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These notes, intended for the third quarter of the graduate Analysis sequence at UC
Davis, should be viewed as a very short introduction to Sobolev space theory, and the
rather large collection of topics which are foundational for its development. This includes
the theory of LP spaces, the Fourier series and the Fourier transform, the notion of weak
derivatives and distributions, and a fair amount of differential analysis (the theory of dif-
ferential operators). Sobolev spaces and other very closely related functional frameworks
have proved to be indispensable topologies for answering very basic questions in the fields of
partial differential equations, mathematical physics, differential geometry, harmonic anal-
ysis, scientific computation, and a host of other mathematical specialities. These notes
provide only a brief introduction to the material, essentially just enough to get going with
the basics of Sobolev spaces. As the course progresses, I will add some additional topics
and/or details to these notes. In the meantime, a good reference is Analysis by Lieb and
Loss, and of course Applied Analysis by Hunter and Nachtergaele, particularly Chapter 12,
which serves as a nice compendium of the material to be presented.

If only I had the theorems! Then I should find the proofs easily enough.
—Bernhard Riemann (1826-1866)

Facts are many, but the truth is one.
~Rabindranath Tagore (1861-1941)
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1 L? spaces

1.1 Notation

We will usually use © to denote an open and smooth domain in RY, for d = 1,2, 3, ... In this
chapter on LP spaces, we will sometimes use X to denote a more general measure space,
but the reader can usually think of a subset of Euclidean space.

C*(€) is the space of functions which are k times differentiable in § for integers k& > 0.
CY(9) then coincides with C(£2), the space of continuous functions on 2.

C™(Q) = MkoCH ().

spt f denotes the support of a function f, and is the closure of the set {z € Q| f(x) # 0}.
Co(Q) = {u e C(Q) | sptu compact in Q}.

CE(Q) = CK(Q) N Cp(Q).
C3e(Q2) = C(Q2) N Ch(2). We will also use D(2) to denote this space, which is known as
the space of test functions in the theory of distributions.

1.2 Definitions and basic properties

Definition 1.1. Let 0 < p < oo and let (X, M, ) denote a measure space. If f : X — R
is a measurable function, then we define

1
1l = (/X rfpdx) and [flloeex) = ess suppex [£(@)].

Note that || f||L»(x) may take the value co. Unless stated otherwise, we will usually consider
X to be a smooth, open subset Q of R% and we will assume that all functions under
consideration are measurable.

Definition 1.2. The space LP(X) is the set
LP(X) ={f: X > R [ [fllzr(x) < o0}
The space LP(X) satisfies the following vector space properties:
1. For each o € R, if f € LP(X) then af € LP(X);

2. If f,g € LP(X), then
[f +glP <227 fP +1gl”)

so that f +g € LP(X).
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3. The triangle inequality is valid if p > 1.

The most interesting cases are p = 1,2,00, while all of the LP arise often in nonlinear
estimates.

Definition 1.3. The space [P, called “little LP?”, will be useful when we introduce Sobolev
spaces on the torus and the Fourier series. For 1 < p < oo, we set

P = {{%}nez | Z ’xn’p < OO} ,

n=—oo

where 7. denotes the integers.

1.3 Basic inequalities

Convexity is fundamental to LP spaces for p € [1, 00).
Lemma 1.4. For A € (0,1), 2* < (1 — \) + Az.

Proof. Set f(x) = (1=\)+Az—z*; hence, f'(z) = A—Az*~! = 0 if and only if \(1—2*"1) =
0 so that x = 1 is the critical point of f. In particular, the minimum occurs at x = 1 with
value

fFO)=0< (1 =X\ + Mz —a.
U
Lemma 1.5. For a,b>0 and A € (0,1), a*b'™ < Xa + (1 — \)b with equality if a = b.

Proof. If either a = 0 or b = 0, then this is trivially true, so assume that a,b > 0. Set
x = a/b, and apply Lemma 1 to obtain the desired inequality. O

Theorem 1.6 (Holder’s inequality). Suppose that 1 < p < oo and 1 < q < oo with

%—&- é =1. If fe L? and g € L9, then fg € L'. Moreover,

Ifgllzr < I Fllzellgllza -

Note that if p = ¢ = 2, then this is the Cauchy-Schwarz inequality since || fg|;1 =
I(f, 9) 2]

Proof. We use Lemma Let A =1/p and set

i
11,

q
and b= 19
9170
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for all z € X. Then a*b!=* = a1/Pp1=1/P = ¢1/Ppl/a g0 that

Sl-dgl 1P 1 gl
[Flerlglies = pTA1E:  aToll

Integrating this inequality yields
. 1 P 1 a 1 1
/ 1f1- gl dx</< \flp +\g\q>dx:+:1'
x [[fllzellgllLa x \PIflle  allgllza P g

Definition 1.7. The exponent q = £~ (or é =1- %) is called the conjugate exponent of

p—1
D-

O]

Theorem 1.8 (Minkowski’s inequality). If 1 < p < oo and f,g € LP then

If +gllze < [fllze + llgllze -

Proof. If f+ g =0 a.e., then the statement is trivial. Assume that f + g # 0 a.e. Consider
the equality
[f+glP=1f +gl-1f +alP~" < (F1+ oDl + 9P,

and integrate over X to find that

/ 1+ glPde < / [(F1+1gD)If + gl da
X X

Holder’s 1
< (Ifllee + Ngllze) [[1F + 9P| Lo -

Since ¢ = %,

1
If+ 9P . = </X|f+grpdx)q ,

from which it follows that

S

1—
( /. \f+g|”d:v> < 1 fllze + gz

which completes the proof, since % =1-

S

Corollary 1.9. For 1 <p < oo, LP(X) is a normed linear space.
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Example 1.10. Let Q2 denote a subset of R™ whose Lebesgque measure is equal to one. If
f € LY(Q) satisfies f(x) > M > 0 for almost all x € Q, then log(f) € L*(Q) and satisfies

/Qlog fdx < log(/Q fdzx).

To see this, consider the function g(t) =t —1—logt fort > 0. Compute ¢'(t) =1 — % =0
sot=1is a minimum (since ¢"(1) >0). Thus, logt <t —1 and letting t — 1 we see that

1
1—Z§10gt§t—1. (1.1)

Since logx is_continuous and f is measurable, then log f is measurable for f > 0. Let

t= H]}(Hl; mn to find that
£ f(x)
1— 1 —1 1 —1. 1.2
O og f(x) —log||fllL < 17T (1.2)

Since g(x) < log f(z) < h(x) for two integrable functions g and h, it follows that log f(x)
1s integrable. Next, integrate to finish the proof, as fX < Ha) 1) dr = 0.

1£1 L1

1.4 The space (LP(X),| - ||zr(X) is complete

Recall the a normed linear space is a Banach space if every Cauchy sequence has a limit in
that space; furthermore, recall that a sequence z,, — = in X if lim,_, ||z, — z||x = 0.

The proof of completeness makes use of the following two lemmas which are restate-
ments of the Monotone Convergence Theorem and the Dominated Convergence Theorem,
respectively (see the Appendix for this chapter).

Lemma 1.11 (MCT). If f, € L}Y(X), 0 < fi(z) < fo(z) < - -+, and [ fullLr(x) < € < oo,
then limy, oo fn(z) = f(x) with f € LY(X) and ||fn — fllz2 — 0 asn — 0.

Lemma 1.12 (DCT). If f, € LY(X), lim,, oo fu(z) = f(2) a-e., and if 3 g € L} (X) such
that |fn(z)] < |g(z)| a.e. for alln, then f € LY(X) and ||fn — flz1 — 0.

Proof. Apply the Dominated Convergene Theorem to the sequence h,, = |f, — f| — 0 a.e.,
and note that |h,| < 2g. O

Theorem 1.13. If 1< p < oo then LP (X) is a Banach space.

Proof. Step 1. The Cauchy sequence. Let {f,}7°, denote a Cauchy sequence in
LP, and assume without loss of generality (by extracting a subsequence if necessary) that

[t = folle <277
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Step 2. Conversion to a convergent monotone sequence. Define the sequence
{gn}nzy as

9g1=0, go=1fil+|fo— fil+ - +|fn— foo1] for n>2.

It follows that
0<g1<ga<--<gn<--

so that g, is a monotonically increasing sequence. Furthermore, {g,} is uniformly bounded
in LP as

o) p
/X ghdr = [|galls, < (nmm + 300 - fi_m> < (Ifallze + 1)
=2

thus, by the Monotone Convergence Theorem, g, / ¢” a.e., g € LP, and g, < g a.e.

Step 3. Pointwise convergence of {f,}. For all k > 1,

| frak = fol = | fask — fok—1+ fosk—1 + - = far1 + far1 — ful
n+k+1
< Z |fi = fi—1l = Gn+k — gn — 0 ave.
i=n+1

Therefore, f, — f a.e. Since

Ul STAI+Y 1fi— fisa] Sgn < gforalln €N,
=2

it follows that |f| < g a.e. Hence, |fp|P < ¢P, |f|P < ¢P, and |f — fn|P < 2¢P, and by the
Dominated Convergence Theorem,

lim |f—fn|pda::/ lim |f — fulPdz =0.
X Xn*)OO

n—oo

1.5 Convergence criteria for L? functions

If { £, } is a sequence in LP(X) which converges to f in LP(X), then there exists a subsequence
{fn,} such that f,, (x) — f(z) for almost every = € X (denoted by a.e.), but it is in general
not true that the entire sequence itself will converge pointwise a.e. to the limit f, without
some further conditions holding.
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Example 1.14. Let X = [0,1], and consider the subintervals

2 ) ) 2 ) o) () 3] 2 o)

Let f, denote the indicator function of the nt" interval of the above sequence. Then
| frllLr — 0, but f,(z) does not converge for any xz € [0, 1].

Example 1.15. Set X =R, and for n € N, set f,, = 1}, 1) Then fo(r) — 0 as n — oo,
but || fullLe = 1 for p € [1,00); thus, f, — 0 pointwise, but not in LP.

Example 1.16. Set X = [0,1], and for n € N, set f,, = nlyg 1y. Then fu(x) = 0 a.e. as

n — 00, but || fullp1 = 1; thus, f, — 0 pointwise, but not in L.

Theorem 1.17. For 1 < p < oo, suppose that {f,} C LP(X) and that f,(z) — f(x) a.e.
If limy—oo | fullex) = 1 flle(x), then fn — f in LP(X).

Proof. Given a,b > 0, convexity implies that (“T*b)p < 1(a” + W) so that (a + b)P <

2P=(aP + bP), and hence |a — b|P < 2P~ 1(|alP + |b|P). Set a = f,, and b = f to obtain the
inequality
0.2 (1ful? +171) ~ Lfu— 11

Since fp(z) — f(z) a.e.,
2 [ AfPde = [ T (27NAP+1P) = U £) do.
X X n—oo
Thus, Fatou’s lemma asserts that

2p/ \f|pdx§liminf/ (2p71(|fn]p+]f\p)—|fn—f|p)dx
X n—oo JXx

_zpl/ |f|Pdz + 2P~ lim / | fulP + lim inf <—/ \fn—f\”dw)
x n—oo [y n—00 X
— op—1 |f|Pdx —limsup/ |fn— [Pdx.

X X

As [y |fIPdz < oo, the last inequality shows that limsup,, .. [y [fn — f|Pdz < 0. It follows

that limsup,, . [y [fn — fIPdz = liminf, .o [y |fn — f[Pdz = 0, so that lim, .. [y |fn —
flPdz = 0. O
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1.6 The space L>(X)

Definition 1.18. With || f|[f~(x) =inf{M >0 | [f(z)| < M a.e.}, we set
LPX) ={f: X = R | [|fllLe(x) < o0}

Theorem 1.19. (L*(X), || - ||z>(x)) is a Banach space.

Proof. Let f, be a Cauchy sequence in L*°(X). It follows that |f, — fin| < [[fn — finllLee(x)
a.e. and hence f,(z) — f(x) a.e., where f is measurable and essentially bounded.

Choose € > 0 and N (e) such that || f, — finl|Leo(x) < € for all n,m > N(e). Since |f(z)—
Jn(@)] = limy, oo [ fm(7) — fu(z)| < € holds a.e. o € X, it follows that ||f — fullze(x) < €
for n > N(e), so that || fn — fllpe(x) — 0. O

Remark 1.20. In general, there is o relation of the type LP C L. For example, suppose
that X = (0,1) and set f(z) = x~2. Then f € L*(0,1), but f ¢ L?(0,1). On the other
hand, if X = (1,00) and f(x) = =, then f € L?(1,00), but f & L*(1,00).

Lemma 1.21 (LP comparisons). If 1 < p < q < r < oo, then (a) LPNL" C L4, and (b)
LiC LP+L".

Proof. We begin with (b). Suppose that f € L9, define the set E ={z € X : |f(z)| > 1},
and write f as

=g+ flge
=g+h.

Our goal is to show that g € LP and h € L". Since [g|P = |f|P1g < |f|91g and |h|" =
|fI"1ge < |f|?1Ee, assertion (b) is proven.
For (a), let A € [0,1] and for f € L4,

I fllze = (/X |f|‘1d:n>q — (/X f\kqf‘(l—k)qdu>q

1
Y q -
< (IFIZIAIET) " = 1A IR AU

Theorem 1.22. If u(X) < oo and q > p, then L9 C LP.

Proof. Consider the case that ¢ = 2 and p = 1. Then by the Cauchy-Schwarz inequality,

/mmz/mwmgwm@mmm.
X X

10
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1.7 Approximation of L?(X) by simple functions

Lemma 1.23. If p € [1,00), then the set of simple functions f =Y ;" | a;1p,, where each
E; is an element of the o-algebra A and p(E;) < oo, is dense in LP(X, A, u).

Proof. If f € LP, then f is measurable; thus, there exists a sequence {¢,}>2, of simple
functions, such that ¢, — f a.e. with

0<[p1] <o <--- <|f],

i.e., ¢, approximates f from below.

Recall that |¢, — f|P — 0 a.e. and |¢, — f|P < 2P|f|P € L', so by the Dominated
Convergence Theorem, ||¢, — f|z» — 0.

Now, suppose that the set F; are disjoint; then by the definition of the Lebesgue integral,

/ PP dx = Z lai|Pu(E;) < oo.
X i=1

If a; # 0, then pu(E;) < oo. O

1.8 Approximation of L”(Q2) by continuous functions

Lemma 1.24. Suppose that Q C R" is bounded. Then C°(Q) is dense in LP(Q) for p €
[1,00).

Proof. Let K be any compact subset of €2. The functions

1
1+ ndist(z, K)

F o (2) € C'(Q) satisfy Fgn<1,

and decrease monotonically to the characteristic function 1. The Monotone Convergence
Theorem gives
fr,m— 1k in LP(Q), 1<p<oo.

Next, let A C € be any measurable set, and let A denote the Lebesgue measure. Then
AMA) =sup{u(K) : KC A, K compact}.

It follows that there exists an increasing sequence of Kj; of compact subsets of A such
that A\(A\ U; K;) = 0. By the Monotone Convergence Theorem, 1x, — 14 in LP(12) for
p € [1,00). According to Lemma each function in LP(2) is a norm limit of simple
functions, so the lemma is proved. O

11
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1.9 Approximation of LP({2) by smooth functions

For Q C R™ open, for € > 0 taken sufficiently small, define the open subset of 2 by
Qe :={z € Q| dist(z,00) > €}.
Definition 1.25 (Mollifiers). Define n € C*°(R™) by

f celEP=DT Gz <1
"(w)'{o if |z >1

with constant C' > 0 chosen such that [5, n(x)dx = 1.
For € > 0, the standard sequence of mollifiers on R™ is defined by

ne(z) = e "nlz/e),

and satisfy [gn ne(x)dz =1 and spt(ne) C B(0,€).
Definition 1.26. For 2 C R™ open, set

LP

loc

Q) ={u: Q=R |ueLP(Q) VQccQ},

where QL CC Q means that there exists K compact such that Q ¢ K C Q. We say that Q is
compactly contained in €.

Definition 1.27 (Mollification of L1). If f € L. (Q), define its mollification
fC=mnex finQe,
so that
£@) = [ e - )iy = [ n)fle -y v e
Q B(0,¢)
Theorem 1.28 (Mollification of LP(1Q2)).
(A) e C=@Q0).
(B) f¢— f a.e. ase— 0.
(C) If f € CO(), then f€ — f uniformly on compact subsets of .
(D) Ifpe[1,00) and f € LY (), then f¢— f in LV ().

loc loc

12
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Proof. Part (A). We rely on the difference quotient approximation of the partial derivative.
Fix x € Q, and choose h sufficiently small so that x+ he; € Q¢ for i = 1,...,n, and compute
the difference quotient of f€:

Mothe) 1) _ o [ 17, (2hemy)  (220)]

so by the Dominated Convergence Theorem,

Ofe
ox;

()= [ T y) sy
Q 0%

A similar argument for higher-order partial derivatives proves (A).

Step 2. Part (B). By the Lebesgue differentiation theorem,

hme6|/ (x)|dy =0 for a.e. z €.

e—0

Choose z € Q for which this limit holds. Then

fulz) — £(2)] < /B = IF) = Sy
1

o n((z —y)/e)lf(y) — fz)|dy
€ JB(w)
C
= |B(x, )| B(o.0) |f(z) — f(y)[dy — 0 as e—0.

Step 3. Part (C). For §~2 C Q, the above inequality shows that if f € C°(€2) and hence
uniformly continuous on €2, then f(z) — f(x) uniformly on Q.

Step 4. Part (D). For f € LV
for € > 0 small enough,

(Q), p € [1,00), choose open sets U CC D CC £2; then,

loc

£ ey < N1fllLr(p) -

13
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To see this, note that
@l [ LIy

— /B e ) ) )y

(r—1)/p 1/p
: </B(x,e) e wdy) ( /B oo ne(x —y)lf (y)lpdy> ,

so that for € > 0 sufficiently small
[lr@rac< [ [ - liwPrad
U U J B(z,e€)

< /D F)P ( /B (yye)m(w—y)dx> dy < /D F(y)Pdy.

Since C°(D) is dense in LP(D), choose g € C%(D) such that || f — gl 1»(p) < 8; thus

1f< = fllze@y < €= 9l e@y + 195 = gllr@) + g = flle@)
<2/ f = 9gllerpy + l9° = 9llLr@y <26 + [l9° = gl Lo vy -

1.10 Continuous linear functionals on L*(X)

Let LP(X)" denote the dual space of LP(X). For ¢ € LP(X)', the operator norm of ¢ is
defined by [|¢[lop = suprs(x)=1 [6(f)]

Theorem 1.29. Let p € (1,00], ¢ = ;5. For g € LI(X), define Fy: LP(X) — R as

Fy(f) = /X fodz .

Then Fy is a continuous linear functional on LP(X) with operator norm || Fyllop = |l9|lLa(x)-

Proof. The linearity of Fy again follows from the linearity of the Lebesgue integral. Since

ng<f>r—\ [ sats| < [ 16lds < 510l

with the last inequality following from Hélder’s inequality, we have that supy gy -1 [Fg (f)] <
191l La-

14
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For the reverse inequality let f = |g|% 'sgng. f is measurable and in L since |f[P =
_q
|f|=T = |g|? and since fg = |g|?,

4}
Fg(f)z/xfgdxz/Xyqudazz (/X ]qua;)
= (fras)” ([ was)" =17l ol
£, (f)

S0 that HgHLq = ||f| S HFQHOP'
Lr
]

Remark 1.30. Theorem shows that for 1 < p < oo, there exists a linear isometry
g — Fy from LX) into LP(X)', the dual space of LP(X). When p = oo, g +— Fy :
LY(X) — L™(X)" is rarely onto (L™= (X)" is strictly larger than L*(X)); on the other hand,
if the measure space X is o-finite, then L>°(X) = L' (X)'.

1.11 A theorem of F. Riesz

Theorem 1.31 (Representation theorem). Suppose that 1 < p < oo and ¢ € LP(X)". Then

there exists g € LY(X), q = z% such that

¢(f)=/ngdx Ve IP(X),

and |[¢llop = [lgllza-
Corollary 1.32. For p € (1,00) the space LP (X, 1) is reflexive, i.e., LP(X)" = LP(X).

The proof Theorem [1.31] crucially relies on the Radon-Nikodym theorem, whose state-
ment requires the following definition.

Definition 1.33. If p and v are measure on (X, A) then v < p if v(E) = 0 for every set
E for which n(E) = 0. In this case, we say that v is absolutely continuous with respect to

.

Theorem 1.34 (Radon-Nikodym). If u and v are two finite measures on X, i.e., u(X) <
00, v(X) < 00, and v < p, then

/F(m)du(az):/ F(z)h(x)du(x) (1.3)
X X

holds for some nonnegative function h € L'(X, ) and every positive measurable function
F.

15
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Proof. Define measures o = p+2v and w = 2u+v, and let H = L? (X, a) (a Hilbert space)
and suppose ¢ : L2 (X, a) — R is defined by ¢ (f) = / fdw. We show that ¢ is a bounded
X

linear functional since

6(7)] = ] [ raen+o)

< [ tatzr =2 [ isjao
< ||f||L2(a:,o¢) Oé(X)

Thus, by the Riesz representation theorem, there exists g € L?(X, a) such that
o5 = [ fdo= [ soda.
X X

| #a=nav= [ 1z g)du. (1.4)

which implies that

Given 0 < F a measurable function on X, if we set f = T}il and h = % then

Jx Fdv = [ Fhdx which is the desired result, if we can prove that 1/2 < g(z) < 2. Define
the sets

1 1
E}L:{xeX|g($)<—n} and E,%:{meX]g(:c)>2+n}.

By substituting f =1,,, j=1,21in 1) we see that
p(E}) = v(B}) =0 for j = 1,2,

from which the bounds 1/2 < g(z) < 2 hold. Also u({x € X | g(z) = 1/2}) = 0 and
v({z € X | g(x) = 2}) = 0. Notice that if F' =1, then h € L'(X). O

Remark 1.35. The more general version of the Radon-Nikodym theorem. Suppose that
w(X) < oo, v is a finite signed measure (by the Hahn decomposition, v = v~ + vt) such
that v < p; then, there exists h € L'(X, p) such that [ Fdv = [ Fhdp.

Lemma 1.36 (Converse to Holder’s inequality). Let pu(X) < oo. Suppose that g is mea-
surable and fg € L' (X) for all simple functions f. If

M(g) = sup {‘/ fgdu‘ . f is a simple function} < 00, (1.5)
Ifllp=1 LI/ X

then g € LY(X), and ||gl|Le(x) = M(g).

16
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Proof. Let ¢,, be a sequence of simple functions such that ¢, — g a.e. and |¢p,| < |g|. Set

_ [6nl" sgn (¢0)

fn

so that || fullzr = 1 for p = ¢/(¢ — 1). By Fatou’s

fnll%"!

lemma,

lollzece) < limint oo, = timinf [ 1u6aldie

Since ¢, — g a.e., then

lollee) < limint | |fuénldp < timint [ |fugldn < M(o).

The reverse inequality is implied by Holder’s inequality. O

Proof of the LP(X)' representation theorem. We

have already proven that there exists a

natural inclusion ¢ : LY(X) — LP(X)" which is an isometry. It remains to show that ¢ is

surjective.

Let ¢ € LP(X)" and define a set function v on measurable subsets E C X by

v(E) = /X 1pdv =: ¢(1g).

Thus, if u(F) = 0, then v(E) = 0. Then

/X fdv = 6(f)

for all simple functions f, and by Lemma 1.23|, this holds for all f € LP(X). By the
Radon-Nikodym theorem, there exists 0 < g € L}(X) such that

/devz/ngdu

YV feLP(X).

¢(f)=/dev=/ngdu (1.6)

and since ¢ € LP(X)’, then M(g) given by (L.5)
inequality, g € LI(X), and |[¢]lop = M(g) = |9l

17
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1.12 'Weak convergence

The importance of the Representation Theorem is in the use of the weak-* topology
on the dual space LP(X)'. Recall that for a Banach space B and for any sequence ¢; in the

dual space B/, ¢; — ¢ in B’ weak-*, if (¢;, f) — (¢, f) for each f € B, where (,-) denotes
the duality pairing between B’ and B.

Theorem 1.37 (Alaoglu’s Lemma). If B is a Banach space, then the closed unit ball in B’
is compact in the weak -* topology.

Definition 1.38. For 1 < p < oo, a sequence {fn,} C LP(X) is said to weakly converge to
fe LX) if

/an(fﬂ)cb(fv)dw — /Xf(x)gb(m)d:p Vo€ LX), = T

We denote this convergence by saying that f, — f in LP(X) weakly.

Given that LP(X) is reflexive for p € (1,00), a simple corollary of Alaoglu’s Lemma is
the following

Theorem 1.39 (Weak compactness for LP, 1 < p < o0). If 1 < p < oo and {fn} is a
bounded sequence in LP(X), then there exists a subsequence {fn} such that fn, — f in
LP(X) weakly.

Definition 1.40. A sequence {f,} C L*>(X) is said to converge weak-* to f € L>=(X) if
[ @@z = [ pa)swin voe LX),
X X

We denote this convergence by saying that f, — f in L®(X) weak-*,

Theorem 1.41 (Weak-* compactness for L>). If {f,} is a bounded sequence in L>®(X),
then there exists a subsequence {fn.} such that fr, — f in L=(X) weak-*.

Lemma 1.42. If f,, — f in LP(X), then f, — f in LP(X).

Proof. By Holder’s inequality,

‘/Xg(fn —f)da; < an _f”LPHg”Lq.

O]

Note that if f,, is weakly convergent, in general, this does not imply that f, is strongly
convergent.

18
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Example 1.43. Ifp = 2, let f, denote any orthonormal sequence in L*(X). From Bessel’s

inequality
oo
S|/ tugis
— /X

This example shows that the map f +— || f||z» is continuous, but not weakly continuous.
It is, however, weakly lower-semicontinuous.

< llgll72(x)

we see that f, — 0 in L?(X).

Theorem 1.44. If f, — f weakly in LP(X), then || f||rr < liminf, o || fnllze-

Proof. As a consequence of Theorem [1.31

/ fgdz

< sup liminf | fu|lzellgllze -
lgllLaxy=1 "7

HfHLP(X) sSup
llgllLa(x)=1

= lim ’/ fngdx

”gHLq(X) 1o

Theorem 1.45. If f,, — f in LP(X), then f, is bounded in LP(X).

Theorem 1.46. Suppose that Q C R™ is a bounded. Suppose that

sup || fullzr) <M < oo and f,— f ae.

If1 < p< oo, then f, — f in LP(Q).

Proof. Egoroff’s theorem states that for all € > 0, there exists £ C € such that u(E) < € and
fn — f uniformly on E¢. By definition, f,, — f in LP(Q) for p € (1,00) if [,(fn—f)gdz — 0
for all g € LY(Q), ¢ = %. We have the inequality

[ tt= oo < [ 1= fllglde+ [ 1= Allolde.

Choose n € N sufficiently large, so that |f,(z) — f(z)| < ¢ for all z € E°. By Holder’s
inequality,

/E |fo = fllglde < || fn — f”Lp(EC)HQHLq(EC) < 5M<EC)”9HLq(Q) <Cd

for a constant C < oo.

19
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By the Dominated Convergence Theorem, || f,,— f||Lr() < 2M so by Holder’s inequality,
the integral over E is bounded by 2M||g|| ra(g)- Next, we use the fact that the integral is
continuous with respect to the measure of the set over which the integral is taken. In
particular, if 0 < A is integrable, then for all § > 0, there exists € > 0 such that if the set
E, has measure p(E.) < ¢, then | E. hdx < §. To see this, either approximate h by simple
functions, or use the Dominated Convergence theorem for the integral [, 1g, (z)h(z)dz. O

Remark 1.47. The proof of Theorem[1.]6 does not work in the case that p =1, as Holder’s
inequality gives

JL1£a= Al do < 1 = o lgllme
so we lose the smallness of the right-hand side.

Remark 1.48. Suppose that E C X is bounded and measurable, and let g = 1. If fr, — f

in LP(X), then
/E fulw)dz — /E f()de;

hence, if f, — f, then the average of f, converges to the average of f pointwise.

1.13 Integral operators

If u : R™ — R satisfies certain integrability conditions, then we can define the operator K
acting on the function v as follows:

Ku(a) = [k y)ulwdy.

where k(x,y) is called the integral kernel. The mollification procedure, introduced in Defini-
tion [1.27] is one example of the use of integral operators; the Fourier transform is another.

Definition 1.49. Let L(LP(R™), LP(R™)) denote the space of bounded linear operators from
LP(R™) to itself. Using the Representation Theorem|1.31}, the natural norm on L(LP(R™), LP(R™))

s given by

| K| z(r@ny,Lo(rny) = SUp  sup Kf(z)g(z)dz| .

IfllLp=1 llgllLa=1

Theorem 1.50. Let 1 < p < oo, Ku(x) = [z, k(z,y)u(y)dy, and suppose that

R

/ |k(x,y)|dx < Cy Vy € R" and / |k(z,y)|dy < Cy Yz € R",

n

where 0 < C1,Cy < 0o. Then K : LP(R™) — LP(R™) is bounded and

p—1
P
2 .

1
I K 2(zr@ny, Lo @ny) < CF C

20
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In order to prove Theorem [1.50] we will need another well-known inequality.
Lemma 1.51 (Cauchy-Young Inequality). If% + % =1, then for all a,b >0,

a? W
ab < — + —.
p q

Proof. Suppose that a,b > 0, otherwise the inequality trivially holds.
ab = exp(log(ab)) = exp(loga + logb) (since a,b > 0)
1 1
= exp < loga? + —log bq>
p q

1 1
< —exp(loga?) + — exp(log b?) (using the convexity of exp)
p q

alP b

p q

where we have used the condition % + % =1.

Lemma 1.52 (Cauchy-Young Inequality with ). If% + % =1, then for all a,b > 0,
ab < §aP + Csb?, 0>0,

with Cs = (6p)~4/Pg~1.

Proof. This is a trivial consequence of Lemma by setting

b

Wb=a- 00

Proof of Theorem[1.50. According to Lemma|1.51} |f(y)g(z)| < I | 9@ g that

/n/nk(%y)f(y)g(a;)dydx
) / / def(y)'pdy " /R / . Wdyrgu)m

Cy Co
< ;Hf\lip + ?Ilgll%q .
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To improve this bound, notice that

/n an k(z,y)f(y)g(x)dydx

k(2 y)| » LG5 )] RN
g// Tdm\tf(yﬂ dy+/n/n p dylt™ g(z)|%d

CqtP Cot™4
p
Find the value of ¢ for which F(¢) has a minimum to establish the desired bounded. O

< A1z +

lgll7e =: F(t).

Theorem 1.53 (Simple version of Young’s inequality). Suppose that k € L'(R") and
f e LP(R™). Then
1B flloe < K[ £l e -

Proof. Define
Ki(f) =k f = / Kz — ) (w)dy.

R
Let C1 = Ca = [|k||11®n). Then according to Theorem Ky : LP(R") — LP(R"™) and
I Kkl 2zp (), L rry) < Ch- O
Theorem can easily be generalized to the setting of integral operators K : LY(R") —

L"(R™) built with kernels k € LP(R") such that 1+ 1 = % + %. Such a generalization leads
to

Theorem 1.54 (Young’s inequality). Suppose that k € LP(R™) and f € LY(R™). Then

1 1 1
|k * fllor < |lkllpellfllze for 14— =—+4—.
rop q

1.14 Appendix 1: The monotone and dominated convergence theorems
and Fatou’s lemma

Let © C R? denote an open and smooth subset. The domain € is called smooth whenever
its boundary 052 is a smooth (d — 1)-dimensional hypersurface.

Theorem 1.55 (Monotone Convergence Theorem). Let f, : @ — R U {400} denote a
sequence of functions, fn, > 0, and suppose that the sequence fy is monotonically increasing,
1.e.,

< fa<fs3<--

Then
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Lemma 1.56 (Fatou’s Lemma). Suppose the sequence f, : Q@ — R and f, > 0. Then

n—oo n—oo

/ liminf f,,(z)dz < liminf / fnlx
Q

Example 1.57. Consider 2 = (0,1) C R and suppose that f, = nl(g1/n). Then fol fn(x)dx
1 for all n € N, but liminf,, fo fn(z)dz = 0.

Theorem 1.58 (Dominated Convergence Theorem). Suppose the sequence f, : Q@ — R,
fu(x) — f(z) almost everywhere (with respect to Lebesgue measure), and furthermore,
Iful < g € LY ). Then f € LY(Q) and

HILIEO fn )dx:/ﬂf(x)dx

Equivalently, f, — f in L*(Q) so that lim, oo || frn — i@ =0.

In the exercises, you will be asked to prove that the Monotone Convergence Theorem
implies Fatou’s Lemma which, in turn, implies the Dominated Convergence Theorem.

1.15 Appendix 2: The Fubini and Tonelli Theorems

Let (X, A, p) and (Y, B,v) denote two fixed measure spaces. The product o-algebra A x B
of subsets of X x Y is defined by

AxB={AxB : Ac A, B € B}.
The set function g x v : A x B — [0, 0o] defined by

(nx v)(Ax B) = u(A) - v(B)
for each A x B € A x B is a measure.

Theorem 1.59 (Fubini). Let f : X XY — R be a p X v-integrable function. Then both
iterated integrals exist and

/X><Yf (b % v) //fd,udy_//fdyd,u

The existence of the iterated integrals is by no means enough to ensure that the function
is integrable over the product space. As an example, let X =Y = [0,1] and p =v = A
with X\ the Lebesgue measure. Set

2 2

Grnmes (y) #(0,0)
z,y) =< (& )
f(z,y) { +y 0. (r.y)=
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Then a standard computation shows that

/Ol/olf(x,y)d:vdyz—z, /Ol/olf(l“,y)dydmzz_

Fubini’s theorem shows, of course, that f is not integrable over [0, 1]?

There is a converse to Fubini’s theorem, however, according to which the existence of
one of the iterated integrals is sufficient for the integrability of the function over the product
space. The theorem is known as Tonelli’s theorem, and this result is often used.

Theorem 1.60 (Tonelli). Let (X, A, n) and (Y,B,v) denote two o-finite measure spaces,
and let f: X xY — R be a pu X v-measurable function. If one of the iterated integrals
Ix Jy [fldvdp or [y [ |fldudy exists, then the function f is p x v-integrable and hence,
the other iterated integral exists and

/Xxyfd(uxz/):/Y/deﬂdyz/x/yfdydu.

1.16 Exercises

Problem 1.1. Use the Monotone Convergence Theorem to prove Fatou’s Lemma.
Problem 1.2. Use Fatou’s Lemma to prove the Dominated Convergence Theorem.

Problem 1.3. Let Q C R? denote an open and smooth subset. Let (a,b) C R be an open
interval, and let f : (a,b) x @ — R be a function such that for each t € (a,b), f(t,-) :
Q — R is integrable and %(t,x) exists for each (t,x) € (a,b) x Q. Futhermore, assume that
there is an integrable function g : Q@ — [0,00) such that supe(qp) \Z—Jz(t,x)] < g(x) for all
x € Q. Show that the function h defined by h(t) = fﬂ f(t,x)dz is differentiable and that the
derivative is given by

dh df

d
D) = dt/gf(t, ode = [ Lta)da

for each t € (a,b). Hint: You will need to use the definition of the derivative for a real
valued function function v : (a,b) — R which is %(to) = limy_,g M}W, as well as
the Mean Value Theorem from calculus which states the following: Let (t1,t2) C R and let
q: (t1,t2) — R be differentiable on (t1,t2). Then % = %(t’) where t1 is some point
between t1 and to.

Problem 1.4. Let Q denote an open subset of R™. If f € LY(Q) N L>®(Q), show that
feLP(Q) forl<p<oo. IfQis bounded, then show that lim, s« || f||zr = || f||z. (Hint:
For € > 0, you can prove that the set E = {x € Q : |f(z)| > ||fllzee — €} has positive
Lebesgue measure, and the inequality [|| f||z — €] 1g < |f| holds.)
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Problem 1.5. Theorem [1.17 states that if 1 <p < oo, f € LP, {f,} C L?, f,, — [ a.e.,
and limy, oo || fullze = || fllze, then lim, oo || fn — fllze — 0. Show by an exzample that this
theorem is false when p = oo.

Problem 1.6. Show that equality holds in the inequality
A< Aa+ (1-Ab, Ae(0,1),a,b>0

if and only if a = b. Use this to show that if f € LP and g € L1 for 1 < p,q < oo and
% + % =1, then

/glfghtv==HfHLpHg|Lq

holds if and only if there exists two constants Cy and Cy (not both zero) such that C1|f|P =
Cslg|? holds.

Problem 1.7. Use the result of Problem to prove that if f,g € L3(Y) satisfy

|Wm=Mm=AﬂM%ﬂ,

then g = |f| a.e.

Problem 1.8. Given f € L*(S'), 0 <r < 1, define

0 27
PfO)= > forlmlem?, fn:% f(B)e ™40
n=-—oo 0
Show that . or
PAO) =1 £6) = 5 [ pr(0 - 0)f(0)do.
T Jo
where

o0 2

; 1—r
9) — In| in0 _ ]
pr(0) Z e 1—2rcosf + r2

n=—oo

Show that 5 027r pr(0)do = 1.
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Problem 1.9. If f € LP(S'), 1 < p < oo, show that

P.f—f in LP(SY) as r /1.

Problem 1.10. Suppose that Y = [0,1]? is the unit square in R? and let a(y) denote a
Y -periodic function in L>°(R?). For e > 0, let ac.(z) = a(%£), and let a = [, a(y)dy denote
the average value of a. Prove that ac — @ as € — 0.

Problem 1.11. Let f, = \/nl( 1y. Prove that fo — 0 in L*(0,1), that f, — 0 in L'(0,1),
but that f, does not converge strongly in L*(0,1).
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2 The Sobolev spaces H*(12) for integers k > 0

2.1 Weak derivatives
Definition 2.1 (Test functions). For Q C R", set
CP () ={ue C®(Q) | spt(u) CV CC Q},
the smooth functions with compact support. Traditionally D(Q2) is often used to denote
C3(2), and D(Q2) is often referred to as the space of test functions.

For u € C*(R), we can define Z—Z by the integration-by-parts formula; namely,

/Rfl;j(x)gb(x)dx = —/Ru(x)jj(x)d:z Vo € C3°(R).

Notice, however, that the right-hand side is well-defined, whenever u € LL (R)

loc

Definition 2.2. An element o € Z, (nonnegative integers) is called a multi-index. For
such an a = (au, ..., ), we write D = 3‘1?1 e 6(2;%”" and o] = a1 + - - -au,.

Example 2.3. Let n = 2. If |a] = 0, then a = (0,0); if || = 1, then a = (1,0) or
a=(0,1). If |a| = 2, then o = (1,1).

Definition 2.4 (Weak derivative). Suppose that uw € LL (). Then v* € LL () is called
the o weak derivative of u, written v = D%, if

t/qwx)pa¢@g¢n:(—UO{/1ﬂ¢m¢¢wdxv¢e<x$@n.
Q

Q
Example 2.5. Let n =1 and set Q = (0,2). Define the function

() = z, 0<x<l1
Y701, 1<e<2

Then the function

PENEELETES
WE0, 1<a<2

is the weak derivative of u. To see this, note that for ¢ € C§°(0,2),

2 dgb B 1 @ 2@ P\
/0 u(x)d(x)dx—/o - (x)dx—}—/l dx( )d

X X

1 1
__ / o(a)de + 2|} + 92 = — / $(z)dz
0 0
2

:_/U@M@m.

0
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Example 2.6. Let n =1 and set Q = (0,2). Define the function

() = z, 0<x<l1
W= 2, 1<a<2

Then the weak derivative does not exist!
To prove this, assume for the sake of contradiction that there exists v € Llloc(Q) such
that for all ¢ € C§°(0,2),

: = - 2u x de x)dz
/0 v(z)p(z)dr = /0 ( )d (x)dz .
Then

/O2v(x)d>(a:)dm _ /lezi(a:)dﬂc _ 2/12 %(z)dw

1

— /0 o(x)dz — 6(1) + 26(1)
1

— /0 o(x)dr + 6(1)

Suppose that ¢; is a sequence in C§°(0,2) such that ¢;(1) = 1 and ¢j(x) — 0 for x # 1.
Then

2 1
1=¢,(1)= /0 v(x)p;(x)dr — /0 ¢j(z)dx — 0,
which provides the contradiction.

Definition 2.7. Forp € [1, ], define WP(Q) = {u € LP(2) | weak derivative exists , Du €
LP(Q)}, where Du is the weak derivative of u.

Example 2.8. Let n =1 and set Q = (0,1). Define the function f(x) = sin(1/x). Then
u € LY(0,1) and % = —cos(1/x)/x? € LL (0,1), but u & WHP(Q) for any p.

loc

Definition 2.9. In the case p = 2, we set H'(Q) = WP(Q).

Example 2.10. Let Q = B(0,1) C R? and set u(x) = |z|~%. We want to determine the
values of a for which u € H*(Q).

Since |x|7% = Z?Zl(:cjxj)_aﬂ, then Oy, |x|~% = —alz|~*2x; is well-defined away from
z = 0.
Step 1. We show that u € Li, (Q). To see this, note that [, |z|~*dz =

ioc 2ol drdp < 00
whenever o < 2.

0 0
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|—a—2

Step 2. Set the vector v(r) = —a|z x (so that each component is given by v;(x) =

—alx|7* 2x;). We show that

/ u(z)Do(z)dx = —/ v(x)p(z)dr Yo € CF°(B(0,1)).
B(0,1)

B(0,1)

To see this, let Qs = B(0,1) — B(0,9), let n denote the unit normal to Qs (pointing toward
the origin). Integration by parts yields

21

0" Yp(x)n(x)ddb + a/ |z| 722 ¢(z)dax .

0 Qs

| lal"Do(w)dz -
Qs
Since limg_o 1~ fozﬂ d(z)n(z)dd =0 if « < 1, we see that

lim/ || "D (x)dr = lima | |z|7° 2z $(z)dz
6—0 Jo, 6—0 Qs

Since f027r fol r=® lrdrdf < oo if a < 1, the Dominated Convergence Theorem shows that v
is the weak derivative of u.

Step 8. v € L?(2), whenever fOZW 01 r22pdrdf < oo which holds if a < 0.

Remark 2.11. Note that if the weak derivative exists, it is unique. To see this, suppose
that both vi and vy are the weak derivative of u on 2. Then fQ(vl — vg)oddx = 0 for all
p € C°(QY), so that vi = v a.e.

2.2 Definition of Sobolev Spaces
Definition 2.12. For integers k > 0 and 1 < p < o0,
WhP(Q) = {u € LL .(Q) |DY exists and is in LP(Q) for |o| < k}.

Definition 2.13. For u € WkP(Q) define

1
p
lullwnoy = | D 1Dl | for1<p<oo,
|or| <k
and
lullwrce@) = D 1Dl poo(qy -
|| <k
The function || - [|yyr.r(q) i clearly a norm since it is a finite sum of L? norms.

29



Shkoller 2 THE SOBOLEV SPACES HX(Q) FOR INTEGERS K > 0

Definition 2.14. A sequence uj — u in W*P(Q) if lim; o [t — w|lyrn(g) = 0.
Theorem 2.15. W*P(Q) is a Banach space.

Proof. Let u; denote a Cauchy sequence in W*?(Q). It follows that for all |a| < k, D%u; is
a Cauchy sequence in LP(Q). Since LP(2) is a Banach space (see Theorem [1.19)), for each
a there exists u® € LP(Q2) such that

D%uj — u® in LP(Q).
When a = (0, ...,0) we set u := u(®0) so that u; — u in LP(Q). We must show that

u® = D%u.

For each ¢ € C§°(Q),

/uDO‘gbdx = lim [ u;D%¢dx
Q

J—=0JQ

= (=)l lim D%u;pdx

j—oo Jo
= (! [ ueods:
Q

thus, v = D%u and hence D%u; — D%u in LP(Q2) for each |a| < k, which shows that
u; — u in WFP(Q). O

Definition 2.16. For integers k > 0 and p = 2, we define
H*(Q) = Wh(Q).
H*(Q) is a Hilbert space with inner-product (u, U)Hk(Q) = Z|a|§k(D°‘u, D%v) r2(q)-

2.3 A simple version of the Sobolev embedding theorem

For two Banach spaces B; and By, we say that B; is embedded in By if ||u|lp, < C||u|/s, for
some constant C and for u € B;. We wish to determine which Sobolev spaces W*P(Q) can
be embedded in the space of continuous functions. To motivate the type of analysis that is
to be employed, we study a special case.

Theorem 2.17 (Sobolev embedding in 2-D). For kp > 2,

mas fu(e)| < Clullweses) VY € GF(9). (2.1)
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Proof. Given u € C§°(12), we prove that for all z € spt(u),
u(z)] < ClID%u(x)l|lLr(@) Via] < k.

By choosing a coordinate system centered about z, we can assume that x = 0; thus, it
suffices to prove that
[u(0)] < ClID"u(x)||Lr) Vo] < k.

Let g € C>([0,00)) with 0 < g < 1, such that g(z) = 1 for = € [0, 3] and g(z) = 0 for
z € [2,00).
By the fundamental theorem of calculus,

1 1
w(0) = — [ olg(ryutr, 0)]dr = - / 0, (r) By g (r)u(r, 6))dr
0 0
1

= /0 T 8,,% [g(r)u(r,0)]dr

_1\k 1
- (l(f —1)1)1 /0 P OF g (ryu(r, 0)ldr =

Integrating both sides from 0 to 27, we see that

_1\k 27 1
u(0) = 27r((kl—)1)'/0 /0 k=2 8f[g(r)u(r, 0)]rdrdd .

The change of variables from Cartesian to polar coordinates is given by

kgl
(]i _1)1)'/0 rk_QOf[g(r)u(r,H)]rdr

x(r,0) =rcosf, y(r,0)=rsind.
By the chain-rule,
Oru(x(r,0),y(r,0)) = Opucosf + Oyusinb ,
OPu(x(r,0),y(r,0)) = d>ucos® § + 28£yu cos @ sinf + 8Zu sin? 6

It follows that 9F = Z| a|<k %a(0) D, where aq consists of trigonometric polynomials of 6,
so that -

\k
W0 = gy oy ™ 2 O gt

lo| <k

< CI* 2\ pagsoy Y, ID*(9w) | eB01))

| <k
p—1
I pa—2) P
<C (/ ropl rdr> l[wllye.p r2) -
0
Hence, we require % +1>—1orkp>2. ]
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2.4 Approximation of W*?(Q}) by smooth functions
Recall that Q. = {z € Q| dist(z,9N) > €}.
Theorem 2.18. For integers k>0 and 1 < p < o0, let
ut =ne xu in Qe

where 1 is the standard mollifier defined in Definition |1.25. Then

(A) u¢ € C>®(Q) for each € >0, and

(B) u¢ — u in VV{Z’?(Q) as € — 0.
Definition 2.19. A sequence u; — u in VV{Z?(Q) if uj — u in W*P(Q) for each Q cC Q.

Proof of Theorem [2.18 Theorem [L.28] proves part (A). Next, let v® denote the the ath
weak partial derivative of u. To prove part (B), we show that D%u¢ = n * v* in .. For
T € Q.

D% (x) = D* /Q Ne(z — y)u(y)dy

= [ Denta — wyut)dy
— (— |ex] @ T — YU
(1) /QDyne( y)uly)dy
N /Qm(x —y)v*(y)dy = (e * v*)(2).

By part (D) of Theorem m D%uf — v in LY

loc

(). O

It is possible to refine the above interior approximation result all the way to the bound-
ary of Q2. We record the following theorem without proof.

Theorem 2.20. Suppose that Q@ C R" is a smooth, open, bounded subset, and that u €
WEP(Q) for some 1 < p < oo and integers k > 0. Then there exists a sequence u; € C*(Q)
such that

uj —u in WEP(Q).

It follows that the inequality (2.1 holds for all u € W*P(R?).
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2.5 Holder Spaces

Recall that for 2 C R™ open and smooth, the class of Lipschitz functions u : {2 — R satisfies
the estimate
u(z) —u(y)| < Cle —y| Yo,y € Q

for some constant C.

Definition 2.21 (Classical derivative). A function u : Q — R is differentiable at x € Q if
there exists f : @ — L(R™;R™) such that

ulz) —uly) = f(z)- =yl
|z =y
We call f(x) the classical derivative (or gradient) of u(z), and denote it by Du(zx).

Definition 2.22. Ifu: Q) — R is bounded and continuous, then
ol oy = max u(z).
If in addition u has a continuous and bounded derivative, then
ullor @) = lullco) + 1 Pullcogm) -
The Holder spaces interpolate between C°(Q) and C1(9).
Definition 2.23. For 0 < v < 1, the space C%(2) consists of those functions for which
[ullgoq@) = lullco@) + [Ulcon @) < o0,

where the yth Holder semi-norm [u]Coﬁ(ﬁ) is defined as

S )

YEN x —y|7
B lz -yl

The space C%V(Q) is a Banach space.

2.6 Morrey’s inequality

We can now offer a refinement and extension of the simple version of the Sobolev Embedding
Theorem 2,17

Theorem 2.24 (Morrey’s inequality). Forn < p < oo, let B(xz,r) C R"™ and lety € B(z,r).
Then
1_n
u(z) —u(y)] < Cr 7 || Dullo(p(a,2m) Ve € CH(R™).
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In fact, Morrey’s inequality holds for all w € W1P(B(x,2r)) (see Problem in the
Exercises).

Notation 2.25 (Averaging). Let B(0,1) C R™. The volume of B(0,1) is given by o, =

n
F(Zij-l) and the surface area is |[S"!| = na,,. We define
2

1
dy = d
]{3 = /B L

1
f@as =y [ s,
][(;B(w,r) ( ) napr" ! OB(z,r) ( )

Lemma 2.26. For B(z,r) CR", y € B(z,7) and u € C*(B(z,7)),
[ Du(y)|
u(y) —u(z)|dy < C ——dy.
][B(x,r)’ ( ) ( )’ B(z,r) |x_y|n !

Proof. For some 0 < s < r, let y = x + sw where w € S"~! = 9B(0,1). By the fundamental
theorem of calculus, for 0 < s < r,

w(z + sw) —u(z) = /OS %u(m + tw)dt

= /OS Du(x + tw) wdt .
Since |w| = 1, it follows that
lu(z + sw) — u(@)| < /0 Du( + tw)]dt
Thus, integrating over S"~! yields

/ lulz + sw) — u()]dw </ / Du(z + tw)|dwit
sn-1 0 Jsn-1

s 2571—1
< / / |Du(x + tw)|trh1 dwdt
0 Jsn-1

D
< / Du)] u(i)_’ldy,
B(z,r) |$ - Z/|
where we have set y = = + tw.

Multipling the above inequality by s”~! and integrating s from 0 to r shows that

T n D
/ / lu(z + sw) — u(x)|dws™ 1ds < T / Du)l u(y)_| dy
n—1
0 Jsn-1 " JB(x,r) |LL’ - y‘

D
< Canr"/ ‘ui(gi)_‘ldy,
B(z,r) ‘1’ - y’

which proves the lemma. O
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Proof of Theorem[2.2]]. Assume first that u € C'(B(xz,2r)). Let D = B(x,r) N B(y,r) and
set 7 = |z — y|. Then

|wm—u@nzﬁﬁw@—u@wu
gﬁJmm—u@wm+ﬁgmm—u@wu.

Since D equals the intersection of two balls of radius r, it is clear that can choose a constant
C, depending only on the dimension n, such that

Dl _ D]

eI

It follows that
u(z) —u(y)| < ]i u(z) — u(z)|dz +]€) luly) — u(z)|dz
C
< e (p o)~ + [ 1)t
C u(z) —u(z)|dz+C u(y) —u(z)|dz .

sof e —uedrof - juw )

Thus, by Lemma [2.26]
—ulz)laz ;L'—zl_n ul(z)ldz .’L'—Zl_n w(2)dz

and

][ lu(z) —u(z)|dz < C |z — 2|17 | Du(2)|dz < C/ |z — 2|'7" | Du(2)|dz
B(y,r) B(z,2r)

B(y,r)

so that
lu(z) —u(y)] < C/ |z — 2" 7" Du(2)|dz (2.2)
B(z,2r)

and by Holder’s inequality,

1
(1—n) P b
lu(z) —u(y)| < C (/ = s"ldsdw> (/ Du(z)]pdz>
B(0,2r) B(z,2r)
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Morrey’s inequality implies the following embedding theorem.

Theorem 2.27 (Sobolev embedding theorem for k = 1). There exists a constant C =
C(p,n) such that

[ell go1-2 oy < Cllellwro@e) Vu € WH(R).

Proof. First assume that u € C§(R"). Given Morrey’s inequality, it suffices to show that
max |u| < C|ully1p@ny. Using Lemma for all x € R,

lu(z)] < yu(g;) u(y)ldy + lu(y)|dy
B(z,1)

<c/ APy o o
(z,1) |$ |
< Cllullwre@ny

the last inequality following whenever p > n.
Thus,
[0l o3 gy < Cllullwinery Yu € CH(RY). (23)

By the density of C§°(R") in WHP(R™), there is a sequence u; € C§°(R™) such that

uj —u € WH(R™).
By (23), for j,k €N,

0,12

Juj — ugl|C™ 7 (R™) < Olluy — ugllwrngny -
Since Co’l_%(R”) is a Banach space, there exists a U € C’O’l_%(Rn) such that
: 0,12 o
uj — U in C7 2 (R").

It follows that U = w a.e. in 2. By the continuity of norms with respect to strong
convergence, we see that
10Nl o1-2 gy < Cllullwron)
which completes the proof. O
In proving the above embedding theorem, we established that that for p > n, we have
the inequality
[ul| Lo (rry < Cllullwro@n) - (2.4)
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We will see later that (2.4)), via a scaling argument, leads to the following important inter-
polation inequality: for p > n,

n

n p—
el ey < C 0, DD oo ] ey -

Another important consequence of Morrey’s inequality is the relationship between the
weak and classical derivative of a function. We begin by recalling the definition of classical
differentiability. A function u : R® — R™ is differentiable at a point x if there exists a
linear operator L : R™ — R™ such that for each € > 0, there exists § > 0 with |y — 2| < ¢
implying that

[u(y) —u(z) — Ly — 2)|| < €lly — |-

When such an L exists, we write Du(z) = L and call it the classical derivative.
As a consequence of Morrey’s inequality, we extract information about the classical
differentiability properties of weak derivatives.

Theorem 2.28 (Differentiability a.e.). If Q CR", n <p < oo and u € VVlif(Q), then u is
differentiable a.e. in ), and its gradient equals its weak gradient almost everywhere.

Proof. We first restrict n < p < oo. By a version Lebesgue’s differentiation theorem, for
almost every x € (0,

lim |Du(x) — Du(z)|Pdz =0, (2.5)
r=0/B(zr)

where Du denotes the weak derivative of u. Thus, for r > 0 sufficiently small, we see that

][ |Du(z) — Du(2)|Pdz < €.
B(z,r)
Fix a point x € € for which (2.5)) holds, and define the function
wz(y) = uly) — u(x) — Du(z) - (y — x).
Notice that w;(z) = 0 and that
Dywz(y) = Du(y) — Du(z) .

Set r = |x — y|. Since |u(y) — u(z) — Du(z) - (y — x)| = |wz(y) — wg(z)|, an application
of the inequality (2.2)) that we obtained in the proof of Morrey’s inequality then yields the
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estimate
| D:wa(2)]
B(z,2r) |z — 2|t
|Du(z) — Du(z)|

B(z,2r) "x - Z|n_1

<cr'h ( / Du(z) — Du(x)\pdz)
B(xz,2r)

1
<Cr <][ |Du(z) — Du(:c)|pdz>
B(z,2r)

< C|LL’ _y‘67

u(y) = u(x) = Du(z) - (y —2)| < C dz

=C dz

3=

from which it follows that Du(x) is the classical derivative of u at the point x.
The case that p = oo follows from the inclusion W;=>°(Q) ¢ W'P(Q) for all 1 < p <

loc loc

00. OJ

2.7 The Gagliardo-Nirenberg-Sobolev inequality
In the previous section, we considered the embedding for the case that p > n.

Theorem 2.29 (Gagliardo-Nirenberg inequality). For 1 < p < n, set p* = %' Then

lull Lo+ () < Cpull Dullpony Yu € WHP(R™).

Proof for the case n = 2. Suppose first that p = 1 in which case p* = 2, and we must prove
that
HUHL2(R2) < CHDU”LI(RQ) Yu € C3(R?). (2.6)

Since v has compact support, by the fundamental theorem of calculus,

1 2
U($17$2):/ 01U(y1,w2)dy1=/ Oau(z1,y2)dy2

so that

)| < [ outmanldi < [ [Dutyr,z)ldy
and

lu(z1, z2)] < /_Z |02u(x1, y2)|dy2 < /_Z | Du(z1, y2)|dy2 .

38



Shkoller 2 THE SOBOLEV SPACES HX(Q) FOR INTEGERS K > 0

Hence, it follows that

(s, 22)|? < / Duly, 22)|dys / Du(er, y2)ldys

—0o0 —00

Integrating over R?, we find that

/ / |u(m1,x2)|2dm1da:2

S/ / (/ |DU(y1,x2)|dy1/ ‘Du(xlay2)|dy2> dxidxs
o o0 2
< </ / DU($1,$2)|d:J:1dx2)
which is (2.6)).

Next, if 1 < p < 2, substitute |u|” for v in (2.6) to find that

1
2
< |u|27dx> §C”y/ |u|" Y| Du|dz
R2 R2
p—1

p(y=1) o
< Ol Dulogee) [ 55 o)
R

Choose v so that 2y = %; hence, v = %, and
2-p
2p 2p
([ 1) ™ < cripulisge).
R2
so that
< D n 2.
HUHL%(W) < Cpnl|Dul| Lo wn) (2.7)

for all u € C}(R?).
Since C§°(R?) is dense in W1P(IR?), there exists a sequence u; € C§°(R?) such that

uj —u in WHP(R?).
Hence, by (2.7)), for all j, k € N,

ot — ]l 2o

- &) < CpnllDuj — Dug|| o (we)

2
so there exists U € L%(R”) such that
2p
uj —» U in L27(R").
Hence U = w a.e. in R?, and by continuity of the norms, ([2.7)) holds for all w € W1P(R2). O
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Proof for the general case of dimension n. Following the proof for n = 2, we see that

1
n oo n—1
lu(z)|»—1 < I}, (/ |Du(x1, ..., yi, ,:Un)|dy2>

—00

- S o
[ s < [ (7 1Duen e lan ) o
—0o0 —00 —00

1 1
0 =i OO 0 P
( / |Du|dy1) [ ( / Du|dy@-) dr

1 _1

[ee} n—1 o0 oo n—1
(/ rDu|dy1) ., (/ Du|dx1dyi) |

where the last inequality follows from Hélder’s inequality.
Integrating the last inequality with respect to o, we find that

0o o] " 00 oo ﬁ S 1
/ / |u(z)|"Tdridrs < (/ / |Dudx1dy2) / 7, I tdas,
—o00 J —00 —o0 J —00 —oo  1#£2

oo o oo
L = / |Duldy,, I; = / / | Du|dz1dy; for i = 3,...,n.
—0o0 — 0o

— 00

so that

where

Applying Hélder’s inequality, we find that

[ @i
—o00 J —0 N N
[e'e} o0 n—1 o 8} n—1
< </ / ]Du|dx1dy2> (/ / |Du]dy1dx2>
—00 J —00 N . N —00 J —0O0 %
I, (/ / / \Du!dmldxgdyi) .

Next, continue to integrate with respect to xs, ..., x, to find that

n & > n—1
/ lu|»-Tdx <TI, </ = / ]Du\dxl...dyi...dxn>
s
= </ |Du|daz>

This proves the case that p = 1. The case that 1 < p < n follows identically as in the proof
of n =2. O
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It is common to employ the Gagliardo-Nirenberg inequality for the case that p = 2; as
stated, the inequality is not well-defined in dimension two, but in fact, we have the following
theorem.

Theorem 2.30. Suppose that u € H'(R?). Then for all 1 < q < oo,

[ull a2y < CVallull g re) -

Proof. Let x and y be points in R?, and write 7 = |z — y|. Let § € S'. Introduce spherical
coordinates (r,6) with origin at x, and let g be the same cut-off function that was used in
the proof of Theorem Define U := g(r)u(r,6). Then

Lou ! _,0U
u(x) = — ; E(r, G)dr—/o |z — y| E(T, O)rdr

and )
()| < / & — g | DU(r 0) |rdr
0

Integrating over S', we obtain:
1 _
@) < o [ Aneole =3l DUy = K <[DU],
™ JR2

where the integral kernel K (x) = %13(071)\x|_1.
Using Young’s inequality from Theorem [1.54] we obtain the estimate

1 1 1

K * fll parzy < ”KHL’“(RQ)HJC”L?(R?) for P 7 2 +1. (2.8)

Using the inequality (2.8]) with f = |DU|, we see that

el

[ullLamzy < ClIDU| 122 [/ ’y\kdy]
B(0,1)

)

1
1 %
< CHDUHL2(R2) |:/0 rlkdr}

1
q+2|F
:CHUHHl(R?)[ 1 ] ‘

Whenq—>oo,%—>%,so

1
ull a2y < Cqzlul| grre) -
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Evidently, it is not possible to obtain the estimate |[ullzoo@n) < Cllullyin@n) with
a constant C' < oo. The following provides an example of a function in this borderline
situation.
Example 2.31. Let Q C R? denote the open unit ball in R%. The unbounded function
u = log log (1 + \%I) belongs to H'(B(0,1)).

First, note that

/Q ]u(m)lzdx = /027T /01 [loglog (1 + %)}Qrdrd&

The only potential singularity of the integrand occurs at r = 0, but according to L’Hospital’s
rule,

1 2
lim 7 [log log (1 + 7)} —0, (2.9)
r—0 r

so the integrand is continuous and hence u € L?().
In order to compute the partial derivatives of u, note that

D = B and Loy = L2
3% Ed 1f ()]
where f : R — R is differentiable. It follows that for x away from the origin,
Du(z) = i (x #0).

log(1 + ) (Jz] + 1) f?’
Let ¢ € C*(2) and fix e > 0. Then

¢ / ou /
u(x r)dr = — x)p(x)dr + u¢pN;dS
/K;Be(o) ( )3$¢( ) Q—B(0,) 3%( J9(@) 9B(0,6) ¢

where N = (N1, ..., Ny,) denotes the inward-pointing unit normal on the curve 0B(0,¢€), so
that N dS = e(cos 8,sin0)d6. It follows that

/ u(x)Dé(x)dx = —/ Du(z)¢(x)dx
Q—B.(0) Q—B(0)

2
- / €(cos @, sin 6) loglog <1 + 1)qﬁ(e,@)d@. (2.10)
0 €

We claim that Du € L*(Q) (and hence also in Ll( )), for

/Q\Du(x)de = /%/ . )rdrdH

+1)2 log(1+

IN

1/2 1 1 1
7['/ 12d7’+7r/ 2dT
o r(logr) 12 p(r 4 1)2 [log (1 + l)}
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where we use the inequality log(1 + %) > log% = —logr >0 for 0 <r < 1. The second
integral on the right-hand side s clearly bounded, while

1/2 1 —log?2 1 —log?2 1
/ 72d70 = / Ttetdt = / ﬁdﬂ? < 00,
o r(logr) oo t?e oo T

so that Du € L*(Q). Letting ¢ — 0 in and using for the boundary integral, by

the Dominated Convergence Theorem, we conclude that
/u(w)D¢(x)dx = —/ Du(x)p(z)dz V¢ € C5°(Q).
Q Q

2.8 Local coordinates near 0f)

Let © C R™ denote an open, bounded subset with C' boundary, and let {Ul}{i ; denote an
open covering of 9%, such that for each [ € {1,2,..., K}, with

V, = B(0,7;), denoting the open ball of radius r; centered at the origin and,
Vﬁ:Vlﬂ{$n>0},

there exist C''-class charts §; which satisfy

0,:V, — U, is a C' diffeomorphism , (2.11)
HI(VZ—F) =UNQ,
Hl(Vl N {:L‘n = 0}) =U,Nox.

2.9 Sobolev extensions and traces.
Let © C R™ denote an open, bounded domain with C' boundary.

Theorem 2.32. Suppose that Q C R™ is a bounded and open domain such that Q ccC Q.
Then for 1 < p < oo, there exists a bounded linear operator

E:Wh(Q) — WIP(R™)
such that for all u € W1P(Q),
1. Fu=u a.e. in §;
2. spt(Fu) C Q;

3. |Bullwremny < Cllullwieq) for a constant C = C(p,Q,Q).
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Theorem 2.33. For 1 < p < 0o, there exists a bounded linear operator
T:WhP(Q) — LP(Q)
such that for all uw € WHP(Q)
1. Tu = ulgq for all u € WP(Q)u C°(Q);
2. | Tull rra0) < C’||uHW1,p(Q) for a constant C = C(p, ).

Proof. Suppose that v € C1(Q2), z € 9Q, and that 9 is locally flat near z. In particular, for
r > 0 sufficiently small, B(z,7)U9dQ C {z, =0}. Let 0 < ¢ € C§°(B(z,r)) such that { =1
on B(z,7/2). Set I' = 9Q U B(z,7/2), BY(2,7) = B(z,7) UQ, and let dz), = dx1 - - - dzy1.

Then
/|u|pd$h§/ &lulPdxy,
r {z,=0}

0
= — _— p d
/ oy By €l

N Y B Ul
B+(z,r) OTn B+(2,26) Oxp
ou

< Pd p=1 el
e L R

Bt (z,r) LP=1(B*(zr))

LP(B*(z,r))

<cC (Jul? + | Dul?)dz . (2.12)
Bt(z,r)

On the other hand, if the boundary is not locally flat near z € 90, then we use a
C'! diffeomorphism to locally straighten the boundary. More specifically, suppose that z €
0N U U, for some | € {1,..., K} and consider the C* chart §; defined in . Define the
function U = uofy; then U : V;* — R. Setting I' = V;U{z,, = 0|, we see from the inequality

(2.12), that

/|prd:chgc,/ ([UP + |DUP)dz.
r VT

l

Using the fact that D6, is bounded and continuous on Vl+, the change of variables formula
shows that

/ |u|pdS§Cl/ (Jul? + | DulP)da .
U, uo0 Ut

l
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Summing over all [ € {1, ..., K} shows that
/ ufPds < c/(yu\u \DufP)da (2.13)
o0 Q

The inequality (2.13)) holds for allue 1(Q). According to Theorem for u € WHP(Q)
there exists a sequence u; € C°°(Q) such that u; — u in WHP(Q). By inequality (2.13)),

[Tu, = Tujl ooe) < Clluk — wjllwrieg) »

so that Tu; is Cauchy in LP(02), and hence a limit exists in LP(0€2) We define the trace
operator T as this limit:
1111)1(1] ||Tu - Tu]'HLp(QQ) =0.

Since the sequence u; converges uniformly to u if u € C°(Q), we see that T'u = ulsq for
all w € WhP(Q) U CO(Q). O

Sketch of the proof of Theorem[2.33 Just as in the proof of the trace theorem, first suppose
that u € C*(w) and that near z € 9Q, 9Q is locally flat, so that for some r > 0, 9QUB(z,1) C
{z, = 0}. Letting B* = B(z,r) U {z, > 0} and B~ = B(z,r) U {x, < 0} , we define the
extension of u by

if x € BT

a(x) = @
=3u(w1, ..., Tpno1, —Tn) +4u(z1, ..., 21, — %) ifx e BT

Define ut = @|g+ and u™ = u|p-.
It is clear that u™ = u~ on {z, = 0}, and by the chain-rule, it follows that
ou~ ou~ ou~ Ty
—3 ey =) — 2 =Ty
Oy, (=) Oy, (@1, 1y =) Oy, (1 2 )

so that % = ‘?9“72 on {x, = 0}. This shows that @ € C'(B(z,r). using the charts 6; to
locally straighten the boundary, and the density of the C°°(Q2) in W1P(Q), the theorem is
proved. ]

Later, we will provide a proof for higher-order Sobolev extensions of H*-type functions.

2.10 The subspace W, " ()
Definition 2.34. We let Wol’p(Q) denote the closure of C§°(Q) in W1P(Q).

Theorem 2.35. Suppose that Q C R" is bounded with C' boundary, and that uw € W1P(Q).
Then
u € Wol’p(Q) iff Tu=0 on 0.
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We can now state the Sobolev embedding theorems for bounded domains §2.

Theorem 2.36 (Gagliardo-Nirenberg inequality for WP (Q)). Suppose that Q C R" is
open and bounded with C' boundary, 1 < p <n, and u € WHP(Q). Then

HuHL np < Cllullwre(q) for a constant C' = C(p,n,Q).

" ()

Proof. Choose Q C R™ bounded such that Q C C Q, and let Eu denote the Sobolev extension
of u to R" such that Fu = u a.e., spt(Eu) C Q, and [|[Eully1p@ny < Cllullyieq)-
Then by the Gagliardo-Nirenberg inequality,

ful 22, o < 1Bl 22 < CID(E) 1) < ClBulwise < Cllulwis -

")
O

Theorem 2.37 (Gagliardo-Nirenberg inequality for W& P(Q1)). Suppose that Q C R™ is open
and bounded with C* boundary, 1 < p < n, and u € Wol’p(Q). Then for all 1 < ¢ < n"—_pp,

ull Lagy < Cl|Dul| ey for a constant C = C(p,n, ). (2.14)

Proof. By definition there exists a sequence u; € C§°(€2) such that u; — u in WhP(Q).
Extend each u; by 0 on Q¢ Applying Theorem to this extension, and using the
continuity of the norms, we obtain HuHL%(Q) < C||Du||tp(q)- Since Q is bounded, the

assertion follows by Holder’s inequality. O

Theorem 2.38. Suppose that Q C R? is open and bounded with C' boundary, and u €
HE(Q). Then for all1 < g < oo,

ull Lagq)y < C\/EJHDUHLQ(Q) for a constant C = C(Q). (2.15)

Proof. The proof follows that of Theorem Instead of introducing the cut-off function
g, we employ a partition of unity subordinate to the finite covering of the bounded domain
2, in which case it suffices that assume that spt(u) C spt(U) with U also defined in the
proof Theorem [2.30) ]

Remark 2.39. Inequalities (2.14)) and (2.15) are commonly referred to as Poincaré inequal-
ities. They are invaluable in the study of the Dirichlet problem for Poisson’s equation, since
the right-hand side provides an H'(Q)-equivalent norm for all u € H&(Q) In particular,
there exists constants C1,Co such that

Cil|[Dullp2(0) < llull g @) < CallDullp2(q) -
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2.11 Weak solutions to Dirichlet’s problem

Suppose that Q C R” is an open, bounded domain with C'! boundary. A classical problem in
the linear theory of partial differential equations consists of finding solutions to the Dirichlet
problem:

—Au=f in Q, (2.16a)
u=0 on 00, (2.16b)

where A = 71", % denotes the Laplace operator or Laplacian. As written, (2.16) is
the so-called strong form of the Dirichlet problem, as it requires that u to possess certain
weak second-order partial derivatives. A major turning-point in the modern theory of
linear partial differential equations was the realization that weak solutions of could
be defined, which only require weak first-order derivatives of u to exist. (We will see more

of this idea later when we discuss the theory of distributions.)

Definition 2.40. The dual space of H}(Q) is denoted by H=(Q). For f € H-1(Q),

Iflz—@= sup (f,9¥),
||1/)HH5<Q>=1

where (f, 1) denotes the duality pairing between H~1(Q) and H(Q).
Definition 2.41. A function u € H}(Q) is a weak solution of if

/Du-Dvdx— (f,v) Yve Hy(Q).
Q

Remark 2.42. Note that f can be taken in H=1(Q2). According to the Sobolev embedding
theorem, this implies that when n = 1, the forcing function f can be taken to be the Dirac
Delta distribution.

Remark 2.43. The motivation for Definition is as follows. Since C3°(2) is dense
in HE(Q), multiply equation by ¢ € CG°(Q), integrate over S, and employ the
integration-by-parts formula to obtain fQ Du-Dodx = fQ fodx; the boundary terms vanish
because ¢ is compactly supported.

Theorem 2.44 (Existence and uniqueness of weak solutions). For any f € H=Y(Q), there
exists a unique weak solution to .

Proof. Using the Poincaré inequality, || Dul|z2(q)is an H Lequivalent norm for all u € H}(Q2),
and (Du, Dv)2(q) defines the inner-product on HE (). As such, according to the definition
of weak solutions to (2.16]), we are seeking u € Hg () such that

(u,0) ey = (fr0) Yo € Hy(9). (2.17)
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The existence of a unique u € H(:)l (Q) satisfying (2.17) is provided by the Riesz representation
theorem for Hilbert spaces. ]

Remark 2.45. Note that the Riesz representation theorem shows that there exists a distri-
bution, denoted by —Au € H-(Q) such that

(=Au,v) = (f,v) Yv e Hy(9).
The operator —A : H}(Q) — H=Y(Q) is thus an isomorphism.

A fundamental question in the theory of linear partial differential equations is commonly
referred to as elliptic reqularity, and can be explained as follows: in order to develop an
existence and uniqueness theorem for the Dirichlet problem, we have significantly general-
ized the notion of solution to the class of weak solutions, which permitted very weak forcing
functions in H~!(€2). Now suppose that the forcing function is smooth; is the weak solution
smooth as well? Furthermore, does the weak solution agree with the classical solution?
The answer is yes, and we will develop this regularity theory in Chapter [7], where it will be
shown that for integers k > 2, —A : H¥(Q) N H}(Q) — H*"%(Q) is also an isomorphism.
An important consequence of this result is that (—A)~! : H*2(Q) — H*(Q) N H(Q) is
a compact linear operator, and as such has a countable set of eigenvalues, a fact that is
eminently useful in the construction of solutions for heat- and wave-type equations.

For this reason, as well as the consideration of weak limits of nonlinear combinations
of sequences, we must develop a compactness theorem, which generalizes the well-known
Arzela-Ascoli theorem to Sobolev spaces.

2.12 Strong compactness

In Section [1.12] we defined the notion of weak converence and weak compactness for LP-
spaces. Recall that for 1 < p < oo, a sequence u; € LP(Q) converges weakly to u € LP(Q),
denoted uj — win LP(Q), if [ ujvdr — [quvdz for all v € LI(Q), with ¢ = ;2;. We can
extend this definition to Sobolev spaces.

Definition 2.46. For 1 < p < oo, u; — u in WHP(Q) provided that u; — u in LP(S2) and
Duj — Du in LP(2).

Alaoglu’s Lemma (Theorem [1.37)) then implies the following theorem.

Theorem 2.47 (Weak compactness in WP(Q2)). For Q C R", suppose that
sup [|ujllwir) < M < oo for a constant M # M(j).

Then there exists a subsequence uj, — u in W1P(€Q).
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It turns out that weak compactness often does not suffice for limit processes involv-
ing nonlinearities, and that the Gagliardo-Nirenberg inequality can be used to obtain the
following strong compactness theorem.

Theorem 2.48 (Rellich’s theorem on a bounded domain ). Suppose that Q@ C R™ is an
open, bounded domain with C* boundary, and that 1 < p < n. Then W1P(Q) is compactly
embedded in L1(Q) for all1 < g < %7 i.e. if

sup [|lujllwir) < M < oo for a constant M # M(j),

then there exists a subsequence uj, — u in LI(Q). In the case thatn =2 and p =2, H*(Q2)
is compactly embedded in L1(Q) for 1 < ¢ < 0.

In order to prove Rellich’s theorem, we need two lemmas.

Lemma 2.49 (Arzela-Ascoli Theorem). Suppose that u; € C°(€), lujllgo@) < M < oo,

and u; 1s equicontinuous. Then there exists a subsequence u;, — u umformly on €.

Lemma 2.50. Let 1 < r < s <t < oo, and suppose that u € L"(Q) N LY(Q). Then for
1

l_a,4 l-a
S r t a I—a
HUHLS(Q) < HUHL’“(Q)HUHU Q

Proof. By Holder’s inequality,

/\u|5dx:/ |75 | =)
Q Q
as (17;1)5
as-— r (1—a)s 1- as
< ( Jxt asdx) ( [ gt a>sd:c) 2 g Il
(9] 0

Proof of Rellich’s theorem. Let Q) C R" denote an open, bounded domain such that Q cc
Q. By the Sobolev extension theorem, the sequence u; satisfies spt(u;) C Q, and

O]

sup || Eu; | w1p@ny < CM .
Denote the sequence Euj by u;. By the Gagliardo-Nirenberg inequality, if 1 < ¢ < .= p,

sup [|ul[La(@) < sup ||t Lo@n) < Csup [|ajflwrr@ny < CM .

For € > 0, let 7 denote the standard mollifiers and set @} = ne * Eu;. By choosing € > 0
sufficiently small, u§ € C5°(9Q). Since
€

e 1 _ _
a = / o)z - y)dy = / 02z — ex)dz,
B(0,e) € B(0,1)
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and if %; is smooth,
1 d 1
uj(x —ez) —uj(x) = / %ﬂj(l’ — etz)dt = —e/ Duj(x —etz) - zdt.
0 0
Hence,

1
|5 (r) — uj(w)| = e/ z)/D |Duj(x — etz)| dzdt ,

B(0,1)

/Q|u;-($)—uj(x)]dx:6/ e /1/ Dy (z — et2)| dudzdt

< e| Dl 1 ) < ellDitgll gy < €CM .

so that

Using the LP-interpolation Lemma [2.50

U5 — Ul oy < TG — @ a5 — ]| 2

15 = oy < 5 = g5 = 0
—€ — l1l—a
< eCM ||Duj — Dy Lo(@)

< eCMM'™ (2.18)
The inequality 1) shows that @j is arbitrarily close to u; in L%(Q) uniformly in j € N;
as such, we attempt to use the smooth sequence 115 to construct a convergent subsequence

g, . Our goal is to employ the Arzela-Ascoli Theorem, so we show that for € > 0 fixed,

HuEH <M < oo and u5 is equicontinous.

@ =
For x € R™,

sup 85| cugy 5w [ e ) )ldy
7 x,€

< el ey 5P 512y < O < 00,

and similarly

1 1D oy < 100y 510 s 510y < O < o

The latter inequality proves equicontinuity of the sequence u$, and hence there exists a

]7
subsequence u;, which converges uniformly on Q, so that

limsup ||, — 45, || o) = 0-

k,l—oc0
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It follows from ([2.18]) and the triangle inequality that

lim sup ||a;, — ﬂleLq(Q) < Ce.

k,l—o0

Letting Ce = 1, %, %, etc., and using the diagonal argument to extract further subse-
quences, we can arrange to find a subsequence again denoted by {u;, } of {@;} such that

limsup ||, — || o) =0,

k,l—o00
and hence
lim sup ||u.7k — Uy HL‘I(Q) =0,
k,l—o0
The case that n = p = 2 follows from Theorem [2.30 O

2.13 Exercises

Problem 2.1. Suppose that 1 < p < oo. If tyf(z) = f(z —y), show that f belongs to
WLP(R™) if and only if T, f is a Lipschitz function of y with values in LP(R"), i.e.

Iy f — T2 fllLr@ny < Cly — 2|

What happens in the case p =179

Problem 2.2. If for j = 1,2 and p; € [1,00] and u; € LPi, show that ujus € L" provided
that 1/r = 1/p1 + 1/p2 and

|lur uallzr < [lug||pes [Jugl|Les -

Show that this implies that the generalized Hélder’s inequality, which states that if for j =

1,...,m and p; € [1,00] with Z;n:1 p%_ =1, then

el do < - e
n

Problem 2.3. Let f € L'(R), and set
o@)= [y, @

o1
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Continuity of g follows from the Dominated Convergence Theorem. Show that 019 = f.
(Hint. Given ¢ € C°(R), use (*) to obtain

/Rd)’(:c) da:—// ¢ (z) f(y)dydax .

Then write this integral as

lim % [¢(z+ h) — ¢(x)] g(z)dx = — lim — / / x) dydz .)

h—0 R h—0 h

Problem 2.4. Show that wm 1(R”) C C(R™) N L*(R").
(Hint. u(z) f f 01+ Opu(z 4+ y)dyy - - - dyn.)

Problem 2.5. If u € WYP(R") for some p € [1,00) and 8;u = 0 on a connected open set
QCR"” forl1<j<mn, show that u is equal a.e. to a constant on 2.
(Hint. Approximate u using that

o kU — u in Wl’p(R”) ,

where ¢; is a sequence of standard mollifiers. As we showed, given € > 0, we can choose i
such that

||¢z *U— U||W1,p(Rn) < €.

Show that 0;(¢; xu) =0 on Q; CC Q, where Q; /' Q as i — 00.)

More generally, if O;u = f; € C(Q2), 1 < j < n, show that u is equal a.e. to a function
in CH(Q).

Problem 2.6. In case n =1, deduce from Problemsﬂ and. that, if u € Lloc(R) and if
ou = f € L'(R), then

u(w):c—l—/x f(y)dy, ae.x €R,

for some constant c.
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Problem 2.7. Let Q:= B(0,1) C R? denote the open ball of radius &. For x = (z1,25) €

Q, let
z1221og (| log(|x])|) where |z| = \/23 + 23 .

(b) show that g% € C(Q) for j = 1,2, but that u & C*(Q);
J

u(xy, o

) =
(a) Show that u € C1();

(c) show that u € H*().

Problem 2.8. Theorem states that for p > n, andy € B(y,r) ,
u(z) — u(y)| < Cr' "7 ||Dul| ony Yu € CHR™). (2.19)

Prove that the inequality in fact holds for all w € WYP(R™); in particular, show that
Du can be taken to be the weak derivative of .

Problem 2.9. Let 1. denote the standard mollifier, and for v € H?*(R3), set u¢ = ne * u.
Prove that

Juf — ul| oo 3y < CVellull gr2(ms) ,
and that
[u€ — ul| Lo (r3y < Cellull ga(rs) -

Problem 2.10. Suppose that for n > 2, @ C R™ s a smooth, open, and bounded domain,
and let n denote the outward-pointing unit normal vector to the boundary 0S2. Suppose that
u € L*(Q) and divu € L*(Q). Prove that u-n € H-Y2(0Q) and that

w0l g-172090) < C (llullL2() + | divullL2()) -

Problem 2.11. Let Q C R? denote an open, bounded, subset with smooth boundary. Prove
the interpolation inequality:

|Dull32(0y < Cllull 2o |D%ull 2@y ¥ u e HX(R) N HY(Q),

where D*u denotes the Hessian matriz of u, i.e., the matriz of second partial derivatives
2 —
8281;j‘ Use the fact that C*°(2) N H&(Q) is dense in u € H?(Q) N H& (Q).
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Problem 2.12. Let D := B(0,1) C R? denote the unit disc, and let
«

u(z) = |~ log|e|]

Prove that the weak derivative of u exists for all a > 0.

Problem 2.13. Suppose that {f,}° is a bounded sequence in H*(Q) for Q C R? bounded.
Show that there exists an f € HY(Q) such that for 1 < p < 2,

foy Dfn, = fDf weakly in LP(Q).

Problem 2.14. Suppose that u; — u in W11(0,1). Show that u; — u a.e.
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3 The Fourier Transform

The Fourier transform is one of the most powerful and fundamental tools in linear analysis,
converting constant-coefficient linear differential operators into multiplication by polynomi-
als. In this section, we define the Fourier transform, first on L!(R") functions, next (and
miraculously) on L?(R™) functions, and finally on the space of tempered distributions.

3.1 Fourier transform on L'(R™) and the space S(R")
Definition 3.1. For all f € LY(R"™) the Fourier transform F is defined by

n

FF&) = f(&) =(2m)2 s Fx)e ™ dz

By Holder’s inequality, F : L*(R™) — L (R").

Definition 3.2. The space of Schwartz functions of rapid decay is denoted by

S(R") = {u € C®(R") | "D € L®(R") VYa,3 € Z"}.
It is not difficult to show (as it follows from the definition) that
F:SR") — SR,

and that R

D¢ f = (=)l (-1)PLF(D2P ).
The Schwartz space S(R"™) is also known as the space of rapidly decreasing functions; thus,
after multiplying by any polynomial functions P(z), P(z)D%u(z) — 0 as © — oo for all
a € Z%. The classical space of test functions D(R") := C°(R") C S(R™). The prototype
element of S(R") is e~ 171" which is not compactly supported, but has rapidly decreasing
derivatives.

The reader is encouraged to verify the following basic properties of S(R™) which we will
denote by S:

1. S is a vector space.

2. S is an algebra under the pointwise product of functions.

3. P(z)u(x) € S for all uw € S and all polynomial functions P(z).
4. § is closed under differentiation.

5. S is closed under translations and multiplication by complex exponentials e®¢.
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6. S C LY(R™) (since |u(z)| < C(1 + |z|)"*! for all uw € S and (1 + |z|)~"+VDdz decays
like |z|~2 as |z| — oo).

Definition 3.3. For all f € L'(R"™), we define operator F* by

n

Ffx) = (2m)"2 f(f) ede .
Lemma 3.4. For all u,v € S(R"),
(fu, U)LQ(]R") == (U,f*’l))LQ(Rn) .

Recall that the L?(R™) inner-product for complex-valued functions is given by (u,v) L2(Rn) =
Jon u(z)v(z)dz.
Proof. Since u,v € S(R™), by Fubini’s Theorem,

(Fu,v) p2mny = (27) 72 / ) / nu(x)e—im'ﬁdxﬁdg

(2m)~ / / z)em€o(€) dé dx

0t [ u) [ deds = (. F g

Theorem 3.5. F* o F =1d = F o F* on S(R").
Proof. We first prove that for all f € S(R"), F*Ff(z) = f(x).

Fri =0 [ o ([ evsia) dg
—m [ e ayag.

By the dominated convergence theorem,
F Ff(x) = lim(2m)~ / / —el€F i€ p(y) dy de .

For all € > 0, the convergence factor e~<l¥* allows us to interchange the order of inte-
gration, so that by Fubini’s theorem,

FFfa) = tmem " [ ( [ e df) dy.

o