7.4.3 Decide which of the following conjectures is true and supply a short proof. For those that are not true, give a counterexample.
(a) If $|f|$ is integrable on $[a, b]$, then f is also integrable on this set.

Consider the counterexample where $f(x)=1$ for $x \in \mathbb{Q} \cap[a, b]$ and $f(x)=-1$ for $x \in[a, b] \backslash \mathbb{Q}$.
(b) Assume g is not integrable and $g(x) \geq 0$ on $[a, b]$. If $g(x)>0$ for infinite number of points $x \in[a, b]$, then $\int_{a}^{b} g>0$.

Consider the functions in Exercise 7.3.2 and 7.3.3 as counterexamples.
(c) If g is continuous on $[a, b]$ and $g(x) \geq 0$ with $g\left(y_{0}\right)>0$ for at least one point $y_{0} \in[a, b]$, then $\int_{a}^{b} g>0$.

We prove this statement. Because $g \in C[a, b]$, there exists $\delta\left(y_{0}\right)>0$ such that for any $x \in[a, b]$ with $\left|x-y_{0}\right|<\delta\left(y_{0}\right)$, we have $\left|g(x)-g\left(y_{0}\right)\right|<\frac{g\left(y_{0}\right)}{2}$. This means that
7.4.5 Let f and g be integrable functions on $[a, b]$.
(a) Show that if P is any partition of $[a, b]$, then

$$
U(f+g, P) \leq U(f, P)+U(g, P)
$$

Provide a specific example where the inequality is strict. What does the corresponding inequality for lower sums look like?

Consider any $a \leq c<d \leq b$, we have

$$
\sup _{x \in[c, d]}[f(x)+g(x)] \leq \sup _{x \in[c, d]}\left[\sup _{y \in[c, d]} f(y)+\sup _{y \in[c, d]} g(y)\right] \leq \sup _{y \in[c, d]} f(y)+\sup _{y \in[c, d]} g(y)=\sup _{x \in[c, d]} f(x)+\sup _{x \in[c, d]} g(x)
$$

Because the choice of c and d is arbitrary, the above inequality holds for any subinterval in any partition of $[a, b]$. This proves the statement.

Example: Consider $f:[0,1] \rightarrow \mathbb{R}$ with $f(x)=1$ for $x \in[0, a] \cap \mathbb{Q}$ and $f(x)=1$ for $x \in[0,1] \backslash \mathbb{Q}$. Consider $g(x)=-f(x)$. We have for any partition of $[a, b]$ that $U(f+g, P)=0$ and $U(f, P)=U(g, P)=1$

The corresponding inequality for lower sums is $L(f+g, P) \geq L(f, P)+L(g, P)$.
(b) Review the proof of Theorem 7.4 .2 (ii), and provide an argument for part (i) of this theorem.

Let $\mathcal{P}[a, b]$ denote all possible partitions of $[a, b]$. We have from part (a) that

$$
\begin{aligned}
& \underbrace{\inf _{\mathbf{P}[a, b]} U(f+g, P)}_{U(f+g)} \leq U(f+g, P) \leq U(f, P)+U(g, P), \quad \forall P \in \mathcal{P}[a, b] \\
\Rightarrow \quad & U(f+g) \leq \inf _{\mathbf{P}[a, b]}(U(f, P)+U(g, P)) \leq \underbrace{\inf _{\mathbf{P}[a, b]} U(f, P)}_{=U(f)}+\underbrace{\inf _{\mathbf{P}[a, b]} U(g, P)}_{=U(g)}
\end{aligned}
$$

Similarly, we obtain $L(f+g) \geq L(f)+L(g)$. Putting these together,

$$
L(f)+L(g) \leq L(f+g) \leq U(f+g) \leq U(f)+U(g)
$$

Because f and g are both integrable on $[a, b]$, we have $\int_{a}^{b} f=U(f)=L(f)$ and $\int_{a}^{b} g=U(g)=L(g)$. This means that

$$
L(f+g)=U(f+g)=\int_{a}^{b} f+\int_{a}^{b} g
$$

Therefore, $f+g$ is integrable on $[a, b]$ with $\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$
7.4.6 Although not part of Theorem 7.4.2, it is true that the product of integrable functions is integrable. Provide the details for each step in the following proof of this fact:
(a) If f satisfies $|f(x)| \leq M$ on $[a, b]$, show

$$
\left|(f(x))^{2}-(f(y))^{2}\right| \leq 2 M|f(x)-f(y)|
$$

We have for any $x, y \in[a, b]$,

$$
\left|(f(x))^{2}-(f(y))^{2}\right|=\underbrace{|f(x)+f(y)|}_{\leq|f(x)|+|f(y)| \leq 2 M} \mid f(x)-f(y))|\leq 2 M| f(x)-f(y)) \mid
$$

(b) Prove that if f is integrable on $[a, b]$, then so is f^{2}.

We show f^{2} satisfies the integrability criterion. Fix $\epsilon>0$. Because f is integrable on $[a, b]$, there exists $P_{\epsilon}=\left\{x_{0}<\cdots<x_{n}\right\}$ of $[a, b]$ such that $U\left(f, P_{\epsilon}\right)-L\left(f, P_{\epsilon}\right)<\frac{\epsilon}{2 M}$. Recall from part (a) that

$$
\begin{aligned}
&(f(x))^{2}-(f(y))^{2} \leq 2 M|f(x)-f(y)|, \quad \forall x, y \in[a, b] \\
& \Rightarrow \underbrace{\sup _{x \in\left[x_{k-1}, x_{k}\right]}(f(x))^{2}}_{=M_{k, f^{2}}}-(f(y))^{2} \leq 2 M \\
& \underbrace{\underbrace{}_{x \in\left[x_{k}\right.}}_{=\sup _{x \in\left[x_{k-1}, x_{k}\right]} \sup _{\left.x \in x_{k-1}, x_{k}\right]}|f(x)-f(y)|}, \quad \forall y \in[a, b] \\
& \Rightarrow M_{k, f^{2}}-\underbrace{\inf _{y \in\left[x_{k-1}, x_{k}\right]}(f(y))^{2}}_{=M_{k, f}} \leq 2 M(M_{k, f}-\underbrace{\inf _{y \in\left[x_{k-1}, x_{k}\right]} f(y)}_{=m_{k, f^{2}}})
\end{aligned}
$$

We then have

$$
U\left(f^{2}, P_{\epsilon}\right)-L\left(f^{2}, P_{\epsilon}\right)=\sum_{k=1}^{n}\left(M_{k, f^{2}}-m_{k, f^{2}}\right) \Delta x_{k} \leq 2 M \sum_{k=1}^{n}\left(M_{k, f}-m_{k, f}\right) \Delta x_{k}<2 M \frac{\epsilon}{2 M}=\epsilon
$$

(c) Now show that if f and g are integrable, then $f g$ is integrable. (Consider $(f+g)^{2}$.)

Note that $f g=\frac{(f+g)^{2}-f^{2}-g^{2}}{2}$. Because f and g are integrable, we know from part (a), (b) and exercise 7.4.5 that f^{2}, g^{2} and $(f+g)^{2}$ are all integrable, and so are their linear combinations.

