Math 21B Midterm I Spring 2025: Wed April 16 $3{:}10{\text{-}}4{:}00$

You may use one page of notes but not a calculator or textbook. Please do not simplify your answers.

Name	o:			
ID:				

Basic and Trigonometric Integrals

_		3
$\int x^n dx$	=	$\frac{1}{n+1}x^{n+1} + C$
$\int x^{-1} dx$	=	$\frac{ x }{\ln x } + C$
$\int e^x dx$	=	$e^x + C$
$\int \sin(x)dx$	=	$-\cos(x) + C$
$\int \cos(x) dx$	=	$\sin(x) + C$
$\int \frac{dx}{\sqrt{1-x^2}} dx$	=	$\arcsin(x) + C = -\arccos(x) + C$
$\int \sec^2(x) dx$	=	$\tan(x) + C$
$\int \tan(x)dx$	=	$\ln \sec(x) + C$
$\int \csc^2(x) dx$	=	$-\cot(x) + C$
$\int \cot(x)dx$	=	$ \ln \sin(x) + C $
$\int \frac{dx}{1+x^2} dx$	=	$\arctan(x) + C = -\operatorname{arccot}(x) + C$
$\int \sec(x)\tan(x)dx$	=	$\sec(x) + C$
$\int \sec(x)dx$	=	$ \ln \sec(x) + \tan(x) + C $
$\int \csc(x)\cot(x)dx$	=	$-\csc(x) + C$
$\int \csc(x)dx$	=	$-\ln \csc(x) + \cot(x) + C$
$\int \frac{dx}{ x \sqrt{x^2-1}} dx$	=	$\operatorname{arcsec}(x) + C = -\operatorname{arccsc}(x) + C$

1. (12 points: Summation) Find the number:

$$\sum_{k=4}^{19} (k-3).$$

You may use the fact that $\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)$.

2. (11 points: Estimate)

Use four equal intervals and either the Left or Right End point rule to estimate the definite integral

$$\int_{10}^{30} f(x)dx$$

if the following values are known

\boldsymbol{x}	0	5	10	15	20	25	30	35	40
f(x)	1.9	1.7	1.6	1.5	1.3	1.2	1.0	0.9	0.6

||f(x)|| | 1.9 | 1.7 | 1.6 | 1.5 | 1.3 | 1.2 | 1.0 | 0.9 | 0(Pay attention to the bounds of integration.)

3. (22 points: Area)

Find the area of the region bounded by the curves

$$y = x^2$$

and

$$y = \sqrt{x}$$
.

This region lies between the x values: x = 0 and x = 1.

- 4. (33 points: FTCI vs FTCII)
 - (a) Evaluate the derivative:

$$\frac{d}{dx} \int_{1}^{x} \left[\frac{\sqrt{t} + 1}{\sqrt{t}} \right] dt$$

at x = 4.

(b) Find the antiderivative with constant of integration:

$$\int \left[\frac{\sqrt{x}+1}{\sqrt{x}} \right] dx.$$

(c) Find the number:

$$\int_{1}^{4} \left[\frac{\sqrt{x} + 1}{\sqrt{x}} \right] dx.$$

- 5. (22 points: Substitution)
 - (a) Find the antiderivative with constant of integration:

$$\int \left[x \cos(x^2) \sin(x^2) \right] dx.$$

(b) Find the number:

$$\int_0^{\sqrt{\pi}} \left[x \cos(x^2) \sin(x^2) \right] dx.$$

6. (10 points: Extra Credit... you may skip this problem) Show that if $x \ge 1$ then:

$$\int_0^x e^{-t^2} dt \le \frac{x+1}{2}.$$

This is an improvement on the max-min inequality.