now we show $U(f, P)=0$. For any $\epsilon>0$, consider the partition $P_{\epsilon}=\cup_{n=1}^{\infty}\left\{\frac{1}{n}-\frac{\epsilon}{4 \cdot 2^{n}}, \frac{1}{n}+\frac{\epsilon}{4 \cdot 2^{n}}\right\} \cup\{0,1\}$ and denote the interval $\left[\frac{1}{n}-\frac{\epsilon}{4 \cdot 2^{n}}, \frac{1}{n}+\frac{\epsilon}{4 \cdot 2^{n}}\right]$ by I_{n}. We then have

$$
U\left(f, P_{\epsilon}\right)=\sum_{n=1}^{\infty} 1 \cdot\left|I_{n}\right|+0 \cdot\left|[0,1] \backslash \cup_{n=1}^{\infty} I_{n}\right|=\sum_{n=1}^{\infty} \frac{\epsilon}{2 \cdot 2^{n}}=\frac{\epsilon}{2} \sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{\epsilon}{2}<\epsilon
$$

Therefore, f in integrable on $[0,1]$ and $\int_{0}^{1} f=0$
Remark. We can also pick partitions for which the subintervals containing $\frac{1}{n}$ has length $\frac{1}{c n^{\alpha}}$ for $\alpha>1$ and for some appropriate constant c. Note here we need $\alpha>1$ because the harmonic series diverges.
7.3.4 Let f and g be functions defined on (possibly different) closed intervals, and assume the range of f is contained in the domain of g so that the composition $g \circ f$ is properly defined.
(a) Show, by example, that it is not the case that f and g are integrable, then $g \circ f$ is integrable.

Consider the Thomae's function restricted to $[0,1]$ from exercise 7.3.2 and denote it by $f(x)$. Consider $g(x):[0,1] \rightarrow \mathbb{R}$ given by $g(0)=0$ and $g(x)=1$ otherwise. We then have

$$
(g \circ f)(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \cap[0,1] \\ 0 & \text { if } x \in[0,1] \backslash \mathbb{Q}\end{cases}
$$

By the density of \mathbb{Q} in \mathbb{R} and its consequences, we can show that $U(g \circ f)=1$ and $L(g \circ f)=0$, so $g \circ f$ is not integrable on $[0,1]$. However, f and g are both integrable on $[0,1]$. (For g, consider the partition $\left\{0, \frac{\epsilon}{2}, 1\right\}$ for the corresponding $\epsilon>0$).

Now decide the validity of each of the following conjecture, supplying a proof or conterexample as appropriate.
(b) If f is increasing and g is integrable, then $g \circ f$ is integrable.

We prove the above statement. Fix $\epsilon>0$. Because g is integrable, we can find a partition $P_{g}=\left\{x_{0}<\right.$ $\left.\cdots<x_{n}\right\}$ of $\operatorname{Rng}(f) \subseteq \operatorname{Dom}(g)$ such that $U\left(\left.g\right|_{\operatorname{Rng}(f)}, P_{g}\right)-L\left(\left.g\right|_{\operatorname{Rng}(f)}, P_{g}\right)<\epsilon$. Because f is increasing, it is one-to-one so $f^{-1}: \operatorname{Rng}(f) \rightarrow \operatorname{Dom}(f)$ is well-defined and is also increasing. This means that the set $P=\left\{f^{-1}\left(x_{0}\right), \cdots, f^{-1}\left(x_{n}\right)\right\}$ is a partition of $\operatorname{Dom}(f)$. We then have

$$
\begin{aligned}
U(g \circ f, P)-L(g \circ f, P) & =\sum_{k=1}^{n}(\underbrace{\sup _{\substack{\left[x_{k-1}, x_{k}\right]}} g \circ f}_{\begin{array}{c}
=(g \circ f)\left(f^{-1}\left(x_{k}\right)\right) \\
=g\left(x_{k}\right)
\end{array}}-\underbrace{\inf _{\left.x_{k-1}, x_{k}\right]} g \circ f}_{\substack{(g \circ f)\left(f^{-1}\left(x_{k-1}\right)\right) \\
=g\left(x_{k-1}\right)}})\left[x_{k}-x_{k-1}\right] \\
& =U\left(\left.g\right|_{\left.\operatorname{Rng}(f), P_{g}\right)-L\left(\left.g\right|_{\operatorname{Rng}(f)}, P_{g}\right)<\epsilon}\right.
\end{aligned}
$$

Therefore, g is integrable.
(c) If f is integrable and g is increasing, then $g \circ f$ is integrable.

The example in part (a) is an counterexample for this statement.

