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Fmiscendental Numbers and
Transcendental Functions
Numbers that are solutions of polynomial
equations with rational coefficients are
called algebraic: —2 is algebraic because
it satisfies the equation x + 2 = 0, and
V3is algebraic because it satisfies the
equation x> — 3 = 0. Numbers such as
e and 7 that are not algebraic are called
transcendental.
We call a function y = f(x) algebraic

if it satisfies an equation of the form
Py'+ -+ +Py+P=0

in which the P's are polynomials in x
with rational coefficients. The function

y = 1/Vx + 1 is algebraic because it satis-

fies the equation (x + 1)y* — 1 = 0. Here
the polynomialsare », = x + 1, P, = 0,
and By = —1. Functions that are not alge-
braic are called transcendental.

Integration
Evaluate the integrals in Exercises 1-46.
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In this section we used calculus to give precise definitions of the logarithmic and ¢ ' 0
nential functions. This approach is somewhat different from our earlier treatments of

polynomial, rational, and trigonometric functions. There we first defined the function g S
then we studied its derivatives and integrals. Here we started with an integral from whig

the functions of interest were obtained. The motivation behind this approach was { 50,
address mathematical difficulties that arise when we attempt to define functions such ag§ ¥ '
for any real number x, rational or irrational. Defining In x as the integral of the functig Al
1/t from ¢ = 1 to t = x enabled us to define all of the exponential and logarithmic fu i 5L

tions, and then derive their key algebraic and analytic properties.

e e e A ey L e

22, /e‘“‘””csc(ﬁ' + Heot(m + 1 dr

~2g , 0 4
L ¥ i )

1.
2y dy 8rdr
¥ — 25 42 — 5
Jsectt secy tany
% /64-3t3rudr % /2+secydy
7 / dx _ secxdx
2Vx + % Vin(secx + lan.t}
In3
9, [ e 10, [ BeltH) dy
2
4
In 3
g, [ &2 12. /"‘ﬂmdx
i xIlnx
In9
13./ e dx 14, /tanxln(cosx)dx
In4 ;
Ve ~Vr
15. f £ _d 16. | Car
Vr Vr
1. f At dt 18. / AT
xVindx + 1
1/x —1/x
19. [ Sdx . [ £
fxz 20. / 2 dx
21. /e""”sec Trt tan t dt

In(m/2)
23. / 2eVcose dv
In(m/6)

25.

27. f 2% dg
29, f 12 dx
1

/2
31./ T8 gin ¢t dt
0

4
33. f x2(1 + Inx)dx
2

3
35./(\/5+ 1)xv2 dx

0

logmx
. / =R iy

4
In21
39. / 22
1

& /zlogz(x - 2)‘1‘
0 x+2

92 logp(x + 1)

4. x+ 1

0

Vinw
24, / 2xe” cos(e¥) dx
0 L

dx

) ive

0
28, / 5?%de
4
zv?
30. /1 \/de
w4 l tan ¢
32 -/ (5) sec tdt
0
B Inx
34, f 2% e
I

36. /x(inzj-ldx
|

4
log;
33./ e dx
|

“21n 10 log ox
40./-—gmdx
1

X

10
logtio (108
42./ ——°g'°x( D
1/10

k]
21 -
44. / 2ot — 1)
3 x—1



[ & dx
" x logjpx * f x(loggx)*

al Value Problems
the initial value problems in Exercises 47-52.
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as suggested by the accompanying figure.

y=Ihx

> X

The geometric, logarithmic, and arithmetic mean inequality

a. Show that the graph of ¢* is concave up over every interval of
x-values.

b. Show, by reference to the accompanying figure, that if
0 < a < b then

Inb

=sec’x, y0)=0 and »(0) =1

=y
sory and Applications

region between the curve y = 1/x? and the x-axis from
=1/2 to x = 2 is revolved about the y-axis to generate a

_ _- id. Find the volume of the solid.

v In Section 6.2, Exercise 6, we revolved about the y-axis the
egion between the curve y = 9x/Vx® + 9 and the x-axis from
% = 0 to x = 3 to generate a solid of volume 367. What volume

do you get if you revolve the region about the x-axis instead? (See
\Section 6.2, Exercise 6, for a graph.)

nd the lengths of the curves in Exercises 55 and 56.
Y =(x2/3] —Inx, 4=x=<28§

P = (y/4) - 2In(y/4), 4=y=<12

4 The linearization of In(1 + x) atx = 0 Instead of approxi-
"Mz ling In x near x = 1, we approximate In(1 + x) near x = 0.
“We get a simpler formula this way.

‘8. Derive the linearization In(1 + x) = xat x = 0.

1B, Estimate to five decimal places the error involved in replacing
> In(1 + x) by xon the interval [0,0.1].

4. Graph In(1 + x) and x together for 0 = x = 0.5. Use differ-
. ent colors, if available. At what points does the approximation
. of In(1 + x) seem best? Least good? By reading coordinates
~ from the graphs, find as good an upper bound for the error as
B Your grapher will allow.

g e linearization of ¥ atx = 0

Derive the linear approximation ¢* = 1 + xat x = 0.

40, Estimate to five decimal places the magnitude of the error
" involved in replacing ¢ by 1 + x on the interval [0,0.2].

y Graph ¢* and 1 + x together for -2 < x < 2. Use different
aly; i_lolors, if available. On what intervals does the approximation
- @ppear to overestimate ¢'? Underestimate e*?

OW that for any number a > 1
| Ina

[lnxa‘.x—!— edy=alna,

elna + elnb

2

eMatib)2. (Inp — Ina) < / edx < *(Inb — Ina).

Ina

M

I |
I 1 12—
Ina Ing+Inb Inb
2
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c. Use the inequality in part (b) to conclude that
b—a at+b
Vab'< By —toa > @
This inequality says that the geometric mean of two positive
numbers is less than their logarithmic mean, which in turn is less
than their arithmetic mean.

Grapher Explorations

61, Graph In x, In 2x, In 4x, In 8, and In 16x (as many as you can)
together for 0 < x = 10. What is going on? Explain.

62. Graph y = In [sinx| in the window 0 = x =22, -2 <y = 0.
Explain what you see. How could you change the formula to turn
the arches upside down?

63. a. Graph y = sin x and the curves y = In(a + sinx) fora = 2,

4,8, 20, and 50 together for 0 = x = 23.
b. Why do the curves flatten as a increases? (Hint: Find an
a-dependent upper bound for |y’|.)

64. Does the graph of y = Vx — Inx,x > 0, have an inflection
point? Try to answer the guestion (a) by graphing, (b) by using
calculus.

65. The equation x* = 2* has three solutions:x = 2,x = 4, and one
other. Estimate the third solution as accurately as you can by
oranhino
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[T]66. Could x* possibly be the same as 2inx for some x > 07 Graph
the two functions and explain what you see.

Which is bigger, 7 or e™? Calculators have taken some of the

mystery out of this once-challenging question. (Go ahead and (In x}/ (na).
check; you will sce that it is a surprisingly close call.) You can
answer the question without a calculator, though.

a. Find an equation for the line through the origin tangent to the

7] 67

7 .2 Exponential Change and Separable Differential Equations

graphof y = Inx.
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Calculations with Other Bases 4
69. Most scientific calculators have keys for log,ox and In x,
find logarithms to other bases, we use the equation log x =

Find the following logarithms to five decimal places.

log 3 3
10g7 0.5
loggn 17

. In x, given that log;ox = 2.3
In x, given that log,x = 1.4

a.
b.
S
d. logys7
e
f.
g. In x, given that logoyx = —1.5
h

. Inx, given that log,ox = =07

70. Conversion factors

b. Give an argument based on the graphs of y = In x and the
tangent line to explain why In x < x/e for all positive x # e.

¢. Show that In(x¥) < x for all positive x # e.

d. Conclude that x* < ¢ for all positive x 7 €. base b logarithms s

e. So which is bigger, 7* or €™?

[T]68. A decimal representation of e Find e to as many decimal
places as your calculator allows by solving the equation Inx = 1
using Newton's method in Section 4.7.

[_3! 6] by -3 3]

a. Show that the equation for converting base 10 logarithms
base 2 logarithms is .

log,x = ]i-lglo X
g2 In2 210X

b. Show that the equation for converting base a logarith

logx=ll§logx
T iR

Exponential functions increase or decrease very rapidly with changes in the inde;
variable. They describe growth or decay in many natural and industrial situatio
variety of models based on these functions partly accounts for their importance. We;
investigate the basic proportionality assumption that leads to such exponential chang

Exponential Change

In modeling many real-world situations, a quantity y increases or decreases at a
portional to its size at a given time 7. Examples of such quantities include the size ¢
population, the amount of a decaying radioactive material, and the temperature diffes
between a hot object and its surrounding medium. Such quantities are said to und
exponential change. 8

If the amount present at time ¢ = 0 is called y;, then we can find y as a functio
by solving the following initial value problem: -

Differential equation: % =

Initial condition: y =y when t=0.

If y is positive and increasing, then k is positive, and we use Equation (la) to saxq h
rate of growth is proportional to what has already been accumulated. If y is positi¥
decreasing, then k is negative, and we use Equation (1a) to say that the rate of de€

proportional to the amount still left. &
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ify ng Solutions
ises 1—4, show that each function y = f(x) is a solution of the
sanying differential equation.

Ry + 3y = ¢~
¥ 1-' y= =
aly = ¢ + Ce O/

b. y = p ¥ 4 e‘(af’z}-’

1 _ 1 _ 1
Y = T x y 43 ey x+C

%fl Ca, ¥y +my=e
Ll T da, y+ -y =
V1+x“f1 AR T

Value Problems
ises 5-8, show that each function is a solution of the given

ial value problem.

3 3 .‘I:_'.u fferential Initial Solution
) ,-. _equation equation candidate
iwof : 2 -
b T ohae 3 y = )
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s the differential equation in Exercises 9-22.
d
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d
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ations and Examples

wers to most of the following exercises are in terms of loga-
and exponentials. A calculator can be helpful, enabling you to
8 the answers in decimal form.

iman evolution continues The analysis of tooth shrinkage
C. Loring Brace and colleagues at the University of Michi-
0°s Museum of Anthropology indicates that human tooth size is
lmumg to decrease and that the evolutionary pmcess did not

In northern Europeans, for example, tooth size reduction now has

a rate of 1% per 1000 years.

a. If trepresents time in years and y represents tooth size, use the
condition that y = 0.99y, when ¢ = 1000 to find the value of
k in the equation y = ype*’. Then use this value of k to answer
the following questions.

In about how many years will human teeth be 90% of their
present size?

c. What will be our descendants’ tooth size 20,000 years from

now (as a percentage of our present tooth size)?

. Atmospheric pressure The earth’s atmospheric pressure p is often
modeled by assuming that the rate dp/dh at which p changes with
the altitude h above sea level is proportional to p. Suppose that the
pressure at sea level is 1013 millibars (about 14.7 pounds per square
inch) and that the pressure at an altitude of 20 km is 90 millibars.

a. Solve the initial value problem

dp/dh = kp (kaconstant)
p=py when h=0

Differential equation:
Initial condition:
to express p in terms of k. Determine the values of py and k
from the given altitude-pressure data.

b. What is the atmospheric pressure at A = 50 km?

¢. At what altitude does the pressure equal 900 millibars?

. First-order chemical reactions In some chemical reactions,
the rate at which the amount of a substance changes with time is
proportional to the amount present. For the change of 8-glucono
lactone into gluconic acid, for example,

dr
when ¢ is measured in hours. If there are 100 grams of &-glucono
lactone present when ¢ = 0, how many grams will be left after
the first hour?

. The inversion of sugar The processing of raw sugar has a step
called “inversion” that changes the sugar's molecular structure.
Once the process has begun, the rate of change of the amount of
raw sugar is proportional to the amount of raw sugar remaining. If
1000 kg of raw sugar reduces to 800 kg of raw sugar during the first
10 hours, how much raw sugar will remain after another 14 hours?

Working underwater The intensity L(x) of light x feet beneath
the surface of the ocean satisfies the differential equation

dL—._
L= kL.

As a diver, you know from experience that diving to 18 ft in the Carib-
bean Sea cuts the intensity in half. You cannot work without artificial
light when the intensity falls below one-tenth of the surface value.
About how deep can you expect to work without artificial light?

. Voltage in a discharging capacitor Suppose that electricity is
draining from a capacitor at a rate that is proportional to the volt-
age V across its terminals and that, if 1 is measured in seconds,

dv _

Solve this equation for V, using V; to denote the value of V when
t=0. How long will it take the voltage to drop to 10% of its

P, i, [T, (WLRR faha 0

—0.6y

27.
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29, Cholera bacteria Suppose that the bacteria in a colony can
grow unchecked, by the law of exponential change. The colony
starts with 1 bacterium and doubles every half-hour. How many
bacteria will the colony contain at the end of 24 hours? (Under
favorable laboratory conditions, the number of cholera bacteria
can double every 30 min. In an infected person, many bacteria are
destroyed, but this example helps explain why a person who feels
well in the morning may be dangerously ill by evening.)

30. Growth of bacteria A colony of bacteria is grown under ideal
conditions in a laboratory so that the population increases expo-
nentially with time. At the end of 3 hours there are 10,000 bacteria.

At the end of 5 hours there are 40,000. How many bacteria were
present initially?

31. The incidence of a disease (Continuation of Example 4.) Sup-
pose that in any given year the number of cases can be reduced by
25% instead of 20%.

a. How long will it take to reduce the number of cases to 10007

b. How long will it take to eradicate the disease, that is, reduce
the number of cases to less than 1?7

32. Drug concentration An antibiotic is administered intrave-
nously into the bloodstream at a constant rate r. As the drug flows
through the patient's system and acts on the infection that is pres-
ent, it is removed from the bloodstream at a rate proportional to
the amount in the bloodstream at that time. Since the amount of
blood in the patient is constant, this means that the concentration
y = y(r) of the antibiotic in the bloodstream can be modeled by

the differential equation
d
F):' = r — ky, k> 0 and constant.

a. If y(0) = y, find the concentration y(r) at any time 1.

b. Assume that y; < (r/k) and find lim, .o y(f). Sketch the
solution curve for the concentration.

33. Endangered species Biologists consider a species of animal or
plant to be endangered if it is expected to become extinct within 20
years. If a certain species of wildlife is counted to have 1147 mem-
bers at the present time, and the population has been steadily declin-
ing exponentially at an annual rate averaging 39% over the past 7
years, do you think the species is endangered? Explain your answer.

34, The U.S. population The U.S. Census Bureau keeps a running
clock totaling the U.S, population. On September 20, 2012, the
total was increasing at the rate of 1 person every 12 sec. The
population figure for 8:11 p.m. EST on that day was 314,419,198,

a. Assuming exponential growth at a constant rate, find the rate
constant for the population’s growth (people per 365-day year).

b. At this rate, what will the U.S. population be at 8:11 p.M. EST
on September 20, 20197

35. Oil depletion Suppose the amount of oil pumped from one of
the canyon wells in Whittier, California, decreases at the continu-
ous rate of 10% per year. When will the well’s output fall to one-
fifth of its present value?

36. Continuous price discounting To encourage buyers to place
100-unit orders, your firm's sales department applies a continu-
ous discount that makes the unit price a function p(x) of the num-
ber of units x ordered. The discount decreases the price at the rate
of $0.01 per unit ordered. The price per unit for a 100-unit order
is p(100) = $20.09.

37.

38.

39.

41.

" Newton’s Law of Cooling to answer the following questi" .

42.

43.

. Californium-252 What costs $27 million per gram and can|

a. Find p(x) by solving the following initial value problem: = i‘ B il
dj : T

Differential equation: E-'Z = - T[ll_op o i

. 44 Sib

Initial condition: p(100) = 20.09. 1 e 60°

_ 1 was

b. Find the unit price p(10) for a 10-unit order and the unit prig atur
p(90) for a 90-unit order.

4 : a

c. The sales department has asked you to find out if it is dig _

counting so much that the firm’s revenue, r(x) = x* p(x), wi -

actually be less for a 100-unit order than, say, for a 90-unj ¢’

order. Reassure them by showing that r has its maximy 45. The

value at x = 100, - volc

d. Graph the revenue function r(x) = xp(x) for 0 = x = 20 0, 4.5

Plutonium-239  The half-life of the plutonium isotope is 24,3 Cnl

years. If 10 g of plutonium is released into the atmosphere by 46. The

nuclear accident, how many years will it take for 80% of the ig 0 the ¢

tope to decay? : ofc

Polonium-210 The half-life of polonium is 139 days, but yog i

sample will not be useful to you after 95% of the radioact A

nuclei present on the day the sample arrives has disintegrated, B £ ¢

about how many days after the sample arrives will you be ablej [ ¥

use the polonium? b, F

The mean life of a radioactive nucleus Physicists using oo K

radioactivity equation y = yoe ™ call the number 1/k the mean l
of a radioactive nucleus. The mean life of a radon nucleus is abg
1/0.18 = 5.6 days. The mean life of a carbon- 14 nucleus is me
than 8000 years. Show that 95% of the radioactive nuclei origina
present in a sample will disintegrate within three mean lifetime
i.e., by time r = 3 /k. Thus, the mean life of a nucleus gives aqu c
way to estimate how long the radioactivity of a sample will last

used to treat brain cancer, analyze coal for its sulfur content, §
detect explosives in luggage? The answer is californium-252, a
active isotope so rare that only 8 g of it have been made in the Wi
em world since its discovery by Glenn Seaborg in 1950. The half-
of the isotope is 2.645 years—long enough for a useful service i
and short enough to have a high radioactivity per unit mass. @
microgram of the isotope releases 170 million neutrons per mi w
&, What is the value of k in the decay equation for this isotope

b. What is the isotope’s mean life? (See Exercise 39.) M

¢. How long will it take 95% of a sample’s radioactive n "

disintegrate? .
Cooling soup - Suppose that a cup of soup cooled from 90°
60°C after 10 min in a room whose temperature was 20° ‘*"_

a. How much longer would it take the soup to cool to 35°C!

b. Instead of being left to stand in the room, the cup of
soup is put in a freezer whose temperature is —15°C..H
long will it take the soup to cool from 90°C to 35°C?

A beam of unknown temperature An aluminum beam ¥

brought from the outside cold into a machine shop where th&

perature was held at 65°F. After 10 min, the beam warmed
35°F and after another 10 min it was 50°F, Use Newton’s L ;.;'

Cooling to estimate the beam’s initial temperature. pir

Surrounding medium of unknown temperature A P

b

warm water (46°C) was put in a refrigerator. Ten minutes latét



r cooling in air The temperature of an ingot of silver is
above room temperature right now. Twenty minutes ago, it
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" er's temperature was 39°C; 10 min after that, it was 33°C. Use 47. Carbon-14 The oldest known frozen human mummy, discov-
Newton’s Law of Cooling to estimate how cold the refrigerator was. ered in the Schnalstal glacier of the Italian Alps in 1991 and called

Otzi, was found wearing straw shoes and a leather coat with goat
fur, and holding a copper ax and stone dagger. It was estimated
that Otzi died 5000 years before he was discovered in the melting

; .s 70°C above room temperature. How far above room temper- g s
: iz 4 e i . glacier. How much of the original carbon-14 remained in Otzi at
ture will the silver be ; s
3 s i 4 the time of his discovery?
S N W !
5. g o from R . 48. Art forgery A painting attributed to Vermeer (1632-1675),
vl i ¢ houns oo which should contain no more than 96.2% of its original car-
leh ' ¢. When will the silver be 10°C above room temperature? bon-14, contains 99.5% instead. About how old is the forgery?
< W . -
mum , The age of Crater Lake The charcoal from a tree killed in the 49. Lascaux Cave paintings Prehistoric cave paintings of animals
slcanic eruption that formed Crater Lake in Oregon contained ’ were found in the Lascaux Cave in France in 1940. Scientific
w0 44.5% of the carbon-14 found in living matter. About how old is analysis revealed that only 15% of the original carbon-14 in the
13&1 n Crater Lake? paintings remained. What is an estimate of the age of the
» A . .
bya sensitivity of carbon-14 dating to measurement To see paintings?
s iR effect of a relatively small error in the estimate of the amount 50. Incan mummy The frozen remains of a young Incan woman
8 of carbon-14 in a sample being dated, consider this hypothetical were discovered by archeologist Johan Reinhard on Mt. Ampato
YW! “situation: in Peru during an expedition in 1995.
vl la. A bone fragment found in central Illinois in the year 2000 a. How much of the driginal carbon-14 was present if the esti-
LRl * contains 17% of its original carbon-14 content. Estimate the mated age of the “Ice Maiden” was 500 years?
dleto 3 year the animal died. . b. If a 1% error can occur in the carbon-14 measurement, what is
"'b. Repeat part (a), assuming 18% instead of 17%. the oldest possible age for the Ice Maiden?
g the " ¢. Repeat part (a), assuming 16% instead of 17%.
m : b
about
more
tm : 3 = -
quick Hyperbolic Functions
st 658
ate : The hyperbolic functions are formed by taking combinations of the two exponential func-
_al tions ¢* and e¢*. The hyperbolic functions simplify many mathematical expressions and
adio- © occur frequently in mathematical and engineering applications. In this section we give a
West- brief introduction to these functions, their graphs, their derivatives, their integrals, and
If-lfe their inverse functions.
elife
o Definitions and Identities
pe The hyperbolic sine and hyperbolic cosine functions are defined by the equations
$ . -— B 1
leito sm.hx=ex—2—e— and cosluc:eI 28 .
v
°Cto. We pronounce sinh x as “cinch x,” rhyming with “pinch x,” and cosh x as “kosh x,” rhym-
Use ing with “gosh x.” From this basic pair, we define the hyperbolic tangent, cotangent,
: secant, and cosecant functions. The defining equations and graphs of these functions are
? shown in Table 7.4. We will see that the hyperbolic functions bear many similarities to the
90°C trigonometric functions after which they are named.
How Hyperbolic functions satisfy the identities in Table 7.5. Except for differences in sign,
' these resemble identities we know for the trigonometric functions. The identities are
. proved directly from the definitions, as we show here for the second one:
e - X + ¢7*
ed 10 2sinh x coshx = 2 el £1e
- 2 2
aw of
3 _ - ==
mof 2
70 3 = sinh 2x.
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=2:14c
U u

1 — 2u
u

1~2(1+\f)
(1+ Va)

1 +2Vx
(1+ Va)

=(C -

When evaluating definite integrals, a property of the integrand may help us in cz )
lating the result. e

w/2

EXAMPLE 8  Evaluate / 33 60

—m/2

Solution No substitution or algebraic manipulation is clearly helpful here. B -n 5
observe that the interval of integration is the symmetric interval [—m/2, m/2]. Moreov T
A. l

the factor x° is an odd function, and cos x is an even function, so their product is oddil
Therefore, B B

w2
/ Xcosxdx = 0. Theorem 8, Section 5.6
-m/2

Assorted Integrations I o5 _ W, O.
17. / i f 274y . -

The integrals in Exercises 1-40 are in no particular order. Evaluate y + dyln’y "y
cach integral using any algebraic method or trigonometric identity .
you think is appropriate, and then use a substitution to reduce it to a 19 de 20 dt 1,
standard form. secO + tanf _ : 3+ 2 £
1 ; :
1. 16x dx 2. / 2“2 dx 21 4 — 2 + 16rd g [2F2Vx-—1 + ZV’IT
0 sz + 2 _x + 1 . rz + 4 t zx.\/xT
3. [(secx — tanx?dx o [t b
. [(secx  an ] e n [TVicwie o [ coupa
s x dx 6 dy . | T
5 3 s [ % [ S
VL~ = Va Ve -1 Vol +y) :
e ootz 2mf I \ )
L sin® z e rizdz s R, Pl 28. j dx ] '
xV1 — 41nx (x—2)Va2—4x+3
9 dz 10 * g 2 £ a0
Y eé+e? B I ) 29. /{csu—secx)(sinx+cosx)dx ' bkl
0 3 ) .
4 dx 4x? — 7
ll. PR T 12. _-'—dx H E_
3 1
dt , 23 : 1
13. /l—secr 14.]cscrsm3rdr 31 /ﬁxz_ldx 32. /:l\/l+xzsmxd:_'

w4 . 0
1+ sin@ df +.Y ;
15. f df 16. ./-—7 33. / e, ¥ /e‘”‘

0 cos? 6 V29 — @2 4 V1 —ydy 34 dz



b 7 dx i / dx
B - DV - -4 " J x4 DVax + 42

(20— 76+ 70 de
I‘ 20-5 0 38 / cos @ — 1

[ dx

; Va

-_ \'.‘ — ; dx

: 1+ ¢€ 40 /1_‘_13

B8 Hint: Use long division, Hint: Let u = X2,

ory and Examples

{¥and below by y = secx, —m/4 < x < m/4.

7 olume Find the volume of the solid generated by revolving

. the region in Exercise 41 about the x-axis.

. Arc length Find the length of the curve y = In(cosx),
W0=x=mw/3

Arc length Find the length of the curve y = In(secx),

s x < w/4.

Centroid  Find the centroid of the region bounded by the x-axis,

| the curve y = sec x, and the lines x = —7 /4, x = 7 /4.

§ Centroid Find the centroid of the region bounded by the x-axis,

| the curve y = csc x, and the lines x = /6, x = 57 /6.

f, The functions y = ¢* and y = x%* do not have elementary anti-

derivatives, but y = (1 + 3x%)e* does.

ut we |
"eover, -

R 9
D. 4 Integration by Parts

I Area Find the area of the region bounded above by y = 2 cosx

8.2 Integration by Parts

Evaluate
/ (1 + 3x)e"dx.
48. Use the substitution 4 = tan x to evaluate the integral
-
1+ sin’x’

49.

Use the substitution u = x* + 1 to evaluate the integral

/x’va- 1dx.

. Using different substitutions Show that the integral

/ (O* = D(x + 1)) Pdx

can be evaluated with any of the following substitutions.
a u=1/(x+1)

b. u=(x—1)/(x+ D fork=1,1/2, 1/3,-1/3,

and —1
c u=tan"'x d. u=tan"! Vx
e u=tan"'(x—1/2) FLu=cos'x
g u=cosh!x
What is the value of the integral?

461

-2/3,

woll

integration.

Integration by parts is a technique for simplifying integrals of the form

/ f(x)g(x) dx.

]xcosxdx and fx’e‘dx

Product Rule in Integral Form
If f and g are differentiable functions of x, the Product Rule says that

% [f(x)g(x)] = f'(x)g(x) + flx)g'(x).

It is useful when f can be differentiated repeatedly and g can be integrated repeatedly
without difficulty. The integrals

are such integrals because f(x) = x or f(x) = x* can be differentiated repeatedly to
become zero, and g(x) = cos x or g(x) = ¢ can,be integrated repeatedly without diffi-
culty. Integration by parts also applies to integrals like

flnxdx and /e‘cosxa‘x.

In the first case, f(x) = Inx is easy to differentiate and g(x) = 1 easily integrates to x. In
the second case, each part of the integrand appears again after repeated differentiation or
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m

n

%[%gsinnx + %‘i—acosnx — = sinnx —%cosnx]

0

_ 1(3w’cosnm _ 6cosnm _Q)
L n’ n' n'
3 (mnd(=1)" + 21 + 2
=7 pr ‘ cosnm = (—1)"

Integrals like those in Example 8 occur frequently in electrical engineering.

ftegration by Parts

luate the integrals in Exercises 1-24 using integration by parts.

w3
. f xtan? x dx 28. fln(x+x2}dx
0

i k| ,Ixsin%dx 2. f @ cos 6 dé
R~ 29, f sin (In x) dx 30. f z(lnz)* dz
" 1 cos tdt 4, fx’ sin x dx
¥ -3. Evaluating Integrals
e & Evaluate the integrals in Exercises 31-52. Some integrals do not
1 _‘.t In xdx 6. /1 x In xdx require integration by parts.”
i cos Vx
“AH 8. fﬂkdx 3L /xsecxzdr 32. 7 dx
: 2 1
o e dx 10. f (? — 2x + De¥dx = f o i M. / x(In x)ld‘
In x (In x)’
. " /Sm_ly - 35. [ 75 dx 36. / = dx
: k] 5
00 x sec? x 14 f4xsec22xdx 37.[x ¢ dx 38. fx e dx
A 38 /42 :
b [ e ax 16, /p‘e‘f’dp 39. /x Va? + ldx 40. fx’smfdx
e 41. [ sin 3x cos 2x dx 42. f sin 2x cos 4x dx
o (2 — Sx)e* dx 18. / r*+ r+ De'dr
’ -
£ 43.]\/J_Clnxdx 44. /e—dx
L | e e 20, j et di Vx
-,.} 1 45. /ccs Vi dx 46. f\/;e‘/;dx
 f ¢'sin 6 do 22. [ e Ycosydy
i w2 mf2
= 2 & . 3
o & cos 32 ax 2% /e—hsinzxdx 47. fn 6 sin 26 do 48 /0 x* cos 2x dx
1 2 V2
HNE Substitution 49, / tsec” ! tdt 50. 2xsin”! (x?) dx
' 2/V3

ation by parts.

the integrals in Exercise 25-30 by using a substitution prior

26.

0
51. [xtan"xd.x 52. /xztan" %dx

1
/x\/l—xdx
0



468  Chapter 8: Techniques of Integration

Theory and Examples

53.

54.

55.

56.

Finding area Find the area of the region enclosed by the curve
y = xsin x and the x-axis (see the accompanying figure) for

a 0=x=m

b. msxsim

e 2r=x=3m

d. What pattern do you see here? What is the area between the

curve and the x-axis for n < x < (n + 1), n an arbitrary
nonnegative integer? Give reasons for your answer.

y
A
10+ y=uxsinx

5_

0 7\/211‘ 3m ¥
=5

-

Finding area Find the area of the region enclosed by the curve
y = x cos x and the x-axis (see the accompanying figure) for

a m/2sxsin/l
b. 37/2 < x < 57/2.
¢ Sm/2=x=7m/2.

d. What pattern do you see? What is the area between the curve
and the x-axis for

(25 t)e < x= (25

n an arbitrary positive integer? Give reasons for your answer.

y
[
10

y=xcosx

=]

r > X
m™\_ /37 37 In
2\-/32 2

—10F

Finding volume Find the volume of the solid generated by
revolving the region in the first quadrant bounded by the coordi-
nate axes, the curve y = ¢, and the line x = In 2 about the line
x=In2.

Finding volume Find the volume of the solid generated by
revolving the region in the first quadrant bounded by the coordi-
nate axes, the curve y = ¢, and the line x = 1

a. about the y-axis.

b. about the line x = 1.

. Finding volume Find the volume of the solid generated by

revolving the region in the first quadrant bounded by the coordi-
nate axes and the curve y = cosx,0 = x = 7/2, about

a. the y-axis.
b. the line x = m/2.

58. Finding volume Find the volume of the solid generated-
revolving the region bounded by the x-axis and the cyp "
y = xsinx, 0 = x = m, about 3 .
a, the y-axis. H ®
b. the line x = . y
(See Exercise 53 for a graph.)

59, Consider the region bounded by the graphs of y = Inx, y =}
and x = e.

a. Find the area of the region.

b. Find the volume of the solid formed by revolving this ;..
about the x-axis.

¢. Find the volume of the solid formed by revolving this region
about the line x = —2, g
d. Find the centroid of the region.

60. Consider the region bounded by the graphs of y = tan~! x, y
and x = 1.
a. Find the area of the region. _
b. Find the volume of the solid formed by revolving this regi
about the y-axis. b
61. Average value A retarding force, symbolized by the d i

the accompanying figure, slows the motion of the weighted spei
so that the mass’s position at time f is

y = 2e'cost, r=0.

Find the average value of y over the interval 0 = ¢ = 2m.

¥

L

yYp=——m Mass

Dashpot

62. Average value In a mass-spring-dashpot system like the 0f
Exercise 61, the mass’s position at time  is

y = 4e’'(sint — cos 1), t=0. '
Find the average value of y over the interval 0 =< ¢ = 27 :
Reduction Formulas

In Exercises 63—67, use integration by parts to establish the red
formula. :

63. /,t"cosxdx= xX"sinx — n/x""’ sin x dx

64. f.x"sinxdx= —x"cosx + n [ ¥ cos xdx



e
-

Ve a

¥ i
YO s ff‘e"dx=xa£—2/x""e”dx. a#0

/(]nx)"dx = x(lnx)" — n/(ln.ur)"‘1 dx
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For the integral of cos™' x we get

/cos“xdx = xcos!x —/oosydy

=xcos'x —siny + C

= COS

A

lf — ot - . = xcos™ x = sin (cos™' x) + C.
§7. [ x"(Inx)"dx = XY = s
0 m+1 m+1 Use the formula
- /A"‘GIII)H dx, m#—1 /_f”‘(x]dx =xfl(x) - /f(y}dy y=717 (4)
! 8 'IUS,_.' Example 5 to show that to evaluate the integrals in Exercises 71-74. Express your answers in
y o2 /2 terms of x.
n" = n
: _/0 s e fn gou" el 71. /sin"xdx 72. /tan"xdx
(ﬂ)1-3-5---(n—1} o
7 nev
0, _J\2/) 2:4:6:-:nm 73. /sec"xdx 4. /logzxdx
24446 :(n=1) o
13:5--n " Another way to integrate f~'(x) (when f~! is integrable, of
E: course) is to use integration by parts with ¥ = f~'(x) and dv = dx to
& P tant i 5 rewrite the integral of f ' as
in S / U » d’) = / w—araes / £ dx = xf ) — / x (% f“(x)) dr. s)
% ;'
1. Use integration by parts to obtain the formula Exercises 75 and 76 compare the results of using Equations (4) and (5).
-y _i 7, | 1 75. Equations (4) and (5) give different formulas for the integral of
.'_ f\fl—deI—EXVI—X +2[\/1___x2dx. cos
- -1 _ = NI ~1
egrating Inverses of Functions a. fcos xdx =xcos 'x — sin (cos ' x) + C Eq. (4)
ation by parts leads to a rule for integrating inverses that usually
good results: b. fms‘1 xdx=xcos'x—V1-x+C Eq. (5)
15 y= . x=flw ; : ;
| F'wdx = [ yf'O)dy o= )y Can both integrations be correct? Explain.
: 76. Equations (4) and (5) lead to different formulas for the integral of
b Integration by parts with tan”' 1!
=) - [f()’) dy = y,dv=f"(y)dy
a. ftan“xdx=xtan“x—lnsec(tan“x)+c Eq. (4)
k =xf'(x}—ff()'}d)’
. . . o b. f:an“‘xdx=x:an‘1x—ln\/1+x2+c Eq. (5)
g idea is to take the most complicated part of the integral, in this
gase £~!(x), and simplify it first. For the integral of In x, we get Can both integrations be correct? Explain.
v B y=lnx, x=¢ Evaluate the integrals in Exercises 77 and 78 with (a) Eq. (4) and (b)
i Inxds = [ ye'dy dv = e'dy Egq. (5). In each case, check your work by differentiating your answer
J e T with respect to x.
=zxlx=x+C. 77.fsinh_‘xdx 78. /tanh*lxdx
..@ 3
J.J Trigonometric Integrals
@ -

Trigonometric integrals involve algebraic combinations of the six basic trigonometric
functions. In principle, we can always express such integrals in terms of sines and cosines,
but it is often simpler to work with other functions, as in the integral

fseczxdx= tanx + C.
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These identities come from the angle sum formulas for the sine and cosine functigy
(Section 1.3). They give functions whose antiderivatives are easily found. i

/sin 3x cos 5x dx.

EXAMPLE 8  Evaluate

| . -
Solution From Equation (4) with m = 3 and n = 5, we get
, 1[:. . : Ex
sin 3x cos Sx dx = 5 [ sin(—2x) + sin 8x] dx bef:
. . 5.
= % (sin 8x — sin 2x)dx ’
cos 8x | cos 2x N
—ER L 224 .
6 T 4 '€
= T— o — LA ‘l'
..
] - Us
Powers of Sines and Cosines L w6 E ;»*, b
Evaluate the integrals in E ises 1-22. 27 f ———dx 28.[ V1 + sinxdx A -6
valua integrals in Exercises i o Tl = 4 X ¥, &
i /costdx z./ 3sin X dx =
3 < . I — sinx
0 (Hmt. Multiply by =
3. /cus’xsinxdx 4. fsin“Zxcostdx " A /4 y
; 29, %dx 30. V1 — sin2xde | 8
5. / sind x dx 6. / cos? 4x dx AN o2 .
/2 T .. !
® o 31 j AV'1 — cos 26 df 32. f (1 — cos? )2 dt
7. [ sin’xdx 8. / sin® = dx 0 -
0
3 /6 ) Powers of Tangents and Secants L
9. [cos xdx 10. . 3 cos” 3x dx Evaluate the integrals in Exercises 33-50.
2 2
11 /s'm%cos’xdx 12. fcos3hsin5hm 4. /sec PR 34. fsecan xdx
, = 35. [ sec’xtanxdx 36. [ sec® xtan® xdx
13. [ cos*xdx 14. / sin? x dx :
0
mfe 2 vl 4 2
i [ sin y dy 1%, ]?cos?rdf 3. fsec X tan’ x dx 38, fsec xtan’ x dx Ry
Ufr 0 "'
17. / 8 sin* x dx 18. / 8 cos* 2mrx dx 3. f i 2 sec’ x dx 40. f €*sec? e* dx Al
0 3 -, ol
™ ?
19. [!6 sin? x cos? x dx 20. / 8 sin* y cos? y dy 41. /5'30‘ 6 do 42. /3 sec* 3x dx 'y
0 e
w2 w2 : ¢ d
21. / 8 cos? 26 sin 26 df 22. f sin? 26 cos’ 26 d6 43. f csc* 6 df 44, f sec® x dx | i
0 mf4 1
w4
Integrating Square Roots 45, f4 tan® x dx 46. / 6 tan* x dx |
Evaluate the integrals in Exercises 23-32. —m/4

2w ™
za.f ,/’;2“"“4;: 24. / /T — ces 2x dx 47. /tan’xdx 48, /cotﬁzxdx
0 0

m T 'I'I';'3
25. f V1 — sin? tdt 26. / V1 — cos? 0 df 49-/ cot® x dx 50. /Scot‘rdr
i) 0 m,

/6



»ducts of Sines and Cosines

e the integrals in Exercises 51-56.

'.f-‘[sin 3x cos 2x dx 52, fsi.n 2x cos 3x dx

: T
J sin 3x sin 3x dx

:-/cos3xcos4xdx

By

w2
54. ] sin x cos x dx
0

w1
56. cos x cos Tx dx
/2
ises 57-62 require the use of various trigonometric identities
e you evaluate the integrals.

. f sin? @ cos 36 df 58. f cos? 26 sin 6 df

:-fcofﬁsinZGdﬂ 60. fsin38cos29dﬂ

i, f sinfcosfcos30d0 62 f sin 6 sin 26 sin 30 d6

orted Integrations .
any method to evaluate the integrals in Exercises 63-68.

3 i3
. [sec’x sin® x
3 [ tanx dx 64. f gL

4

i &

.4 Trigonometric Substitutions
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8.4 Trigonometric Substitutions

66. f colzx dx
cos” x

68. /xcos3xdx

" tan? x

05 | Gscx

dx
67. fx sin® x dx

Applications
69. Arclength Find the length of the curve

y=In(secx), 0=x=m/4

70. Center of gravity Find the center of gravity of the region
bounded by the x-axis, the curve y = sec x, and the lines x =
-7 /4,x = 7w/4

71. Volume Find the volume generated by revolving one arch of
the curve y = sin x about the x-axis.

72. Area Find the area between the x-axis and the curve y =
V1 +cosdx, 0 =x=m.

73, Centroid Find the centroid of the region bounded by the graphs
ofy =x+ cosxandy = Ofor0 = x < 27.

74. Volume Find the volume of the solid formed by revolving the
region bounded by the graphsof y = sinx + secx,y = 0,x=0,
and x = /3 about the x-axis.

Trigonometric substitutions occur when we replace the variable of integration by a trigo-
nometric function. The most common substitutions are x = atan6,x = asin 6, and
— asec@. These substitutions are effective in transforming integrals involving

Va + 2, Va — 2, and Va? — @* into integrals we can evaluate directly since they
come from the reference right triangles in Figure 8.2.

V02 +x2 ¥
L]
a

x=atanf
Va? + x* = alsec 0]

FIGURE 8.2 Reference triangles for the three basic substitutions
identifying the sides labeled x and a for each substitution.

With x = atan@,
With x = asin#,
a2_

g x x Vx? - a*
f (7]
a

Vat - x*

x=asinf

\a® — x* = alcos 6

x=asech

Vx! - a? = altan 6|

@+ P =a+atan’f = a*(l + tan’6) = o’ sec’ 6.

2 =a— a*sin?8 = a*(1 — sin? @) = a? cos® 0.



’1:.':‘1&:3 8 4

8.4 Trigonometric Substitutions 479

Usi g Trigonometric Substitutions

e

dx
VT

pl

[

ilI"'- 3 -‘[_24 + 2

l . i dx

., Vo-»2
7 [ VB =R

:.[i—yz—y__ﬁ‘*—gdy

issorted Integrations

il ual

.4 r' X
B
_:ﬁf x"dx

b Ve
".'I & 8 dw

b wVE - W

ez

(1 — )2

(1 - )
JT“
" ;, 8 dx
3 NTERE

Xdx
=1

/2 -1
/ vidv
(1 = v2)52

In4
f e dt
" Jo Ver +9

b=

.*.j‘ dx %
B I8 oy
& Vix? — 49
ijZ—ZS
y>7 12 [ —5—

: V3
“'; fyz 4x? dx
0

R >

valuste the integrals in Exercises 1-14.

3dx
V1 + 92

2 dx

4. ..
o 8 &2

1,12\/'
‘) A
8. /Vl — 9% dt

5 dx 3
0[5 >3
255 — 9 3

5 dy, y>5
y

- dx / 2dx
e & 51 W ——=, x>
‘-f.r: xr =1 oV -1

Jse any method to evaluate the integrals in Exercises 15-34. Most
q require trigonometric substitutions, but some can be evaluated by

16. _/4+x2

o fxz_—\/—l

2. f——"gz‘"zdw
W
2. fx\/xz—atdx
1
__dx
N R
2 dx
6 [ <>
_ 2\
2. /“—:—)—dx
6 di
S [(9r2+ 1)
xdx
32 f25+4x2

2[R

i Ellerc&ses 35-48, use an appropriate substitution and then a trigono-
fic substitution 1o evaluate the integrals.

WA

36. —_—
mam (1 + %)

. [ 24 i f'_jy__
L uiz\/;+4:\/; 1 yVI1 + (Iny)?
dx dx

3, | —ZF— 40.
.[x\/xl—l .[1 +x?
41. xdx 42./ i
Vil -1 V1 - x?
xdx m Ul-(lnxzdx
Vit ' xInx

X
. [

(Hint: Letu = x*2.)

4 —x
a5 f — Xy
(Hint: Letx = i)

47.]\/2\/1Txdx 48. j\/if

Initial Value Problems
Solve the initial value problems in Exercises 49-52 for y as a function
of x.

d
49.xd—§= P-4, x22 Y=

d

50. \/12—9d—1=l, >3, y5)=mh3
d

51.(x2+4}d—-i=3, y2) =0

52, (x2+1)=-——\/x2+ y0) =1

Applications and Examples
53, Area Find the area of the region in the first quadrant that is
enclosed by the coordinate axes and the curve y = V9 — x*/3.

54, Area Find the area enclosed by the ellipse
2
2, ¥

2 b2=1.

55. Consider the region bounded by the graphs of y = sin”' x,y = 0,
and x = 1/2.
a. Find the area of the region.
b. Find the centroid of the region.

56. Consider the region bounded by the graphs of y = Vixtan™ x

and y = 0 for 0 < x < 1. Find the volume of the solid formed
by revolving this region about the x-axis (see accompanying
figure).
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57. Evaluate f ¥ V1 — 2 dx using b. Solve the equation in part (a) for f(x), using f(30) =

a. integration by parts.
b. a u-substitution.

y = f(x) path of skier

¢. a trigonometric substitution.

58. Path of a water skier Suppose that a boat is positioned at the boat *1 30 ft rope
origin with a water skier tethered to the boat at the point (30, 0) fk j (%, f(8)) skier
on a rope 30 ft long. As the boat travels along the positive y-axis,
the skier is pulled behind the boat along an unknown path :\\
y = f(x), as shown in the accompanying figure. ! ~— .
—V/900 — &2 o] «x (30,0)
a, Showthat f'(x) = ——— .
NOT TO SCALE

(Hint: Assume that the skier is always pointed directly at the boat
and the rope is on a line tangent to the path y = flx))

8.5 Integration of Rational Functions by Partial Fractions

This section shows how to express a rational function (a quotient of polynomials) as as

of simpler fractions, called partial fractions, which are easily integrated. For instance, thy

rational function (5x — 3)/(x* — 2x — 3) can be rewritten as :
Sx=-3 2 3

xz—zx—3_x+l+x—3'

You can verify this equation algebraically by placing the fractions on the right side ovel
common denominator (x + 1)(x — 3). The skill acquired in writing rational functions &
such a sum is useful in other settings as well (for instance, when using certain transfor orm
methods to solve differential equations). To integrate the rational function
(5x — 3)/(x* = 2x — 3) on the left side of our previous expression, we simply sum (hy
integrals of the fractions on the right side: ' :

5 —3 . 2 3
f(x+1)(x-3)‘i"_fx+1f"’+fx-3dx

=2In|x+ 1| +3In|x - 3| + C.

Y BNER T

.ﬂﬁ."l-‘- g

vl

L .
el

The method for rewriting rational functions as a sum of simpler fractions is calledt
method of partial fractions. In the case of the preceding example, it consists of findi
constants A and B such that &

bt

L A, B y
Xz - 2; - 3 x+1 x—-3 '
(Pretend for a moment that we do not know that A = 2 and B = 3 will work.) We call
fractions A/(x + 1) and B/(x — 3) partlal fractions because their denominators &
only part of the original denominator x2 — 2x — 3. We call A and B undetermined coél
ficients until suitable values for them have bcen found.

To find A and B, we first clear Equation (1) of fractions and regroup in powers 0 of

obtaining

s~ )

Sx—3=Ax—3)+Bx+1)=(+Bx—3A+B.

This will be an identity in x if and only if the coefficients of like powers of x on the t#
sides are equal:

A+ B=35, -3A+ B =-3.

Solving these equations simultaneously gives A = 2 and B = 3.
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i B EXAMPLE 9 Find A, B, and C in the expression

b :. (x*l)(lxj;](x—h:.rﬂI+xf2+xs3
"i ¥ by assigning numerical values to x.
e Solution Clear fractions to get
e 2+1=Ax—-2x—3)+Bx—x-3)+Cx—Dx—2).
: Then let x = 1, 2. 3 successively to find A, B, and C:
. x=1 (1P +1=A=1)=2)+ B0 + C0)
2 =24
' A=1
£ x=2  (2F+1=A0) +B)-1 + C0)
e 5=-B
B=-5
" x=3 @GP +1=A0 + B0+ CQ)1)
10 = 2C
C=5
Conclusion:
(.r—IJ(J;jZI)(x—N:xll_.r52+xi3' -
?-_;{‘__ Gl-lot.ients'ir::o PalrﬁallFr;r;)tmns o o X i dy ii f
m 3 5: iqu;):t;ents in Exercises 2 y Sp:ﬂ_la? ractions. M 11; | 2= e 1
R (x = 3)(x—2) Txt-3x+2 19. /—-—-——1‘1" - 20./ .rfdx
xt+4 4 2 *2 (= 1) x— Dx¥+2&x+1)
3 (xz-:]l)z xt = 2_" ¥l Irreducible Quadratic Factors
S— 6. ;1—:‘“—? In Exercises 21-32. express the integrand as a sum of partial fractions

and evaluate the integrals.

2 4
ol g X2 l dx 3r+r+4
2 e BLR T Zlf——"—“*' 22/ — g
t + | -
5t+6 £+ o D+ 1) e

lonrepeated Linear Factors

T Exercises 9-16. express the integrand as a sum of partial fractions 23 y¥+oy+l " 24, / B + By +2
~dnd evaluate the integrals. I40)p (422 + 1)?
s dx dx 4
- . | — 10 . 25 + 2 st + 81
A & _[ -2 : 2 ; 25. / ——ds 26. f—:-—,ds
__ ) U= St (2 + 1)(s = 1) s(s* +9)°
x4+ 4 2x+ 1
e L A SATEE N _ -
58 = o'“ 2. / 2= Tx+ 12"“ 27. x r-—+ = dn 28. / —4]— dx
. | X 1 5 S A 4
WS v dy i f I\‘+4d _
- b d o _-‘ T :\I < : o : + 't
= 2y— 3 P, e o 29, = o i X N g
e _/.:“— @ m,x“—l\"j—-'i
A di XFI
LD R P 16. f 2o — 26° + 56° + 80 + 4
' 31. ) "3 o
(p* + 20 + 2)-

eated Linear Factors
L M Exercises 17-20. express the integrand as a sum of partial fractions 32 'H_" — 407 4+ 20° - 36+ |
40 evaluate the integrals. (60 + 1)
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mproper Fractions »

In Exercises 33-38, perform long division on the integrand, write the
proper fraction as a sum of partial fractions. and then evaluate the

integral.

" v 3 4
13 / 2 - v+ | dx M. [ _1x —dx

_ =% x5=]

Oy — 3x + | |

——— d: 36. dx
% / R ' j 4 — 4+ |

“.4 + ‘,1 = l ’)\‘
37. |- —dy 38. —dy
7] oy Yoty -

Evaluating Integrals
Evaluate the integrals in Exercises 39-50.

| e dt Y + 26¥ — ¢
39. jg——-_:’ 73+ 40. / TR dt

cos ydy Q / sin 0 df
4, sinfy + siny — 6 " | cos*B + cosf — 2
(x = 20tan" (2x) — 128° — 3
4 : - d
(4 + 1)(x = 2)°
f(.l‘ + 1)*tan' 3x) + 9 + x
(9 + 1)(x + 1)

|
45, | ———=dx
/.t"-"3 - Vx

V_\'r+ | dx

X

X

|
4. | ————d
fu“-‘ —
(Hint: Letx = ub.)

1
48. —_—dx
fxv.t +9

SR (S
50. fx“[ﬁ T4 dx

(Hint: Letx + | = o)

|
4% | —————=di
f,\'(.t" +1) !

(Hr’nr: Multiply by r_:)
%

initial Value Problems
Solve the initial value problems in Exercises 51-54 for x as a function
of 1,

51. l13—31+21%=l (t>2), x3)=0

52 (3 + 4 + 1}‘% = 2V3, 1) =-wV3/4

)szx-}-'!

53. it 2

(F + 2t (x>0, x)=1

54, (1 + ll%} =x*+1 (t>-1). x0)=0
Applications and Examples
In Exercises 55 and 56, find the volume of the solid generated by

revolving the shaded region about the indicated axis.

55, The x-axis

—
Viix =i
(2.5, 2.68)

.‘I =

(0.5, 2.68)

[
I
|

56. The yv-axis

T 57, Find, to two decimal places. the x-coordinate of the centroid of

T 58.

T 59,

T 60

by

-

"
v+ D2 -

pm——— aE
IL N A ; :

|
n| |

* 1

the region in the first quadrant bounded by the v-axis. the curve

= tan"' x, and the line x = V3. :
Find the x-coordinate of the centroid of this region to two decimal
places.

P
IR K
N y= 4t + ].3:.1’ -9
¥+t —X
= =---I<5. 0.98)
|
— LT I | — X
0 3 5

Social diffusion Sociologists sometimes use the phrase “social -
diffusion” to describe the way information spreads through a |
population. The information might be a rumor, a cultural fad, or 3
news about a technical innovation. In a sufficiently large popula-
tion, the number of people x who have the information is treated
as a differentiable function of time t, and the rate of diffusion,
dx/dr, is assumed to be proportional to the number of people ¥
have the information times the number of people who do not."
This leads to the equation 4

(*;5 = kx(N — x),

where N is the number of people in the population. br!
Suppose ¢ is in days, k = 1/250, and two people start a.
rumor at time ¢ = 0 in a population of N = 1000 people.

a. Find x as a function of 1.

b. When will half the population have heard the rumor? (This is -
when the rumor will be spreading the fastest.)

Second-order chemical reactions Many chemical reactions &
are the result of the interaction of two molecules that undergo
change to produce a new product. The rate of the reaction typt*
cally depends on the concentrations of the two kinds of mole-
cules, If @ is the amount of substance A and b is the amount S%4¢
substance B at time ¢ = 0. and if x is the amount of product .: '
time 1, then the rate of formation of x may be given by the dlffﬂ"
ential equation '

% = kla — x)(b — x),
or

I dx _

(@ = x)b = x)dt
where k is a constant for the reaction. Integrate both sides of this.
equation to obtain a relation between x and ¢ (a) if a = b, 304 TS ¥
(b)if @ # b. Assume in each case that x = 0 when r = 0. -

b

| O



8.7 Numerical Integration 501

In particular, notice that when we double the value of n (thereby halving the value of
h = Ax), the T error is divided by 2 squared, whereas the § error is divided by 2 to the
fourth.

This has a dramatic effect as Ax = (2 — 1)/n gets very small. The Simpson approxi-
mation for n = 50 rounds accurately to seven places and for n = 100 agrees to nine deci-

mal places (billionths)! i

If f(x) is a polynomial of degree less than four, then its fourth derivative is zero, and

__b—a 4__b—a 4 _
Es = —gp 1 ©(A0* = =257 0)(Ax)* = 0.

Thus, there will be no error in the Simpson approximation of any integral of f. In other
words, if f is a constant, a linear function, or a quadratic or cubic polynomial, Simpson’s
Rule will give the value of any integral of f exactly, whatever the number of subdivisions,
Similarly, if f is a constant or a linear function, then its second derivative is zero, and

) Er = -2=8 rlonan? = -2 0)ax? = 0.

/ The Trapezoidal Rule will therefore give the exact value of any integral of f. This is no
A . surprise, for the trapezoids fit the graph perfectly.

1 san ' Although decreasing the step size Ax reduces the error in the Simpson and Trapezoi-
f m . ‘ dal approximations in theory, it may fail to do so in practice. When Ax is very small, say
', Vertical spactng = 208 5, — 1078, computer or calculator round-off errors in the arithmetic required to evaluate
E S and T may accumulate to such an extent that the error formulas no longer describe what
/ is going on. Shrinking Ax below a certain size can actually make things worse. You should
s consult a text on numerical analysis for more sophisticated methods if you are having
Je 'gnored problems with round-off error using the rules discussed in this section.

UR_E 8.11 The dimensions of the EXAMPLE 6 A town wants to drain and fill a small polluted swamp (Figure 8.11).
e Fample. 0. The swamp averages 5 ft deep. About how many cubic yards of dirt will it take to fill the

area after the swamp 1s drained?

lbm.' ' Solution To calculate the volume of the swamp, we estimate the surface area and multi-
! ply by 5. To estimate the area, we use Simpson’s Rule with Ax = 20 ft and the y’s equal
: to the distances measured across the swamp, as shown in Figure 8.11.
T Ax
3 §=700+4n + 2+ 4y + 2y + 4ys + y)
=20 -
Y. —'5‘{146-?4881' 152 + 216 + 80 + 120 + 13) = 8100
val-
e 3 The volume is about (8100)(5) = 40,500 ft® or 1500 yd>. Y
g el : : 8 . 7
,.mating Definite Integrals II. Using Simpson’s Rule
#0€ instructions for the integrals in Exercises 1-10 have two parts, a. Estimate the integral with n = 4 steps and find an upper
- e for the Trapezoidal Rule and one for Simpson’s Rule. bound for | E|.
218 . Using the Trapezoidal Rule b. Evaluate the integral directly and find |Eg].
2 | " & Estimate the integral with n = 4 steps and find an upper c. Use the formula (| Es| /(true value)) X 100 to express |E| as
58 ~ bound for |E;|. a percentage of the integral’s true value.
2 j b. Evaluate the integral directly and find |Ey]. 3 5
D | 8§ - & Use the formula (| E;| /(true value)) X 100 to express |Ey| as 1. f e 2. / (2x — 1) dx
4 4 _ a percentage of the integral's true value. 1 1
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|
3./ (x* + 1)dx
-1
2
5./ (P + t)dt
0
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0
4./ (x2 = 1)dx
=3
1
6.[ (F+1)ar
-1
2 4
1 1
== . d
T.j;szds B/E(S_nzs
m 1
9. / sin t dt 10. fsinmdt
0 0

Estimating the Number of Subintervals

In Exercises 11-22, estimate the minimum number of subintervals
needed to approximate the integrals with an error of magnitude less
than 10~ by (a) the Trapezoidal Rule and (b) Simpson’s Rule. (The
integrals in Exercises 11-18 are the integrals from Exercises 1-8.)

2
11. /xdr
|
1
13. / (2 + Ddx
-1
2
ls./ (£ + Ddt

0
2

17. | Las
l &2

3
12, / (2x — 1)dx
1

0
14. f (x* — 1) dx
=2
1
16. / @+ dt
-1
4
18. ]
2

3
1
20. dx
fn Vx+ 1

1
G- 17 ds

3
19./ Vx + ldx
U]

2 1
21, f sin (x + 1)dx 22, j cos (x + m)dx
0 L

Estimates with Numerical Data

23. Volume of water in a swimming pool A rectangular swim-
ming pool is 30 ft wide and 50 ft long. The accompanying table
shows the depth h(x) of the water at 5-ft intervals from one end of
the pool to the other. Estimate the volume of water in the pool
using the Trapezoidal Rule with n = 10 applied to the integral

50
V= / 30« h(x) dx.
0

Position (ft) Depth (ft) Position (ft) Depth (ft)
x h(x) x h(x)
0 6.0 30 11.5
5 8.2 35 11.9
10 9.1 40 12.3
15 99 45 12.7
20 10.5 50 13.0
25 11.0

U

. Wing design The design of a new airplane requires a gasoling

Distance traveled The accompanying table shows time-igd
speed data for a sports car accelerating from rest to 130 mp} "
How far had the car traveled by the time it reached this speeg
(Use trapezoids to estimate the area under the velocity curve, by
be careful: The time intervals vary in length.)

Speed change Time (sec) ;
Zero to 30 mph 22 J-’
40 mph 32 \
50 mph 45 . i
60 mph 59 '
70 mph 7.8 B
80 mph 10.2 !
90 mph 12.7 i
100 mph 16.0
110 mph 20.6
120 mph 26.2
130 mph 37.1

tank of constant cross-sectional area in each wing. A scale draws
ing of a cross-section is shown here. The tank must hold 5000 1
of gasoline, which has a density of 42 1b/ft’. Estimate the lengtl§
of the tank by Simpson’s Rule, '

Yo M Y2 |73 Ya Vs

Theory and Examples

21.

Y%= 15 f“ n= ]6&. Y2 = 1.8 Et, Y= 1.9 ﬂ.
yy = 2.0ft, ys=y,=21ft Horizontal spacing =1 ft

Oil consumption on Pathfinder Island A diesel generate
runs continuously, consuming oil at a gradually increasing ra
until it must be temporarily shut down to have the filters replaced:
Use the Trapezoidal Rule to estimate the amount of oil consume
by the generator during that week.

0Oil consumption rate

Day (liters /h)

Sun 0.019

Mon 0.020

Tue 0.021

Wed 0.023

Thu 0.025

Fri 0.028

Sat 0.031 G
Sun 0.035 A

Usable values of the sine-integral function The sine-infegn
function, 3
it

“Sine integral of x”



ne-to- __is one of the many functions in engineering whose formulas can-
mph,  § not be simplified. There is no elementary formula for the antide-
peed? rivative of (sin r)/r. The values of Si(x), however, are readily

‘e, but estimated by numerical integration.

b Although the notation does not show it explicitly, the func-
__tion being integrated is

sin t
I L]
1, =0,

1#0
fn =

' function has derivatives of all orders at every point of its domain.
_Its graph is smooth, and you can expect good results from Simp-
. son's Rule.

§

soline  §

inv. DR — i & —is
0001h N
length B . Use the fact that [£¥] < 1 on [0, 7/2] to give an upper

bound for the error that will occur if

wfl ., ¢
sif ™) = L8
2 0 t

) " is estimated by Simpson’s Rule with n = 4

' . b. Estimate Si(7/2) by Simpson’s Rule with n = 4.

b Express the error bound you found in part (a) as a percentage
_ of the value you found in part (b).

8. The error function The error function,

erf(x) = % / et dr,
wJo

important in probability and in the theories of heat flow and sig-
nal transmission, must be evaluated numerically because there is
no elementary expression for the antiderivative of e’

M l. Use Simpson's Rule with n = 10 to estimate erf (1}

m[ot

1erator
\g raie
slaced. o
sumed

| )| =

.

. Give an upper bound for the magnitude of the error of the
1ﬂﬂlmatt‘: in part (a).

vae that the sum T in the Trapezoidal Rule for f f(x)dx is a

iemann sum for f continuous on [a, b]. (Hint: Use the Inter-
mediate Value Theorem to show the existence of ¢; in the subin-

e % s

‘ al [x,_, x;] satisfying f(cp) = (f(n-)) + fx))/2.)
-."' that the sum S in Simpson's Rule for f: f(x)dx is a
# Riemann sum for f continuous on [a, b]. (See Exercise 29.)

' "" liptic integrals The length of the ellipse

3 _. g 2 V!

 the continuous extension of (sin 1)/ to the interval [0, x]. The
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turns out to be

w2
L.ength=4af V1 — é cos® t dt,
0

where e = Va? — b?/a is the ellipse’s eccentricity. The integral

in this formula, called an elliptic integral, is nonelementary

except when e = O or 1.

a. Use the Trapezoidal Rule with n = 10 to estimate the length
of the ellipse when @ = 1 and e = 1/2.

b. Use the fact that the absolute value of the second derivative
of f(f) = V1 — €* cos® 1 is less than 1 to find an upper
bound for the error in the estimate you obtained in part (a).

Applications
32. The length of one arch of the curve y = sin x is given by

=] V1 + cos? x dx.
1]

Estimate L by Simpson’s Rule with n = 8.

. Your metal fabrication company is bidding for a contract to make
sheets of corrugated iron roofing like the one shown here. The
cross-sections of the corrugated sheets are to conform to the curve

y= sin%%x, 0=x=<20in

If the roofing is to be stamped from flat sheets by a process that

does not stretch the material, how wide should the original mate-

rial be? To find out, use numerical integration to approximate the
length of the sine curve to two decimal places.

Original sheet y

Corrugated sheet

Your engineering firm is bidding for the contract to construct the
tunnel shown here. The tunnel is 300 ft long and 50 ft wide at the
base. The cross-section is shaped like one arch of the curve
y = 25 cos (mx/50). Upon completion, the tunnel’s inside sur-
face (excluding the roadway) will be treated with a waterproof
sealer that costs $2.35 per square foot to apply. How much will it
cost to apply the sealer? (Hint: Use numerical integration to find
the length of the cosine curve.)

[T]34.

y y = 25 cos (wx/50)

x (ft)
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Find, to two decimal places, the areas of the surfaces generated by
revolving the curves in Exercises 35 and 36 about the x-axis.

35. y=sinx, O0=sx=mw
36. y=x}4, 0=x=2
37. Use numerical integration to estimate the value of

0.6
. dx
sin”' 0.6 =/ =
o VI-x

For reference, sin”! 0.6 = 0.64350 to five decimal places.

38. Use numerical integration to estimate the value of

1
1
=4
g /0]+x2dx

8.8 Improper Integrals

39. Drug assimilation An average adult under age 60 years assimjy’

40.

lates a 12-hr cold medicine into his or her systemn at a rate modeled by

9. 2
S =6-h@e-3+3)

where y is measured in milligrams and ¢ is the time in hours sincg*
the medication was taken. What amount of medicine is absorbeg
into a person’s system over a 12-hr period? d

Effects of an antihistamine The concentration of an antihistas®
mine in the bloodstream of a healthy adult is modeled by
C=125—4In( = 3t + 4),

where C is measured in grams per liter and ¢ is the time in hours
since the medication was taken. What is the average level of cone
centration in the bloodstream over a 6-hr period? :

Up to now, we have required definite integrals to have two properties. First, the domain of
A integration [ a, b] must be finite. Second, the range of the integrand must be finite on thig
domain. In practice, we may encounter problems that fail to meet one or both of these con<"
ditions. The integral for the area under the curve y = (Inx)/x* from x = 1 to x = %i§
an example for which the domain is infinite (Figure 8.12a). The integral for the area under

02
0.1}
the curve of y = 1/Vx between x = 0 and x =
0
(a) R S
certain infinite series in Chapter 10.
Infinite Limits of Integration
(b) 8.13b).
FIGURE 8.12 Are the areas under these

infinite curves finite? We will see that the
answer is yes for both curves.

Then find the limit of A(b) as b— 00

The value we assign to the area under the curve from 0 to 00 is

o b
/ e*?dx = lim / 2 dx = 2.
0 b= [

the integrand is infinite (Figure 8.12b). In either case, the integrals are said to be improper
and are calculated as limits. We will see in Section 8.9 that improper integrals play an
important role in probability. They are also useful when investigating the convergence

Consider the infinite region (unbounded on the right) that lies under the curve y = e i
the first quadrant (Figure 8.13a). You might think this region has infinite area, but we ill
see that the value is finite. We assign a value to the area in the following way. First find he.
area A(b) of the portion of the region that is bounded on the right by x = b (Figur&

b b
Alb) = / e+ dx = —2e"xf2]
0

Jim AG)

1 is an example for which the range a '_"

=—2eb2 +2
0

= blLr:gg(—Ze_bfz +2) =2.



