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Preface

The study of toric varieties is a wonderful part of algebraicgeometry that has deep
connections with polyhedral geometry. Our book is an introduction to this rich
subject that assumes only a modest knowledge of algebraic geometry. There are
elegant theorems, unexpected applications, and, as noted by Fulton [58], “toric
varieties have provided a remarkably fertile testing ground for general theories.”

The Current Version. The January 2010 version consists of seven chapters:

• Chapter 1: Affine Toric Varieties

• Chapter 2: Projective Toric Varieties

• Chapter 3: Normal Toric Varieties

• Chapter 4: Divisors on Toric Varieties

• Chapter 5: Homogeneous Coordinates

• Chapter 6: Line Bundles on Toric Varieties

• Chapter 7: Projective Toric Morphisms

These are the chapters included in the version you downloaded. The book also has
a list of notation, a bibliography, and an index, all of whichwill appear in more
polished form in the published version of the book. Two versions are available
on-line. We recommend using postscript version since it hassuperior quality.

Changes to the January 2009 Version. The new version fixes some typographical
errors and includes a few new examples, new exercises and some rewritten proofs.

The Rest of the Book. Five chapters are in various stages of completion:

• Chapter 8: The Canonical Divisor of a Toric Variety

• Chapter 9: Sheaf Cohomology of Toric Varieties

iii



iv Preface

• Chapter 10: Toric Surfaces

• Chapter 11: Resolutions and Singularities

• Chapter 12: The Topology of Toric Varieties

When the book is completed in August 2010, there will be threefinal chapters:

• Chapter 13: The Riemann-Roch Theorem

• Chapter 14: Geometric Invariant Theory

• Chapter 15: The Toric Minimal Model Program

Prerequisites. The text assumes the material covered in basic graduate courses in
algebra, topology, and complex analysis. In addition, we assume that the reader
has had some previous experience with algebraic geometry, at the level of any of
the following texts:

• Ideals, Varieties and Algorithmsby Cox, Little and O’Shea [35]

• Introduction to Algebraic Geometryby Hassett [79]

• Elementary Algebraic Geometryby Hulek [91]

• Undergraduate Algebraic Geometryby Reid [146]

• Computational Algebraic Geometryby Schenck [153]

• An Invitation to Algebraic Geometryby Smith, Kahanpää, Kekäläinen and
Traves [158]

Readers who have studied more sophisticated texts such as Harris [76], Hartshorne
[77] or Shafarevich [152] certainly have the background needed to read our book.

We should also mention that Chapter 9 uses some basic facts from algebraic
topology. The books by Hatcher [80] and Munkres [128] are useful references.

Background Sections. Since we do not assume a complete knowledge of algebraic
geometry, Chapters 1–9 each begin with a background sectionthat introduces the
definitions and theorems from algebraic geometry that are needed to understand the
chapter. The remaining chapters do not have background sections. For some of the
chapters, no further background is necessary, while for others, the material more
sophisticated and the requisite background will be provided by careful references
to the literature.

The Structure of the Text. We number theorems, propositions and equations based
on the chapter and the section. Thus §3.2 refers to section 2 of Chapter 3, and
Theorem 3.2.6 and equation (3.2.6) appear in this section. The end (or absence) of
a proof is indicated by�, and the end of an example is indicated by⋄.
For the Instructor. We do not yet have a clear idea of how many chapters can
be covered in a given course. This will depend on both the length of the course
and the level of the students. One reason for posting this preliminary version on
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the internet is our hope that you will teach from the book and give us feedback
about what worked, what didn’t, how much you covered, and howmuch algebraic
geometry your students knew at the beginning of the course. Also let us know if
the book works for students who know very little algebraic geometry. We look
forward to hearing from you!

For the Student. The book assumes that you will be an active reader. This means
in particular that you should do tons of exercises—this is the best way to learn
about toric varieties. For students with a more modest background in algebraic
geometry, reading the book requires a commitment to learnbothtoric varietiesand
algebraic geometry. It will be a lot of work, but it’s worth the effort. This is a great
subject.

What’s Missing. Right now, we do not discuss the history of toric varieties, nor
do we give detailed notes about how results in the text relateto the literature. We
would be interesting in hearing from readers about whether these items should be
included.

Please Give Us Feedback. We urge all readers to let us know about:

• Typographical and mathematical errors.

• Unclear proofs.

• Omitted references.

• Topics not in the book that should be covered.

• Places where we do not give proper credit.

As we said above, we look forward to hearing from you!

January 2010 David Cox

John Little

Hal Schenck
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Notation

Basic Notions

Z, Q, R, C integers, rational numbers, real numbers, complex numbers

N semigroup of nonnegative integers{0,1,2, . . . }
im, ker image and kernel

lim
−→

direct limit

lim
←−

inverse limit

Rings and Varieties

C[x1, . . . ,xn] polynomial ring inn variables

C[[x1, . . . ,xn]] formal power series ring inn variables

C[x±1
1 , . . . ,x±1

n ] ring of Laurent polynomials

V(I) affine or projective variety of an ideal

I(V) ideal of an affine or projective variety

C[V] coordinate ring of an affine or projective variety

C[V]d graded piece in degreed whenV is projective

C(V) field of rational functions whenV is irreducible

Spec(R) affine variety of coordinate ringR

Proj(S) projective variety of graded ringS

Vf subset of an affine varietyV where f 6= 0

Rf , RS, Rp localization ofRat f, a multiplicative setS, a prime idealp

R′ integral closure of the integral domainR

xi



xii Notation

R̂ completion of local ringR

OV,p, mV,p local ring of a variety at a point and its maximal ideal

Tp(V) Zariski tangent space of a variety at a point

dimV, dimpV dimension of a variety and dimension at a point

S Zariski closure ofS in a variety

X×Y product of varieties

R⊗C S tensor product of rings overC
X×SY fiber product of varieties

V̂ affine cone of a projective variety

∆ diagonal mapX→ X×X

Sing(X) singular locus of a variety

Semigroups

IL lattice ideal of latticeL⊆ Zs

ZA lattice generated byA

Z′A elements
∑s

i=1 aimi ∈ ZA with
∑s

i=1 ai = 0

NA affine semigroup generated byA

S affine semigroup

Sσ = Sσ,N affine semigroupσ∨∩M

C[S] semigroup algebra ofS

H Hilbert basis ofSσ whenσ is strongly convex

Cones and Fans

Cone(S) convex cone generated byS

σ rational convex polyhedral cone inNR

Span(σ) subspace spanned byσ

dimσ dimension ofσ

σ∨ dual cone ofσ

Relint(σ) relative interior ofσ

Int(σ) interior ofσ when Span(σ) = NR

σ⊥ set ofm∈MR with 〈m,σ〉= 0

τ � σ, τ ≺ σ τ is a face or proper face ofσ

τ∗ face ofσ∨ dual toτ ⊆ σ, equal toσ∨∩ τ⊥
Hm hyperplane inNR defined by〈m,−〉= 0, m∈MR \{0}
H+

m half-space inNR defined by〈m,−〉 ≥ 0, m∈MR \{0}



Notation xiii

Σ fan inNR

Σ(r) r-dimensional cones ofΣ

uρ minimal generator ofρ∩N, ρ ∈ Σ(1)

Σmax maximal cones ofΣ

Nσ sublatticeZ(σ∩N) = Span(σ)∩N

N(σ) quotient latticeN/Nσ
M(σ) dual lattice ofN(σ), equal toσ⊥∩M

Star(σ) star ofσ, a fan inN(σ)

Σ∗(σ) star subdivision ofΣ alongσ

ind(σ) index of a simplicial cone

Polyhedra

Conv(S) convex hull ofS

P polytope or polyhedron

dimP dimension ofP

Hu,b hyperplane inMR defined by〈−,u〉= b, u∈ NR \{0}
H+

u,b half-space inMR defined by〈−,u〉 ≥ b, u∈NR \{0}
Q� P, Q≺ P Q is a face or proper face ofP

P◦ dual or polar of a polytope

∆n standardn-simplex

A+B Minkowski sum

kP multiple of a polytope or polyhedron

C(P) cone over a polytope or polyhedron

σQ cone of a faceQ� P

ΣP normal fan of a polytope or polyhedron

ϕP support function of a polytope or polyhedron

Toric Varieties

M, χm character lattice of a torus and character ofm∈M

N, λu lattice of one-parameter subgroups of a torus and
one-parameter subgroup ofu∈N

TN torusN⊗Z C∗ = HomZ(M,C∗) associated toN andM

MR, MQ vector spacesM⊗Z R, M⊗Z Q built from M

NR, NQ vector spacesN⊗Z R, N⊗Z Q built from N

〈m,u〉 pairing ofm∈M or MR with u∈ N or NR

YA , XA affine and projective toric variety ofA ⊆M



xiv Notation

Uσ = Uσ,N affine toric variety of a coneσ ⊆ NR

XΣ = XΣ,N toric variety of a fan

XP projective toric variety of a lattice polytope or polyhedron

XD toric variety of a basepoint free divisor

φ, φR lattice homomorphism of a toric morphismφ : XΣ1→ XΣ2

and its real extension

γσ distinguished point ofUσ

O(σ) orbit of σ ∈ Σ

V(σ) = O(σ) closure of orbit ofσ ∈Σ, toric variety of Star(σ)

Dρ = O(ρ) torus-invariant prime divisor onXΣ of ρ ∈ Σ(1)

DF torus-invariant prime divisor onXP of facetF ⊆ P

UP affine toric variety of recession cone of a polyhedron

UΣ affine toric variety of a fan with convex support

Specific Varieties

Cn, Pn affine and projectiven-dimensional space

P(q0, . . . ,qn) weighted projective space

C∗ multiplicative group of nonzero complex numbersC\{0}
(C∗)n standardn-dimensional torus

Ĉd, Cd rational normal cone and curve

Bl0(Cn) blowup ofCn at the origin

BlV(τ)(XΣ) blowup ofXΣ alongV(τ), toric variety ofΣ∗(τ)

Hr Hirzebruch surface

Sa,b rational normal scroll

Divisors

OX,D local ring of a variety at a prime divisor

νD discrete valuation of a prime divisorD

div( f ) principal divisor of a rational function

D∼ E linear equivalence of divisors

D≥ 0 effective divisor

Div0(X) group of principal divisors onX

Div(X) group of Weil divisors onX

DivTN(XΣ) group of torus-invariant Weil divisors onXΣ

CDiv(X) group of Cartier divisors onX
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CDivTN(XΣ) group of torus-invariant Cartier divisors onXΣ

Cl(X) divisor class group of a normal varietyX

Pic(X) Picard group of a normal varietyX

Supp(D) support of a divisor

D|U restriction of a divisor to an open set

{(Ui , fi)} local data of a Cartier divisor onX

{mσ}σ∈Σ Cartier data of a torus-invariant Cartier divisor onXΣ

PD polyhedron of a torus-invariant divisor

ΣD fan associated to a basepoint free divisor

DP Cartier divisor of a polytope or polyhedron

ϕD support function of a Cartier divisor

SF(Σ,N) support functions integral with respect toN

Intersection Products

deg(D) degree of a divisor on a curve

D ·C intersection product of Cartier divisor and complete curve

D≡ D′, C≡C′ numerically equivalent Cartier divisors and complete curves

N1(X), N1(X) (CDiv(X)/≡)⊗Z R and(Z1(X)/≡)⊗Z R
Nef(X) cone inN1(X) generated by nef divisors

NE(X) cone inN1(X) generated by complete curves

NE(X) Mori cone, equal to the closure ofNE(X)

Pic(X)R Pic(X)⊗Z R
r(P) primitive relation of a primitive collection

Sheaves and Bundles

OX structure sheaf of a varietyX

O ∗X sheaf of invertible elements ofOX

OX(D) sheaf of a Weil divisorD on X

KX constant sheaf of rational functions whenX is irreducible

F |U restriction of a sheaf to an open set

Γ(U ,F ) sections of a sheaf over an open set

IY ideal sheaf of a subvarietyY ⊆ X

M̃ sheaf on Spec(R) of anR-moduleM

M̃ sheaf onXΣ of a gradedS-moduleM

OXΣ
(α) sheaf onXΣ of the gradedS-moduleS(α)
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Fp stalk of a sheaf at a point

F ⊗OX G tensor product of sheaves ofOX-modules

H omOX (F ,G ) sheaf of homomorphisms

F∨ dual sheaf ofF , equal toH omOX (F ,OX)

π : V → X vector bundle

π : VL → X rank 1 vector bundle of a line bundleL

f ∗L pullback of a line bundle

φL ,W map to projective space determined byW ⊆ Γ(X,L )

|D| complete linear system ofD

Σ×D fan that givesVL for L = OXΣ
(D)

P(V), P(E ) projective bundle of vector bundle or locally free sheaf

Quotients and Homogeneous Coordinates

RG ring of invariants ofG acting onR

V/G good geometric quotient

V//G good categorical quotient

S total coordinate ring ofXΣ

xρ variable inScorresponding toρ ∈ Σ(1)

Sβ graded piece ofS in degreeβ ∈ Cl(XΣ)

deg(xα) degree in Cl(XΣ) of a monomial inS

xσ̂ monomial generator ofB corresponding toσ ∈ Σ

B(Σ) irrelevant ideal ofS, generated by thexσ̂

Z(Σ) exceptional set, equal toV(B(Σ))

G group HomZ(Cl(XΣ),C∗) used in the quotient construction

x〈m〉 Laurent monomial
∏
ρ x〈m,uρ〉
ρ , m∈M

x〈m,D〉 homogenization ofχm, m∈ PD∩M

xF facet variable of a facetF ⊆ P

x〈m,P〉 P-monomial associated tom∈ P∩M

x〈v,P〉 vertex monomial associated to vertexv∈ P∩M

M gradedS-module

M(α) shift of M byα ∈ Cl(XΣ)



Part I: Basic Theory of
Toric Varieties

Chapters 1 to 9 introduce the theory of toric varieties. Thispart of the
book assumes only a minimal amount of algebraic geometry, atthe level
of Ideals, Varieties and Algorithms[35]. Each chapter begins with a back-
ground section that develops the necessary algebraic geometry.

1





Chapter 1

Affine Toric Varieties

§1.0. Background: Affine Varieties

We begin with the algebraic geometry needed for our study of affine toric varieties.
Our discussion assumes Chapters 1–5 and 9 of [35].

Coordinate Rings. An ideal I ⊆ S= C[x1, . . . ,xn] gives an affine variety

V(I) = {p∈ Cn | f (p) = 0 for all f ∈ I}

and an affine varietyV ⊆ Cn gives the ideal

I(V) = { f ∈ S| f (p) = 0 for all p∈V}.

By the Hilbert Basis Theorem, an affine varietyV is defined by the vanishing of
finitely many polynomials inS, and for any idealI , the Nullstellensatz tells us that
I(V(I)) =

√
I = { f ∈ S | f ℓ ∈ I for someℓ ≥ 1} sinceC is algebraically closed.

The most important algebraic object associated toV is itscoordinate ring

C[V] = S/I(V).

Elements ofC[V] can be interpreted as theC-valued polynomial functions onV.
Note thatC[V] is aC-algebra, meaning that its vector space structure is compatible
with its ring structure. Here are some basic facts about coordinate rings:

• C[V] is an integral domain⇔ I(V) is a prime ideal⇔V is irreducible.

• Polynomial maps (also calledmorphisms) φ : V1→V2 between affine varieties
correspond toC-algebra homomorphismsφ∗ : C[V2]→ C[V1], whereφ∗(g) =
g◦φ for g∈ C[V2].

• Two affine varieties are isomorphic if and only if their coordinate rings are
isomorphicC-algebras.

3



4 Chapter 1. Affine Toric Varieties

• A point p of an affine varietyV gives the maximal ideal

{ f ∈ C[V] | f (p) = 0} ⊆ C[V],

and all maximal ideals ofC[V] arise this way.

Coordinate rings of affine varieties can be characterized asfollows (Exercise 1.0.1).

Lemma 1.0.1. A C-algebra R is isomorphic to the coordinate ring of an affine
variety if and only if R is a finitely generatedC-algebra with no nonzero nilpotents,
i.e., if f ∈ R satisfies fℓ = 0 for someℓ≥ 1, then f= 0. �

To emphasize the close relation betweenV andC[V], we sometimes write

(1.0.1) V = Spec(C[V]).

This can be made canonical by identifyingV with the set of maximal ideals of
C[V] via the fourth bullet above. More generally, one can take anycommutative
ring R and define theaffine schemeSpec(R). The general definition of Spec uses
all prime ideals ofR, not just the maximal ideals as we have done. Thus some
authors would write (1.0.1) asV = Specm(C[V]), the maximal spectrum ofC[V].
Readers wishing to learn about affine schemes should consult[48] and [77].

The Zariski Topology. An affine varietyV ⊆ Cn has two topologies we will use.
The first is theclassical topology, induced from the usual topology onCn. The
second is theZariski topology, where the Zariski closed sets are subvarieties ofV
(meaning affine varieties ofCn contained inV) and the Zariski open sets are their
complements. Since subvarieties are closed in the classical topology (polynomials
are continuous), Zariski open subsets are open in the classical topology.

Given a subsetS⊆ V, its closureS in the Zariski topology is the smallest
subvariety ofV containingS. We callS theZariski closureof S. It is easy to give
examples where this differs from the closure in the classical topology.

Affine Open Subsets and Localization. Some Zariski open subsets of an affine
varietyV are themselves affine varieties. Givenf ∈C[V]\{0}, let

Vf = {p∈V | f (p) 6= 0} ⊆V.

ThenVf is Zariski open inV and is also an affine variety, as we now explain.

LetV ⊆ Cn haveI(V) = 〈 f1, . . . , fs〉 and pickg∈ C[x1, . . . ,xn] representingf .
ThenVf = V \V(g) is Zariski open inV. Now consider a new variabley and let
W = V( f1, . . . , fs,1−gy) ⊆Cn×C. Since the projection mapCn×C→ Cn maps
W bijectively ontoVf , we can identifyVf with the affine varietyW ⊆ Cn×C.

WhenV is irreducible, the coordinate ring ofVf is easy to describe. LetC(V)
be the field of fractions of the integral domainC[V]. Recall that elements ofC(V)
give rational functions onV. Then let

(1.0.2) C[V] f = {g/ f ℓ ∈C(V) | g∈ C[V], ℓ≥ 0}.
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In Exercise 1.0.3 you will prove that Spec(C[V] f ) is the affine varietyVf .

Example 1.0.2.Then-dimensional torus is the affine open subset

(C∗)n = Cn\V(x1 · · ·xn)⊆ Cn,

with coordinate ring

C[x1, . . . ,xn]x1···xn = C[x±1
1 , . . . ,x±1

n ].

Elements of this ring are calledLaurent polynomials. ♦

The ringC[V] f from (1.0.2) is an example oflocalization. In Exercises 1.0.2
and 1.0.3 you will show how to construct this ring for all affine varieties, not just
irreducible ones. The general concept of localization is discussed in standard texts
in commutative algebra such as [3, Ch. 3] and [47, Ch. 2].

Normal Affine Varieties. Let R be an integral domain with field of fractionsK.
ThenR is normal, or integrally closed, if every element ofK which is integral over
R (meaning that it is a root of a monic polynomial inR[x]) actually lies inR. For
example, any UFD is normal (Exercise 1.0.5).

Definition 1.0.3. An irreducible affine varietyV is normal if its coordinate ring
C[V] is normal.

For example,Cn is normal since its coordinate ringC[x1, . . . ,xn] is a UFD and
hence normal. Here is an example of a non-normal affine variety.

Example 1.0.4.LetC = V(x3−y2)⊆C2. This is an irreducible plane curve with a
cusp at the origin. It is easy to see thatC[C] = C[x,y]/〈x3−y2〉. Now let x̄ andȳ be
the cosets ofx andy in C[C] respectively. This gives̄y/x̄∈ C(C). A computation
shows that̄y/x̄ /∈C[C] and that(ȳ/x̄)2 = x̄. ConsequentlyC[C] and henceC are not
normal.

We will see below thatC is an affine toric variety. ♦

An irreducible affine varietyV has anormalizationdefined as follows. Let

C[V]′ = {α ∈ C(V) : α is integral overC[V]}.

We callC[V]′ the integral closureof C[V]. One can show thatC[V]′ is normal and
(with more work) finitely generated as aC-algebra (see [47, Cor. 13.13]). This
gives the normal affine variety

V ′ = Spec(C[V]′)

We callV ′ the normalizationof V. The natural inclusionC[V] ⊆ C[V]′ = C[V ′]
corresponds to a mapV ′→V. This is thenormalization map.
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Example 1.0.5.We saw in Example 1.0.4 that the curveC⊆C2 defined byx3 = y2

has elements̄x, ȳ ∈ C[C] such thatȳ/x̄ /∈ C[C] is integral overC[C]. In Exer-
cise 1.0.6 you will show thatC[ȳ/x̄] ⊆ C(C) is the integral closure ofC[C] and
that the normalization map is the mapC→C defined byt 7→ (t2, t3). ♦

At first glance, the definition of normal does not seem very intuitive. Once we
enter the world of toric varieties, however, we will see thatnormality has a very
nice combinatorial interpretation and that the nicest toric varieties are the normal
ones. We will also see that normality leads to a nice theory ofdivisors.

In Exercise 1.0.7 you will prove some properties of normal domains that will
be used in §1.3 when we study normal affine toric varieties.

Smooth Points of Affine Varieties. In order to define a smooth point of an affine
varietyV, we first need to definelocal ringsandZariski tangent spaces. WhenV
is irreducible, thelocal ring of V at p is

OV,p = { f/g∈ C(V) | f ,g∈C[V] andg(p) 6= 0}.

ThusOV,p consists of all rational functions onV that are defined atp. Inside of
OV,p we have the maximal ideal

mV,p = {φ ∈ OV,p | φ(p) = 0}.

In fact, mV,p is the unique maximal ideal ofOV,p, so thatOV,p is a local ring.
Exercises 1.0.2 and 1.0.4 explain how to defineOV,p whenV is not irreducible.

TheZariski tangent spaceof V at p is defined to be

Tp(V) = HomC(mV,p/m
2
V,p,C).

In Exercise 1.0.8 you will verify that dimTp(Cn) = n for everyp∈ Cn. According
to [77, p. 32], we can compute the Zariski tangent space of a point inan affine
variety as follows.

Lemma 1.0.6. Let V⊆ Cn be an affine variety and let p∈ V. Also assume that
I(V) = 〈 f1, . . . , fs〉 ⊆ C[x1, . . . ,xn]. For each i, let

dp( fi) =
∂ fi
∂x1

(p)x1 + · · ·+ ∂ fi
∂xn

(p)xn.

Then the Zariski tangent Tp(V) is isomorphic to the subspace ofCn defined by the
equations dp( f1) = · · ·= dp( fs) = 0. In particular, dimTp(V)≤ n. �

Definition 1.0.7. A point p of an affine varietyV is smoothor nonsingular if
dimTp(V) = dimpV, where dimpV is the maximum of the dimensions of the irre-
ducible components ofV containingp. The pointp is singular if it is not smooth.
Finally,V is smoothif every point ofV is smooth.
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Points lying in the intersection of two or more irreducible components ofV are
always singular ([35, Thm. 8 of Ch. 9, §6]).

Since dimTp(Cn) = n for every p ∈ Cn, we see thatCn is smooth. For an
irreducible affine varietyV ⊆ Cn of dimensiond, fix p ∈ V and write I(V) =
〈 f1, . . . , fs〉. Using Lemma 1.0.6, it is straightforward to show thatV is smooth
at p if and only if the Jacobian matrix

(1.0.3) Jp( f1, . . . , fs) =
( ∂ fi
∂x j

(p)
)

1≤i≤s,1≤ j≤n

has rankn−d (Exercise 1.0.9). Here is a simple example.

Example 1.0.8.As noted in Example 1.0.4, the plane curveC defined byx3 = y2

hasI(C) = 〈x3−y2〉 ⊆ C[x,y]. A point p = (a,b) ∈C has Jacobian

Jp = (3a2,−2b),

so the origin is the only singular point ofC. ♦

SinceTp(V) = HomC(mV,p/m
2
V,p,C), we see thatV is smooth atp when dimV

equals the dimension ofmV,p/m
2
V,p as a vector space overOV,p/mV,p. In terms of

commutative algebra, this means thatp ∈ V is smooth if and only ifOV,p is a
regular local ring. See [3, p. 123] or [47, 10.3].

We can relate smoothness and normality as follows.

Proposition 1.0.9. A smooth irreducible affine variety V is normal.

Proof. In §3.0 we will see thatC[V] =
⋂

p∈V OV,p. By Exercise 1.0.7,C[V] is
normal once we prove thatOV,p is normal for allp∈V. Hence it suffices to show
thatOV,p is normal wheneverp is smooth.

This follows from some powerful results in commutative algebra: OV,p is a
regular local ring whenp is a smooth point ofV (see above), and every regular
local ring is a UFD (see [47, Thm. 19.19]). Then we are done since every UFD is
normal. A direct proof thatOV,p is normal at a smooth pointp∈V is sketched in
Exercise 1.0.10. �

The converse of Propostion 1.0.9 can fail. We will see in §1.3that the affine
varietyV(xy−zw)⊆ C4 is normal, yetV(xy−zw) is singular at the origin.

Products of Affine Varieties. Given affine varietiesV1 andV2, there are several
ways to show that the cartesian productV1×V2 is an affine variety. The most direct
way is to proceed as follows. LetV1 ⊆ Cm = Spec(C[x1, . . . ,xm]) andV2 ⊆ Cn =
Spec(C[y1, . . . ,yn]). TakeI(V1) = 〈 f1, . . . , fs〉 andI(V2) = 〈g1, . . . ,gt〉. Since thefi
andg j depend on separate sets of variables, it follows that

V1×V2 = V( f1, . . . , fs,g1, . . . ,gt)⊆ Cm+n

is an affine variety.
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A fancier method is to use the mapping properties of the product. This will
also give an intrinsic description of its coordinate ring. GivenV1 andV2 as above,
V1×V2 should be an affine variety with projectionsπi : V1×V2 → Vi such that
whenever we have a diagram

W φ1

""

φ2

$$

ν
##

V1×V2 π1
//

π2

��

V1

V2

whereφi :W→Vi are morphisms from an affine varietyW, there should be a unique
morphismν (the dotted arrow) that makes the diagram commute, i.e.,πi ◦ ν = φi .
For the coordinate rings, this means that whenever we have a diagram

C[V2]

π∗
2

�� φ∗2

��

C[V1]
π∗

1 //

φ∗1 ..

C[V1×V2]

ν∗

%%

C[W]

with C-algebra homomorphismsφ∗i : C[Vi ]→ C[W], there should be a uniqueC-
algebra homomorphismν∗ (the dotted arrow) that makes the diagram commute. By
the universal mapping property of thetensor productof C-algebras,C[V1]⊗C C[V2]
has the mapping properties we want. SinceC[V1]⊗C C[V2] is a finitely generated
C-algebra with no nilpotents (see the appendix to this chapter), it is the coordinate
ring C[V1×V2]. For more on tensor products, see [3, pp. 24–27] or [47, A2.2].

Example 1.0.10.Let V be an affine variety. SinceCn = Spec(C[y1, . . . ,yn]), the
productV×Cn has coordinate ring

C[V]⊗C C[y1, . . . ,yn] = C[V][y1, . . . ,yn].

If V is contained inCm with I(V) = 〈 f1, . . . , fs〉 ⊆ C[x1, . . . ,xm], it follows that

I(V×Cn) = 〈 f1, . . . , fs〉 ⊆ C[x1, . . . ,xm,y1, . . . ,yn].

For later purposes, we also note that the coordinate ring ofV× (C∗)n is

C[V]⊗C C[y±1
1 , . . . ,y±1

n ] = C[V][y±1
1 , . . . ,y±1

n ]. ♦

Given affine varietiesV1 andV2, we note that the Zariski topology onV1×V2

is usuallynot the product of the Zariski topologies onV1 andV2.
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Example 1.0.11.ConsiderC2 = C×C. By definition, a basis for the product of
the Zariski topologies consists of setsU1×U2 whereUi are Zariski open inC. Such
a set is the complement of a union of collections of “horizontal” and “vertical” lines
in C2. This makes it easy to see that Zariski closed sets inC2 such asV(y− x2)
cannot be closed in the product topology. ♦

Exercises for §1.0.

1.0.1. Prove Lemma 1.0.1. Hint: You will need the Nullstellensatz.

1.0.2. Let R be a commutativeC-algebra. A subsetS⊆ R is amultipliciative subsetpro-
vided 1∈ S, 0 /∈ S, andS is closed under multiplication. Thelocalization RS consists of all
formal expressionsg/s, g∈ R, s∈ S, modulo the equivalence relation

g/s∼ h/t ⇐⇒ u(tg−sh) = 0 for someu∈ S.

(a) Show that the usual formulas for adding and multiplying fractions induce well-defined
binary operations that makeRS into C-algebra.

(b) If R has no nonzero nilpotents, then prove that the same is true for RS.

For more on localization, see [3, Ch. 3] or [47, Ch. 2].

1.0.3. Let R be a finitely generatedC-algebra without nilpotents as in Lemma 1.0.1 and
let f ∈Rbe nonzero. ThenS= {1, f , f 2, . . .} is a multiplicative set. The localizationRS is
denotedRf and is called thelocalization of R at f.

(a) Show thatRf is a finitely generatedC-algebra without nilpotents.

(b) Show thatRf satisfies Spec(Rf ) = Spec(R) f .

(c) Show thatRf is given by (1.0.2) whenR is an integral domain.

1.0.4. Let V be an affine variety with coordinate ringC[V]. Given a pointp ∈ V, let
S= {g∈ C[V] | g(p) 6= 0}.
(a) Show thatS is a multiplicative set. The localizationC[V]S is denotedOV,p and is

called thelocal ring of V at p.

(b) Show that everyφ ∈ OV,p has a well-defined valueφ(p) and that

mV,p = {φ ∈OV,p | φ(p) = 0}
is the unique maximal ideal ofOV,p.

(c) WhenV is irreducible, show thatOV,p agrees with the definition given in the text.

1.0.5. Prove that a UFD is normal.

1.0.6. In the setting of Example 1.0.5, show thatC[ȳ/x̄]⊆ C(C) is the integral closure of
C[C] and that the normalizationC→C is defined byt 7→ (t2,t3).

1.0.7. In this exercise, you will prove some properties of normal domains needed for §1.3.

(a) LetR be a normal domain with field of fractionsK and letS⊆ R be a multiplicative
subset. Prove that the localizationRS is normal.

(b) Let Rα, α ∈ A, be normal domains with the same field of fractionsK. Prove that the
intersection

⋂
α∈A Rα is normal.

1.0.8. Prove that dimTp(C
n) = n for all p∈ Cn.
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1.0.9. Use Lemma 1.0.6 to prove the claim made in the text that smoothness is determined
by the rank of the Jacobian matrix (1.0.3).

1.0.10. Let V be irreducible and suppose thatp∈ V is smooth. The goal of this exercise
is to prove thatOV,p is normal using standard results from commutative algebra.Setn =
dimV and consider the ring offormal power seriesC[[x1, . . . ,xn]]. This is a local ring with
maximal idealm = 〈x1, . . . ,xn〉. We will use three facts:

• C[[x1, . . . ,xn]] is a UFD by [174, p. 148] and hence normal by Exercise 1.0.5.

• Sincep∈V is smooth, [125, §1C] proves the existence of aC-algebra homomorphism
OV,p→C[[x1, . . . ,xn]] that induces isomorphisms

OV,p/m
ℓ
V,p≃ C[[x1, . . . ,xn]]/m

ℓ

for all ℓ≥ 0. This implies that thecompletion[3, Ch. 10]

ÔV,p = lim
←−

OV,p/m
ℓ
V,p

is isomorphic to a formal power series ring, i.e.,ÔV,p ≃ C[[x1, . . . ,xn]]. Such an iso-
morphism captures the intuitive idea that at a smooth point,functions should have
power series expansions in “local coordinates”x1, . . . ,xn.

• If I ⊆ OV,p is an ideal, then

I =
⋂∞

ℓ=1(I +m
ℓ
V,p).

This theorem of Krull holds for any idealI in a Noetherian local ringA and follows
from [3, Cor. 10.19] withM = A/I .

Now assume thatp∈V is smooth.

(a) Use the third bullet to show thatOV,p→ C[[x1, . . . ,xn]] is injective.

(b) Suppose thata,b ∈ OV,p satisfyb|a in C[[x1, . . . ,xn]]. Prove thatb|a in OV,p. Hint:
Use the second bullet to showa∈ bOV,p +mℓ

V,p and then use the third bullet.

(c) Prove thatOV,p is normal. Hint: Use part (b) and the first bullet.

This argument can be continued to show thatOV,p is a UFD. See [125, (1.28)]

1.0.11.LetV andW be affine varieties and letS⊆V be a subset. Prove thatS×W = S×W.

1.0.12. Let V andW be irreducible affine varieties. Prove thatV×W is irreducible. Hint:
SupposeV×W = Z1∪Z2, whereZ1,Z2 are closed. LetVi = {v∈V | {v}×W⊆ Zi}. Prove
thatV = V1∪V2 and thatVi is closed inV. Exercise 1.0.11 will be useful.

§1.1. Introduction to Affine Toric Varieties

We first discuss what we mean by “torus” and then explore various constructions
of affine toric varieties.

The Torus. The affine variety(C∗)n is a group under component-wise multipli-
cation. A torus T is an affine variety isomorphic to(C∗)n, whereT inherits a
group structure from the isomorphism. Associated toT are itscharactersandone-
parameter subgroups. We discuss each of these briefly.
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A characterof a torusT is a morphismχ : T → C∗ that is a group homo-
morphism. For example,m= (a1, . . . ,an) ∈ Zn gives a characterχm : (C∗)n→C∗

defined by

(1.1.1) χm(t1, . . . , tn) = ta1
1 · · · tan

n .

One can show thatall characters of(C∗)n arise this way (see [92, §16]). Thus the
characters of(C∗)n form a group isomorphic toZn.

For an arbitrary torusT, its characters form a free abelian groupM of rank
equal to the dimension ofT. It is customary to say thatm∈M gives the character
χm : T→ C∗.

We will need the following results concerning tori (see [92, §16] for proofs).

Proposition 1.1.1.

(a) Let T1 and T2 be tori and letΦ : T1→ T2 be a morphism that is a group homo-
morphism. Then the image ofΦ is a torus and is closed in T2.

(b) Let T be a torus and let H⊆ T be an irreducible subvariety of T that is a
subgroup. Then H is a torus. �

Now assume that a torusT acts linearly on a finite dimensional vector space
W overC, where the action oft ∈ T on w∈W is denotedt ·w. Givenm∈M, we
get theeigenspace

Wm = {w∈W | t ·w = χm(t)w for all t ∈ T}.
If Wm 6= {0}, then everyw∈Wm\{0} is a simultaneous eigenvector for allt ∈ T,
with eigenvalue given byχm(t).

Proposition 1.1.2. In the above situation, we have W=
⊕

m∈M Wm. �

This proposition is a sophisticated way of saying that a family of commuting
diagonalizable linear maps can be simultaneously diagonalized.

A one-parameter subgroupof a torusT is a morphismλ : C∗ → T that is a
group homomorphism. For example,u = (b1, . . . ,bn) ∈ Zn gives a one-parameter
subgroupλu : C∗→ (C∗)n defined by

(1.1.2) λu(t) = (tb1, . . . , tbn).

All one-parameter subgroups of(C∗)n arise this way (see [92, §16]). It follows
that the group of one-parameter subgroups of(C∗)n is naturally isomorphic toZn.
For an arbitrary torusT, the one-parameter subgroups form a free abelian groupN
of rank equal to the dimension ofT. As with the character group, an elementu∈N
gives the one-parameter subgroupλu : C∗→ T.

There is a natural bilinear pairing〈 , 〉 : M×N→ Z defined as follows.

• (Intrinsic) Given a characterχm and a one-parameter subgroupλu, the compo-
sitionχm◦λu : C∗→ C∗ is character ofC∗, which is given byt 7→ tℓ for some
ℓ ∈ Z. Then〈m,u〉= ℓ.
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• (Concrete) IfT = (C∗)n with m= (a1, . . . ,an)∈Zn, u= (b1, . . . ,bn)∈Zn, then
one computes that

(1.1.3) 〈m,u〉 =
n∑

i=1

aibi ,

i.e., the pairing is the usual dot product.

It follows that the characters and one-parameter subgroupsof a torusT form
free abelian groupsM andN of finite rank with a pairing〈 , 〉 : M×N→ Z that
identifiesN with HomZ(M,Z) andM with HomZ(N,Z). In terms of tensor prod-
ucts, one obtains a canonical isomorphismN⊗Z C∗ ≃ T via u⊗ t 7→ λu(t). Hence
it is customary to write a torus asTN.

From this point of view, picking an isomorphismTN ≃ (C∗)n induces dual
bases ofM and N, i.e., isomorphismsM ≃ Zn and N ≃ Zn that turn characters
into Laurent monomials (1.1.1), one-parameter subgroups into monomial curves
(1.1.2), and the pairing into dot product (1.1.3).

The Definition of Affine Toric Variety. We now define the main object of study of
this chapter.

Definition 1.1.3. An affine toric varietyis an irreducible affine varietyV contain-
ing a torusTN ≃ (C∗)n as a Zariski open subset such that the action ofTN on itself
extends to an algebraic action ofTN onV. (By algebraic action, we mean an action
TN×V→V given by a morphism.)

Obvious examples of affine toric varieties are(C∗)n andCn. Here are some
less trivial examples.

Example 1.1.4. The plane curveC = V(x3− y2) ⊆ C2 has a cusp at the origin.
This is an affine toric variety with torus

C−{0}= C∩ (C∗)2 = {(t2, t3) | t ∈ C∗} ≃ C∗,

where the isomorphism ist 7→ (t2, t3). Example 1.0.4 shows thatC is a non-normal
toric variety. ♦

Example 1.1.5.The varietyV = V(xy−zw)⊆ C4 is a toric variety with torus

V ∩ (C∗)4 = {(t1, t2, t3, t1t2t−1
3 ) | ti ∈ C∗} ≃ (C∗)3,

where the isomorphism is(t1, t2, t3) 7→ (t1, t2, t3, t1t2t
−1
3 ). We will see later thatV is

normal. ♦

Example 1.1.6.Consider the surface inCd+1 parametrized by the map

Φ : C2−→ Cd+1

defined by(s, t) 7→ (sd,sd−1t, . . . ,std−1, td). ThusΦ is defined using all degreed
monomials ins, t.
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Let the coordinates ofCd+1 bex0, . . . ,xd and letI ⊆ C[x0, . . . ,xd] be the ideal
generated by the 2×2 minors of the matrix

(
x0 x1 · · · xd−2 xd−1

x1 x2 · · · xd−1 xd

)
,

so I = 〈xix j+1−xi+1x j | 0≤ i < j ≤ d−1〉. In Exercise 1.1.1 you will verify that
Φ(C2) = V(I), so thatĈd = Φ(C2) is an affine variety. You will also prove that
I(Ĉd) = I , so thatI is the ideal of all polynomials vanishing on̂Cd. It follows thatI
is prime sinceV(I) is irreducible by Proposition 1.1.8 below. The affine surfaceĈd

is called therational normal cone of degree dand is an example of adeterminantal
variety. We will see below thatI is a toric ideal.

It is straightforward to show that̂Cd is a toric variety with torus

Φ((C∗)2) = Ĉd∩ (C∗)d+1 ≃ (C∗)2.

We will study this example from the projective point of view in Chapter 2. ♦

We next explore three equivalent ways of constructing affinetoric varieties.

Lattice Points. In this book, alattice is a free abelian group of finite rank. Thus
a lattice of rankn is isomorphic toZn. For example, a torusTN has latticesM (of
characters) andN (of one-parameter subgroups).

Given a torusTN with character latticeM, a setA = {m1, . . . ,ms} ⊆M gives
charactersχmi : TN→ C∗. Then consider the map

(1.1.4) ΦA : TN −→ Cs

defined by
ΦA (t) =

(
χm1(t), . . . ,χms(t)

)
∈Cs.

Definition 1.1.7. Given a finite setA ⊆M, the affine toric varietyYA is defined
to be the Zariski closure of the image of the mapΦA from (1.1.4).

This definition is justified by the following proposition.

Proposition 1.1.8. GivenA ⊆M as above, letZA ⊆M be the sublattice gener-
ated byA . Then YA is an affine toric variety whose torus has character lattice
ZA . In particular, the dimension of YA is the rank ofZA .

Proof. The map (1.1.4) can be regarded as a map

ΦA : TN −→ (C∗)s

of tori. By Proposition 1.1.1, the imageT = ΦA (TN) is a torus that is closed in
(C∗)s. The latter implies thatYA ∩ (C∗)s = T sinceYA is the Zariski closure of
the image. It follows that the image is Zariski open inYA . Furthermore,T is
irreducible (it is a torus), so the same is true for its Zariski closureYA .
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We next consider the action ofT. SinceT ⊆ (C∗)s, an elementt ∈ T acts on
Cs and takes varieties to varieties. Then

T = t ·T ⊆ t ·YA

shows thatt ·YA is a variety containingT. HenceYA ⊆ t ·YA by the definition of
Zariski closure. Replacingt with t−1 leads toYA = t ·YA , so that the action ofT
induces an action onYA . We conclude thatYA is an affine toric variety.

It remains to compute the character lattice ofT, which we will temporarily
denote byM′. SinceT = ΦA (TN), the mapΦA gives the commutative diagram

TN
ΦA //

"" ""EE
EE

EE
EE

E
(C∗)s

T
?�

OO

where։ denotes a surjective map and→֒ an injective map. This diagram of tori
induces a commutative diagram of character lattices

M Zs
bΦAoo

����

M′.
0 P

aaBBBBBBBB

SinceΦ̂A : Zs→M takes the standard basise1, . . . ,es to m1, . . . ,ms, the image of
Φ̂A is ZA . By the diagram, we obtainM′ ≃ ZA . Then we are done since the
dimension of a torus equals the rank of its character lattice. �

In concrete terms, fix a basis ofM, so that we may assumeM = Zn. Then thes
vectors inA ⊆Zn can be regarded as the columns of ann×smatrixA with integer
entries. In this case, the dimension ofYA is simply the rank of the matrixA.

We will see below that every affine toric variety is isomorphic toYA for some
finite subsetA of a lattice.

Toric Ideals. Let YA ⊆ Cs = Spec(C[x1, . . . ,xs]) be the affine toric variety com-
ing from a finite setA = {m1, . . . ,ms} ⊆ M. We can describe the idealI(YA ) ⊆
C[x1, . . . ,xs] as follows. As in the proof of Proposition 1.1.8,ΦA induces a map of
character lattices

Φ̂A : Zs−→M

that sends the standard basise1, . . . ,es to m1, . . . ,ms. Let L be the kernel of this
map, so that we have an exact sequence

0−→ L−→ Zs−→M.

In down to earth terms, elementsℓ = (ℓ1, . . . , ℓs) of L satisfy
∑s

i=1ℓimi = 0 and
hence record the linear relations among themi.
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Givenℓ= (ℓ1, . . . , ℓs) ∈ L, set

ℓ+ =
∑

ℓi>0

ℓiei and ℓ− =−
∑

ℓi<0

ℓiei .

Note thatℓ= ℓ+− ℓ− and thatℓ+, ℓ− ∈ Ns. It follows easily that the binomial

xℓ+−xℓ− =
∏
ℓi>0 xℓi

i −
∏
ℓi<0x−ℓi

i

vanishes on the image ofΦA and hence onYA sinceYA is the Zariski closure of
the image.

Proposition 1.1.9. The ideal of the affine toric variety YA ⊆ Cs is

I(YA ) =
〈
xℓ+ −xℓ− | ℓ ∈ L

〉
=
〈
xα−xβ | α,β ∈Ns andα−β ∈ L

〉
.

Proof. We leave it to the reader to prove equality of the two ideals onthe right
(Exercise 1.1.2). LetIL denote this ideal and note thatIL ⊆ I(YA ). We prove
the opposite inclusion following [166, Lem. 4.1]. Pick a monomial order> on
C[x1, . . . ,xs] and an isomorphismTN ≃ (C∗)n. Thus we may assumeM = Zn and
the mapΦ : (C∗)n→ Cs is given by Laurent monomialstmi in variablest1, . . . , tn.
If IL 6= I(YA ), then we can pickf ∈ I(YA ) \ IL with minimal leading monomial
xα =

∏s
i=1xai

i . Rescaling if necessary,xα becomes the leading term off .

Since f (tm1, . . . , tms) is identically zero as a polynomial int1, . . . , tn, there must
be cancellation involving the term coming fromxα. In other words,f must contain
a monomialxβ =

∏s
i=1 xbi

i < xα such that

s∏

i=1

(t mi )ai =

s∏

i=1

(t mi )bi .

This implies that
s∑

i=1

aimi =

s∑

i=1

bimi ,

so thatα−β =
∑s

i=1(ai −bi)ei ∈ L. Thenxα−xβ ∈ IL by the second description
of IL. It follows that f − xα + xβ also lies inI(YA ) \ IL and has strictly smaller
leading term. This contradiction completes the proof. �

Given a finite setA ⊆ M, there are several methods to compute the ideal
I(YA ) = IL of Proposition 1.1.9. For simple examples, the rational implicitiza-
tion algorithm of [35, Ch. 3,§3] can be used. It is also possible to computeIL using
a basis ofL and ideal quotients (Exercise 1.1.3). Further comments on computing
IL can be found in [166, Ch. 12].

Inspired by Proposition 1.1.9, we make the following definition.
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Definition 1.1.10. Let L⊆ Zs be a sublattice.

(a) The idealIL =
〈
xα−xβ | α,β ∈ Ns andα−β ∈ L

〉
is called alattice ideal.

(b) A prime lattice ideal is called atoric ideal.

Since toric varieties are irreducible, the ideals appearing in Proposition 1.1.9
are toric ideals. Examples of toric ideals include:

Example 1.1.4: 〈x3−y2〉 ⊆ C[x,y]

Example 1.1.5: 〈xz−yw〉 ⊆ C[x,y,z,w]

Example 1.1.6: 〈xix j+1−xi+1x j | 0≤ i < j ≤ d−1〉 ⊆ C[x0, . . . ,xd].

(The latter is the ideal of the rational normal coneĈd ⊆ Cd+1.) In each example,
we have a prime ideal generated by binomials. As we now show, such ideals are
automatically toric.

Proposition 1.1.11.An ideal I⊆ C[x1, . . . ,xs] is toric if and only if it is prime and
generated by binomials.

Proof. One direction is obvious. So suppose thatI is prime and generated by bino-
mialsxαi −xβi . Then observe thatV(I)∩ (C∗)s is nonempty (it contains(1, . . . ,1))
and is a subgroup of(C∗)s (easy to check). SinceV(I) ⊆ Cs is irreducible, it fol-
lows thatV(I)∩ (C∗)s is an irreducible subvariety of(C∗)s that is also a subgroup.
By Proposition 1.1.1, we see thatT = V(I)∩ (C∗)s is a torus.

Projecting on theith coordinate of(C∗)s gives a characterT →֒ (C∗)s→ C∗,
which by our usual convention we write asχmi : T → C∗ for mi ∈ M. It follows
easily thatV(I) = YA for A = {m1, . . . ,ms}, and sinceI is prime, we haveI =
I(YA ) by the Nullstellensatz. ThenI is toric by Proposition 1.1.9. �

We will later see that all affine toric varieties arise from toric ideals. For more
on toric ideals and lattice ideals, the reader should consult [123, Ch. 7].

Affine Semigroups. A semigroupis a setS with an associative binary operation
and an identity element. To be anaffine semigroup, we further require that:

• The binary operation onS is commutative. We will write the operation as+
and the identity element as 0. Thus a finite setA ⊆ S gives

NA =
{∑

m∈A
amm | am∈ N

}
⊆ S.

• The semigroup is finitely generated, meaning that there is a finite setA ⊆ S

such thatNA = S.

• The semigroup can be embedded in a latticeM.

The simplest example of an affine semigroup isNn ⊆ Zn. More generally, given
a latticeM and a finite setA ⊆M, we get the affine semigroupNA ⊆M. Up to
isomorphism, all affine semigroups are of this form.
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Given an affine semigroupS ⊆ M, the semigroup algebraC[S] is the vector
space overC with S as basis and multiplication induced by the semigroup structure
of S. To make this precise, we think ofM as the character lattice of a torusTN, so
thatm∈M gives the characterχm. Then

C[S] =
{∑

m∈S

cmχ
m | cm∈ C andcm = 0 for all but finitely manym

}
,

with multiplication induced by

χm ·χm′

= χm+m′

.

If S = NA for A = {m1, . . . ,ms}, thenC[S] = C[χm1, . . . ,χms].

Here are two basic examples.

Example 1.1.12.The affine semigroupNn⊆ Zn gives the polynomial ring

C[Nn] = C[x1, . . . ,xn],

wherexi = χei ande1, . . . ,en is the standard basis ofZn. ♦

Example 1.1.13. If e1, . . . ,en is a basis of a latticeM, thenM is generated by
A = {±e1, . . . ,±en} as an affine semigroup. Settingti = χei gives the Laurent
polynomial ring

C[M] = C[t±1
1 , . . . , t±1

n ].

Using Example 1.0.2, one sees thatC[M] is the coordinate ring of the torusTN. ♦

Affine semigroup rings give rise to affine toric varieties as follows.

Proposition 1.1.14.LetS⊆M be an affine semigroup.

(a) C[S] is an integral domain and finitely generated as aC-algebra.

(b) Spec(C[S]) is an affine toric variety whose torus has character latticeZS, and
if S = NA for a finite setA ⊆M, thenSpec(C[S]) = YA .

Proof. As noted above,A = {m1, . . . ,ms} impliesC[S] = C[χm1, . . . ,χms], soC[S]
is finitely generated. SinceC[S] ⊆ C[M] follows from S ⊆M, we see thatC[S] is
an integral domain by Example 1.1.13.

UsingA = {m1, . . . ,ms}, we get theC-algebra homomorphism

π : C[x1, . . . ,xs]−→ C[M]

wherexi 7→ χmi ∈ C[M]. This corresponds to the morphism

ΦA : TN −→ Cs

from (1.1.4), i.e.,π = (ΦA )∗ in the notation of §1.0. One checks that the kernel
of π is the toric idealI(YA ) (Exercise 1.1.4). The image ofπ is C[χm1, . . . ,χms] =
C[S], and then the coordinate ring ofYA is

(1.1.5)
C[YA ] = C[x1, . . . ,xn]/I(YA )

= C[x1, . . . ,xn]/Ker(π)≃ Im(π) = C[S].
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This proves that Spec(C[S]) = YA . SinceS = NA impliesZS = ZA , the torus of
YA = Spec(C[S]) has the desired character lattice by Proposition 1.1.8. �

Here is an example of this proposition.

Example 1.1.15.Consider the affine semigroupS ⊆ Z generated by 2 and 3, so
thatS = {0,2,3, . . .}. To study the semigroup algebraC[S], we use (1.1.5). If we
setA = {2,3}, thenΦA (t) = (t2, t3) and the toric ideal isI(YA ) = 〈x3− y2〉 by
Example 1.1.4. Hence

C[S] = C[t2, t3]≃ C[x,y]/〈x3−y2〉
and the affine toric varietyYA is the curvex3 = y2. ♦

Equivalence of Constructions. Before stating our main result, we need to study
the action of the torusTN on the semigroup algebraC[M]. The action ofTN on
itself given by multiplication induces an action onC[M] as follows: if t ∈ TN and
f ∈C[M], thent · f ∈C[M] is defined byp 7→ f (t−1 · p) for p∈V. The minus sign
will be explained in §5.0.

The following lemma will be used several times in the text.

Lemma 1.1.16.Let A⊆ C[M] be a subspace stable under the action of TN. Then

A =
⊕

χm∈A

C ·χm.

Proof. Let A′ =
⊕

χm∈AC ·χm and note thatA′ ⊆ A. For the opposite inclusion,
pick f 6= 0 in A. SinceA⊆ C[M], we can write

f =
∑

m∈B

cmχ
m,

whereB ⊆M is finite andcm 6= 0 for all m∈B. Then f ∈ B∩A, where

B = Span(χm |m∈B)⊆ C[M].

An easy computation shows thatt ·χm = χm(t−1)χm. It follows that B and
henceB∩A are stable under the action ofTN. SinceB∩A is finite-dimensional,
Proposition 1.1.2 implies thatB∩A is spanned by simultaneous eigenvectors ofTN.
This is taking place inC[M], where simultaneous eigenvectors are characters. It
follows thatB∩A is spanned by characters. Then the above expression forf ∈B∩A
implies thatχm∈ A for m∈B. Hencef ∈ A′, as desired. �

We can now state the main result of this section, which asserts that our various
approaches to affine toric varieties all give the same class of objects.

Theorem 1.1.17.Let V be an affine variety. The following are equivalent:

(a) V is an affine toric variety according to Definition 1.1.3.

(b) V = YA for a finite setA in a lattice.
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(c) V is an affine variety defined by a toric ideal.

(d) V = Spec(C[S]) for an affine semigroupS.

Proof. The implications (b)⇔ (c)⇔ (d)⇒ (a) follow from Propositions 1.1.8,
1.1.9 and 1.1.14. For (a)⇒ (d), let V be an affine toric variety containing the
torusTN with character latticeM. Since the coordinate ring ofTN is the semigroup
algebraC[M], the inclusionTN ⊆V induces a map of coordinate rings

C[V]−→ C[M].

This map is injective sinceTN is Zariski dense inV, so that we can regardC[V] as
a subalgebra ofC[M].

Since the action ofTN onV is given by a morphismTN×V →V, we see that
if t ∈ TN and f ∈ C[V], then p 7→ f (t−1 · p) is a morphism onV. It follows that
C[V]⊆ C[M] is stable under the action ofTN. By Lemma 1.1.16, we obtain

C[V] =
⊕

χm∈C[V]

C ·χm.

HenceC[V]⊆ C[S] for the semigroupS = {m∈M | χm∈ C[V]}.
Finally, sinceC[V] is finitely generated, we can findf1, . . . , fs ∈ C[V] with

C[V] = C[ f1, . . . , fs]. Expressing eachfi in terms of characters as above gives a
finite generating set ofS. It follows thatS is an affine semigroup. �

Here is one way to think about the above proof. When an irreducible affine
varietyV contains a torusTN as a Zariski open subset, we have the inclusion

C[V]⊆ C[M].

ThusC[V] consists of those functions on the torusTN that extend to polynomial
functions onV. Then the key insight is thatV is a toric varietyprecisely when the
functions that extend are determined by the characters thatextend.

Example 1.1.18.We have seen thatV = V(xy− zw) ⊆ C4 is a toric variety with
toric ideal〈xy−zw〉 ⊆C[x,y,z,w]. Also, the torus is(C∗)3 via the map(t1, t2, t3) 7→
(t1, t2, t3, t1t2t

−1
3 ). The lattice points used in this map can be represented as the

columns of the matrix

(1.1.6)




1 0 0 1
0 1 0 1
0 0 1 −1


 .

The corresponding semigroupS⊆ Z3 consists of theN-linear combinations of the
column vectors. Hence the elements ofS are lattice points lying in the polyhe-
dral region inR3 pictured in Figure 1 on the next page. In this figure, the four
vectors generatingS are shown in bold, and the boundary of the polyhedral region
is partially shaded. In the terminology of §1.2, this polyhedral region is arational
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(0,0,1)

(0,1,0)

(1,0,0)

(1,1,−1)

Figure 1. Cone containing the lattice points corresponding toV = V(xy− zw)

polyhedral cone. In Exercise 1.1.5 you will show thatS consists ofall lattice points
lying in the cone in Figure 1. We will use this in §1.3 to prove thatV is normal. ♦

Exercises for §1.1.

1.1.1. As in Example 1.1.6, let

I = 〈xix j+1−xi+1x j | 0≤ i < j ≤ d−1〉 ⊆ C[x0, . . . ,xd]

and letĈd be the surface parametrized by

Φ(s, t) = (sd,sd−1t, . . . ,std−1,td) ∈Cd+1.

(a) Prove thatV(I) = Φ(C2)⊆ Cd+1. ThusĈd = V(I).

(b) Prove thatI(Ĉd) is homogeneous.

(c) Consider lex monomial order withx0 > x1 > · · ·> xd. Let f ∈ I(Ĉd) be homogeneous
of degreeℓ and letr be the remainder off on division by the generators ofI . Prove
thatr can be written

r = h0(x0,x1)+h1(x1,x2)+ · · ·+hd−1(xd−1,xd)

wherehi is homogeneous of degreeℓ. Also explain why we may assume that the
coefficient ofxℓ

i in hi is zero for 1≤ i ≤ d−1.

(d) Use part (c) andr(sd,sd−1t, . . . ,std−1,td) = 0 to show thatr = 0.

(e) Use parts (b), (c) and (d) to prove thatI = I(Ĉd). Also explain why the generators of
I are a Gröbner basis for the above lex order.

1.1.2. Let L⊆ Zs be a sublattice. Prove that

〈xℓ+−xℓ− | ℓ ∈ L〉= 〈xα−xβ | α,β ∈ Ns, α−β ∈ L〉.
Note that whenℓ ∈ L, the vectorsℓ+, ℓ− ∈ Ns have disjoint support (i.e., no coordinate is
positive in both), while this may fail for arbitraryα,β ∈ Ns with α−β ∈ L.
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1.1.3. Let IL be a toric ideal and letℓ1, . . . , ℓr be a basis of the sublatticeL⊆ Zs. Define

IL = 〈xℓi
+−xℓi

− | i = 1, . . . , r〉.
Prove thatIL = IL : 〈x1 · · ·xs〉∞. Hint: Givenα,β ∈ Ns with α− β ∈ L, write α− β =∑r

i=1 aiℓ
i, ai ∈ Z. This implies

xα−β−1 =
∏

ai>0

(
xℓi

+

xℓi
−

)ai ∏

ai<0

(
xℓi

−

xℓi
+

)−ai

−1.

Show that multiplying this by(x1 · · ·xs)
k gives an element ofIL for k≫ 0. (By being more

careful, one can show that this result holds for lattice ideals. See [123, Lem. 7.6].)

1.1.4. Fix an affine varietyV. Then f1, . . . , fs ∈ C[V] give a polynomial mapΦ : V→ Cs,
which on coordinate rings is given by

Φ∗ : C[x1, . . . ,xs]−→ C[V], xi 7−→ fi .

LetY ⊆ Cs be the Zariski closure of the image ofΦ.

(a) Prove thatI(Y) = Ker(Φ∗).

(b) Explain how this applies to the proof of Proposition 1.1.14.

1.1.5. Let m1 = (1,0,0),m2 = (0,1,0),m3 = (0,0,1),m4 = (1,1,−1) be the columns of
the matrix in Example 1.1.18 and let

C =
{ 4∑

i=1

λimi | λi ∈ R≥0

}
⊆ R3

be the cone in Figure 1. Prove thatC∩Z3 is a semigroup generated bym1,m2,m3,m4.

1.1.6. An interesting observation is that different sets of lattice points can parametrize the
same affine toric variety, even though these parametrizations behave slightly differently. In
this exercise you will consider the parametrizations

Φ1(s, t) = (s2,st,st3) and Φ2(s,t) = (s3,st,t3).

(a) Prove thatΦ1 andΦ2 both give the affine toric varietyY = V(xz−y3)⊆ C3.

(b) We can regardΦ1 andΦ2 as maps

Φ1 : C2 −→Y and Φ2 : C2 −→Y.

Prove thatΦ2 is surjective and thatΦ1 is not.

In general, a finite subsetA ⊆ Zn gives a rational mapΦA : Cn
99K YA . The image of

ΦA in Cs is called atoric setin the literature. ThusΦ1(C
2) andΦ2(C

2) are toric sets. The
papers [101] and [147] study when a toric set equals the corresponding affine toricvariety.

1.1.7. In Example 1.1.6 and Exercise 1.1.1 we constructed the rational normal conêCd

using all monomials of degreed in s,t. If we drop some of the monomials, things become
more complicated. For example, consider the surface parametrized by

Φ(s,t) = (s4,s3t,st3,t4) ∈ C4.

This gives a toric varietyY ⊆ C4. Show that the toric ideal ofY is given by

I(Y) = 〈xw−yz,yw2−z3,xz2−y2w,x2z−y3〉 ⊆ C[x,y,z,w].
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The toric ideal forĈ4 has quadratic generators; by removing the monomials2t2, we now
get cubic generators. In Chapter 2 we will use this example toconstruct a projective curve
that is normal but not projectively normal.

1.1.8. Instead of working overC, we will work over an algebraically closed fieldk of
characteristic 2. Consider the affine toric varietyV ⊆ k5 parametrized by

Φ(s, t,u) = (s4,t4,u4,s8u,t12u3) ∈ k5.

(a) Find generators for the toric idealI = I(V)⊆ k[x1,x2,x3,x4,x5].

(b) Show that dimV = 3. You may assume that Proposition 1.1.8 holds overk.

(c) Show thatI =
√〈

x4
4 +x8

1x3,x4
5 +x12

2 x3
3

〉
.

It follows thatV ⊆ k5 has codimension two and can be defined by two equations, i.e.,V
is aset-theoretic complete intersection. The paper [4] shows that if we replacek with an
algebrically closed field of characteristicp> 2, then the above parametrization isnevera
set-theoretic complete intersection.

1.1.9. Prove that a lattice idealIL for L⊆ Zs is a toric ideal if and only ifZs/L is torsion-
free. Hint: WhenZs/L is torsion-free, it can be regarded as the character latticeof a torus.
The other direction of the proof is more challenging. If you get stuck, see [123, Thm. 7.4].

1.1.10. Prove thatI = 〈x2−1,xy−1,yz−1〉 is the lattice ideal for the lattice

L = {(a,b,c) ∈ Z3 | a+b+c≡ 0 mod 2} ⊆ Z3.

Also compute primary decomposition ofI to show thatI is not prime.

1.1.11.Let TN be a torus with character latticeM. Then every pointt ∈ TN gives an evalua-
tion mapφt : M→C∗ defined byφt(m) = χm(t). Prove thatφt is a group homomorphism
and that the mapt 7→ φt induces a group isomorphism

TN ≃ HomZ(M,C∗).

1.1.12. Consider toriT1 andT2 with character latticesM1 andM2. By Example 1.1.13, the
coordinate rings ofT1 andT2 areC[M1] andC[M2]. Let Φ : T1→ T2 be a morphism that is
a group homomorphism. ThenΦ induces maps

Φ̂ : M2 −→M1 and Φ∗ : C[M2]−→ C[M1]

by composition. Prove thatΦ∗ is the map of semigroup algebras induced by the mapΦ̂ of
affine semigroups.

1.1.13. A commutative semigroupS is cancellativeif u+v = u+w impliesv = w for all
u,v,w∈ S andtorsion-freeif nu= 0 impliesu = 0 for all n∈N\{0} andu∈ S. Prove that
S is affine if and only if it is finitely generated, cancellative, and torsion-free.

1.1.14. The requirement that an affine semigroup be finitely generated is important since
lattices contain semigroups that are not finitely generated. For example, letτ > 0 be irra-
tional and consider the semigroup

S = {(a,b) ∈N2 | b≥ τa} ⊆ Z2.

Prove thatS is not finitely generated. (Whenτ satisfies a quadratic equation with integer
coefficients, the generators ofS are related to continued fractions. For example, when
τ = (1+

√
5)/2 is the golden ratio, the minimal generators ofS are(1,0) and(F2n−1,F2n)

for n = 1,2, . . . , whereFn is thenth Fibonacci number. See [162] for further details.)
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1.1.15. Suppose thatφ : M → M is a group isomorphism. Fix a finite setA ⊆ M and
let B = φ(A ). Prove that the toric varietiesYA andYB are equivariantly isomorphic
(meaning that the isomorphism respects the torus action).

§1.2. Cones and Affine Toric Varieties

We begin with a brief discussion of rational polyhedral cones and then explain how
they relate to affine toric varieties.

Convex Polyhedral Cones. Fix a pair of dual vector spacesMR andNR. Our dis-
cussion of cones will omit most proofs—we refer the reader to[58] for more details
and [134, App. A.1] for careful statements. See also [24, 74, 149].

Definition 1.2.1. A convex polyhedral conein NR is a set of the form

σ = Cone(S) =
{∑

u∈S

λuu | λu≥ 0
}
⊆ NR,

whereS⊆ NR is finite. We say thatσ is generatedby S. Also set Cone(∅) = {0}.

A convex polyhedral coneσ is in fact convex, meaning thatx,y ∈ σ implies
λx+ (1− λ)y ∈ σ for all 0≤ λ ≤ 1, and is acone, meaning thatx ∈ σ implies
λx∈σ for all λ≥ 0. Since we will only consider convex cones, the cones satisfying
Definition 1.2.1 will be called simply “polyhedral cones.”

Examples of polyhedral cones include the first quadrant inR2 or first octant in
R3. For another example, the cone Cone(e1,e2,e1 + e3,e2 + e3) ⊆ R3 is pictured
in Figure 2. It is also possible to have cones that contain entire lines. For example,

z

y

x

Figure 2. Cone inR3 generated bye1,e2,e1 +e3,e2 +e3
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Cone(e1,−e1)⊆R2 is thex-axis, while Cone(e1,−e1,e2) is the closed upper half-
plane{(x,y) ∈ R2 | y≥ 0}. As we will see below, these last two examples are not
strongly convex.

We can also create cones usingpolytopes, which are defined as follows.

Definition 1.2.2. A polytopein NR is a set of the form

P = Conv(S) =
{∑

u∈S

λuu | λu≥ 0,
∑

u∈S

λu = 1
}
⊆ NR,

whereS⊆ NR is finite. We say thatP is theconvex hullof S.

Polytopes include all polygons inR2 and bounded polyhedra inR3. As we will
see in later chapters, polytopes play a prominent role in thetheory of toric varieties.
Here, however, we simply observe that a polytopeP⊆ NR gives a polyhedral cone
in NR×R by taking the cone

σ = {λ · (u,1) ∈ NR×R | u∈ P, λ≥ 0}.
If P = Conv(S), then we can also describe this asσ = Cone(S×{1}). Figure 3
shows what this looks whenP is a pentagon in the plane.

P

Figure 3. Cone over a pentagonP⊆ R2

Thedimensiondimσ of a polyhedral coneσ is the dimension of the smallest
subspaceW = Span(σ) of NR containingσ. We call Span(σ) thespanof σ.

Dual Cones and Faces. As usual, the pairing betweenMR andNR is denoted〈 , 〉.
Definition 1.2.3. Given a polyhedral coneσ ⊆ NR, its dual coneis defined by

σ∨ = {m∈MR | 〈m,u〉 ≥ 0 for all u∈ σ}.

Duality has the following important properties.

Proposition 1.2.4.Letσ⊆NR be a polyhedral cone. Thenσ∨ is a polyhedral cone
in MR and(σ∨)∨ = σ. �
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Givenm 6= 0 in MR, we get the hyperplane

Hm = {u∈ NR | 〈m,u〉= 0} ⊆ NR

and the closed half-space

H+
m = {u∈ NR | 〈m,u〉 ≥ 0} ⊆ NR.

Then Hm is a supporting hyperplaneof a polyhedral coneσ ⊆ NR if σ ⊆ H+
m ,

andH+
m is a supporting half-space. Note thatHm is a supporting hyperplane of

σ if and only if m∈ σ∨ \ {0}. Furthermore, ifm1, . . . ,ms generateσ∨, then it is
straightforward to check that

(1.2.1) σ = H+
m1
∩ ·· ·∩H+

ms
.

Thus every polyhedral cone is an intersection of finitely many closed half-spaces.

We can use supporting hyperplanes and half-spaces to definefacesof a cone.

Definition 1.2.5. A face of a coneof the polyhedral coneσ is τ = Hm∩σ for some
m∈ σ∨, written τ � σ. Usingm= 0 shows thatσ is a face of itself, i.e.,σ � σ.
Facesτ 6= σ are calledproper faces, writtenτ ≺ σ.

The faces of a polyhedral cone have the following obvious properties.

Lemma 1.2.6. Letσ = Cone(S) be a polyhedral cone. Then:

(a) Every face ofσ is a polyhedral cone.

(b) An intersection of two faces ofσ is again a face ofσ.

(c) A face of a face ofσ is again a face ofσ. �

You will prove the following useful property of faces in Exercise 1.2.1.

Lemma 1.2.7. Let τ be a face of a polyhedral coneσ. If v,w ∈ σ and v+ w∈ τ ,
then v,w∈ τ . �

A facetof σ is a faceτ of codimension 1, i.e., dimτ = dimσ−1. Anedgeof σ
is a face of dimension 1. In Figure 4 on the next page we illustrate a 3-dimensional
cone with shaded facets and a supporting hyperplane (a planein this case) that cuts
out the vertical edge of the cone.

Here are some properties of facets.

Proposition 1.2.8. Letσ ⊆ NR ≃ Rn be a polyhedral cone. Then:

(a) If σ = H+
m1
∩ ·· ·∩H+

ms
for mi ∈ σ∨, 1≤ i ≤ s, thenσ∨ = Cone(m1, . . . ,ms).

(b) If dimσ = n, then in(a) we can assume that the facets ofσ are τi = Hmi ∩σ.

(c) Every proper faceτ ≺ σ is the intersection of the facets ofσ containingτ . �

Note how part (b) of the proposition refines (1.2.1) when dimσ = dimNR.
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σ

supporting
hyperplane

Figure 4. A coneσ ⊆ R3 with shaded facets and a hyperplane supporting an edge

When working inRn, dot product allows us to identify the dual withRn. From
this point of view, the vectorsm1, . . . ,ms in part (a) of the proposition arefacet
normals, i.e., perpendicular to the facets. This makes it easy to compute examples.

Example 1.2.9.It easy to see that the facet normals to the coneσ ⊆R3 in Figure 2
arem1 = e1,m2 = e2,m3 = e3,m4 = e1 +e2−e3. Hence

σ∨ = Cone(e1,e2,e3,e1 +e2−e3)⊆ R3.

This is the cone of Figure 1 at the end of §1.1 whose lattice points describe the
semigroup of the affine toric varietyV(xy−zw) (see Example 1.1.18). As we will
see, this is part of how cones describe normal affine toric varieties.

Now considerσ∨, which is the cone in Figure 1. The reader can check that the
facet normals of this cone aree1,e2,e1 + e3,e2 + e3. Using duality and part (b) of
Proposition 1.2.8, we obtain

σ = (σ∨)∨ = Cone(e1,e2,e1 +e3,e2 +e3).

Hence we recover our original description ofσ. ♦

In this example, facets of the cone correspond to edges of itsdual. More gen-
erally, given a faceτ � σ ⊆ NR, we define

τ⊥ = {m∈MR | 〈m,u〉 = 0 for all u∈ τ}
τ∗ = {m∈ σ∨ | 〈m,u〉 = 0 for all u∈ τ}

= σ∨∩ τ⊥.
We callτ∗ thedual faceof τ because of the following proposition.

Proposition 1.2.10. If τ is a face of a polyhedral coneσ andτ∗ = σ∨∩ τ⊥, then:

(a) τ∗ is a face ofσ∨.
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(b) The mapτ 7→ τ∗ is a bijective inclusion-reversing correspondence between the
faces ofσ and the faces ofσ∨.

(c) dimτ +dimτ∗ = n. �

Here is an example of Proposition 1.2.10 when dimσ < dimNR.

Example 1.2.11.Let σ = Cone(e1,e2) ⊆ R3. Figure 5 showsσ andσ∨. You

σ

x

y

z

σ

x

y

z

Figure 5. A 2-dimensional coneσ ⊆ R3 and its dualσ∨
⊆ R3

should check that the maximal face ofσ, namelyσ itself, gives the minimal face
σ∗ of σ∨, namely thez-axis. Note also that

dimσ+dimσ∗ = 3

even thoughσ has dimension 2. ♦

Relative Interiors. As already noted, thespanof a coneσ ⊆ NR is the smallest
subspace ofNR containingσ. Then therelative interiorof σ, denoted Relint(σ), is
the interior ofσ in its span. Exercise 1.2.2 will characterize Relint(σ) as follows:

u∈Relint(σ) ⇐⇒ 〈m,u〉> 0 for all m∈ σ∨ \σ⊥.
When the span equalsNR, the relative interior is just the interior, denoted Int(σ).

For an example of how relative interiors arise naturally, suppose thatτ � σ.
This gives the dual faceτ∗ = σ∨ ∩ τ⊥ of σ∨. Furthermore, ifm∈ σ∨, then one
easily sees that

m∈ τ∗ ⇐⇒ τ ⊆ Hm∩σ.
In Exercise 1.2.2, you will show that ifm∈ σ∨, then

m∈Relint(τ∗) ⇐⇒ τ = Hm∩σ.
Thus the relative interior Relint(τ∗) tells us exactly which supporting hyperplanes
of σ cut out the faceτ .
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Strong Convexity. Of the cones shown in Figures 1–5, all butσ∨ in Figure 5 have
the nice property that the origin is a face. Such cones are called strongly convex.
This condition can be stated several ways.

Proposition 1.2.12.Letσ ⊆ NR ≃ Rn be a polyhedral cone. Then:

σ is strongly convex⇐⇒ {0} is a face ofσ

⇐⇒ σ contains no positive-dimensional subspace of NR

⇐⇒ σ∩ (−σ) = {0}
⇐⇒ dimσ∨ = n. �

You will prove Proposition 1.2.12 in Exercise 1.2.3. One corollary is that if a
polyhedral coneσ is strongly convex of maximal dimension, then so isσ∨. The
cones pictured in Figures 1–4 satisfy this condition.

In general, a polyhedral coneσ always has a minimal face that is the largest
subspaceW contained inσ. Furthermore:

• W = σ∩ (−σ).

• W = Hm∩σ wheneverm∈ Relint(σ∨).

• σ = σ/W ⊆NR/W is a strongly convex polyhedral cone.

See Exercise 1.2.4.

Separation. When two cones intersect in a face of each, we can separate thecones
with the following result, often called theSeparation Lemma.

Lemma 1.2.13(Separation Lemma). Let σ1,σ2 be polyhedral cones in NR that
meet along a common faceτ = σ1∩σ2. Then

τ = Hm∩σ1 = Hm∩σ2

for any m∈ Relint(σ∨1 ∩ (−σ2)
∨).

Proof. GivenA,B⊆ NR, we setA−B = {a−b | a∈ A, b∈ B}. A standard result
from cone theory tells us that

σ∨1 ∩ (−σ2)
∨ = (σ1−σ2)

∨.

Now fix m∈ Relint(σ∨1 ∩ (−σ2)
∨). The above equation and Exercise 1.2.4 imply

thatHm cuts out the minimal face ofσ1−σ2, i.e.,

Hm∩ (σ1−σ2) = (σ1−σ2)∩ (σ2−σ1).

However, we also have

(σ1−σ2)∩ (σ2−σ1) = τ − τ.
One inclusion is obvious sinceτ = σ1∩ σ2. For the other inclusion, writeu ∈
(σ1−σ2)∩ (σ2−σ1) as

u = a1−a2 = b2−b1, a1,b1 ∈ σ1, a2,b2 ∈ σ2.
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Thena1 +b1 = a2+b2 implies that this element lies inτ = σ1∩σ2. Sincea1,b1 ∈
σ1, we havea1,b1 ∈ τ by Lemma 1.2.7, anda2,b2 ∈ τ follows similarly. Hence
u = a1−a2 ∈ τ − τ , as desired.

We conclude thatHm∩ (σ1−σ2) = τ − τ . Intersecting withσ1, we obtain

Hm∩σ1 = (τ − τ)∩σ1 = τ,

where the last equality again uses Lemma 1.2.7 (Exercise 1.2.5). If instead we
intersect with−σ2, we obtain

Hm∩ (−σ2) = (τ − τ)∩ (−σ2) =−τ,
andHm∩σ2 = τ follows. �

In the situation of Lemma 1.2.13 we callHm aseparating hyperplane.

Rational Polyhedral Cones. Let N andM be dual lattices with associated vector
spacesNR = N⊗Z R andMR = M⊗Z R. ForRn we usually use the latticeZn.

Definition 1.2.14. A polyhedral coneσ ⊆ NR is rational if σ = Cone(S) for some
finite setS⊆ N.

The cones appearing in Figures 1, 2 and 5 are rational. We notewithout proof
that faces and duals of rational polyhedral cones are rational. Furthermore, ifσ =
Cone(S) for S⊆ N finite andNQ = N⊗Z Q, then

(1.2.2) σ∩NQ =
{∑

u∈Sλuu | λu≥ 0 in Q
}
.

One new feature is that a strongly convex rational polyedralconeσ has a
canonical generating set, constructed as follows. Letρ be an edge ofσ. Sinceσ is
strongly convex,ρ is a ray, i.e., a half-line, and sinceρ is rational, the semigroup
ρ∩N is generated by a unique elementuρ ∈ ρ∩N. We calluρ theray generatorof
ρ. Figure 6 shows the ray generator of a rational rayρ in the plane. The dots are
the latticeN = Z2 and the white ones areρ∩N.

← ρ

↑ ray generator uρ

Figure 6. A rational rayρ ⊆ R2 and its unique ray generatoruρ

Lemma 1.2.15.A strongly convex rational polyhedral cone is generated by the ray
generators of its edges. �
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It is customary to call the ray generators of the edges theminimal generators
of a strongly convex rational polyhedral cone. Figures 1 and2 show 3-dimensional
strongly convex rational polyhedral cones and their ray generators.

In a similar way, a rational polyhedral coneσ of maximal dimension has unique
facet normals, which are the ray generators of the dualσ∨, which is strongly con-
vex by Proposition 1.2.12.

Here are some especially important strongly convex cones.

Definition 1.2.16. Let σ ⊆ NR be a strongly convex rational polyhedral cone.

(a) σ is smoothor regular if its minimal generators form part of aZ-basis ofN,

(b) σ is simplicial if its minimal generators are linearly independent overR.

The coneσ pictured in Figure 5 is smooth, while those in Figures 1 and 2 are
not even simplicial. Note also that the dual of a smooth (resp. simplicial) cone
is again smooth (resp. simplicial). Later in the section we will give examples of
simplicial cones that are not smooth.

Semigroup Algebras and Affine Toric Varieties. Given a rational polyhedral cone
σ ⊆ NR, the lattice points

Sσ = σ∨∩M ⊆M

form a semigroup. A key fact is that this semigroup is finitelygenerated.

Proposition 1.2.17(Gordan’s Lemma). Sσ = σ∨ ∩M is finitely generated and
hence is an affine semigroup.

Proof. Sinceσ∨ is rational polyhedral,σ∨ = Cone(T) for a finite setT ⊆M. Then
K = {∑m∈T δmm | 0≤ δm< 1} is a bounded region ofMR ≃ Rn, so thatK ∩M is
finite sinceM ≃ Zn. Note thatT ∪ (K∩M)⊆ Sσ.

We claimT∪ (K∩M) generatesSσ as a semigroup. To prove this, takew∈ Sσ

and writew =
∑

m∈T λmm whereλm≥ 0. Thenλm = ⌊λm⌋+ δm with ⌊λm⌋ ∈ N
and 0≤ δm< 1, so that

w =
∑

m∈T

⌊λm⌋m+
∑

m∈T

δmm.

The second sum is inK ∩M (rememberw∈M). It follows thatw is a nonnegative
integer combination of elements ofT ∪ (K∩M). �

Since affine semigroups give affine toric varieties, we get the following.

Theorem 1.2.18.Letσ ⊆ NR ≃ Rn be a rational polyhedral cone with semigroup
Sσ = σ∨∩M. Then

Uσ = Spec(C[Sσ]) = Spec(C[σ∨∩M])

is an affine toric variety. Furthermore,

dimUσ = n ⇐⇒ the torus of Uσ is TN = N⊗Z C∗ ⇐⇒ σ is strongly convex.
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Proof. By Gordan’s Lemma and Proposition 1.1.14,Uσ is an affine toric variety
whose torus has character latticeZSσ ⊆M. To studyZSσ, note that

ZSσ = Sσ−Sσ = {m1−m2 |m1,m2 ∈ Sσ}.
Now suppose thatkm∈ ZSσ for somek> 1 andm∈M. Thenkm= m1−m2 for
m1,m2 ∈ Sσ = σ∨∩M. Sincem1 andm2 lie in the convex setσ∨, we have

m+m2 = 1
km1+ k−1

k m2 ∈ σ∨.
It follows thatm= (m+m2)−m2 ∈ ZSσ, so thatM/ZSσ is torsion-free. Hence

(1.2.3) the torus ofUσ is TN ⇐⇒ ZSσ = M ⇐⇒ rankZSσ = n.

Sinceσ is strongly convex if and only if dimσ∨= n (Proposition 1.2.12), it remains
to show that

dimUσ = n ⇐⇒ rankZSσ = n ⇐⇒ dimσ∨ = n.

The first equivalence follows since the dimension of an affinetoric variety is the
dimension of its torus, which is the rank of its character lattice. We leave the proof
of the second equivalence to the reader (Exercise 1.2.6). �

Since we want our affine toric varieties to contain the torusTN, we consider
only those affine toric varietiesUσ for whichσ ⊆ NR is strongly convex.

Our first example of Theorem 1.2.18 is an affine toric variety we know well.

Example 1.2.19.Let σ = Cone(e1,e2,e1 + e3,e2 + e3) ⊆ NR = R3 with N = Z3.
This is the cone pictured in Figure 2. By Example 1.2.9,σ∨ is the cone pictured
in Figure 1, and by Example 1.1.18, the lattice points in thiscone are generated
by columns of matrix (1.1.6). It follows from Example 1.1.18thatUσ is the affine
toric varietyV(xy−zw). ♦

Here are two further examples of Theorem 1.2.18.

Example 1.2.20.Fix 0≤ r ≤ n and setσ = Cone(e1, . . . ,er)⊆ Rn. Then

σ∨ = Cone(e1, . . . ,er ,±er+1, . . . ,±en)

and the corresponding affine toric variety is

Uσ = Spec(C[x1, . . . ,xr ,x
±1
r+1, . . . ,x

±1
n ]) = Cr × (C∗)n−r

(Exercise 1.2.7). This implies the general fact that ifσ⊆NR≃Rn is a smooth cone
of dimensionr, thenUσ ≃ Cr × (C∗)n−r . ♦

Figure 5 illustrates the cones in Example 1.2.20 whenr = 2 andn = 3.

Example 1.2.21.Fix a positive integerd and letσ = Cone(de1− e2,e2) ⊆ R2.
This has dual coneσ∨ = Cone(e1,e1 + de2). Figure 7 on the next page showsσ∨

whend = 4. The affine semigroupSσ = σ∨∩Z2 is generated by the lattice points
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Figure 7. The coneσ∨ whend = 4

(1, i) for 0≤ i ≤ d. Whend = 4, these are the white dots in Figure 7. (You will
prove these assertions in Exercise 1.2.8.)

By §1.1, the affine toric varietyUσ is the Zariski closure of the image of the
mapΦ : (C∗)2→ Cd+1 defined by

Φ(s, t) = (s,st,st2, . . . ,std).

This map has the same image as the map(s, t) 7→ (sd,sd−1t, . . . ,std−1, td) used in
Example 1.1.6. ThusUσ is isomorphic to the rational normal conêCd ⊆ Cd+1

whose ideal is generated by the 2×2 minors of the matrix
(

x0 x1 · · · xd−2 xd−1

x1 x2 · · · xd−1 xd

)
.

Note that the conesσ andσ∨ are simplicial but not smooth. ♦

We will return to this example often. One thing evident in Example 1.1.6 is the
difference betweencone generatorsandsemigroup generators: the coneσ∨ has
two generators but the semigroupSσ = σ∨∩Z2 hasd+1.

When σ ⊆ NR has maximal dimension, the semigroupSσ = σ∨ ∩M has a
unique minimal generating set constructed as follows. Define an elementm 6= 0 of
Sσ to beirreducible if m= m′+m′′ for m′,m′′ ∈ Sσ impliesm′ = 0 orm′′ = 0.

Proposition 1.2.22.Letσ ⊆ NR be strongly convex of maximal dimension and let
Sσ = σ∨∩M. Then

H = {m∈ Sσ |m is irreducible}
has the following properties:

(a) H is finite and generatesSσ.

(b) H contains the ray generators of the edges ofσ∨.

(c) H is the minimal generating set ofSσ with respect to inclusion.
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Proof. Proposition 1.2.12 implies thatσ∨ is strongly convex, so we can find an
elementu∈ σ∩N\{0} such that〈m,u〉 ∈ N for all m∈ Sσ and〈m,u〉 = 0 if and
only if m= 0.

Now suppose thatm∈ Sσ is not irreducible. Thenm= m′+m′′ wherem′ and
m′′ are nonzero elements ofSσ. It follows that

〈m,u〉= 〈m′,u〉+ 〈m′′,u〉
with 〈m′,u〉,〈m′′,u〉 ∈N\{0}, so that

〈m′,u〉< 〈m,u〉 and 〈m′′,u〉< 〈m,u〉.
Using induction on〈m,u〉, we conclude that every element ofSσ is a sum of irre-
ducible elements, so thatH generatesSσ. Furthermore, using a finite generating
set ofSσ, one easily sees thatH is finite. This proves part (a). The remaining
parts of the proof are covered in Exercise 1.2.9. �

The setH ⊆ Sσ is called theHilbert basisof Sσ and its elements are the
minimal generatorsof Sσ. More generally, Proposition 1.2.22 holds for any affine
semigroupS satisfyingS∩ (−S) = {0}. Algorithms for computing Hilbert bases
are discussed in [123, 7.3] and [166, Ch. 13], and Hilbert bases can be computed
using the computer program Normaliz [27].

Exercises for §1.2.

1.2.1. Prove Lemma 1.2.7. Hint: Writeτ = Hm∩σ for m∈ σ∨.

1.2.2. Here are some properties of relative interiors. Letσ ⊆ NR be a cone.

(a) Show that ifu∈ σ∨, thenu∈ Relint(σ) if and only if 〈m,u〉> 0 for all m∈ σ∨ \σ⊥.

(b) Letτ � σ and fixm∈ σ∨. Prove that

m∈ τ∗ ⇐⇒ τ ⊆ Hm∩σ
m∈ Relint(τ∗) ⇐⇒ τ = Hm∩σ.

1.2.3. Prove Proposition 1.2.12.

1.2.4. Let σ ⊆ NR be a polyhedral cone.

(a) Use Proposition 1.2.10 to show thatσ has a unique minimal face with respect to�.
LetW denote this minimal face.

(b) Prove thatW = (σ∨)⊥.

(c) Prove thatW is the largest subspace contained inσ.

(d) Prove thatW = σ∩ (−σ).

(e) Fix m∈ σ∨. Prove thatm∈ Relint(σ∨) if and only if W = Hm∩σ.

(f) Prove thatσ = σ/W ⊆ NR/W is a strongly convex polyhedral cone.

1.2.5. Let τ � σ ⊆ NR and letτ − τ be defined as in the proof of Lemma 1.2.13. Prove
thatτ = (τ − τ)∩ τ . Also show thatτ − τ = Span(τ), i.e.,τ − τ is the smallest subspace
of NR containingτ .
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1.2.6. Fix a latticeM and let Span(S) denote the span overR of a subsetS⊆MR.

(a) LetS⊆M be finite. Prove that rankZS= dimSpan(S).

(b) LetS⊆MR be finite. Prove that dimCone(S) = dimSpan(S).

(c) Use parts (a) and (b) to complete the proof of Theorem 1.2.18.

1.2.7. Prove the assertions made in Example 1.2.20.

1.2.8. Prove the assertions made in Example 1.2.21. Hint: First show that when a cone is
smooth, the ray generators of the cone also generate the corresponding semigroup. Then
write the coneσ∨ of Example 1.2.21 as a union of such cones.

1.2.9. Complete the proof of Proposition 1.2.22. Hint for part (b):Show that the ray
generators of the edges ofσ∨ are irreducible inSσ. Given an edgeρ of σ∨, it will help to
pick u∈ σ∩N\ {0} such thatρ= Hu∩σ∨.

1.2.10. Let σ ⊆ NR be a cone generated by a set of linearly independent vectors in NR.
Show thatσ is strongly convex and simplicial.

1.2.11. Explain the picture illustrated in Figure 8 in terms of Proposition 1.2.8.

→
σ

↑

↑

σ
↑

Figure 8. A coneσ in the plane and its dual

1.2.12.Let P⊆NR be a polytope lying in an affine hyperplane (= translate of a hyperplane)
not containing the origin. Generalize Figure 3 by showing thatP gives a convex polyhedral
cone inNR. Draw a picture.

1.2.13. Consider the coneσ = Cone(3e1−2e2,e1)⊆ R2.

(a) Describeσ∨ and find generators ofσ∨∩Z2. Draw a picture similar to Figure 7.

(b) Compute the toric ideal of the affine toric varietyUσ and explain how this exercise
relates to Exercise 1.1.6.

1.2.14. Consider the simplicial coneσ = Cone(e1,e2,e1 +e2+2e3)⊆ R3.

(a) Describeσ∨ and find generators ofσ∨∩Z3.

(b) Compute the toric ideal of the affine toric varietyUσ.

1.2.15. Let σ be a strongly convex polyhedral cone of maximal dimension. Here is an
example taken from [58, p. 132] to show thatσ andσ∨ need not have the same number of
edges. Letσ ⊆ R4 be the cone generated by 2ei +ej for all 1≤ i, j ≤ 4, i 6= j.

(a) Show thatσ has 12 edges.

(b) Show thatσ∨ is generated byei and−ei +2
∑

j 6=i ej , 1≤ i ≤ 4 and has 8 edges.
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§1.3. Properties of Affine Toric Varieties

The final task of this chapter is to explore the properties of affine toric varieties.
We will also study maps between affine toric varieties.

Points of Affine Toric Varieties. We first consider various ways to describe the
points of an affine toric variety.

Proposition 1.3.1. Let V = Spec(C[S]) be the affine toric variety of the affine
semigroupS. Then there are bijective correspondences between the following:

(a) Points p∈V.

(b) Maximal idealsm⊆ C[S].

(c) Semigroup homomorphismsS→ C, whereC is considered as a semigroup
under multiplication.

Proof. The correspondence between (a) and (b) is standard (see [35, Thm. 5 of Ch.
5, §4]). The correspondence between (a) and (c) is special tothe toric case.

Given a pointp ∈ V, defineS→ C by sendingm∈ S to χm(p) ∈ C. This
makes sense sinceχm∈C[S] = C[V]. One easily checks thatS→C is a semigroup
homomorphism.

Going the other way, letγ : S→ C be a semigroup homomorphism. Since
{χm}m∈S is a basis ofC[S], γ induces a surjective linear mapC[S]→ C which is
a C-algebra homomorphism. The kernel of the mapC[S]→ C is a maximal ideal
and thus gives a pointp∈V by the correspondence between (a) and (b).

We constructp concretely as follows. LetA = {m1, . . . ,ms} generateS, so
thatV = YA ⊆ Cs. Let p = (γ(m1), . . . ,γ(ms)) ∈ Cs. Let us prove thatp∈V. By
Proposition 1.1.9, it suffices to show thatxα− xβ vanishes atp for all exponent
vectorsα= (a1, . . . ,as) andβ = (b1, . . . ,bs) satisfying

s∑

i=1

aimi =

s∑

i=1

bimi .

This is easy, sinceγ being a semigroup homomorphism implies that
s∏

i=1

γ(mi)
ai = γ

( s∑

i=1

aimi

)
= γ
( s∑

i=1

bimi

)
=

s∏

i=1

γ(mi)
bi .

It is straightforward to show that this point ofV agrees with the one constructed in
the previous paragraph (Exercise 1.3.1). �

As an application of this result, we describe the torus action onV. In terms
of the embeddingV = YA ⊆ Cs, the proof of Proposition 1.1.8 shows that the
action ofTN onYA is induced by the usual action of(C∗)s on Cs. But how do we
see the action instrinsically, without embedding into affine space? This is where
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semigroup homomorphisms prove their value. Fixt ∈ TN and p ∈ V, and let p
correspond to the semigroup homorphismm 7→ γ(m). In Exercise 1.3.1 you will
show thatt · p is given by the semigroup homomorphismm 7→ χm(t)γ(m). This
description will prove useful in Chapter 3 when we study torus orbits.

From the point of view of group actions, the action ofTN on V is given by a
mapTN×V→V. Since both sides are affine varieties, this should be a morphism,
meaning that it should come from aC-algebra homomorphism

C[S] = C[V]−→ C[TN×V] = C[TN]⊗C C[V] = C[M]⊗C C[S].

This homomorphism is given byχm 7→ χm⊗χm for m∈ S (Exercise 1.3.2).

We can also characterize those affine toric varieties for which the torus action
has a fixed point. We say that an affine semigroupS is pointedif S∩ (−S) = {0},
i.e., if 0 is the only element ofS with an inverse. This is the semigroup analog of
being strongly convex.

Proposition 1.3.2. Let V be an affine toric variety. Then:

(a) If we write V= Spec(C[S]), then the torus action has a fixed point if and only
if S is pointed, in which case the unique fixed point is given by thesemigroup
homomorphismS→ C defined by

(1.3.1) m 7−→
{

1 m= 0

0 m 6= 0.

(b) If we write V = YA ⊆ Cs for A ⊆ S \ {0}, then the torus action has a fixed
point if and only if0∈YA , in which case the unique fixed point is0.

Proof. For part (a), letp ∈ V be represented by the semigroup homomorphism
γ : S→ C. Thenp is fixed by the torus action if and only ifχm(t)γ(m) = γ(m)
for all m∈ S andt ∈ TN. This equation is satisfied form= 0 sinceγ(0) = 1, and if
m 6= 0, then pickingt with χm(t) 6= 0 shows thatγ(m) = 0. Thus, if a fixed point
exists, then it is unique and is given by (1.3.1). Then we are done since (1.3.1) is a
semigroup homomorphism if and only ifS is pointed.

For part (b), first assume thatV = YA ⊆ Cs has a fixed point, in which case
S = NA is pointed and the unique pointp is given by (1.3.1). ThenA ⊆ S\{0}
and the proof of Proposition 1.3.1 imply thatp is the origin inCs, so that 0∈YA .
The converse follows since 0∈ Cs is fixed by(C∗)s hence byTN ⊆ (C∗)s. �

Here is a useful corollary of Proposition 1.3.2 (Exercise 1.3.3).

Corollary 1.3.3. Let Uσ be the affine toric variety of a strongly convex polyhedral
coneσ ⊆ NR. Then the torus action on Uσ has a fixed point if and only ifdimσ =
dimNR, in which case the fixed point is unique and is given by the maximal ideal

〈χm |m∈ Sσ \{0}〉 ⊆ C[Sσ],

where as usualSσ = σ∨∩M. �
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We will see in Chapter 3 that this corollary is part of the correspondence be-
tween torus orbits ofUσ and faces ofσ.

Normality and Saturation. We next study the question of when an affine toric
varietyV is normal. We need one definition before stating our normality criterion.

Definition 1.3.4. An affine semigroupS⊆M is saturatedif for all k∈N\{0} and
m∈M, km∈ S impliesm∈ S.

For example, ifσ ⊆ NR is a strongly convex rational polyhedral cone, then
Sσ = σ∨∩M is easily seen to be saturated (Exercise 1.3.4).

Theorem 1.3.5.Let V be an affine toric variety with torus TN. Then the following
are equivalent:

(a) V is normal.

(b) V = Spec(C[S]), whereS⊆M is a saturated affine semigroup.

(c) V = Spec(C[Sσ]) (=Uσ), whereSσ = σ∨∩M andσ⊆NR is a strongly convex
rational polyhedral cone.

Proof. By Theorem 1.1.17,V = Spec(C[S]) for an affine semigroupS contained in
a lattice, and by Proposition 1.1.14, the torus ofV has the character latticeM = ZS.
Also let n = dimV, so thatM ≃ Zn.

(a)⇒ (b): If V is normal, thenC[S] = C[V] is integrally closed in its field of
fractionsC(V). Suppose thatkm∈ S for somek ∈ N \{0} andm∈M. Thenχm

is a polynomial function onTN and hence a rational function onV sinceTN ⊆V is
Zariski open. We also haveχkm∈ C[S] sincekm∈ S. It follows thatχm is a root
of the monic polynomialXk−χkm with coefficients inC[S]. By the definition of
normal, we obtainχm∈ C[S], i.e.,m∈ S. ThusS is saturated.

(b)⇒ (c): LetA ⊆ S be a finite generating set ofS. ThenS lies in the rational
polyhedral cone Cone(A )⊆MR, and rankZA = n implies dimCone(A ) = n by
Exercise 1.2.6. It follows thatσ = Cone(A )∨ ⊆ NR is a strongly convex ratio-
nal polyhedral cone such thatS ⊆ σ∨ ∩M. In Exercise 1.3.4 you will prove that
equality holds whenS is saturated. HenceS = Sσ.

(c)⇒ (a): We need to show thatC[Sσ] = C[σ∨∩M] is normal whenσ ⊆NR is
a strongly convex rational polyhedral cone. Letρ1, . . . ,ρr be the rays ofσ. Sinceσ
is generated by its rays (Lemma 1.2.15), we have

σ∨ =

r⋂

i=1

ρ∨i .

Intersecting withM givesSσ =
⋂r

i=1Sρi , which easily implies

C[Sσ] =

r⋂

i=1

C[Sρi ].
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By Exercise 1.0.7,C[Sσ] is normal if eachC[Sρi ] is normal, so it suffices to prove
that C[Sρ] is normal whenρ is a rational ray inNR. Let uρ ∈ ρ∩N be the ray
generator ofρ. Sinceu is primitive, i.e, 1

kuρ /∈ N for all k > 1, we can find a
basise1, . . . ,en of N with uρ = e1 (Exercise 1.3.5). This allows us to assume that
ρ= Cone(e1), so that

C[Sρ] = C[x1,x
±1
2 , . . . ,x±1

n ]

by Example 1.2.20. ButC[x1, . . . ,xn] is normal (it is a UFD), so its localization

C[x1, . . . ,xn]x2···xn = C[x1,x
±1
2 , . . . ,x±1

n ]

is also normal by Exercise 1.0.7. This completes the proof. �

Example 1.3.6.We saw in Example 1.2.19 thatV = V(xy−zw) is the affine toric
varietyUσ of the coneσ = Cone(e1,e2,e1 +e3,e2 +e3) pictured in Figure 1. Then
Theorem 1.3.5 implies thatV is normal, as claimed in Example 1.1.5. ♦

Example 1.3.7. By Example 1.2.21, the rational normal coneĈd ⊆ Cd+1 is the
affine toric variety of a strongly convex rational polyhedral cone and hence is nor-
mal by Theorem 1.3.5.

It is instructive to view this example using the parametrization

ΦA (s, t) = (sd,sd−1t, . . . ,std−1, td)

from Example 1.1.6. Plotting the lattice points inA for d = 2 gives the white
squares in Figure 9 (a) below. These generate the semigroupS = NA , and the
proof of Theorem 1.3.5 gives the coneσ∨ = Cone(e1,e2), which is the first quad-
rant in the figure. At first glance, something seems wrong. Theaffine varietyĈ2

is normal, yet in Figure 9 (a) the semigroup generated by the white squares misses
some lattice points inσ∨. This semigroup does not look saturated. How can the
affine toric variety be normal?

(a)

σ

(b)

σ

Figure 9. Lattice points for the rational normal conebC2

The problem is that we are using the wrong lattice! Proposition 1.1.8 tells us
to use the latticeZA , which gives the white dots and squares in Figure 9 (b). This
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figure shows that the white squares generate the semigroup oflattice points inσ∨.
HenceS is saturated and everything is fine. ♦

This example points out the importance of working with the correct lattice.

The Normalization of an Affine Toric Variety. The normalization of an affine toric
variety is easy to describe. LetV = Spec(C[S]) for an affine semigroupS, so that
the torus ofV has character latticeM = ZS. Let Cone(S) denote the cone of any
finite generating set ofS and setσ = Cone(S)∨ ⊆ NR. In Exercise 1.3.6 you will
prove the following.

Proposition 1.3.8.The above coneσ is a strongly convex rational polyhedral cone
in NR and the inclusionC[S]⊆C[σ∨∩M] induces a morphism Uσ→V that is the
normalization map of V . �

The normalization of an affine toric variety of the formYA is constructed by
applying Proposition 1.3.8 to the affine semigroupNA and the latticeZA .

Example 1.3.9.Let A = {(4,0),(3,1),(1,3),(0,4)} ⊆ Z2. Then

ΦA (s, t) = (s4,s3t,st3, t4)

parametrizes the surfaceYA ⊆ C4 considered in Exercise 1.1.7. This is almost
the rational normal conêC4, except that we have omitteds2t2. Using (2,2) =
1
2

(
(4,0)+ (0,4)

)
, we see thatNA is not saturated, so thatYA is not normal.

Applying Proposition 1.3.8, one sees that the normalization of YA is Ĉ4. This
is an affine variety inC5, and the normalization map is induced by the obvious
projectionC5→ C4. ♦

Proposition 1.3.8 can be interpreted as saying thatσ∨∩M is thesaturationof
the semigroupS. Saturations can be computed using Normaliz [27].

In Chapter 3 we will see that the normalization mapUσ → V constructed in
Proposition 1.3.8 is onto but not necessarily one-to-one.

Smooth Affine Toric Varieties. Our next goal is to characterize when an affine toric
variety is smooth. Since smooth affine varieties are normal (Proposition 1.0.9),
we need only consider toric varietiesUσ coming from strongly convex rational
polyhedral conesσ ⊆ NR.

We first studyUσ whenσ has maximal dimension. Thenσ∨ is strongly convex,
so thatSσ = σ∨∩M has a Hilbert basisH . Furthermore, Corollary 1.3.3 tells us
that the torus action onUσ has a unique fixed point, denoted here bypσ ∈Uσ. The
point pσ and the Hilbert basisH are related as follows.

Lemma 1.3.10.Letσ ⊆NR be a strongly convex rational polyhedral cone of max-
imal dimension and let Tpσ(Uσ) be the Zariski tangent space to the affine toric
variety Uσ at the above point pσ. ThendimTpσ(Uσ) = |H |.
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Proof. By Corollary 1.3.3, the maximal ideal ofC[Sσ] corresponding topσ is m =
〈χm |m∈ Sσ \{0}〉. Since{χm}m∈Sσ

is a basis ofC[Sσ], we obtain

m =
⊕

m6=0

Cχm =
⊕

m irreducible

Cχm ⊕
⊕

m reducible

Cχm =
( ⊕

m∈H

Cχm
)
⊕m

2.

It follows that dimm/m2 = |H |. To relate this to the maximal idealmUσ,pσ in the
local ringOUσ ,pσ , we use the natural map

m/m2−→mUσ,pσ/m
2
Uσ ,pσ

which is always an isomorphism (Exercise 1.3.7). SinceTpσ(Uσ) is the dual space
of mUσ,pσ/m

2
Uσ ,pσ

, we see that dimTpσ(Uσ) = |H |. �

The Hilbert basisH of Sσ givesUσ = YH ⊆ Cs, wheres= |H |. This affine
embedding is especially nice. Givenany affine embeddingUσ →֒ Cℓ, we have
dimTpσ(Uσ) ≤ ℓ by Lemma 1.0.6. In other words, dimTpσ(Uσ) is a lower bound
on the dimension of an affine embedding. Then Lemma 1.3.10 shows that when
σ has maximal dimension, the Hilbert basis ofSσ gives the most efficient affine
embedding ofUσ.

Example 1.3.11. In Example 1.2.21, we saw that the rational normal coneĈd ⊆
Cd+1 is the toric variety coming fromσ = Cone(de1−e2,e2)⊆ R2 and thatSσ =
σ∨∩Z2 is generated by(1, i) for 0≤ i ≤ d. These generators form the Hilbert basis
of Sσ, so that the Zariski tangent space of 0∈ Ĉd has dimensiond+1. HenceCd+1

in the smallest affine space in which we can embedĈd. ♦

We now come to our main result about smoothness. Recall from §1.2 that a
rational polyhedral cone issmoothif it can be generated by a subset of a basis of
the lattice.

Theorem 1.3.12.Letσ ⊆NR be a strongly convex rational polyhedral cone. Then
Uσ is smooth if and only ifσ is smooth. Furthermore, all smooth affine toric
varieties are of this form.

Proof. If an affine toric variety is smooth, then it is normal by Proposition 1.0.9
and hence of the formUσ. Also, Example 1.2.20 implies that ifσ is smooth as
a cone, thenUσ is smooth as a variety. It remains to prove the converse. So fix
σ ⊆ NR such thatUσ is smooth. Letn = dimUσ = dimNR.

First suppose thatσ has dimensionn and letpσ ∈Uσ be the point studied in
Lemma 1.3.10. Sincepσ is smooth inUσ, the Zariski tangent spaceTpσ(Uσ) has
dimensionn by Definition 1.0.7. On the other hand, Lemma 1.3.10 implies that
dimTpσ(Uσ) is the cardinality of the Hilbert basisH of Sσ = σ∨∩M. Thus

n = |H | ≥ |{edgesρ⊆ σ∨}| ≥ n,

where the first inequality holds by Proposition 1.2.22 (eachedgeρ ⊆ σ∨ con-
tributes an element ofH ) and the second holds since dimσ∨ = n. It follows thatσ
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hasn edges andH consists of the ray generators of these edges. SinceM = ZSσ

by (1.2.3), then edge generators ofσ∨ generate the latticeM ≃ Zn and hence form
a basis ofM. Thusσ∨ is smooth, and thenσ = (σ∨)∨ is smooth since duality
preserves smoothness.

Next suppose dimσ = r < n. We reduce to the previous case as follows. Let
N1 ⊆ N be the smallest saturated sublattice containing the generators ofσ. Then
N/N1 is torsion-free, which by Exercise 1.3.5 implies the existence of a sublattice
N2⊆N with N = N1⊕N2. Note rankN1 = r and rankN2 = n− r.

The coneσ lies in both(N1)R andNR. This gives affine toric varietiesUσ,N1

andUσ,N of dimensionsr andn respectively. Furthermore,N = N1⊕N2 induces
M = M1⊕M2, so thatσ⊆ (N1)R andσ⊆NR give the affine semigroupsSσ,N1 ⊆M1

andSσ,N ⊆M respectively. It is straighforward to show that

Sσ,N = Sσ,N1⊕M2,

which in terms of semigroup algebras can be written

C[Sσ,N]≃ C[Sσ,N1]⊗C C[M2].

The right-hand side is the coordinate ring ofUσ,N1×TN2. Thus

(1.3.2) Uσ,N ≃Uσ,N1×TN2,

which in turn implies that

Uσ,N ≃Uσ,N1× (C∗)n−r ⊆Uσ,N1×Cn−r .

Since we are assuming thatUσ,N is smooth, it follows thatUσ,N1×Cn−r is smooth
at any point(p,q) in Uσ,N1× (C∗)n−r . In Exercise 1.3.8 you will show that

(1.3.3) Uσ,N1×Cn−r is smooth at(p,q) =⇒ Uσ,N1 is smooth atp.

Letting p = pσ ∈ Uσ,N1, the previous case implies thatσ is smooth inN1 since
dimσ = dim(N1)R. Henceσ is clearly smooth inN = N1⊕N2. �

Equivariant Maps between Affine Toric Varieties. We next study mapsV1→V2

between affine toric varieties that respect the torus actions onV1 andV2.

Definition 1.3.13. Let Vi = Spec(C[Si]) be the affine toric varieties coming from
the affine semigroupsSi, i = 1,2. Then a morphismφ : V1→V2 is toric if the cor-
responding map of coordinate ringsφ∗ : C[S2]→ C[S1] is induced by a semigroup
homomorphism̂φ : S2→ S1.

Here is our first result concerning toric morphisms.

Proposition 1.3.14.Let TNi be the torus of the affine toric variety Vi , i = 1,2.

(a) A morphismφ : V1→V2 is toric if and only if

φ(TN1)⊆ TN2

andφ|TN1
: TN1 → TN2 is a group homomorphism.
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(b) A toric morphismφ : V1→V2 is equivariant, meaning that

φ(t · p) = φ(t) ·φ(p)

for all t ∈ TN1 and p∈V1.

Proof. Let Vi = Spec(C[Si]), so that the character lattice ofTNi is Mi = ZSi. If φ
comes from a semigroup homomorphism̂φ : S2→ S1, thenφ̂ extends to a group
homomorphism̂φ : M2→M1 and hence gives a commutative diagram

C[S2]
φ∗−→ C[S1]

↓ ↓
C[M2] −→ C[M1].

Applying Spec, we see thatφ(TN1) ⊆ TN2, andφ|TN1
: TN1 → TN2 is a group homo-

morphism sinceTNi = HomZ(Mi ,C∗) by Exercise 1.1.11. Conversely, ifφ sat-
isfies these conditions, thenφ|TN1

: TN1 → TN2 induces a diagram as above where

the bottom map comes from a group homomorphismφ̂ : M2→ M1. This, com-
bined withφ∗(C[S2])⊆C[S1], implies thatφ̂ induces a semigroup homomorphism
φ̂ : S2→ S1. This proves part (a) of the proposition.

For part (b), suppose that we have a toric mapφ : V1→V2. The action ofTNi

onVi is given by a morphismΦi : TNi×Vi −→Vi , and equivariance means that we
have a commutative diagram

TN1×V1
Φ1 //

φ|TN1
×φ

��

V1

φ

��

TN2×V2
Φ2 // V2.

If we replaceVi with TNi in the diagram, then it certainly commutes sinceφ|TN1

is a group homomorphism. Then the whole diagram commutes since TN1×TN1 is
Zariski dense inTN1×V1. �

We can also characterize toric morphisms between affine toric varieties coming
from strongly convex rational polyhedral cones. First notethat a homomorphism
φ : N1→ N2 of lattices gives a group homomorphismφ : TN1 → TN2 of tori. This
follows fromTNi = Ni⊗Z C∗, and one sees thatφ is a morphism. Also, tensoringφ
with R givesφR : (N1)R→ (N2)R.

Here is the result, whose proof we leave to the reader (Exercise 1.3.9).

Proposition 1.3.15. Suppose we have strongly convex rational polyhedral cones
σi ⊆ (Ni)R and a homomorphismφ : N1→ N2. Thenφ : TN1 → TN2 extends to a
map of affine toric varietiesφ : Uσ1→Uσ2 if and only ifφR(σ1)⊆ σ2. �
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In the remainder of the chapter we explore some interesting classes of toric
morphisms.

Faces and Affine Open Subsets. Let σ ⊆ NR be a strongly convex rational poly-
hedral cone and letτ � σ be a face. Then we can findm∈ σ∨ ∩M such that
τ = Hm∩σ. This allows us to relate semigroup algebras ofσ andτ as follows.

Proposition 1.3.16. Let τ be a face ofσ and as above writeτ = Hm∩σ, where
m∈ σ∨∩M. Then the semigroup algebraC[Sτ ] = C[τ∨∩M] is the localization of
C[Sσ] = C[σ∨∩M] at χm∈ C[Sσ]. In other words,

C[Sτ ] = C[Sσ]χm.

Proof. The inclusionτ ⊆ σ impliesSσ ⊂ Sτ , and since〈m,u〉= 0 for all u∈ τ , we
have±m∈ τ∨. It follows that

Sσ+Z(−m)⊆ Sτ .

This inclusion is actually an equality, as we now prove. Fix afinite setS⊆ N with
σ = Cone(S) and pickm′ ∈ Sτ . Set

C = max
u∈S
{|〈m′,u〉|} ∈N.

It is straightforward to show thatm′+Cm∈ Sσ. This proves that

Sσ+Z(−m) = Sτ ,

from whichC[Sτ ] = C[Sσ]χm follows immediately. �

This interprets nicely in terms of toric morphisms. By Proposition 1.3.15, the
identity mapN→N and the inclusionτ ⊆ σ give the toric morphismUτ →Uσ that
corresponds to the inclusionC[Sσ]⊆C[Sτ ]. By Proposition 1.3.16,

(1.3.4) Uτ = Spec(C[Sτ ]) = Spec(C[Sσ]χm) = Spec(C[Sσ])χm = (Uσ)χm ⊆Uσ.

In other words,Uτ becomes an affine open subset ofUσ whenτ � σ. This will be
useful in Chapters 2 and 3 when we study the local structure ofmore general toric
varieties.

Sublattices of Finite Index and Rings of Invariants. Another interesting class of
toric morphisms arises when we keep the same cone but change the lattice. Here is
an example we have already seen.

Example 1.3.17. In Example 1.3.7 the dual ofσ = Cone(e1,e2) ⊆ R2 interacts
with the lattices shown in Figure 10 on the next page. To make this precise, let us
name the lattices involved: the lattices

N′ = Z2⊆ N = {(a/2,b/2) | a,b∈ Z, a+b≡ 0 mod 2}
haveσ ⊆ N′R ⊆ NR, and the dual lattices

M′ = Z2⊇M = {(a,b) | a,b∈ Z, a+b≡ 0 mod 2}
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(a)

σ

(b)

σ

Figure 10. Lattice points ofσ∨ relative to two lattices

haveσ∨ ⊆M′R ⊆MR. Note that duality reverses inclusions and thatM andN are
indeed dual under dot product. In Figure 10 (a), the black dots in the first quadrant
form the semigroupSσ,N′ = σ∨ ∩M′, and in Figure 10 (b), the white dots in the
first quadrant formSσ,N = σ∨∩M.

This gives the affine toric varietiesUσ,N′ andUσ,N. ClearlyUσ,N′ = C2 sinceσ
is smooth forN′, while Example 1.3.7 shows thatUσ,N is the rational normal cone
Ĉ2. The inclusionN′ ⊆ N gives a toric morphism

C2 = Uσ,N′ −→Uσ,N = Ĉ2.

Our next task is to find a nice description of this map. ♦

In general, suppose we have latticesN′ ⊆ N, whereN′ has finite index inN,
and letσ ⊆ N′R = NR be a strongly convex rational polyhedral cone. Then the
inclusionN′ ⊆ N gives the toric morphism

φ : Uσ,N′ −→Uσ,N.

The dual lattices satisfyM′ ⊇M, so thatφ corresponds to the inclusion

C[σ∨∩M′]⊇ C[σ∨∩M]

of semigroup algebras. The idea is to realizeC[σ∨∩M] as a ring of invariants of a
group action onC[σ∨∩M′].

Proposition 1.3.18.Let N′ have finite index in N with quotient G= N/N′ and let
σ ⊆ N′R = NR be a strongly convex rational polyhedral cone. Then:

(a) There are natural isomorphisms

G≃ HomZ(M′/M,C∗) = ker(TN′ → TN).

(b) G acts onC[σ∨∩M′] with ring of invariants

C[σ∨∩M′]G = C[σ∨∩M].
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(c) G acts on Uσ,N′ , and the morphismφ : Uσ,N′ →Uσ,N is constant on G-orbits
and induces a bijection

Uσ,N′/G≃Uσ,N.

Proof. SinceTN = HomZ(M,C∗) by Exercise 1.1.11, applying HomZ(−,C∗) to

0−→M −→M′ −→M′/M −→ 0

gives the sequence

1−→ HomZ(M′/M,C∗)−→ TN′ −→ TN −→ 1.

This is exact since HomZ(−,C∗) is left exact andC∗ is divisible. To bringG =
N/N′ into the picture, note that

N′ ⊆ N⊆ NQ and M ⊆M′ ⊆MQ.

Since the pairing betweenM andN induces a pairingMQ×NQ→Q, the map

M′/M×N/N′ −→ C∗ ([m′], [u]) 7−→ e2πi〈m′,u〉

is well-defined and inducesG≃ HomZ(M′/M,C∗) (Exercise 1.3.10).

The action ofTN′ on Uσ,N′ induces an action ofG on Uσ,N′ sinceG ⊆ TN′ .
Using Exercise 1.3.1, one sees that ifg∈G andγ ∈Uσ,N′ , theng·γ is defined by
the semigroup homomorphismm′ 7→ g([m′])γ(m′) for m′ ∈ σ∨∩M′. It follows that
the corresponding action on the coordinate ring is given by

g·χm′

= g([m′])−1χm′

, m′ ∈ σ∨∩M′.

(Exercise 5.0.1 explains why we need the inverse.) Sincem′ ∈M′ lies in M if and
only if g([m′]) = 1 for all g∈G, the ring of invariants

C[σ∨∩M′]G = { f ∈C[σ∨∩M′] | g· f = f for all g∈G},
is preciselyC[σ∨∩M], i.e.,

C[σ∨∩M′]G = C[σ∨∩M].

This proves part (b).

When a finite groupG acts algebraically onCn, [35, Thm. 10 of Ch. 7, §4]
shows that the ring of invariantsC[x1, . . . ,xn]

G⊆C[x1, . . . ,xn] gives a morphism of
affine varieties

Cn = Spec(C[x1, . . . ,xn])−→ Spec(C[x1, . . . ,xn]
G)

that is constant onG-orbits and induces a bijection

Cn/G≃ Spec(C[x1, . . . ,xn]
G).

The proof extends without difficulty to the case whenG acts algebraically onV =
Spec(R). Here,RG⊆ R gives a morphism of affine varieties

V = Spec(R)−→ Spec(RG)
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that is constant onG-orbits and induces a bijection

V/G≃ Spec(RG).

From here, part (c) follows immediately from part (b). �

We will give a careful treatment of these ideas in §5.0, wherewe will show
that the map Spec(R)→ Spec(RG) is ageometric quotient.

Here are some examples of Proposition 1.3.18.

Example 1.3.19. In the situation of Example 1.3.17, one computes thatG is the
groupµ2 = {±1} acting onUσ,N′ = Spec(C[s, t]) ≃ C2 by −1 · (s, t) = (−s,−t).
Thus the rational normal conêC2 is the quotient

C2/µ2 = Uσ,N′/µ2≃Uσ,N = Ĉ2.

We can see this explicitly as follows. The invariant ring is easily seen to be

C[s, t]µ2 = C[s2,st, t2] = C[Ĉ2]≃ C[x0,x1,x2]/〈x0x2−x2
1〉,

where the last isomorphism follows from Example 1.1.6. Fromthe point of view
of invariant theory, the generatorss2,st, t2 of the ring of invariants give a morphism

Φ : C2−→ C3, (s, t)→ (s2,st, t2)

that is constant onµ2-orbits. This map also separates orbits, so it induces

C2/µ2≃ Φ(C2) = Ĉ2,

where the last equality is by Example 1.1.6. But we can also think about this in
terms of semigroups, where the exponent vectors ofs2,st, t2 give the Hilbert basis
of the semigroupSσ,N pictured in Figure 10 (b). Everything fits together very
nicely. ♦

In Exercise 1.3.11 you will generalize Example 1.3.19 to thecase of the ratio-
nal normal conêCd for arbitraryd.

Example 1.3.20.Let σ ⊆ NR ≃ Rn be a simplicial cone of dimensionn with ray
generatorsu1, . . . ,un. ThenN′ =

∑n
i=1Zui is a sublattice of finite index inN.

Furthermore,σ is smooth relative toN′, so thatUσ,N′ = Cn. It follows thatG =
N/N′ acts onCn with quotient

Cn/G = Uσ,N′/G≃Uσ,N.

Hence the affine toric variety of a simplicial cone is the quotient of affine space by
a finite abelian group. In the literature, varieties likeUσ,N are calledorbifoldsand
are said to beQ-factorial. ♦
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Exercises for §1.3.

1.3.1. Consider the affine toric varietyYA = Spec(C[S]), whereA = {m1, . . . ,ms} and
S = NA . Letγ : S→C be a semigroup homomorphism. In the proof of Proposition 1.3.1
we showed thatp = (γ(m1), . . . ,γ(ms)) lies inYA .

(a) Prove that the maximal ideal{ f ∈ C[S] | f (p) = 0} is the kernel of theC-algebra
homomorphismC[S]→ C induced byγ.

(b) The torusTN of YA has character latticeM = ZA and fix t ∈ TN. As in the dis-
cussion following Proposition 1.3.1, this gives the semigroup homomorphismm 7→
χm(t)γ(m). Prove that this corresponds to the point

(χm1, . . . ,χms) · (γ(m1), . . . ,γ(ms)) = (χm1γ(m1), . . . ,χ
msγ(ms))

coming from the action oft ∈ TN ⊆ (C∗)s on p∈YA ⊆ Cs.

1.3.2. Let V = Spec(C[S]) with TN = Spec(C[M]), M = ZS. The actionTN ×V → V
comes from aC-algebra homomorphismC[S]→C[M]⊗C C[S]. Prove that this homomor-
phism is given byχm 7→ χm⊗χm. Hint: Show that this formula determines theC-algebra
homomorphismC[M]→ C[M]⊗C C[M] that gives the group operationTN×TN→ TN.

1.3.3. Prove Corollary 1.3.3.

1.3.4. Let A ⊆M be a finite set.

(a) Prove that the semigroupNA is saturated inM if and only if NA = Cone(A )∩M.
Hint: Apply (1.2.2) to Cone(A )⊆MR.

(b) Complete the proof of (b)⇒ (c) from Theorem 1.3.5.

1.3.5. Let N be a lattice.

(a) LetN1 ⊆ N be a sublattice such thatN/N1 is torsion-free. Prove that there is a sublat-
tice N2 ⊆ N such thatN = N1⊕N2.

(b) Let u∈ N be primitive as defined in the proof of Theorem 1.3.5. Prove that N has a
basise1, . . . ,en such thate1 = u.

1.3.6. Prove Proposition 1.3.8.

1.3.7. Let p be a point of an irreducible affine varietyV. Thenp gives the maximal ideal
m = { f ∈ C[V] | f (p) = 0} as well as the maximal idealmV,p ⊆ OV,p defined in §1.0.
Prove that the natural mapm/m2−→mV,p/m

2
V,p is an isomorphism ofC-vector spaces.

1.3.8. Prove (1.3.3). Hint: Use Lemma 1.0.6 and Example 1.0.10.

1.3.9. Prove Proposition 1.3.15.

1.3.10.Prove the assertions made in the proof of Proposition 1.3.18concerning the pairing
M′/M×N/N′→C∗ defined by([m′], [u]) 7→ e2πi〈m′

,u〉.

1.3.11. Let µd = {ζ ∈C∗ | ζ d = 1} be the group ofdth roots of unity. Thenµd acts onC2

by ζ · (x,y) = (ζx, ζy). Adapt Example 1.3.19 to show thatC2/µd ≃ Ĉd. Hint: Use lattices
N′ = Z2 ⊆ N = {(a/d,b/d) | a,b∈ Z,a+b≡ 0 modd}.
1.3.12. Prove that the normalization map in Proposition 1.3.8 is a toric morphism.

1.3.13.Letσ1⊆ (N1)R andσ2⊆ (N2)R be strongly convex rational polyhedral cones. This
gives the coneσ1×σ2 ⊆ (N1⊕N2)R. Prove thatUσ1×σ2 ≃Uσ1×Uσ2. Also explain how
this result applies to (1.3.2).
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1.3.14. By Proposition 1.3.1, a pointp of an affine toric varietyV = Spec(C[S]) is repre-
sented by a semigroup homomorphismγ : S→C. Prove thatp lies in the torus ofV if and
only if γ never vanishes, i.e.,γ(m) 6= 0 for all m∈ S.

Appendix: Tensor Products of Coordinate Rings

In this appendix, we will prove the following result used in §1.0 in our discussion of prod-
ucts of affine varieties.

Proposition 1.A.1. If R and S are finitely generatedC-algebras without nilpotents, then
the same is true for R⊗C S.

Proof. Since the tensor product is obviously a finitely generatedC-algebra, we need only
prove thatR⊗C S has no nilpotents. If we writeR≃ C[x1, . . . ,xn]/I , thenI is radical and
hence has a primary decompositionI =

⋂s
i=1Pi , where eachPi is prime ([35, Ch. 4, §7]).

This gives

R≃ C[x1, . . . ,xn]/I −→
s⊕

i=1

C[x1, . . . ,xn]/Pi

where the map to the direct sum is injective. Each quotientC[x1, . . . ,xn]/Pi is an integral
domain and hence injects into its field of fractionsKi . This yields an injection

R−→
s⊕

i=1

Ki ,

and since tensoring over a field preserves exactness, we get an injection

R⊗C S →֒
s⊕

i=1

Ki⊗C S.

Hence it suffices to prove thatK⊗C Shas no nilpotents whenK is a finitely generated field
extension ofC. A similar argument usingSthen reduces us to showing thatK⊗C L has no
nilpotents whenK andL are finitely generated field extensions ofC.

SinceC has characteristic 0, the extensionC⊆ L has a separating transcendence basis
([97, p. 519]). This means that we can findy1, . . . ,yt ∈ L such thaty1, . . . ,yt are alge-
braically independent overC andF = C(y1, . . . ,yt) ⊆ L is a finite separable extension.
Then

K⊗C L≃ K⊗C (F⊗F L)≃ (K⊗C F)⊗F L.

But C = K⊗C F = K⊗C C(y1, . . . ,yt) = K(y1, . . . ,yt) is a field, so that we are reduced to
considering

C⊗F L

whereC andL are extensions ofF andF ⊆ L is finite and separable. The latter and the
theorem of the primitive element imply thatL ≃ F[X]/〈 f (X)〉, where f (X) has distinct
roots in some extension ofF . Then

C⊗F L≃C⊗F F [X]/〈 f (X)〉 ≃C[X]/〈 f (X)〉.
Since f (X) has distinct roots, this quotient ring has no nilpotents. Our result follows. �

A final remark is that we can replaceC with any perfect field since finitely generated
extensions of perfect fields have separating transcendencebases ([97, p. 519]).



Chapter 2

Projective Toric Varieties

§2.0. Background: Projective Varieties

Our discussion assumes that the reader is familiar with the elementary theory of
projective varieties, at the level of [35, Ch. 8].

In Chapter 1, we introduced affine toric varieties. In general, a toric variety is
an irreducible varietyX overC containing a torusTN ≃ (C∗)n as a Zariski open set
such that the action of(C∗)n on itself extends to an action onX. We will learn in
Chapter 3 that the concept of “variety” is somewhat subtle. Hence we will defer
the formal definition of toric variety until then and insteadconcentrate on toric
varieties that live in projective spacePn, defined by

(2.0.1) Pn = (Cn+1\{0})/C∗,

whereC∗ acts via homotheties, i.e.,λ ·(a0, . . . ,an) = (λa0, . . . ,λan) for λ∈C∗ and
(a0, . . . ,an) ∈ Cn+1. Thus(a0, . . . ,an) arehomogeneous coordinatesof a point in
Pn and are well-defined up to homothety.

The goal of this chapter is to use lattice points and polytopes to create toric
varieties that lie inPn. We will use the affine semigroups and polyhedral cones
introduced in Chapter 1 to describe the local structure of these varieties.

Homogeneous Coordinate Rings. A projective varietyV ⊆ Pn is defined by the
vanishing of finitely many homogeneous polynomials in the polynomial ringS=
C[x0, . . . ,xn]. Thehomogeneous coordinate ringof V is the quotient ring

C[V] = S/I(V),

whereI(V) is generated by all homogeneous polynomials that vanish onV.

49
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The polynomial ringS is graded by setting deg(xi) = 1. This gives the decom-
positionS=

⊕∞
d=0 Sd, whereSd is the vector space of homogeneous polynomials

of degreed. Homogeneous ideals decompose similarly, and the above coordinate
ring C[V] inherits a grading where

C[V]d = Sd/I(V)d.

The idealI(V) ⊆ S= C[x0, . . . ,xn] also defines an affine varietŷV ⊆ Cn+1, called
theaffine coneof V. The varietyV̂ satisfies

(2.0.2) V = (V̂ \{0})/C∗,
and its coordinate ring is the homogeneous coordinate ring of V, i.e.,

C[V̂] = C[V].

Example 2.0.1. In Example 1.1.6 we encountered the ideal

I = 〈xix j+1−xi+1x j | 0≤ i < j ≤ d−1〉 ⊆C[x0, . . . ,xd]

generated by the 2×2 minors of the matrix
(

x0 x1 · · · xd−2 xd−1

x1 x2 · · · xd−1 xd

)
.

SinceI is homogeneous, it defines a projective varietyCd ⊆ Pd that is the image of
the map

Φ : P1−→ Pd

defined in homogeneous coordinates by(s, t) 7→ (sd,sd−1t, . . . ,std−1, td) (see Ex-
ercise 1.1.1). This shows thatCd is a curve, called therational normal curveof
degreed. Furthermore, the affine cone ofCd is the rational normal conêCd⊆Cd+1

discussed in Example 1.1.6.

We know from Chapter 1 that̂Cd is an affine toric surface; we will soon see
thatCd is a projective toric curve. ♦

Example 2.0.2.The affine toric varietyV(xy− zw) ⊆ C4 studied in Chapter 1 is
the affine cone of the projective surfaceV = V(xy− zw) ⊆ P3. Recall that this
surface is isomorphic toP1×P1 via the Segre embedding

P1×P1−→ P3

given by (s, t;u,v) 7→ (su, tv,sv, tu). We will see below thatV ≃ P1×P1 is the
projective toric variety coming from the unit square in the plane. ♦

As in the affine case, a projective varietyV ⊆ Pn has theclassical topology,
induced from the usual topology onPn, and theZariski topology, where the Zariski
closed sets are subvarieties ofV (meaning projective varieties ofPn contained inV)
and the Zariski open sets are their complements.
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Rational Functions on Irreducible Projective Varieties. A homogeneous polyno-
mial f ∈ Sof degreed does not give a function onPn since

f (λx0, . . . ,λxn) = λd f (x0, . . . ,xn).

However, the quotient of two such polynomialsf ,g ∈ Sd gives the well-defined
function

f
g

: Pn\V(g)→ C.

providedg 6= 0. We write this asf/g : Pn 99K C and say thatf/g is a rational
functionon Pn.

More generally, suppose thatV ⊆ Pn is irreducible, and letf ,g∈C[V] = C[V̂]
be homogeneous of the same degree withg 6= 0. Then f andg give functions on
the affine conêV and hence an elementf/g ∈ C(V̂). By (2.0.2), this induces a
rational functionf/g : V 99K C. Thus

C(V) = { f/g∈ C(V̂) | f ,g∈ C[V] homogeneous of the same degree,g 6= 0}
is the field of rational functions onV. It is customary to write the set on the left as
C(V̂)0 since it consists of the degree 0 elements ofC(V̂).

Affine Pieces of Projective Varieties. A projective varietyV ⊆ Pn is a union of
Zariski open sets that are affine. To see why, letUi = Pn\V(xi). ThenUi ≃ Cn via
the map

(2.0.3) (a0, . . . ,an) 7−→
(a0

ai
, . . . ,

ai−1
ai
,

ai+1
ai
, . . . , an

ai

)
,

so that in the notation of Chapter 1, we have

Ui = Spec
(
C
[ x0

xi
, . . . ,

xi−1
xi
,

xi+1
xi
, . . . , xn

xi

])
.

ThenV ∩Ui is a Zariski open subset ofV that maps via (2.0.3) to the affine variety
in Cn defined by the equations

(2.0.4) f
( x0

xi
, . . . ,

xi−1
xi
,1, xi+1

xi
, . . . , xn

xi

)
= 0

as f varies over all homogeneous polynomials inI(V).

We callV ∩Ui anaffine pieceof V. These affine pieces coverV since theUi

coverPn. Using localization, we can describe the coordinate rings of the affine
pieces as follows. The variablexi induces an element̄xi ∈ C[V], so that we get the
localization

(2.0.5) C[V]x̄i = { f/x̄k
i | f ∈ C[V], k≥ 0}

as in Exercises 1.0.2 and 1.0.3. Note thatC[V]x̄i has a well-definedZ-grading given
by deg( f/x̄k

i ) = deg( f )−k when f is homogeneous. Then

(2.0.6) (C[V]x̄i )0 = { f/x̄k
i ∈ C[V]x̄i | f is homogeneous of degreek}

is the subring ofC[V]x̄i consisting of all elements of degree 0. This gives an affine
piece ofV as follows.



52 Chapter 2. Projective Toric Varieties

Lemma 2.0.3. The affine piece V∩Ui of V has coordinate ring

C[V ∩Ui]≃ (C[V]x̄i )0.

Proof. We have an exact sequence

0−→ I(V)−→ C[x0, . . . ,xn]−→ C[V]−→ 0.

If we localize atxi , we get the exact sequence

(2.0.7) 0−→ I(V)xi −→ C[x0, . . . ,xn]xi −→ C[V]x̄i −→ 0

since localization preserves exactness (Exercises 2.0.1 and 2.0.2). These sequences
preserve degrees, so that taking elements of degree 0 gives the exact sequence

0−→ (I(V)xi )0−→ (C[x0, . . . ,xn]xi )0−→ (C[V]x̄i )0−→ 0.

Note that(C[x0, . . . ,xn]xi )0 = C
[ x0

xi
, . . . ,

xi−1
xi
,

xi+1
xi
, . . . , xn

xi

]
. If f ∈ I(V) is homoge-

neous of degreek, then

f/xk
i = f

( x0
xi
, . . . ,

xi−1
xi
,1, xi+1

xi
, . . . , xn

xi

)
∈ (I(V)xi )0.

By (2.0.4), we conclude that(I(V)xi )0 maps toI(V ∩Ui). To show that this map
is onto, letg

( x0
xi
, . . . ,

xi−1
xi
,

xi+1
xi
, . . . , xn

xi

)
∈ I(V ∩Ui). For k≫ 0, xk

i g = f (x0, . . . ,xn)
is homogeneous of degreek. It then follows easily thatxi f vanishes onV since
g = 0 onV ∩Ui andxi = 0 on the complement ofUi . Thusxi f ∈ I(V), and then
(xi f )/(xk+1

i ) ∈ (I(V)xi )0 maps tog. The lemma follows immediately. �

One can also explore what happens when we intersect affine piecesV ∩Ui and
V ∩U j for i 6= j. By Exercise 2.0.3,V ∩Ui ∩U j is affine with coordinate ring

(2.0.8) C[V ∩Ui ∩U j ]≃ (C[V]x̄i x̄j )0.

We will apply this to projective toric varieties in §2.2. We will also see later in
the book that Lemma 2.0.3 is related to the “Proj” construction, where Proj of a
graded ring gives a projective variety, just as Spec of an ordinary ring gives an
affine variety.

Products of Projective Spaces. One can study the productPn×Pm of projective
spaces using the bigraded ringC[x0, . . . ,xn,y0, . . . ,ym], wherexi has bidegree(1,0)
andyi has bidegree(0,1). Then a bihomogeneous polynomialf of bidegree(a,b)
gives a well-defined equationf = 0 in Pn×Pm. This allows us to define varieties
in Pn×Pm using bihomogeneous ideals. In particular, the idealI(V) of a variety
V ⊆ Pn×Pm is a bihomogeneous ideal.

Another way to studyPn×Pm is via theSegre embedding

Pn×Pm−→ Pnm+n+m

defined by mapping(a0, . . . ,an,b0, . . . ,bm) to the point

(a0b0,a0b1, . . . ,a0bm,a1b0, . . . ,a1bm, . . . ,anb0, . . . ,anbm).
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This map is studied in [35, Ex. 14 of Ch. 8, §4]. IfPnm+n+m has homogeneous
coordinatesxi j for 0≤ i ≤ n,0≤ j ≤m, thenPn×Pm⊆ Pnm+n+m is defined by the
vanishing of the 2×2 minors of the(n+1)× (m+1) matrix




x00 · · · x0m
...

...
xn0 · · · xnm


 .

This follows since an(n+ 1)× (m+ 1) matrix has rank 1 if and only if it is a
productAtB, whereA andB are nonzero row matrices of lengthsn+1 andm+1.

These approaches give the same notion of what it means to be a subvariety of
Pn×Pm. A homogeneous polynomialF(xi j ) of degreed gives the bihomogeneous
polynomial F(xiy j) of bidegree(d,d). Hence any subvariety ofPnm+n+m lying
in Pn×Pm can be defined by a bihomogeneous ideal inC[x0, . . . ,xn,y0, . . . ,ym].
Going the other way takes more thought and is discussed in Exercise 2.0.5.

We also have the following useful result proved in Exercise 2.0.6.

Proposition 2.0.4. Given subvarieties V⊆ Pn and W⊆ Pm, the product V×W is
a subvariety ofPn×Pm. �

Weighted Projective Space. The graded ring associated to projective spacePn is
C[x0, . . . ,xn], where each variablexi has degree 1. More generally, letq0, . . . ,qn be
positive integers with gcd(q0, . . . ,qn) = 1 and define

P(q0, . . . ,qn) = (Cn+1\{0})/ ∼,
where∼ is the equivalence relation

(a0, . . . ,an)∼ (b0, . . . ,bn) ⇐⇒ ai = λqi bi , i = 0, . . . ,n for someλ ∈ C∗.

We callP(q0, . . . ,qn) aweighted projective space. Note thatPn = P(1, . . . ,1).

The ring corresponding toP(q0, . . . ,qn) is the graded ringC[x0, . . . ,xn], where
xi now has degreeqi . A polynomial f is weighted homogeneousof degreed if
every monomialxα appearing inf satisfiesα · (q0, . . . ,qn) = d. The f = 0 is well-
defined onP(q0, . . . ,qn) when f is weighted homogeneous, so that one can define
varieties inP(q0, . . . ,qn) using weighted homogeneous ideals ofC[x0, . . . ,xn].

Example 2.0.5.We can embed the weighted projective planeP(1,1,2) in P3 using
the monomialsx2

0,x0x1,x2
1,x2 of weighted degree 2. In other words, the map

P(1,1,2) −→ P3

given by
(a0,a1,a2) 7−→ (a2

0,a0a1,a
2
1,a2)

is well-defined and injective. One can check that this map induces

P(1,1,2) ≃ V(y0y2−y2
1)⊆ P3,

wherey0,y1,y2,y3 are homogeneous coordinates onP3. ♦
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Later in the book we will use toric methods to construct projective embeddings
of arbitrary weighted projective spaces.

Exercises for §2.0.

2.0.1. Let R be a commutativeC-algebra. Givenf ∈ R\ {0} and an exact sequence of
R-modules 0→M1→M2→M3→ 0, prove that

0−→M1⊗RRf −→M2⊗RRf −→M3⊗RRf −→ 0

is also exact, whereRf is the localization ofRat f defined in Exercises 1.0.2 and 1.0.3.

2.0.2. LetV ⊆ Pn be a projective variety. If we setS= C[x0, . . . ,xn], thenV has coordinate
ring C[V] = S/I(V). Let x̄i be the image ofxi in C[V].

(a) Note theC[V] is anS-module. Prove thatC[V]x̄i ≃ C[V]⊗SSxi .

(b) Use part (a) and the previous exercise to prove that (2.0.7) is exact.

2.0.3. Prove the claim made in (2.0.8).

2.0.4. Let V ⊆ Pn be a projective variety. Takef0, . . . , fm ∈ Sd such that the intersection
V ∩V( f0, . . . , fm) is empty. Prove that the map

(a0, . . . ,an) 7−→ ( f0(a0, . . . ,an), . . . , fm(a0, . . . ,an))

induces a well-defined functionΦ : V→ Pm.

2.0.5. Let V ⊆ Pn×Pm be defined byfℓ(xi ,y j) = 0, wherefℓ(xi ,y j) is bihomogenous of
bidegree(aℓ,bℓ), ℓ = 1, . . . ,s. The goal of this exercise is to show that when we embed
Pn×Pm in Pnm+n+m via the Segre embedding described in the text,V becomes a subvariety
of Pnm+n+m.

(a) For eachℓ, pick an integerdℓ ≥ max{aℓ,bℓ} and consider the polynomialsfℓ,α,β =
xαyβ fi(xi ,y j) whereℓ = 0, . . . ,s and|α| = dℓ−aℓ, |β| = dℓ−bℓ. Note thatfℓ,α,β is
bihomogenous of bidegree(dℓ,dℓ). Prove thatV ⊆Pn×Pm is defined by the vanishing
of the fℓ,α,β .

(b) Use part (a) to show thatV is a subvariety ofPnm+n+m under the Segre embedding.

2.0.6. Prove Proposition 2.0.4

2.0.7. Consider the Segre embeddingP1×P1→ P3. Show that after relabeling coordi-
nates, the affine cone ofP1×P1 in P3 is the varietyV(xy− zw) ⊆ C4 featured in many
examples in Chapter 1.

§2.1. Lattice Points and Projective Toric Varieties

We first observe thatPn is a toric variety with torus

TPn = Pn\V(x0 · · ·xn) = {(a0, . . . ,an) ∈ Pn | a0 · · ·an 6= 0}
= {(1, t1, . . . , tn) ∈ Pn | t1, . . . , tn ∈ C∗} ≃ (C∗)n.

The action ofTPn on itself clearly extends to an action onPn, makingPn a toric
variety. To describe the lattices associated toTPn, we use the exact sequence of tori

1−→ C∗ −→ (C∗)n+1 π−→ TPn −→ 1
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coming from the definition (2.0.1) ofPn. Hence the character lattice ofTPn is

(2.1.1) Mn = {(a0, . . . ,an) ∈ Zn+1 |∑n
i=0 ai = 0},

and the lattice of one-parameter subgroupsNn is the quotient

Nn = Zn+1/Z(1, . . . ,1).

Lattice Points and Projective Toric Varieties. Let TN be a torus with latticesM
and N as usual. In Chapter 1, we used a finite set of lattice points ofA =
{m1, . . . ,ms} ⊆ M to create the affine toric varietyYA as the Zariski closure of
the image of the map

ΦA : TN −→ Cs, t 7−→ (χm1(t), . . . ,χms(t)).

To get a projective toric variety, we regardΦA as a map to(C∗)s and compose
with the homomorphismπ : (C∗)s→ TPs−1 to obtain

(2.1.2) TN
ΦA−→ Cs π−→ TPs−1 ⊆ Ps−1.

Definition 2.1.1. Given a finite setA ⊆M, theprojective toric varietyXA is the
Zariski closure inPs−1 of the image of the mapπ ◦ΦA from (2.1.2).

Proposition 2.1.2.XA is a toric variety of dimension equal to the dimension of the
smallest affine subspace of MR containingA .

Proof. The proof thatXA ⊆ Ps−1 is a toric variety is similar to the proof given
in Propostion 1.1.8 of Chapter 1 thatYA ⊆ Cs is a toric variety. The assertion
concerning the dimension ofXA will follow from Proposition 2.1.6 below. �

More concretely,XA is the Zariski closure of the image of the map

TN −→ Ps−1, t 7−→ (χm1(t), . . . ,χms(t))

given by the characters coming fromA = {m1, . . . ,ms} ⊆ M. In particular, if
M = Zn, thenχmi is the Laurent monomialtmi andXA is the Zariski closure of the
image of

TN −→ Ps−1, t 7−→ (tm1, . . . , tms).

In the literature,A ⊆ Zn is often given as ann×smatrixA with integer entries, so
that the elements ofA are the columns ofA.

Here is an example where the lattice points themselves are matrices.

Example 2.1.3.Let M = Z3×3 be the lattice of 3×3 integer matrices and let

P3 = {3×3 permutation matrices} ⊆ Z3×3.

Write C[M] = C[t±1
1 , . . . , t±1

9 ], where the variables give the generic 3×3 matrix



t1 t2 t3
t4 t5 t6
t7 t8 t9



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with nonzero entries. Also letP5 have homogeneous coordinatesxi jk indexed by
triples such that

(1 2 3
i j k

)
is a permutation inS3. ThenXP3 ⊆ P5 is the Zariski

closure of the image of the mapTN→ P5 given by the Laurent monomialstit jtk for(1 2 3
i j k

)
∈ S3. The ideal ofXP3 is

I(XP3) = 〈x123x231x312−x132x321x213〉 ⊆ C[xi jk ],

where the relation comes from the fact that the sum of the permutation matrices
corresponding tox123,x231,x312 equals the sum of the other three (Exercise 2.1.1).
Ideals of the toric varieties arising from permutation matrices have applications to
sampling problems in statistics [166, p. 148]. ♦

The Affine Cone of a Projective Toric Variety. The projective varietyXA ⊆ Ps−1

has an affine conêXA ⊆Cs. How doeŝXA relate to the affine toric varietyYA ⊆Cs

constructed in Chapter 1?

Recall from Chapter 1 that whenA = {m1, . . . ,ms} ⊆ M, the mapei 7→ mi

induces an exact sequence

(2.1.3) 0−→ L−→ Zs−→M

and that the ideal ofYA is the toric ideal

IL =
〈
xα−xβ | α,β ∈ Ns andα−β ∈ L

〉

(Proposition 1.1.9). Then we have the following result.

Proposition 2.1.4. Given YA , XA and IL as above, the following are equivalent:

(a) YA ⊆ Cs is the affine conêXA of XA ⊆ Ps−1.

(b) IL = I(XA ).

(c) IL is homogeneous.

(d) There is u∈ N and k> 0 in N such that〈mi,u〉 = k for i = 1, . . . ,s.

Proof. The equivalence (a)⇔ (b) follows from the equalitiesI(XA ) = I(X̂A ) and
IL = I(YA ), and the implication (b)⇒ (c) is obvious.

For (c)⇒ (d), assume thatIL is a homogeneous ideal and takexα− xβ ∈ IL
for α−β ∈ L. If xα andxβ had different degrees, thenxα,xβ ∈ IL = I(YA ) would
vanish onYA . This is impossible since(1, . . . ,1) ∈YA by (2.1.2). Hencexα and
xβ have the same degree, which implies thatℓ · (1, . . . ,1) = 0 for all ℓ ∈ L. Now
tensor (2.1.3) withQ and take duals to obtain an exact sequence

NQ −→Qs−→ HomQ(LQ,Q)−→ 0.

The above argument shows that(1, . . . ,1) ∈Qs maps to zero in HomQ(LQ,Q) and
hence comes from an elementũ∈NQ. In other words,〈mi , ũ〉= 1 for all i. Clearing
denominators gives the desiredu∈ N andk> 0 in N.
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Finally, we prove (d)⇒ (b). SinceIL = I(YA ), it suffices to show that

X̂A ∩ (C∗)s⊆YA .

Let p∈ X̂A ∩ (C∗)s. SinceXA ∩TPs−1 is the torus ofXA , it follows that

p = µ · (χm1(t), . . . ,χms(t))

for someµ∈C∗ andt ∈TN. The elementu∈N from part (d) gives a one-parameter
subgroup ofTN, which we write asτ 7→ λu(τ) for τ ∈C∗. Thenλu(τ) t ∈ TN maps
to the pointq∈YA given by

q =
(
χm1(λu(τ) t), . . . ,χms(λu(τ) t)

)
=
(
τ 〈m1,u〉χm1(t), . . . ,τ 〈ms,u〉χms(t)

)
,

sinceχm(λu(τ)) = τ 〈m,u〉 by the description of〈 , 〉 given in §1.1. The hypothesis
of part (d) allows us to rewriteq as

q = τ k · (χm1(t), . . . ,χms(t)).

Usingk> 0, we can chooseτ so thatp = q∈YA . This completes the proof. �

The condition〈mi ,u〉 = k, i = 1, . . . ,s, for someu∈ N andk> 0 in N means
thatA lies in an affine hyperplane ofMQ not containing the origin. WhenM = Zn

andA consists of the columns of ann× s integer matrixA, this is equivalent to
(1, . . . ,1) lying in the row space ofA (Exercise 2.1.2).

Example 2.1.5. We will examine the rational normal curveCd ⊆ Pd using two
different sets of lattice points.

First letA consist of the columns of the 2× (d+1) matrix

A =

(
d d−1 · · · 1 0
0 1 · · · d−1 d

)
.

The columns give the Laurent monomials defining the rationalnormal curveCd

in Example 2.0.1. It follows thatCd is a projective toric variety. The ideal ofCd

is the homogeneous ideal given in Example 2.0.1, and the corresponding affine
hyperplane ofZ2 containingA (= the columns ofA) consists of all points(a,b)
satisfyinga+ b = d. It is equally easy to see that(1, . . . ,1) is in the row space of
A. In particular, we have

XA = Cd and YA = Ĉd.

Now letB = {0,1, . . . ,d−1,d} ⊆ Z. This gives the map

ΦB : C∗ −→ Pd, t 7→ (1, t, . . . , td−1, td).

The resulting projective variety is the rational normal curve, i.e.,XB = Cd, but
the affine variety ofB is not the rational normal cone, i.e.,YB 6= Ĉd. This is
becauseI(YB)⊆ C[x0, . . . ,xd] is not homogeneous. For example,x2

1−x2 vanishes
at (1, t, . . . , t d−1, t d) ∈ Cd+1 for all t ∈C∗. Thusx2

1−x2 ∈ I(YB). ♦
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Given anyA ⊆M, there is a standard way to modifyA so that the conditions
of Proposition 2.1.4 are met: useA ×{1} ⊆M⊕Z. This lattice corresponds to the
torusTn×C∗, and since

(2.1.4) ΦA×{1}(t,µ) = (χm1(t)µ,. . . ,χms(t)µ) = µ · (χm1(t), . . . ,χm1(t)),

it follows immediately thatXA×{1} = XA ⊆ Ps−1. SinceA ×{1} lies in an affine
hyperplane missing the origin, Proposition 2.1.4 implies that XA has affine cone
YA×{1} = X̂A . WhenM = Zn andA is represented by the columns of ann× s
integer matrixA, we obtainA ×{1} by adding the row(1, . . . ,1) to A.

The Torus of a Projective Toric Variety. Our next task is to determine the torus
of XA . We will do so by identifying its character lattice. This will also tell us the
dimension ofXA . GivenA = {m1, . . . ,ms} ⊆M, we set

Z′A =
{∑s

i=1 aimi | ai ∈ Z,
∑s

i=1 ai = 0
}
.

The rank ofZ′A is the dimension of the smallest affine subspace ofMR containing
the setA (Exercise 2.1.3).

Proposition 2.1.6. Let XA be the projective toric variety ofA ⊆M. Then:

(a) The latticeZ′A is the character lattice of the torus of XA .

(b) The dimension of XA is the dimension of the smallest affine subspace of MR

containingA . In particular,

dimXA =

{
rankZA −1 if A satisfies the conditions of Proposition 2.1.4

rankZA otherwise.

Proof. To prove part (a), letM′ be the character lattice of the torusTXA
of XA . By

(2.1.2), we have the commutative diagram

TN //

!! !!D
DD

DD
DD

D
TPs−1

� � // Ps−1

TXA

?�

OO

which induces the commutative diagram of character lattices

M Ms−1oo

����

M′
1 Q

bbEEEEEEEEE

sinceMs−1 = {(a1, . . . ,as) ∈ Zs |∑s
i=0 aimi = 0} is the character lattice ofTPs−1

by (2.1.1). The mapMs−1→M is induced by the mapZs→M that sendsei to mi .
ThusZ′A is the image ofMs−1→M and hence equalsM′ by the above diagram.

The first assertion of part (b) follows from part (a) and the observation that
rankZ′A is the dimension of the smallest affine subspace ofMR containingA .
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Furthermore, ifYA equals the affine cone ofXA , then there isu∈N with 〈mi ,u〉=
k> 0 for all i by Proposition 2.1.4. This implies that〈∑s

i=1 aimi ,u〉= k(
∑s

i=1 ai),
which gives the exact sequence

0−→ Z′A −→ ZA
〈 ,u〉−→ kZ−→ 0.

Thenk> 0 implies rankZA − 1 = rankZ′A = dimXA . However, ifYA 6= X̂A ,
then the idealIL is not homogeneous. Thus some generatorxα− yβ is not homo-
geneous, so that(α−β) · (1, . . . ,1) 6= 0. Butα−β ∈ L, whereL is defined by

0−→ L−→ Zs−→ ZA −→ 0.

This implies that in the exact sequence

0−→Ms−1−→ Zs−→ Z−→ 0

(see (2.1.1)), the image ofL⊆ Zs is ℓZ⊆ Z for someℓ > 0. This gives a diagram

0
��

0
��

0
��

0 // L∩Ms−1 //

��

L //

��

ℓZ //

��

0

0 // Ms−1 //

��

Zs //

��

Z //

��

0

0 // Z′A //

��

ZA //

��

Z/ℓZ //

��

0

0 0 0

with exact rows and columns. Hence rankZA = rankZ′A = dimXA . �

Example 2.1.7. Let A = {e1,e2,e1 + 2e2,2e1 + e2} ⊆ Z2. One computes that
ZA = Z2 but Z′A = {(a,b) ∈ Z2 | a+ b≡ 0 mod 2}. ThusZ′A has index 2 in
ZA . This means thatYA 6= X̂A and the map of tori

TYA
−→ TXA

is two-to-one, i.e., its kernel has order 2 (Exercise 2.1.4). ♦

Affine Pieces of a Projective Toric Variety. So far, our treatment of projective toric
varieties has used lattice points and toric ideals. Where are the semigroups? There
are actually lots of semigroups, one for each affine piece ofXA ⊆ Ps−1.

The affine open setUi = Ps−1\V(xi) contains the torusTPs−1. Thus

TXA
= XA ∩TPs−1 ⊆ XA ∩Ui.

SinceXA is the Zariski closure ofTXA
in Ps−1, it follows thatXA ∩Ui is the Zariski

closure ofTXA
in Ui ≃ Cs−1. ThusXA ∩Ui is an affine toric variety.

GivenA = {m1, . . . ,ms} ⊆MR, the affine semigroup associated toXA ∩Ui is
easy to determine. Recall thatUi ≃ Cs−1 is given by

(a1, . . . ,as) 7−→ (a1/ai , . . . ,ai−1/ai ,ai+1/ai , . . . ,as/ai).
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Combining this andχmj/χmi = χmj−mi with the map (2.1.2), we see thatXA ∩Ui

is the Zariski closure of the image of the map

TN −→ Cs−1

given by

(2.1.5) t 7−→
(
χm1−mi (t), . . . ,χmi−1−mi (t),χmi+1−mi (t), . . . ,χms−mi (t)

)
.

If we setAi = A −mi = {mj −mi | j 6= i}, it follows that

XA ∩Ui = YAi = Spec(C[Si ]),

whereSi = NAi is the affine semigroup generated byAi . We have thus proved the
following result.

Proposition 2.1.8. Let XA ⊆ Ps−1 for A = {m1, . . . ,ms} ⊆ MR. Then the affine
piece XA ∩Ui is the affine toric variety

XA ∩Ui = YAi = Spec(C[Si])

whereAi = A −mi andSi = NAi . �

We also note that the results of Chapter 1 imply that the torusof XAi has char-
acter latticeZAi . Yet the torus isTXA

, which has character latticeZ′A by Propo-
sition 2.1.6. These are consistent sinceZAi = Z′A for all i.

Besides describing the affine piecesXA ∩Ui of XA ⊂ Ps−1, we can also de-
scribe how they patch together. In other words, we can give a completely toric
description of the inclusions

XA ∩Ui ⊇ XA ∩Ui ∩U j ⊆ XA ∩U j

wheni 6= j. For instance,Ui ∩U j consists of all points ofXA ∩Ui wherex j/xi 6= 0.
In terms ofXA ∩Ui = Spec(C[Si]), this means those points whereχmj−mi 6= 0.
Thus

(2.1.6) XA ∩Ui ∩U j = Spec
(
C[Si ]

)
χmj−mi = Spec

(
C[Si]χmj−mi

)
,

so that if we setm= mj −mi, then the inclusionXA ∩Ui ∩U j ⊆ XA ∩Ui can be
written

(2.1.7) Spec(C[Si ])χm ⊆ Spec(C[Si ]).

This looks very similar to the inclusion constructed in (1.3.4) using faces of cones.
We will see in §2.3 that this is no accident.

We next say a few words about how the polytopeP = Conv(A )⊆MR relates
to XA . As we will learn in §2.2, the dimension ofP is the dimension of the small-
est affine subspace ofMR containingP, which is the same as the smallest affine
subspace ofMR containingA . It follows from Proposition 2.1.6 that

dimXA = dimP.

Furthermore, the vertices ofP give an especially efficient affine covering ofXA .



§2.1. Lattice Points and Projective Toric Varieties 61

Proposition 2.1.9.GivenA = {m1, . . . ,ms} ⊆M, let P= Conv(A )⊆MR and set
J =

{
j ∈ {1, . . . ,s} |mj is a vertex of P

}
. Then

XA =
⋃

j∈J

XA ∩U j .

Proof. We will prove that ifi ∈ {1, . . . ,s}, thenXA ∩Ui ⊆XA ∩U j for somej ∈ J.
The discussion of polytopes from §2.2 below implies that

P∩MQ =
{∑

j∈Jr jmj | r j ∈Q≥0,
∑

j∈Jr j = 1
}
.

Given i ∈ {1, . . . ,s}, we havemi ∈ P∩M, so thatmi is a convexQ-linear combi-
nation of the verticesmj . Clearing denominators, we get integersk> 0 andk j ≥ 0
such that

kmi =
∑

j∈Jk jmj ,
∑

j∈Jk j = k.

Thus
∑

j∈J k j(mj −mi) = 0, which implies thatmi −mj ∈ Si whenk j > 0. Fix
such a j. Thenχmj−mi ∈ C[Si ] is invertible, soC[Si]χmj −mi = C[Si]. By (2.1.6),
XA ∩Ui ∩U j = Spec(C[Si ]) = XA ∩Ui, giving XA ∩Ui ⊆ XA ∩U j . �

Projective Normality. An irreducible varietyV ⊆ Pn is calledprojectively normal
if its affine coneV̂ ⊆ Cn+1 is normal. A projectively normal variety is always
normal (Exercise 2.1.5). Here is an example to show that the converse can fail.

Example 2.1.10.Let A ⊆ Z2 consist of the columns of the matrix
(

4 3 1 0
0 1 3 4

)
,

giving the Laurent monomialss4,s3t,st3, t4. The polytopeP= Conv(A ) is the line
segment connecting(4,0) and(0,4), with vertices corresponding tos4 andt4. The
affine piece ofXA corresponding tos4 has coordinate ring

C[s3t/s4,st3/s4, t4/s4] = C[t/s,(t/s)3,(t/s)4] = C[t/s],

which is normal since it is a polynomial ring. Similarly, onesees that the coordinate
ring corresponding tot4 is C[s/t], also normal. These affine pieces coverXA by
Proposition 2.1.9, so thatXA is normal.

Since(1,1,1,1) is in the row space of the matrix,YA is the affine cone ofXA

by Proposition 2.1.4. The affine varietyYA is not normal by Example 1.3.9, so that
XA is normal but not projectively normal. ♦

The notion of normality used in this example is a bit ad-hoc since we have not
formally defined normality for projective varieties. Once we define normality for
abstract varieties in Chapter 3, we will see that Example 2.1.10 is fully rigorous.

We will say more about projective normality when we explore the connection
with polytopes suggested by the above results.
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Exercises for §2.1.

2.1.1. Consider the setP3⊆Z3×3 of 3×3 permutation matrices defined in Example 2.1.3.

(a) Prove the claim made in Example 2.1.3 that three of the permutation matrices sum to
the other three and use this to explain whyx123x231x312−x132x321x213∈ I(XP3).

(b) Show that dimXP3 = 4 by computingZ′P3.

(c) Conclude thatI(XP3) = 〈x123x231x312−x132x321x213〉.

2.1.2. Let A ⊆ Zn consist of the columns of ann×smatrixA with integer entries. Prove
that the conditions of Proposition 2.1.4 are equivalent to the assertion that(1, . . . ,1) ∈ Zs

lies in the row space ofA overR or Q.

2.1.3. Given a finite setA ⊆M, prove that the rank ofZ′A equals the dimension of the
smallest affine subspace (overQ or R) containingA .

2.1.4. Verify the claims made in Example 2.1.7. Also computeI(YA ) and check that it is
not homogeneous.

2.1.5. LetV ⊆ Pn be projectively normal. Use (2.0.6) to prove that the affine piecesV∩Ui

of V are normal.

2.1.6. Fix a finite subsetA ⊆M. Givenm∈M, let A +m= {m′+m |m′ ∈A }. This is
thetranslateof A by m.

(a) Prove thatA and its translateA +mgive the same projective toric variety, i.e.,XA =
XA +m.

(b) Give an example to show that the affine toric varietiesYA andYA +m can differ. Hint:
PickA so that it lies in an affine hyperplane not containing the origin. Then translate
A to the origin.

2.1.7. In Proposition 2.1.4, give a direct proof that (d)⇒ (c).

2.1.8. In Example 2.1.5, the rational normal curveCd ⊆ Pd was parametrized using the
homogeneous monomialssit j , i + j = d. Here we will consider the curve parametrized by
a subset of these monomials corresponding to the exponent vectors

A = {(a0,b0), . . . ,(an,bn)}
wherea0 > a1 > · · · > an and ai + bi = d for every i. This gives the projective curve
XA ⊆ Pn. We assumen≥ 2.

(a) If a0 < d or an > 0, explain why we can obtain the same projective curve using mono-
mials of strictly smaller degree.

(b) Assumea0 = d andan = 0. Use Proposition 2.1.8 to show thatC is smooth if and only
if a1 = d−1 andan−1 = 1. Hint: For one direction, it helps to remember that smooth
varieties are normal.

§2.2. Lattice Points and Polytopes

Before we can begin our exploration of the rich connections between toric varieties
and polytopes, we first need to study polytopes and their lattice points.
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Polytopes. Recall from Chapter 1 that a polytopeP⊆ MR is the convex hull of
a finite setS⊆ MR, i.e., P = Conv(S). Similar to what we did for cones, our
discussion of polytopes will omit proofs. Detailed treatments of polytopes can be
found in [24, 74, 175].

The dimensionof a polytopeP⊆ MR is the dimension of the smallest affine
subspace ofMR containingP. Given a nonzero vectoru in the dual spaceNR and
b∈ R, we get theaffine hyperplane Hu,b andclosed half-space H+u,b defined by

Hu,b = {m∈MR | 〈m,u〉= b} and H+
u,b = {m∈MR | 〈m,u〉 ≥ b}.

A subsetQ⊆ P is afaceof P, writtenQ� P, if there areu∈ NR \{0}, b∈ R with

Q = Hu,b∩P and P⊆ H+
u,b.

We say thatHu,b is asupporting affine hyperplanein this situation. Figure 1 shows
a polygon with the supporting lines of its 1-dimensional faces. The arrows in the
figure indicate the vectorsu.

→
↑

↑

P

→

Figure 1. A polygonP and four of its supporting lines

We also regardP as a face of itself. Every face ofP is again a polytope, and
if P = Conv(S) andQ = Hu,b∩P as above, thenQ = Conv(S∩Hu,b). Faces of
P of special interest arefacets, edgesandvertices, which are faces of dimension
dimP−1, 1 and 0 respectively. Facets will usually be denoted by theletterF.

Here are some properties of faces.

Proposition 2.2.1. Let P⊆MR be a polytope.

(a) P is the convex hull of its vertices.

(b) If P = Conv(S), then every vertex of P lies in S.

(c) If Q is a face of P, then the faces of Q are precisely the faces ofP lying in Q.

(d) Every proper face Q≺ P is the intersection of the facets F containing Q.�

A polytopeP⊆MR can also be written as a finite intersection of closed half-
spaces. The converse is true provided the intersection is bounded. In other words,
if an intersection

P =

s⋂

i=1

H+
ui ,bi



64 Chapter 2. Projective Toric Varieties

is bounded, thenP is a polytope. Here is a famous example.

Example 2.2.2.A d×d matrixM ∈Rd×d isdoubly-stochasticif it has nonnegative
entries and its row and column sums are all 1. If we regardRd×d as the affine
spaceRd2

with coordinatesai j , then the setMd of all doubly-stochastic matrices
is defined by the inequalites

ai j ≥ 0 (all i, j)
∑d

i=1ai j ≥ 1,
∑d

i=1ai j ≤ 1 (all j)
∑d

j=1ai j ≥ 1,
∑d

j=1ai j ≤ 1 (all i).

(We use two inequalities to get one equality.) These inequalities easily imply that
0≤ ai j ≤ 1 for all i, j, so thatMd is bounded and hence is a polytope.

Birkhoff and Von Neumann proved independently that the vertices ofMd are
thed! permutation matrices and that dimMd = (d−1)2. In the literature,Md has
various names, including theBirkhoff polytopeand thetransportation polytope.
See [175, p. 20] for more on this interesting polytope. ♦

WhenP is full dimensional, i.e., dimP = dimMR, its presentation as an inter-
section of closed half-spaces has an especially nice form because each facetF has
a uniquesupporting affine hyperplane. We write the supporting affinehyperplane
and corresponding closed half-space as

HF = {m∈MR | 〈m,uF〉=−aF} and H+
F = {m∈MR | 〈m,uF〉 ≥ −aF},

where(uF ,aF) ∈ NR×R is unique up to multiplication by a positive real number.
We calluF an inward-pointing facet normalof the facetF. It follows that

(2.2.1) P =
⋂

F facet

H+
F = {m∈MR | 〈m,uF〉 ≥ −aF for all facetsF ≺ P}.

In Figure 1, the supporting lines plus arrows determine the supporting half-planes
whose intersection is the polygonP. We write (2.2.1) with minus signs in order to
simplify formulas in later chapters.

Here are some important classes of polytopes.

Definition 2.2.3. Let P⊆MR be a polytope of dimensiond.

(a) P is asimplexor d-simplexif it has d+1 vertices.

(b) P is simplicial if every facet ofP is a simplex.

(c) P is simpleif every vertex is the intersection of preciselyd facets.

Examples include the Platonic solids inR3:

• A tetrahedron is a 3-simplex.

• The octahedron and icosahedron are simplicial since their facets are triangles.

• The cube and dodecahedron are simple since three facets meetat every vertex.
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PolytopesP1 andP2 arecombinatorially equivalentif there is a bijection

{faces ofP1} ≃ {faces ofP2}
that preserves dimensions, intersections, and the face relation �. For example,
simplices of the same dimension are combinatorially equivalent, and in the plane,
the same holds for polygons with the same number of vertices.

Sums, Multiples, and Duals. Given a polytopeP = Conv(S), its multiple rP =
Conv(rS) is again a polytope for anyr ≥ 0. If P is defined by the inequalities

〈m,ui〉 ≥ ai , 1≤ i ≤ s,

thenrP is given by

〈m,ui〉 ≥ rai , 1≤ i ≤ s.

In particular, whenP is full dimensional, thenP and rP have the same inward-
pointing facet normals.

TheMinkowski sumof subsetsA1,A2⊆MR is

A1 +A2 = {a1 +a2 | a1 ∈ A1,a2 ∈ A2}.
Given polytopesP1 = Conv(S1) andP2 = Conv(S2), their Minkowski sumP1+P2 =
Conv(S1 +S2) is again a polytope. We also have the distributive law

rP+sP= (r +s)P.

WhenP⊆MR is full dimensional and 0 is an interior point ofP, we define the
dual or polar polytope

P◦ = {u∈ NR | 〈m,u〉 ≥ −1 for all m∈ P} ⊆ NR.

Figure 2 shows an example of this in the plane.

P P°

Figure 2. A polygonP and its dualP◦ in the plane

When we writeP = {m∈MR | 〈m,uF〉 ≥ −aF ,F facet} as in (2.2.1), we have
aF > 0 for all F since 0 is in the interior. ThenP◦ is the convex hull of the vectors
(1/aF )uF ∈ NR (Exercise 2.2.1). We also have(P◦)◦ = P in this situation.
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Lattice Polytopes. Now let M andN be dual lattices with associated vector spaces
MR andNR. A lattice polytope P⊆MR is the convex hull of a finite setS⊆M. It
follows easily that a polytope inMR is a lattice polytope if and only if its vertices
lie in M (Exercise 2.2.2).

Example 2.2.4.Thestandard n-simplexin Rn is

∆n = Conv(0,e1, . . . ,en).

Another simplex inR3 is P = Conv(0,e1,e2,e1 + e2 + 3e3), shown in Figure 3.

e1+e2+3e3

e2

e1

0

Figure 3. The simplexP = Conv(0,e1,e2,e1 +e2 +3e3) ⊆ R3

The lattice polytopes∆3 andP are combinatorially equivalent but will give very
different projective toric varieties. ♦

Example 2.2.5.The Birkhoff polytope defined in Example 2.2.2 is a lattice poly-
tope relative to the lattice of integer matricesZd×d since its vertices are the permu-
tation matrices, whose entries are all 0 or 1. ♦

One can show that faces of lattice polytopes are again lattice polytopes and that
Minkowski sums and integer multiples of lattice polytopes are lattice polytopes
(Exercise 2.2.2). Furthermore, every lattice polytope is an intersection of closed
half-spaces defined overM, i.e.,P =

⋂s
i=1 H+

ui ,bi
whereui ∈ N andbi ∈ Z.

When a lattice polytopeP is full dimensional, the facet presentation given in
(2.2.1) has an especially nice form. IfF is a facet ofP, then the inward-pointing
facet normals ofF lie on a rational ray inNR. Let uF denote the unique ray gener-
ator. The correspondingaF is integral since〈m,uF〉 = −aF whenm is a vertex of
F. It follows that

(2.2.2) P = {m∈MR | 〈m,uF〉 ≥ −aF for all facetsF ≺ P}
is theuniquefacet presentation of the lattice polytopeP.
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Example 2.2.6.Consider the squareP= Conv(±e1±e2)⊆R2. The facet normals
of P are±e1 and±e2 and the facet presentation ofP is given by

〈m,±e1〉 ≥ −1

〈m,±e2〉 ≥ −1.

Since theaF are all equal to 1, it follows thatP◦ = Conv(±e1,±e2) is also a lattice
polytope. The polytopesP andP◦ are pictured in Figure 2.

It is rare that the dual of a lattice polytope is a lattice polytope—this is related
to thereflexive polytopesthat will be studied later in the book.

Example 2.2.7.The 3-simplexP = Conv(0,e1,e2,e1 +e2+3e3)⊆ R3 pictured in
Example 2.2.4 has facet presentation

〈m,e3〉 ≥ 0

〈m,3e1−e3〉 ≥ 0

〈m,3e2−e3〉 ≥ 0

〈m,−3e1−3e2 +e3〉 ≥ −3

(Exercise 2.2.3). However, if we replace−3 with−1 in the last inequality, we get
integer inequalities that define(1/3)P, which isnot a lattice polytope. ♦

The combinatorial type of a polytope is an interesting object of study. This
leads to the question “Is every polytope combinatorially equivalent to a lattice
polytope?” If the given polytope is simplicial, the answer is “yes”—just wiggle
the vertices to make them rational and clear denominators toget a lattice polytope.
The same argument works for simple polytopes by wiggling thefacet normals.
This will enable us to prove results about arbitrary simplicial or simple polytopes
using toric varieties. But in general, the answer is “no”—there exist polytopes in
every dimension≥ 8 not combinatorially equivalent to any lattice polytope. An
example is described in [175, Ex. 6.21].

Normal Polytopes. The connection between lattice polytopes and toric varieties
comes from the lattice points of the polytope. Unfortunately, a lattice polytope
might not have enough lattice points. The 3-simplexP from Example 2.2.7 has
only four lattice points (its vertices), which implies thatthe projective toric variety
XP∩Z3 is justP3 (Exercise 2.2.3).

We will explore two notions of what it means for a lattice polytope to “have
enough lattice points.” Here is the first.

Definition 2.2.8. A lattice polytopeP⊆MR is normal if

(kP)∩M +(ℓP)∩M = ((k+ ℓ)P)∩M

for all k, ℓ ∈ N.
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The inclusion(kP)∩M +(ℓP)∩M ⊆ ((k+ ℓ)P)∩M is automatic. Thus nor-
mality means that all lattice points of(k+ ℓ)P come from lattice points ofkP and
ℓP. In particular, a lattice polytope is normal if and only if

P∩M + · · ·+P∩M︸ ︷︷ ︸
k times

= (kP)∩M.

for all integersk ≥ 1. In other words, normality says thatP has enough lattice
points to generate the lattice points in all integer multiples ofP.

Lattice polytopes of dimension 1 are normal (Exercise 2.2.4). Here is another
class of normal polytopes.

Definition 2.2.9. A simplex P⊆ MR is basic if P has a vertexm0 such that the
differencesm−m0, for verticesm 6= m0 of P, form a subset of aZ-basis ofM.

This definition is independent of which vertexm0 ∈ P is chosen. The standard
simplex∆n⊆ Rn is basic, and any basic simplex is normal (Exercise 2.2.5). More
general simplicies, however, need not be normal.

Example 2.2.10.Let P= Conv(0,e1,e2,e1+e2+3e3)⊆R3. We noted earlier that
the only lattice points ofP are its vertices. It follows easily that

e1 +e2 +e3 = 1
6(0)+ 1

3(2e1)+ 1
3(2e2)+ 1

6(2e1 +2e2 +6e3) ∈ 2P

is not the sum of lattice points ofP. This shows thatP is not normal. In particular,
P is not basic. ♦

Here is an important result on normality.

Theorem 2.2.11.Let P⊆MR be a full dimensional lattice polytope of dimension
n≥ 2. Then kP is normal for all k≥ n−1.

Proof. This result was first explicitly stated in [28], though (as noted in [28]), its
essential content follows from [51] and [114]. We will use ideas from [114] and
[137] to show that

(2.2.3) (kP)∩M +P∩M = ((k+1)P)∩M

for all integersk≥ n−1. In Exercise 2.2.6 you will prove that (2.2.3) implies that
kP is normal whenk≥ n−1. Note also that for (2.2.3), it suffices to show

((k+1)P)∩M ⊆ (kP)∩M +P∩M

since the other inclusion is obvious.

First consider the case whereP is a simplex with no interior lattice points.
Let the vertices ofP bem0, . . . ,mn and takek≥ n−1. Then(k+1)P has vertices
(k+1)m0, . . . ,(k+1)mn, so that a pointm∈ ((k+1)P)∩M is a convex combination

m=
∑n

i=0µi(k+1)mi , whereµi ≥ 0,
∑n

i=0µi = 1.
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If we setλi = (k+1)µi , then

m=
∑n

i=0λimi, whereλi ≥ 0,
∑n

i=0λi = k+1.

If λi ≥ 1 for somei, then one easily sees thatm−mi ∈ (kP)∩M. Hencem =
(m−mi)+ mi is the desired decomposition. On the other hand, ifλi < 1 for all i,
then

n = (n−1)+1≤ k+1 =
∑n

i=0λi < n+1,

so thatk = n−1 and
∑n

i=0λi = n. Now consider the lattice point

m̃=
(
m0 + · · ·+mn)−m=

∑n
i=0 (1−λi)mi .

The coefficients are positive sinceλi < 1 for all i, and their sum is
∑n

i=0(1−λi) =
n+1−n = 1. Hencem̃ is a lattice point in the interior ofP since 1−λi > 0 for all
i. This contradicts our assumption onP and completes the proof whenP is a lattice
simplex containing no interior lattice points.

To prove (2.2.3) for the general case, it suffices to prove that P is a finite union
of n-dimensional lattice simplices with no interior lattice points (Exercise 2.2.7).
For this, we use Carathéodory’s theorem (see [175, Prop. 1.15]), which asserts that
for a finite setA ⊆MR, we have

Conv(A ) =
⋃

Conv(B),

where the union is over all subsetsB ⊆A consisting of dimConv(A )+1 affinely
independent elements. Thus each Conv(B) is a simplex. This enables us to write
our lattice polytopeP as a finite union ofn-dimensional lattice simplices.

If ann-dimensional lattice simplexQ= Conv(w0, . . . ,wn) has an interior lattice
point v, then

Q =

n⋃

i=0

Qi , Qi = Conv(w0, . . . ,ŵi , . . . ,wn,v)

is a finite union ofn-dimensional lattice simplices, each of which has fewer interior
lattice points thanQ sincev becomes a vertex of eachQi. By repeating this process
on thoseQi that still have interior lattice points, we can eventually write Q and
hence our original polytopeP as a finite union ofn-dimensional lattice simplices
with no interior lattice points. You will verify the detailsin Exercise 2.2.7. �

This theorem shows that for the non-normal 3-simplexP of Example 2.2.10,
its multiple 2P is normal. Here is another consequence of Theorem 2.2.11.

Corollary 2.2.12. Every lattice polygon P⊆ R2 is normal. �

We can also interpret normality in terms of the cone

C(P) = Cone(P×{1})⊆MR×R
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introduced in Figure 3 of Chapter 1. The key feature of this cone is thatkP is the
“slice” of C(P) at heightk, as illustrated in Figure 4. It follows that lattice points
m∈ kPcorrespond to points(m,k) ∈C(P)∩ (M×Z).

P

2P

height = 1

height = 2

C(P)

Figure 4. The coneC(P) sliced at heights 1 and 2

In Exercise 2.2.8 you will show that the semigroupC(P)∩ (M×Z) of lattice
points inC(P) relates to normality as follows.

Lemma 2.2.13.Let P⊆MR be a lattice polytope. Then P is normal if and only if
(P∩M)×{1} generates the semigroup C(P)∩ (M×Z). �

This lemma tells us thatP⊆MR is normal if and only if(P∩M)×{1} is the
Hilbert basis ofC(P)∩ (M×Z).

Example 2.2.14.In Example 2.2.10, the simplexP= Conv(0,e1,e2,e1+e2+3e3)
gives the coneC(P)⊆ R4. The Hilbert basis ofC(P)∩ (M×Z) is

(0,1),(e1,1),(e2,1),(e1 +e2+3e3,1),(e1 +e2 +e3,2),(e1 +e2 +2e3,2)

(Exercise 2.2.3). Since the Hilbert basis has generators ofheight greater than 1,
Lemma 2.2.13 gives another proof thatP is not normal.

In Exercise 2.2.9, you will generalize Lemma 2.2.13 as follows.

Lemma 2.2.15.Let P⊆MR ≃Rn be a lattice polytope of dimension n≥ 2 and let
k0 be the maximum height of an element of the Hilbert basis of C(P). Then:

(a) k0≤ n−1.

(b) kP is normal for any k≥ k0. �
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The Hilbert basis of the simplexP of Example 2.2.14 has maximum height 2.
Then Lemma 2.2.15 gives another proof that 2P is normal. The paper [114] gives
a version of Lemma 2.2.15 that applies to Hilbert bases of more general cones.

Very Ample Polytopes. Here is a slightly different notion of what it means for a
polytope to have enough lattice points.

Definition 2.2.16. A lattice polytopeP ⊆ MR is very ampleif for every vertex
m∈ P, the semigroupSP,m = N(P∩M−m) generated by the setP∩M−m =
{m′−m |m′ ∈ P∩M} is saturated inM.

This definition relates to normal polytopes as follows.

Proposition 2.2.17.A normal lattice polytope P is very ample.

Proof. Fix a vertexm0 ∈ P and takem∈M such thatkm∈ SP,m0 for some integer
k≥ 1. To prove thatm∈ SP,m0, write km∈ SP,m0 as

km=
∑

m′∈P∩M am′(m′−m0), am′ ∈ N.

Pickd ∈ N so thatkd≥∑m′∈P∩M am′ . Then

km+kdm0 =
∑

m′∈P∩M am′m′+
(
kd−∑m′∈P∩Mam′

)
m0 ∈ kdP.

Dividing by k givesm+dm0 ∈ dP, which by normality implies that

m+dm0 =

d∑

i=1

mi, mi ∈ P∩M for all i.

We conclude thatm=
∑d

i=1(mi−m0) ∈ SP,m0, as desired. �

Combining this with Theorem 2.2.11 and Corollary 2.2.12 gives the following.

Corollary 2.2.18. Let P⊆MR ≃ Rn be a full dimensional lattice polytope.

(a) If dimP≥ 2, then kP is very ample for all k≥ n−1. �

(b) If dimP = 2, then P is very ample.

Part (a) was first proved in [51]. We will soon see that very ampleness is
precisely the property needed to define the toric variety of alattice polytope.

The following example taken from [25, Ex. 5.1] shows that very ample poly-
topes need not be normal, i.e., the converse of Proposition 2.2.17 is false.

Example 2.2.19.Given 1≤ i < j < k≤ 6, let [i jk] denote the vector inZ6 with 1
in positionsi, j,k and 0 elsewhere. Thus[123] = (1,1,1,0,0,0). Then let

A =
{
[123], [124], [135], [146], [156], [236], [245], [256], [345], [346]

}
⊆ Z6.

The lattice polytopeP = Conv(A ) lies in the affine hyperplane ofR6 where the
coordinates sum to 3. As explained in [25], this configuration can be interpreted in
terms of a triangulation of the real projective plane.
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The points ofA of P are the only lattice points ofP (Exercise 2.2.10), so that
A is the set of vertices ofP. Number the points ofA asm1, . . . ,m10. Then

(1,1,1,1,1,1) = 1
5

10∑

i=1

mi =
10∑

i=1

1
10(2mi)

shows thatv = (1,1,1,1,1,1) ∈ 2P. Sincev is not a sum of lattice points ofP
(when [i jk] ∈ A , the vectorv− [i jk] is not in A ), we conclude thatP is not a
normal polytope.

Showing thatP is very ample takes more work. The first step is to prove that
A ×{1}∪{(v,2)} ⊆R6×R is a Hilbert basis of the semigroupC(P)∩Z7, where
C(P)⊆ R6×R is the cone overP×{1}. We used the software4ti2 [83].

Now fix i and letSP,mi be the semigroup generated by themj −mi. Takem∈
Z6 such thatkm∈ SP,mi . As in the proof of Proposition 2.2.17, this implies that
m+dmi ∈ dP for somed ∈ N. Thus(m+dmi,d) ∈C(P)∩Z7. Expressing this in
terms of the above Hilbert basis easily implies that

m= a(v−2mi)+

10∑

j=1

a j(mj −mi), a,a j ∈N.

If we can show thatv−2mi ∈ SP,mi , thenm∈ SP,mi follows immediately and proves
thatSP,mi is saturated. Wheni = 1, one can check that

v+[123] = [124]+ [135]+ [236],

which implies that

v−2m1 = (m2−m1)+ (m3−m1)+ (m6−m1) ∈ SP,m1.

One obtains similar formulas fori = 2, . . . ,10 (Exercise 2.2.10), which completes
the proof thatP is very ample.

The polytopeP has further interesting properties. For example, up to affine
equivalence,P can be described as the convex hull of the 10 points inZ5 given by

(0,0,0,0,0),(0,0,0,0,1), (0,0,1,1,0),(0,1,0,1,1),(0,1,1,1,0)

(1,0,1,0,1),(1,0,1,1,1), (1,1,0,0,0),(1,1,0,1,1),(1,1,1,0,0).

Of all 5-dimensional polytopes whose vertices lie in{0,1}5, this polytope has the
most edges, namely 45 (see [1]). Since it has 10 vertices and 45=

(10
2

)
, every pair

of distinct vertices is joined by an edge. Such polytopes are2-neighborly. ♦

Exercises for §2.2.

2.2.1. Let P⊆MR be a polytope of maximal dimension with the origin as an interior point.

(a) WriteP = {m∈MR | 〈m,uF〉 ≥ −aF for all facetsF}. Prove thataF > 0 for all F and
thatP◦ = Conv((1/aF)uF | F a facet).

(b) Prove that the dual of a simplicial polytope is simple andvice versa.
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(c) Prove that(rP)◦ = (1/r)P◦ for all r > 0.

(d) Use part (c) to construct an example of a lattice polytopewhose dual is not a lattice
polytope.

2.2.2. Let P⊆MR be a polytope.

(a) Prove thatP is a lattice polytope if and only if the vertices ofP lie in M

(b) Prove thatP is a lattice polytope if and only ifP is the convex hull of its lattice points,
i.e.,P = Conv(P∩M).

(c) Prove that every face of a lattice polytope is a lattice polytope.

(d) Prove that Minkowski sums and integer multiples of lattice polytopes are again lattice
polytopes.

2.2.3.LetP= Conv(0,e1,e2,e1+e2+3e3)⊆R3 be the simplex studied in Examples 2.2.4,
2.2.7, 2.2.10 and 2.2.14.

(a) Verify the facet presentation ofP given in Example 2.2.7.

(b) Show that the only lattice points ofP are its vertices.

(c) Show that the toric varietyXP∩Z3 is P3.

(d) Show that the vectors given in Example 2.2.14 form the Hilbert basis of the semigroup
C(P)∩ (M×Z).

2.2.4. Prove that every 1-dimensional lattice polytope is normal.

2.2.5. Recall the definition of basic simplex given in Definition 2.2.9.

(a) Show that if a simplex satisfies Definition 2.2.9 for one vertex, then it satisfies the
definition for all vertices.

(b) Show that the standard simplex∆n is basic.

(c) Prove that a basic simplex is normal.

2.2.6. Let P⊆MR ≃ Rn be ann-dimensional lattice polytope.

(a) Prove that (2.2.3) implies that

(kP)∩M +(ℓP)∩M = ((k+ ℓ)P)∩M

for all integersk≥ n−1 andℓ≥ 0. Hint: Whenℓ= 2, we have

(kP)∩M +P∩M +P∩M ⊆ (kP)∩M +(2P)∩M ⊆ ((k+2)P)∩M.

Apply (2.2.3) twice on the right.

(b) Use part (a) to prove thatkP is normal whenk≥ n−1 andP satisifes (2.2.3).

2.2.7. Let P⊆MR ≃ Rn be ann-dimensional lattice polytope.

(a) Follow the hints given in the text to give a careful proof that P is a finite union of
n-dimensional lattice simplices with no interior lattice points.

(b) In the text, we showed that (2.2.3) holds for ann-dimensional lattice simplex with no
interior lattice points. Use this and part (a) to show that (2.2.3) holds forP.

2.2.8. Prove Lemma 2.2.13.

2.2.9. In this exercise you will prove Lemma 2.2.15. As in the lemma,let k0 be the maxi-
mum height of a generator of the Hilbert basis ofC(P).
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(a) Adapt the proof of Gordan’s Lemma (Proposition 1.2.17) to show that ifH is the
Hilbert basis of the semigroup of lattice points in a strongly convex cone Cone(A ),
then the lattice points in the cone can be written as the union

NA ∪⋃m∈H

(
m+NA

)
.

(b) Conclude that
C(P)∩ (M×Z) = S∪⋃s

i=1

(
(mi ,hi)+S

)
,

whereS = N((P∩M)×{1}).
(c) Use part (b) to show that (2.2.3) holds fork≥ k0.

2.2.10. Consider the polytopeP = Conv(A ) from Example 2.2.19.

(a) Prove thatA is the set of lattice points ofP.

(b) Complete the proof begun in the text thatP is very ample.

2.2.11. Prove that every proper face of a simplicial polytope is a simplex.

2.2.12. In Corollary 2.2.18 we proved thatkP is very ample fork ≥ n− 1 using Theo-
rem 2.2.11 and Proposition 2.2.17. Give a direct proof of theweaker result thatkP is very
ample fork sufficiently large. Hint: A vertexm∈ P gives the coneCP,m generated by the
semigroupSP,m defined in Definition 2.2.16. The coneCP,m is strongly convex sincem is
a vertex and henceCP,m∩M has a Hilbert basis. Furthermore,CP,m = CkP,km for all k∈ N.
Now argue that whenk is large,(kP)∩M−kmcontains the Hilbert basis ofCP,m∩M. A
picture will help.

2.2.13. Fix an integera≥ 1 and consider the 3-simplexP = Conv(0,ae1,ae2,e3)⊆ R3.

(a) Work out the facet presentation ofP and verify that the facet normals can be labeled
so thatu0 +u1+u2 +au3 = 0.

(b) Show thatP is normal. Hint: Show thatP∩Z3 +(kP)∩Z3 = ((k+1)P)∩Z3.

We will see later that the toric variety ofP is the weighted projective spaceP(1,1,1,a).

§2.3. Polytopes and Projective Toric Varieties

Our next task is to define the toric variety of a lattice polytope. As noted in §2.2,
we need to make sure that the polytope has enough lattice points. Hence we begin
with very ample polytopes. Strongly convex rational polyhedral cones will play an
important role in our development.

The Very Ample Case. Let P⊆ MR be a full dimensional very ample polytope
relative to the latticeM, and let dimP = n. If P∩M = {m1, . . . ,ms}, thenXP∩M is
the Zariski closure of the image of the mapTN→ Ps−1 given by

t 7−→
(
χm1(t), . . . ,χms(t)

)
∈ Ps−1.

Fix homogeneous coordinatesx1, . . . ,xs for Ps−1.

We examine the structure ofXP∩M ⊆ Ps−1 using Propositions 2.1.8 and 2.1.9.
For eachmi ∈ P∩M consider the semigroup

Si = N(P∩M−mi)
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generated bymj −mi for mj ∈ P∩M. In Ps−1 we have the affine open subset
Ui ≃ Cs−1 consisting of those points wherexi 6= 0. Proposition 2.1.8 showed that
the affine open pieceXP∩M ∩Ui of XP is the affine toric variety

XP∩M ∩Ui ≃ Spec(C[Si]),

and Proposition 2.1.9 showed that

XP∩M =
⋃

mi vertex ofP

XP∩M ∩Ui.

Here is our first major result aboutXP∩M.

Theorem 2.3.1.Let XP∩M be the projective toric variety of the very ample polytope
P⊆MR, and assume that P is full dimensional withdimP = n.

(a) For each vertex mi ∈P∩M, the affine piece XP∩M∩Ui is the affine toric variety

XP∩M ∩Ui = Uσi = Spec(C[σ∨i ∩M])

whereσi ⊆NR is the strongly convex rational polyhedral cone dual to the cone
Cone(P∩M−mi)⊆MR. Furthermore,dimσi = n.

(b) The torus of XP∩M has character lattice M and hence is the torus TN.

Proof. Let Ci = Cone(P∩M−mi). Sincemi is a vertex, it has a supporting hy-
perplaneHu,a such thatP⊆ H+

u,a and P∩Hu,a = {mi}. It follows that Hu,0 is a
supporting hyperplane of 0∈Ci (Exercise 2.3.1), so thatCi is strongly convex. It is
also easy to see that dimCi = dimP (Exercise 2.3.1). It follows thatCi andσi =C∨i
are strongly convex rational polyhedral cones of dimensionn.

We haveSi ⊆Ci ∩M = σ∨i ∩M. By hypothesis,P is very ample, which means
thatSi ⊆M is saturated. SinceSi andCi = σ∨i are both generated byP∩M−mi,
part (a) of Exercise 1.3.4 impliesSi = σ∨i ∩M. (This exercise was part of the proof
of the characterization of normal affine toric varieties given in Theorem 1.3.5.)
Part (a) of the theorem follows immediately.

For part (b), Theorem 1.2.18 implies thatTN is the torus ofUσi sinceσi is
strongly convex. ThenTN ⊆Uσi = XP∩M ∩Ui ⊆ XP∩M shows thatTN is also the
torus ofXP∩M. �

The affine piecesXP∩M ∩Ui andXP∩M ∩U j intersect inXP∩Ui ∩U j . In order
to describe this intersection carefully, we need to study how the conesσi andσ j fit
together inNR. This leads to our next topic.

The Normal Fan. The conesσi ⊆ NR appearing in Theorem 2.3.1 fit together in a
remarkably nice way, giving a structure called thenormal fan of P.

Let P⊆MR be a full dimensional lattice polytope, not necessarily very ample.
Faces, facets and vertices ofP will be denoted byQ, F andv respectively. Hence
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we write the facet presentation ofP as

(2.3.1) P = {m∈MR | 〈m,uF〉 ≥ −aF for all F}.

A vertexv∈ P gives cones

Cv = Cone(P∩M−v)⊆MR and σv = C∨v ⊆ NR.

(Whenv= mi, these are the conesCi andσi studied above.) FacesQ⊆P containing
v correspond bijectively to facesQ⊆Cv via the maps

(2.3.2)
Q 7−→Q = Cone(Q∩M−v)

Q 7−→Q = (Q+v)∩P

which are inverses of each other. These maps preserve dimensions, inclusions, and
intersections (Exercise 2.3.2), as illustrated in Figure 5.

0

Cv

v

P

Figure 5. The coneCv of a vertexv∈ P

In particular, all facets ofCv come from facets ofP containingv, so that

Cv = {m∈MR | 〈m,uF〉 ≥ 0 for all F containingv}.
By the duality results of Chapter 1, it follows that the dual coneσv is given by

σv = Cone(uF | F containsv).

This construction generalizes to arbitrary facesQ� P by setting

σQ = Cone(uF | F containsQ).

Thus the coneσF is the ray generated byuF , andσP = {0} since{0} is the cone
generated by the empty set. Here is our main result about these cones.
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Theorem 2.3.2.Let P⊆ MR be a full dimensional lattice polytope and setΣP =
{σQ |Q� P}. Then:

(a) For all σQ ∈ ΣP, each face ofσQ is also inΣP.

(b) The intersectionσQ∩σQ′ of any two cones inΣP is a face of each.

A collection of strongly convex rational polyhedral cones satisfying conditions
(a) and (b) of Theorem 2.3.2 is called afan. General fans will be introduced in
Chapter 3. Since the cones in the above fanΣP are built from the inward-pointing
normal vectorsuF , we callΣP thenormal fanor inner normal fanof P.

The following easy lemma will be useful in the proof of Theorem 2.3.2.

Lemma 2.3.3. Let Q be a face of P and let Hu,b be a supporting affine hyperplane
of P. Then u∈ σQ if and only if Q⊆ Hu,b∩P.

Proof. First suppose thatu∈ σQ and writeu =
∑

Q⊆F λFuF , λF ≥ 0. Then setting
b = −∑Q⊆F λFaF easily implies thatP⊆ H+

u,b andQ⊆ Hu,b∩P. Recall that the
integersaF come from the facet presentation (2.3.1).

Going the other way, suppose thatQ⊆ Hu,b∩P. Take a vertexv ∈ Q. Then
P⊆ H+

u,b andv∈ Hu,b imply thatCv⊆ H+
u,0. Henceu∈C∨v = σv, so that

u =
∑

v∈F λFuF , λF ≥ 0.

Let F0 be a facet ofP containingv but notQ, and pickp∈ Q with p /∈ F0. Then
p,v∈Q⊆ Hu,b imply that

b = 〈p,u〉 =∑v∈F λF〈p,uF 〉
b = 〈v,u〉 =∑v∈F λF〈v,uF 〉=−

∑
v∈F λFaF ,

where the last equality uses〈v,uF 〉=−aF for v∈ F. These equations imply
∑

v∈F λF〈p,uF〉=−
∑

v∈F λFaF .

However,p /∈F0 gives〈p,uF0〉>−aF0, and since〈p,uF 〉≥−aF for all F , it follows
thatλF0 = 0 wheneverQ 6⊆ F0. This givesu∈ σQ and completes the proof of the
lemma. �

Corollary 2.3.4. If Q� P and F≺ P is a facet, then uF ∈ σQ if and only if Q⊆ F.

Proof. One direction is obvious by the definition ofσQ, and the other direction
follows from Lemma 2.3.3 sinceHuF ,−aF is a supporting affine hyperplane ofP
with HuF ,−aF ∩P = F . �

Theorem 2.3.2 is an immediate corollary of the the followingproposition.

Proposition 2.3.5. Let Q and Q′ be faces of a full dimensional lattice polytope
P⊆MR. Then:

(a) Q⊆Q′ if and only ifσQ′ ⊆ σQ.
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(b) If Q⊆Q′, thenσQ′ is a face ofσQ, and all faces ofσQ are of this form.

(c) σQ∩σQ′ = σQ′′ , where Q′′ is the smallest face of P containing Q and Q′.

Proof. To prove part (a), note that ifQ⊆ Q′, then any facet containingQ′ also
containsQ, which impliesσQ′ ⊆ σQ. The other direction follows easily from
Corollary 2.3.4 since every face is the intersection of the facets containing it by
Proposition 2.2.1.

For part (b), fix a vertexv∈Q and note that by (2.3.2),Q determines a faceQ
of Cv. Using the duality of Proposition 1.2.10,Q gives the dual face

Q∗ = C∨v ∩Q⊥ = σv∩Q⊥

of the coneσv. Then usingσv = Cone(uF | v∈ F) andQ⊆Cv = σ∨v , one obtains

Q∗ = Cone(uF | v∈ F, Q⊆ HuF ,0).

Sincev∈Q, the inclusionQ⊆HuF ,0 is equivalent toQ⊆HuF ,−aF , which in turn is
equivalent toQ⊆ F. It follows that

(2.3.3) Q∗ = Cone(uF |Q⊆ F) = σQ,

so thatσQ is a face ofσv, and all faces ofσv arise in this way.

In particular,Q⊆Q′ means thatσQ′ is also a face ofσv, and sinceσQ′ ⊆ σQ by
part (a), we see thatσQ′ a face ofσQ. Furthermore, every face ofσQ is a face ofσv

by Proposition 1.2.6 and hence is of the formσQ′ for some faceQ′. Using part (a)
again, we see thatQ⊆Q′, and part (b) follows.

For part (c), letQ′′ be the smallest face ofP containingQ andQ′. This exists
because a face is the intersection of the facets containing it, so thatQ′′ is the inter-
section of all facets containingQ andQ′ (if there are no such facets, thenQ′′ = P).
By part (b)σQ′′ is a facet of bothσQ andσQ′ . ThusσQ′′ ⊆ σQ∩σQ′ .

It remains to prove the opposite inclusion. IfσQ∩σQ′ = {0}=σP, thenQ′′= P
and we are done. IfσQ∩σQ′ 6= {0}, any nonzerou in the intersection lies in both
σQ andσQ′ . The proof of Proposition 2.3.6 given below will show thatHu,b is a
supporting affine hyperplane ofP for someb∈ R. By Lemma 2.3.3,u∈ σQ and
u ∈ σQ′ imply that Q andQ′ lie in Hu,b∩P. The latter is a face ofP containing
Q and Q′, so thatQ′′ ⊆ Hu,b∩P sinceQ′′ is the smallest such face. Applying
Lemma 2.3.3 again, we see thatu∈ σQ′′ . �

Proposition 2.3.5 shows that there is a bijective correspondence between faces
of P and cones of the normal fanΣP. Here are some further properties of this
correspondence.

Proposition 2.3.6.Let P⊆MR be a full dimensional lattice polytope of dimension
n and consider the conesσQ in the normal fanΣP of P. Then:

(a) dimQ+dimσQ = n for all faces Q� P.
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(b) NR =
⋃

v vertex ofPσv =
⋃
σQ∈ΣP

σQ.

Proof. SupposeQ� P and take a vertexv of Q. By (2.3.2) this gives a faceQ of
the coneCv, which has a dual faceQ∗ of the dual coneC∨v = σv. SinceQ∗ = σQ by
(2.3.3), we have

dimQ+dimσQ = dimQ+dimQ∗ = n,

where the first equality uses Exercise 2.3.2 and the second follows from Propo-
sition 1.2.10. This proves part (a). For part (b), letu ∈ NR be nonzero and set
b = min{〈v,u〉 | v vertex ofP}. ThenP⊆ H+

u,b andv ∈ Hu,b for at least one ver-
tex of P, so thatu ∈ σv by Lemma 2.3.3. The final equality of part (b) follows
immediately. �

A fan satisfying the condition of part (b) of Proposition 2.3.6 is calledcom-
plete. Thus the normal fan of a lattice polytope is always complete. We will learn
more about complete fans in Chapter 3.

In general, multiplying a polytope by a positive integer hasno effect on its
normal fan, and the same is true for translations by lattice points. We record these
properties in the following proposition (Exercise 2.3.3).

Proposition 2.3.7. Let P⊆ MR be a full dimensional lattice polytope. Then for
any lattice point m∈ M and any integer k≥ 1, the polytopes m+ P and kP have
the same normal fan as P. �

Examples of Normal Fans. Here are some examples of normal fans.

Example 2.3.8. The 2-simplex∆2 ⊆ R2 has vertices 0,e1,e2. Let P = k∆2 for
some positive integerk. Figure 6 showsP and its normal fanΣP. At each vertexvi

P

v0 v1

v2

σ0σ1

σ2

ΣP

Figure 6. The triangleP = k∆2 ⊆ R2 and its normal fanΣP

of P, we have drawn the normal vectors of the facets containingvi and shaded the
coneσi they generate. The reassembled cones appear on the left asΣP. ♦
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Example 2.3.9. Figure 7 shows a lattice hexagonP in the plane together with
its normal fan. The vertices ofP are labeledv1, . . . ,v6, with corresponding cone
σ1, . . . ,σ6 in the normal fan. In the figure,P is shown on the left, and at each vertex
vi , we have drawn the normal vectors of the facets containingvi and shaded the
coneσi they generate. On the right, these cones are assembled at theorigin to give
the normal fan.

P

v1 v2

v3

v4v5

v6
σ1

σ4 σ6

σ3

σ2

σ5ΣP

Figure 7. A lattice hexagonP and its normal fanΣP

Notice how one can read off the structure ofP from the normal fan. For exam-
ple, two conesσi andσ j share a ray inΣP if and only if the verticesvi andv j lie
on an edge ofP. ♦

Example 2.3.10.Consider the cubeP⊆R3 with vertices(±1,±1,±1). The facet
normals are±e1,±e2,±e3, and the facet presentation ofP is

〈m,±ei〉 ≥ −1.

The origin is an interior point ofP. By Exercise 2.2.1, the facet normals are the
vertices of the dual polytopeP◦, the octahedron in Figure 8 on the next page.

However, the facet normals also give the normal fan ofP, and one can check
that in the above figure, the maximal cones of the normal fan are the octants ofR3,
which are just the cones over the facets of the dual polytopeP◦. ♦

As noted earlier, it is rare that bothP andP◦ are lattice polytopes. However,
wheneverP⊆ MR is a lattice polytope containing 0 as an interior point, it isstill
true that maximal cones of the normal fanΣP are the cones over the facets of
P◦ ⊆ NR (Exercise 2.3.4).

The special behavior of the polytopesP andP◦ discussed in Examples 2.2.6
and 2.3.10 leads to the following definition.

Definition 2.3.11. A full dimensional lattice polytopeP⊆ MR is reflexive if its
facet presentation is

P = {m∈MR | 〈m,uF〉 ≥ −1 for all facetsF}.
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y

x

z

P

y

x

z

P˚ 

Figure 8. A cubeP⊆ R3 and its dual octahedronP◦

If P is reflexive, then 0 is a lattice point ofP and is theonly interior lattice
point of P (Exercise 2.3.5). SinceaF = 1 for all F, Exercise 2.2.1 implies that

P◦ = Conv(uF | F facet ofP).

ThusP◦ is a lattice polytope and is in fact reflexive (Exercise 2.3.5).

We will see later that reflexive polytopes lead to some very interesting toric
varieties that are important for mirror symmetry.

Intersection of Affine Pieces. Let P⊆MR be a full dimensional very ample poly-
tope and sets= |P∩M|. This gives

XP∩M ⊆ Ps−1.

If XP∩M ∩Uv is the affine piece corresponding a vertexv∈ P, then

XP∩M ∩Uv = Uσv = Spec(C[σ∨v ∩M])

by Theorem 2.3.1. Thus the affine pieceXP∩M ∩Uv is the toric variety of the cone
σv in the normal fanΣP of P.

Our next task is to describe the intersection of two of these affine pieces.

Proposition 2.3.12.Let P⊆MR be full dimensional and very ample. If v6= w are
vertices of P and Q is the smallest face of P containing v and w,then

XP∩M ∩Uv∩Uw = UσQ = Spec(C[σ∨Q∩M])

and the inclusions

XP∩M ∩Uv⊇ XP∩M ∩Uv∩Uw⊆ XP∩M ∩Uw

can be written

(2.3.4) Uσv ⊇ (Uσv)χw−v = UσQ = (Uσw)χv−w ⊆Uσw.
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Proof. We analyzed the intersection of affine pieces ofXP∩M in §2.1. Translated
to the notation being used here, (2.1.6) and (2.1.7) imply that

XP∩M ∩Uv∩Uw = (Uσv)χw−v = (Uσw)χv−w.

Thus all we need to show is that

(Uσv)χw−v = UσQ.

However, we havew− v∈Cv = σ∨v , so thatτ = Hw−v∩σv is a face ofσv. In this
situation, Proposition 1.3.16 and equation (1.3.4) imply that

(Uσv)χw−v = Uτ .

Thus the proposition will follow once we proveτ = σQ, i.e.,Hw−v∩σv = σQ. Since
σQ = σv∩σw by Proposition 2.3.5, it suffices to prove that

Hw−v∩σv = σv∩σw.

Let u∈ Hw−v∩σv. If u 6= 0, there isb∈ R suchHu,b is a supporting affine hyper-
plane ofP. Thenu∈ σv impliesv∈ Hu,b by Lemma 2.3.3, so thatw∈ Hu,b since
u∈ Hw−v. Applying Lemma 2.3.3 again, we getu∈ σw. Going the other way, let
u ∈ σv∩σw. If u 6= 0, pick b ∈ R as above. Thenu ∈ σv∩σw and Lemma 2.3.3
imply that v,w ∈ Hu,b, from which u ∈ Hw−v follows easily. This completes the
proof. �

This proposition and Theorem 2.3.1 have the remarkable result that the normal
fanΣP completely determines the internal structure ofXP∩M: we buildXP∩M from
local pieces given by the affine toric varietiesUσv, glued together via (2.3.4). We
do not need the ambient projective spacePs−1 for any of this—everything we need
to know is contained in the normal fan.

The Toric Variety of a Polytope. We can now give the general definition of the
toric variety of a polytope.

Definition 2.3.13. Let P⊆ MR be a full dimensional lattice polytope. Then we
define thetoric variety of Pto be

XP = X(kP)∩M

wherek is any positive integer such thatkP is very ample.

Such integersk exist by Corollary 2.2.18, and ifk andℓ are two such integers,
then kP and ℓP have the same normal fan by Proposition 2.3.7, namelyΣkP =
ΣℓP = ΣP. It follows that whileX(kP)∩M and X(ℓP)∩M lie in different projective
spaces, they are built from the affine toric varietiesUσv glued together via (2.3.4).
Once we develop the language of abstract varieties in Chapter 3, we will see that
XP is well-defined as an abstract variety.

We will often speak ofXP without regard to the projective embedding. When
we want to use a specific embedding, we will say “XP is embedded usingkP”,
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where we assume thatkP is very ample. In Chapter 6 we will use the language of
divisors and line bundles to restate this in terms of a divisor DP on XP such that
kDP is very ample precisely whenkP is.

Here is a simple example to illustrate the difference between XP as an abstract
variety andXP as sitting in a specific projective space.

Example 2.3.14.Consider then-simplex∆n⊆ Rn. We can defineX∆n usingk∆n

for any integerk≥ 1 since∆n is normal and hence very ample. The lattice points
in k∆n correspond to thesk =

(n+k
k

)
monomials ofC[t1, . . . , tn] of total degree≤ n.

This gives an embeddingX∆n ⊆ Psk−1. Whenk = 1, ∆n∩Zn = {0,e1, . . . ,en}
implies that

X∆n = Pn.

The normal fan of∆n is described in Exercise 2.3.6. For an arbitraryk≥ 1, we can
regardX∆n ⊆ Psk−1 as the image of the map

νk : Pn−→ Psk−1

defined using all monomials of total degreek in C[x0, . . . ,xn] (Exercise 2.3.6). It
follows that this map is an embedding, usually called theVeronese embedding. But
when we forget the embedding, the underlying toric variety is justPn.

The Veronese embedding allows us to construct some interesting affine open
subsets ofPn. Let f ∈ C[x0, . . . ,xn] be nonzero and homogeneous of degreek and
write f =

∑
|α|=k cαxα. We write the homogeneous coordinates ofPs−1 asyα for

|α|= k. ThenL =
∑
|α|=k cαyα is a nonzero linear form in the variablesyα, so that

Psk−1\V(L) is a copy ofCsk−1 (Exercise 2.3.6). If follows that

Pn\V( f )≃ νk(P
n)∩

(
Psk−1\V(L)

)

is an affine variety (usually not toric). This shows thatPn has a richer supply of
affine open subsets than just the open setsUi = Pn\V(xi) considered earlier in the
chapter. ♦

When we explain the Proj construction ofPn later in the book, we will see the
intrinsic reason whyPn\V( f ) is an affine open subset ofPn.

Example 2.3.15.The 2-dimensional analog of the rational normal curveCd is the
rational normal scroll Sa,b, which is the toric variety of the polygon

Pa,b = Conv(0,ae1,e2,be1 +e2)⊆ R2,

wherea,b ∈ N satisfy 1≤ a≤ b. The polygonP = P2,4 and its normal fan are
pictured in Figure 9 on the next page.

In general, the polygonPa,b hasa+b+2 lattice points and gives the map

(C∗)2−→ Pa+b+1, (s, t) 7→ (1,s,s2, . . . ,sa, t,st,s2t, . . . ,sbt)
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P = P2,4

v1 = 0 v4 = 2e1

v2 = e2 v3 = 4e1 + e2

σ1

σ3

σ2

σ4

ΣP

Figure 9. The polygon of a rational normal scroll and its normal fan

such thatSa,b = XPa,b is the Zariski closure of the image. To describe the image, we
rewrite the map as

C×P1−→ Pa+b+1, (s,λ,µ) 7→ (λ,sλ,s2λ, . . . ,saλ,µ,sµ,s2µ,. . . ,sbµ).

When(λ,µ) = (1,0), the map iss 7→ (1,s,s2, . . . ,sa,0, . . . ,0), which is the rational
normal curveCa mapped to the firsta+ 1 coordinates ofPa+b+1. In the same
way, (λ,µ) = (0,1) gives the rational normal curveCb mapped to the lastb+ 1
coordinates ofPa+b+1. If we think of these two curves as the “edges” of a scroll,
then fixings gives a point on each edge, and letting(λ,µ) ∈ P1 vary gives the line
of the scroll connecting the two points. So it really is a scroll!

An important observation is that the normal fan dependsonlyon the difference
b−a, since this determines the slope of the slanted edge ofPa,b. If we denote the
difference byr ∈ N, it follows that as abstract toric varieties, we have

XP1,r+1 = XP2,r+2 = XP3,r+3 = · · ·
since they are all constructed from the same normal fan. In Chapter 3, we will see
that this is the Hirzebruch surfaceHr .

But if we think of the projective surfaceSa,b ⊆ Pa+b+1, thena andb have a
unique meaning. For example, they have a strong influence on the defining equa-
tions ofSa,b. Let the homogeneous coordinates ofPa+b+1 bex0, . . . ,xa,y0, . . . ,yb

and consider the 2× (a+b) matrix
(

x0 x1 · · · xa−1

x1 x2 · · · xa

∣∣∣∣
y0 y1 · · · yb−1

y1 y2 · · · yb

)
.

One can show thatI(Sa,b)⊆C[x0, . . . ,xa,y0, . . . ,yb] is generated by the 2×2 minors
of this matrix (see [76, Ex. 9.11], for example). ♦

Example 2.3.15 is another example of a determinantal variety, as is the rational
normal curve from Example 2.0.1. Note that the rational normal curveCd comes
from the polytope[0,d] = d∆1, where the underlying toric variety is justP1.
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Exercises for §2.3.

2.3.1. This exercise will use the same notation as the proof of Theorem 2.3.1.

(a) LetHu,a be a supporting hyperplane of a vertexmi ∈ P. Prove thatHu,0 is a supporting
hyperplane of 0∈Ci

(b) Prove that dimCi = dimP.

2.3.2. Consider the maps defined in (2.3.2).

(a) Show that these maps are inverses of each other and define abijection between the
faces of the coneCv and the faces ofP containingv.

(b) Prove that these maps preserve dimensions, inclusions,and intersections.

(c) Explain how this exercise relates to Exercise 2.3.1.

2.3.3. Prove Proposition 2.3.7.

2.3.4. Let P⊆MR be a full dimensional lattice polytope containing 0 as an interior point,
and letP◦ ⊆ NR be its dual polytope. Prove that the normal fanΣP consists of the cones
over the faces ofP◦. Hint: Exercise 2.2.1 will be useful.

2.3.5. Let P⊆MR be a reflexive polytope.

(a) Prove that 0 is the only interior lattice point ofP.

(b) Prove thatP◦ ⊆ NR is reflexive.

2.3.6. This exercise is concerned with Example 2.3.14

(a) Let e1, . . . ,en be the standard basis ofRn. Prove that the normal fan of the standard
n-simplex consists of the cones Cone(S) for all proper subsetsS⊆ {e0,e1, . . . ,en},
wheree0 =−∑n

i−1ei . Draw pictures of the normal fan forn = 1,2,3.

(b) For an integerk ≥ 1, show that the toric varietyXk∆n ⊆ Psk−1 is given by the map
νk : Pn−→ Psk−1defined using all monomials of total degreek in C[x0, . . . ,xn].

2.3.7. Let P⊆ MR ≃ Rn be ann-dimensional lattice polytope and letQ⊆ P be a face.
Prove the following intrinsic description of the coneσQ ∈ΣP:

σQ = {u∈ NR | 〈m,u〉 ≤ 〈m′,u〉 for all m∈Q, m′ ∈ P}.
2.3.8. Prove that all lattice rectangles in the plane with edges parallel to the coordinate
axes have the same normal fan.

§2.4. Properties of Projective Toric Varieties

We conclude this chapter by studying when the projective toric variety XP of a
polytopeP is smooth or normal.

Normality. Recall from §2.1 that a projective variety isprojectively normalif its
affine cone is normal.

Theorem 2.4.1.Let P⊆MR be a full dimensional lattice polytope. Then:

(a) XP is normal.

(b) XP is projectively normal under the embedding given by kP if andonly if kP is
normal.
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Proof. Part (a) is immediate sinceXP is the union of affine piecesUσv, v a vertex
of P, andUσv is normal by Theorem 1.3.5. In Chapter 3 we will give an intrinsic
definition of normality that will make this argument completely rigorous.

For part (b), the discussion following (2.1.4) shows that the projective em-
bedding ofXP given byX(kP)∩M has affine cone given byY((kP)∩M)×{1} . By The-
orem 1.3.5, this is normal if and only if the semigroupN

(
((kP)∩M)×{1}

)
is

saturated inM×Z, and since((kP)∩M)×{1} generates the coneC(P), this is
equivalent to saying that(kP)∩M)×{1} generates the semigroupC(P)∩(M×Z).
Then we are done by Lemma 2.2.13. �

Smoothness. Given the results of Chapter 1, the smoothness ofXP is equally easy
to determine. We need one definition.

Definition 2.4.2. Let P⊆MR be a lattice polytope.

(a) Given a vertexv of P and an edgeE containingv, let wE be the first lattice
point of E different fromv encountered as one tranversesE starting atv. In
other words,wE−v is the ray generator of the ray Cone(E−v).

(b) P is smoothif for every vertexv, the vectorswE−v, whereE is an edge ofP
containingv, form a subset of a basis ofM. In particular, if dimP = dimMR,
then the vectorswE−v form a basis ofM.

We can now characterize whenXP is smooth.

Theorem 2.4.3.Let P⊆MR be a full dimensional lattice polytope. Then the fol-
lowing are equivalent:

(a) XP is a smooth projective variety.

(b) ΣP is a smooth fan, meaning that every cone inΣP is smooth in the sense of
Definition 1.2.16.

(c) P is a smooth polytope.

Proof. Smoothness is a local condition, so that a variety is smooth if and only if its
local pieces are smooth. ThusXP is smooth if and only ifUσv is smooth for every
vertexv of P, andUσv is smooth if and only ifσv is smooth by Theorem 1.3.12.
Since faces of smooth cones are smooth andΣP consists of theσv and their faces,
the equivalence (a)⇔ (b) follows immediately.

For (b)⇔ (c), first observe thatσv is smooth if and only if its dualCv = σ∨v is
smooth. The discussion following (2.3.2) makes it easy to see that the ray genera-
tors ofCv are the vectorswE−v from Definition 2.4.2. It follows immediately that
P is smooth if and only ifCv is smooth for every vertexv, and we are done. �

The theorem makes it easy to check the smoothness of simple examples such
as the toric variety of the hexagon in Example 2.3.9 or the rational normal scroll
Sa,b of Example 2.3.15 (Exercise 2.4.1).
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We also note the following useful fact, which you will prove in Exercise 2.4.2.

Proposition 2.4.4. Every smooth full dimensional lattice polytope P⊆MR is very
ample. �

One can also ask whether every smooth lattice polytope is normal. This is an
important open problem in the study of lattice polytopes.

Here is an example of a smooth reflexive polytope whose dual isnot smooth.

Example 2.4.5. Let P = (n+ 1)∆n− (1, . . . ,1) ⊆ Rn, where∆n is the standard
n-simplex. Proposition 2.3.7 implies thatP and∆n have the same normal fan, so
thatP andXP are smooth. Note also thatXP = X∆n = Pn.

The polytopeP has the following interesting properties (Exercise 2.4.3). First,
P has the facet presentation

xi ≥−1, i = 1, . . . ,n,

−x1−·· ·−xn≥−1,

so thatP is reflexive with dual

P◦ = Conv(e0,e1, . . . ,en), e0 =−e1−·· ·−en.

The normal fan ofP◦ consists of cones over the faces ofP. In particular, the cone
of ΣP◦ corresponding to the vertexe0 ∈ P◦ is the cone

σe0 = Conv(v1, . . . ,vn), vi = e0 +(n+1)ei .

Figure 10 showsP and the coneσe0 whenn = 2.

P

v1

v2

σe0

e0

e1

e2

P˚ 

Figure 10. The coneσe0 of the normal fan ofP◦

For generaln, observe thatvi − v j = (n+ 1)(ei − ej). This makes it easy to
see thatZv1 + · · ·+Zvn has index(n+1)n−1 in Zn. Thusσe0 is not smooth when
n≥ 2. It follows that the “dual” toric varietyXP◦ is singular forn≥ 2. Later we
will construct XP◦ as the quotient ofPn under the action of a finite groupG ≃
(Z/(n+1)Z)n−1. ♦
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Example 2.4.6.ConsiderP = Conv(0,2e1,e2) ⊆ R2. SinceP is very ample, the
lattice pointsP∩Z2 = {0,e1,2e1,e2} give the map(C∗)2→ P3 defined by

(s, t) 7−→ (1,s,s2, t)

such thatXP is the Zariski closure of the image. IfP3 has homogeneous coordinates
y0,y1,y2,y3, then we have

XP = V(y0y2−y2
1)⊆ P3.

Comparing this to Example 2.0.5, we see thatXP is the weighted projective space
P(1,1,2). Later we will learn the systematic reason why this is true.

The varietyXP is not smooth. By working on the affine pieceXP∩U3, one can
check directly that(0,0,0,1) is a singular point ofXP.

We can also use Theorem 2.4.3 and the normal fan ofP, shown in Figure 11.
One can check that the conesσ0 andσ1 are smooth, butσ2 is not, so thatΣP

P

v0 v1

v2
σ0

σ1

σ2
ΣP

Figure 11. The polygon givingP(1,1,2) and its normal fan

is not a smooth fan. In terms ofP, note that the vectors fromv2 to the first lattice
points along the edges containingv2 do not generateZ2. Either way, Theorem 2.4.3
implies thatXP is not smooth.

If you look carefully, you will see thatσ2 is theonly nonsmooth cone of the
normal fanΣP. Once we study the correspondence between cones and orbits in
Chapter 3, we will see that the non-smooth coneσ2 corresponds to the singular
point (0,0,0,1) of XP. ♦

Products of Projective Toric Varieties. Our final task is to understand the toric
variety of a product of polytopes. LetPi ⊆ (Mi)R ≃ Rni be lattice polytopes with
dimPi = ni for i = 1,2. This gives a lattice polytopeP1×P2 ⊆ (M1×M2)R of
dimensionn1 +n2.
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ReplacingP1 andP2 with suitable multiples, we can assume thatP1 andP2 are
very ample. This gives projective embeddings

XPi →֒ Psi−1, si = |Pi ∩Mi|,
so that by Proposition 2.0.4,XP1×XP2 is a subvariety ofPs1−1×Ps2−1. Using the
Segre embedding

Ps1−1×Ps2−1 →֒ Ps−1, s= s1s2,

we get an embedding

(2.4.1) XP1×XP2 →֒ Ps−1.

We can understand this projective variety as follows.

Theorem 2.4.7. If P1 and P2 are very ample, then

(a) P1×P2⊆ (M1×M2)R is a very ample polytope with lattice points

(P1×P2)∩ (M1×M2) = (P1∩M1)× (P2∩M2).

Thus the integer s defined above is s= |(P1×P2)∩ (M1×M2)|.
(b) The image of the embedding XP1×XP2 →֒ Ps−1 coming from the very ample

polytope P1×P2 equals the image of(2.4.1).

(c) XP1×P2 ≃ XP1×XP2.

Proof. For part (a), the assertions about lattice points are clear.The vertices of
P1×P2 consist of ordered pairs(v1,v2) wherevi is a vertex ofPi (Exercise 2.4.4).
Given such a vertex, we have

(P1×P2)∩ (M1×M2)− (v1,v2) = (P1∩M1−v1)× (P2∩M2−v2).

SincePi is very ample, we know thatN(Pi ∩Mi−vi) is saturated inMi. From here,
it follows easily thatP1×P2 is very ample.

For part (b), letTNi be the torus ofXPi . SinceTNi is Zariski dense inXPi , it fol-
lows thatTN1×TN2 is Zariski dense inXP1×XP2 (Exercise 2.4.4). When combined
with the Segre embedding, it follows thatXP1×XP2 is the Zariski closure of the
image of the map

TN1×TN2 −→ Ps1s2−1

given by the charactersχmχm′

, wherem ranges over thes1 elements ofP1∩M1

andm′ ranges over thes2 elements ofP2∩M2. When we identifyTN1×TN2 with
TN1×N2, the productχmχm′

becomes the characterχ(m,m′), so that the above map
coincides with the map

TN1×N2 −→ Ps−1

coming from the product polytopeP1×P2 ⊆ (M1×M2)R. Part (b) follows, and
part (c) is an immediate consequence. �

Here is an obvious example.
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Example 2.4.8.SincePn is the toric variety of the standardn-simplex∆n, it fol-
lows thatPn×Pm is the toric variety of∆n×∆m.

This also works for more than two factors. ThusP1× P1× P1 is the toric
variety of the cube pictured in Figure 8. ♦

To have a complete theory of products, we need to know what happens to the
normal fan. Here is the result, whose proof is left to the reader (Exercise 2.4.5).

Proposition 2.4.9.Let Pi ⊆ (Mi)R be full dimensional lattice polytopes for i= 1,2.
Then

ΣP1×P2 = ΣP1×ΣP2. �

Here is an easy example.

Example 2.4.10.The normal fan of an interval[a,b] ⊆ R, wherea< b in Z, is
given by

s

0σ1 σ0

The corresponding toric variety isP1. The cartesian product of two such intervals
is a lattice rectangle whose toric variety isP1×P1 by Theorem 2.4.7. If we set
σi j = σi ×σ j , then Proposition 2.4.9 gives the normal fan given in Figure12.

σ
00

σ10

σ11 σ01

Figure 12. The normal fan of a lattice rectangle givingP1
×P1

We will revisit this example in Chapter 3 when we construct toric varieties
directly from fans. ♦

Proposition 2.4.9 suggests a different way to think about the product. Letvi

range over the vertices ofPi. Then theσvi are the maximal cones in the normal fan
ΣPi , which implies that

(2.4.2) XPi =
⋃

vi
Uσvi

.
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Thus

XP1×XP2 =
(⋃

v1
Uσv1

)
×
(⋃

v2
Uσv2

)

=
⋃

(v1,v2)
Uσv1
×Uσv2

=
⋃

(v1,v2)
Uσv1×σv2

=
⋃

(v1,v2)
Uσ(v1,v2)

= XP1×P2.

In this sequence of equalities, the first follows from (2.4.2), the second is obvious,
the third uses Exercise 1.3.13, the fourth uses Proposition2.4.9, and the last follows
since(v1,v2) ranges over all vertices ofP1×P2.

This argument shows that we can construct cartesian products of varieties using
affine open covers, which reduces to the cartesian product ofaffine varieties defined
in Chapter 1. We will use this idea in Chapter 3 to define the cartesian product of
abstract varieties.

Exercises for §2.4.

2.4.1. Show that the hexagonP = Conv(0,e1,e2,2e1 +e2,e1 +2e2,2e1 +2e2) pictured in
Figure 6 and the trapezoidPa,b pictured in Figure 9 are smooth polygons. Also, of the
polytopes shown in Figure 8, determine which ones are smooth.

2.4.2. Prove Proposition 2.4.4.

2.4.3. Consider the polytopeP = (n+1)∆n− (1, . . . ,1) from Example 2.4.5.

(a) Verify the facet presentation ofP given in the example.

(b) What is the facet presentation ofP◦? Hint: You know the vertices ofP.

(c) Let vi = e0 +(n+ 1)ei , wherei = 1, . . . ,n ande0 = −e1− ·· · −en, and then setL =
Zv1 + · · ·+Zvn. Use the hint given in the text to proveZn/L≃ (Z/(n+1)Z)n−1. This
shows that the index ofL in Zn is (n+1)n−1, as claimed in the text.

2.4.4. Let Pi ⊆ (Mi)R ≃Rni be lattice polytopes with dimPi = ni for i = 1,2. Also letSi be
the set of vertices ofPi .

(a) Use supporting hyperplanes to prove that every element of S1×S2 is a vertex ofP1×P2.

(b) Prove thatP1×P2 = Conv(S1×S2) and conclude thatS1×S2 is the set of vertices of
P1×P2.

2.4.5. The goal of this exercise is to prove Proposition 2.4.9. We know from Exercise 2.4.4
that the vertices ofP1×P2 are the ordered pairs(v1,v2) wherevi is a vertex ofPi.

(a) Adapt the argument of part (a) of Theorem 2.4.7 to show that C(v1,v2) = Cv1 ×Cv2.
Taking duals, we see that the maximal cones ofΣP1×P2 areσ(v1,v2) = σv1×σv2.

(b) Given rational polyhedral conesσi ⊆ (Ni)R and facesτi ⊆ σi , prove thatτ1× τ2 is a
face ofσ1×σ2 and that all faces ofσ1×σ2 arise this way.

(c) Prove thatΣP1×P2 = ΣP1×ΣP2.

2.4.6. Consider positive integers 1= q0≤ q2≤ ·· · ≤ qn with the property thatqi |
∑n

j=0q j

for i = 0, . . . ,n. Setki =
(∑n

j=0 q j

)
/qi for i = 1, . . . ,n and let

Pq0,...,qn = Conv(0,k1e1,k2e2, . . . ,knen)− (1, . . . ,1).
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Prove thatPq0,...,qn is reflexive and explain how it relates to Example 2.4.5. We will prove
later that the toric variety of this polytope is the weightedprojective spaceP(q0, . . . ,qn).

2.4.7. The Sylvester sequenceis defined bya0 = 2 andak+1 = 1+ a1a2 · · ·ak. It begins
2,3,7,43,1807, . . . and is described in [157, A000058]. Now fix a positive integern≥ 3
and defineq0, . . . ,qn by q0 = q1 = 1 andqi = 2(an−1−1)/an−i for i = 2, . . . ,n. Forn = 3
and 4 this gives 1,1,4,6 and 1,1,12,28,42. Prove thatq0, . . . ,qn satisfies the conditions
of Exercise 2.4.6 and hence gives a reflexive simplex, denoted SQ′

n
in [132]. This paper

proves that whenn≥ 4,SQ′
n

has the largest volume of alln-dimensional reflexive simplices
and conjectures that it also has the largest number of lattice points.



Chapter 3

Normal Toric Varieties

§3.0. Background: Abstract Varieties

The projective toric varieties studied in Chapter 2 are unions of Zariski open sets,
each of which is an affine variety. We begin with a general construction of abstract
varieties obtained by gluing together affine varieties in ananalogous way. The
resulting varieties will beabstract in the sense that they do not come with any
given ambient affine or projective space. We will see that this is exactly the idea
needed to construct a toric variety using the combinatorialdata contained in a fan.

Sheaf theory, while important for later chapters, will makeonly a modest ap-
pearance here. For a more general approach to the concept of abstract variety, we
recommend standard books such as [48], [77] or [152].

Regular Functions. LetV = Spec(R) be an affine variety. In §1.0, we defined the
Zariski open subsetVf =V \ V( f )⊆V for f ∈Rand showed thatVf = Spec(Rf ),
whereRf is the localization ofRat f . The open setsVf form abasisfor the Zariski
topology onV in the sense that every open setU is a (finite) unionU =

⋃
f∈SVf

for someS⊆ R (Exercise 3.0.1).

For an affine variety, a morphismV → C is called aregular map, so that the
coordinate ring ofV consists of all regular maps fromV to C. We now define what
it means to be regular on an open subset ofV.

Definition 3.0.1. Given an affine varietyV = Spec(R) and a Zariski openU ⊆V,
we say a functionφ : U → C is regular if for all p∈U , there existsfp ∈ R such
that p∈Vfp ⊆U andφ|Vfp

∈ Rfp. Then define

OV(U) = {φ : U → C | φ is regular}.

93
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The conditionp∈Vfp means thatfp(p) 6= 0, and sayingφ|Vfp
∈Rfp means that

φ= ap/ f np
p for someap ∈ Randnp≥ 0.

Here are some cases whereOV(U) is easy to compute.

Proposition 3.0.2. Let V = Spec(R) be an affine variety.

(a) OV(V) = R.

(b) If f ∈ R, thenOV(Vf ) = Rf .

Proof. It is clear from Definition 3.0.1 that elements ofR define regular functions
onV, hence elements ofOV(V). Conversely, ifφ ∈OV(V), then for allp∈V there
is fp ∈Rsuch thatp∈Vfp andφ= ap/ f np

p ∈Rfp. The idealI = 〈 f np
p | p∈V〉 ⊆ R

satisfiesV(I) = ∅ since fp(p) 6= 0 for all p∈V. Hence the Nullstellensatz implies
that
√

I = I(V(I)) = R, so there exists a finite setS⊆ V and polynomialsgp for
p∈ Ssuch that

1 =
∑

p∈S

gp f np
p .

Henceφ=
∑

p∈Sgp f np
p φ=

∑
p∈Sgp ap ∈ R, as desired.

For part (b), letU ⊆ Vf be Zariski open. ThenU is Zariski open inV, and
wheneverg∈ RsatisfiesVg⊆U , we haveVg = Vf g with coordinate ring

Rf g = (Rf )g/ f ℓ

for all ℓ≥ 0. These observations easily imply that

(3.0.1) OV(U) = OVf (U).

Then settingU = Vf gives

OV(Vf ) = OVf (Vf ) = Rf ,

where the last equality follows by applying part (a) toVf = Spec(Rf ). �

Local Rings. WhenV = Spec(R) is an irreducible affine variety, we can describe
regular functions using thelocal rings OV,p introduced in §1.0. A rational func-
tion in C(V) is contained in the local ringOV,p precisely when it is regular in a
neighborhood ofp. It follows that wheneverU ⊆V is open, we have

⋂

p∈U

OV,p = OV(U).

Thus regular functions onU are rational functions onV that are defined everywhere
onU . In particular, whenU = V, Proposition 3.0.2 implies that

(3.0.2)
⋂

p∈V

OV,p = OV(V) = R= C[V].
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The Structure Sheaf of an Affine Variety. Given an affine varietyV, the operation

U 7→OV(U), U ⊆V open,

has the following useful properties:

• WhenW⊆U , Definition 3.0.1 shows that there is an obvious restrictionmap

ρU ,W : OV(U)→OV(W)

defined byρU ,W(φ) = φ|W. It follows thatρU ,U is the identity map and that
ρV,W ◦ρU ,V = ρU ,W wheneverW⊆V ⊆U .

• If {Uα} is an open cover ofU ⊆V, then the sequence

0−→OV(U)−→
∏

α

OV(Uα) −→−→
∏

α,β

OV(Uα∩Uβ)

is exact. Here, the second arrow is defined by the restrictions ρU ,Uα and the
double arrow is defined byρUα,Uα∩Uβ

and ρUβ ,Uα∩Uβ
. Exactness atOV(U)

means that regular functions are determined locally (that is, two regular func-
tions onU are equal if their restrictions to allUα are equal), and exactness at∏
αOV(Uα) means that regular functions on theUα agreeing on the overlaps

Uα∩Uβ patch together to give a regular function onU .

In the language of sheaf theory, these properties imply thatOV is a sheaf of C-
algebras, called thestructure sheafof V. We call(V,OV) a ringed space overC.
Also, since (3.0.1) holds for all open setsU ⊆Vf , we write

OV |Vf
= OVf .

In terms of ringed spaces, this means(Vf ,OV |Vf
) = (Vf ,OVf ).

Morphisms. By §1.0, a polynomial mappingΦ : V1 → V2 between affine vari-
eties corresponds to theC-algebra homomorphismΦ∗ : C[V2]→ C[V1] defined by
Φ∗(g) = φ◦Φ for φ ∈ C[V2]. We now extend this to open sets of affine varieties.

Definition 3.0.3. LetUi ⊆Vi be Zariski open subsets of affine varieties fori = 1,2.
A function Φ : U1→U2 is amorphismif φ 7→ φ◦Φ defines a map

Φ∗ : OV2(U2)−→OV1(U1).

ThusΦ : U1→U2 is a morphism if composingΦ with regular functions onU2

gives regular functions onU1. Note also thatΦ∗ is a C-algebra homomorphism
since it comes from composition of functions.

Example 3.0.4. Suppose thatΦ : V1 → V2 is a morphism according to Defini-
tion 3.0.3. IfVi = Spec(Ri), then the above mapΦ∗ gives theC-algebra homo-
morphism

R2 = OV2(V2)−→OV1(V1) = R1.
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By Chapter 1, theC-algebra homomorphismR2→ R1 gives a map of affine va-
rieties V2 → V1. In Exercise 3.0.3 you will show that this is the original map
Φ : V1→V2 we started with. ♦

Example 3.0.4 shows that when we apply Definition 3.0.3 to maps between
affine varieties, we get the same morphisms as in Chapter 1. InExercise 3.0.3 you
will verify the following properties of morphisms:

• If U is open in an affine varietyV, then

OV(U) = {φ : U → C | φ is a morphism}.
Hence regular functions onU are just morphisms fromU to C.

• A composition of morphisms is a morphism.

• An inclusion of open setsW ⊆U of an affine varietyV is a morphism.

• Morphisms are continuous in the Zariski topology.

We say that a morphismΦ : U1→U2 is an isomorphismif Φ is bijective and its
inverse functionΦ−1 : U2→U1 is also a morphism.

Gluing Together Affine Varieties. We now are ready to define abstract varieties by
gluing together open subsets of affine varieties. The model is what happens forPn.
Recall from §2.0 of thatPn is covered by open sets

Ui = Pn\V(xi) = Spec
(
C
[ x0

xi
, . . . ,

xi−1
xi
,

xi+1
xi
, . . . , xn

xi

])

for i = 0, . . . ,n. EachUi is a copy ofCn that uses a different set of variables. For
i 6= j, we “glue together” these copies as follows. We have open subsets

(3.0.3) (Ui) xj
xi

⊆Ui and (U j) xi
xj
⊆U j ,

and we also have the isomorphism

(3.0.4) g ji : (Ui) xj
xi

∼−→ (U j) xi
xj

since both give the same open setUi ∩U j in Pn. The notationg ji was chosen so
thatg ji (x) meansx∈Ui since the indexi is closest tox, henceg ji (x) ∈U j . At the
level of coordinate rings,g ji comes from the isomorphism

g∗ji : C
[ x0

xj
, . . . ,

xj−1

xj
,

xj+1

xj
, . . . , xn

xj

]
xi
xj

≃ C
[ x0

xi
, . . . ,

xi−1
xi
,

xi+1
xi
, . . . , xn

xi

]
xj
xi

defined by
xk
xj
7−→ xk

xi
/ xj

xi
(k 6= j) and

( xi
xj

)−1 7−→ xj

xi
.

We can turn this around and start from the affine varietiesUi ≃Cn given above
and glue together the open sets in (3.0.3) using the isomorphismsg ji from (3.0.4).
This gluing is consistent sincegi j = g−1

ji andgki = gk j ◦g ji wherever all three maps
are defined. The result of this gluing is the projective spacePn.
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To generalize this, suppose we have a finite collection{Vα}α of affine varieties
and for all pairsα,β we have Zariski open setsVβα ⊆Vα and isomorphismsgβα :
Vβα ≃Vαβ satisfying the following compatibility conditions:

• gαβ = g−1
βα for all pairsα,β.

• gβα(Vβα∩Vγα) = Vαβ ∩Vγβ andgγα = gγβ ◦gβα onVβα∩Vγα for all α,β,γ.

The notationgβα means that in the expressiongβα(x), the pointx lies inVα since
α is the index closest tox, and the resultgβα(x) lies inVβ .

We are now ready to glue. LetY be the disjoint union of theVα and define
a relation∼ on Y by a∼ b if and only if a ∈Vα, b ∈Vβ for someα,β with b =
gβα(a). The first compatibility condition shows that∼ is reflexive and symmetric;
the second shows that it is transitive. Hence∼ is an equivalence relation and we
can form the quotient spaceX = Y/∼ with the quotient topology. For eachα, let

Uα = {[a] ∈ X | a∈Vα}.

ThenUα ⊆ X is an open set and the maphα(a) = [a] defines a homeomorphism
hα : Vα ≃Uα ⊆ X. ThusX locally looks like an affine variety.

Definition 3.0.5. We callX theabstract varietydetermined by the above data.

An abstract varietyX comes equipped with the Zariski topology whose open
sets are those sets that restrict to open sets in eachUα. The Zariski closed subsets
Y⊆X are calledsubvarietiesof X. We say thatX is irreducible if it is not the union
of two proper subvarieties. One can show thatX is a finite union of irreducible
subvarietiesX =Y1∪·· ·∪Ys such thatYi 6⊆Yj for i 6= j. We call theYi theirreducible
componentsof X.

Here are some examples of Definition 3.0.5.

Example 3.0.6. We saw above thatPn can be obtained by gluing together the
open sets (3.0.3) using the isomorphismsgi j from (3.0.4). This shows thatPn

is an abstract variety with affine open subsetUi ⊆ Pn. More generally, given a
projective varietyV ⊆ Pn, we can coverV with affine open subsetV ∩Ui, and the
gluing implicit in equation (2.0.8). We conclude that projective varieties are also
abstract varieties. ♦

Example 3.0.7. In a similar way,Pn×Cm can be viewed as gluing affine spaces
Ui×Cm≃ Cn+m along suitable open subsets. ThusPn×Cm is an abstract variety,
and the same is true for subvarietiesV ⊆ Pn×Cm. ♦

Example 3.0.8.LetV0 = C2 = Spec(C[u,v]) andV1 = C2 = Spec(C[w,z]), with

V10 = V0\V(v) = Spec(C[u,v]v)

V01 = V1\V(z) = Spec(C[w,z]z)
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and gluing data

g10 : V10→V01 coming from theC-algebra homomorphism

g∗01 : C[w,z]z→ C[u,v]v defined byw 7→ uv and z 7→ 1/v

and

g01 : V01→V01 coming from theC-algebra homomorphism

g∗01 : C[u,v]v→ C[w,z]z defined byu 7→ wz and v 7→ 1/z.

One checks thatg01 = g−1
10 , and the other compatibility condition is satisfied since

there are only twoVi . It follows that we get an abstract varietyX.

The varietyX has another description. Consider the productP1×C2 with
homogeneous coordinates(x0,x1) on P1 and coordinates(x,y) on C2. We will
identify X with the subvarietyW = V(x0y− x1x) ⊆ P1×C2, called theblowup of
C2 at the origin, and denoted Bl0(C2). First note thatP1×C2 is covered by

U0×C2 = Spec(C[x1/x0,x,y]) and U1×C2 = Spec(C[x0/x1,x,y]).

ThenW is covered byW0 = W∩ (U0×C2) andW1 = W∩ (U1×C2). Also,

W0 = V(y− (x1/x0)x) ⊆U0×C2,

which gives the coordinate ring

C[x1/x0,x,y]/〈y− (x1/x0)x〉 ≃ C[x,x1/x0] via y 7→ (x1/x0)x.

Similarly,W1 = V(x− (x0/x1)y)⊆U1×C2 has coordinate ring

C[x0/x1,x,y]/〈x− (x0/x1)y〉 ≃ C[y,x0/x1] via x 7→ (x0/x1)y.

You can check that these are glued together inW in exactly the same wayV0 and
V1 are glued together inX. We will generalize this example in Exercise 3.0.8.♦

Morphisms Between Abstract Varieties. Let X andY be abstract varieties with
affine open coversX =

⋃
αUα andY =

⋃
βU ′β. A morphismΦ : X→Y is a Zariski

continuous mapping such that the restrictions

Φ|Uα∩Φ−1(U ′
β
) : Uα∩Φ−1(U ′β)−→U ′β

are morphisms in the sense of Definition 3.0.3.

The Structure Sheaf of an Abstract Variety. Let U be an an open subset of an
abstract varietyX and setWα = h−1

α (U ∩Uα) ⊆Vα. Then a functionφ : U → C is
regular if

φ◦hα|Wα
: Wα −→ C

is regular for allα. The compatibility conditions ensure that this is well-defined,
so that one can define

OX(U) = {φ : U → C | φ is regular}.
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This gives thestructure sheafOX of X. Thus an abstract variety is really a ringed
space(X,OX) with a finite open covering{Uα}α such that(Uα,OX|Uα

) is isomor-
phic to the ringed space(Vα,OVα) of the affine varietyVα. (We leave the definition
of isomorphism of ringed spaces to the reader.)

Open and Closed Subvarieties. Given an abstract varietyX and an open subset
U , we note thatU has a natural structure of an abstract variety. For an affine
open subsetUα ⊆ X, U ∩Uα is open inUα and hence can be written as a union
U ∩Uα =

⋃
f∈S(Uα) f for a finite subsetS⊆ C[Uα]. It follows thatU is covered

by finitely many affine open subsets and thus is an abstract variety. The structure
sheafOU is simply the restriction ofOX to U , i.e., OU = OX|U . Note also that a
functionφ : U → C is regular if and only ifφ is a morphism as defined above.

In a similar way, a closed subsetY ⊆ X also gives an abstract variety. For an
affine open setU ⊆ X, Y∩U is closed inU and hence is an affine variety. Thus
Y is covered by finitely many affine open subsets and thus is an abstract variety.
This justifies the term “subvariety” for closed subsets of anabstract variety. The
structure sheafOY is related toOX as follows. The inclusioni : Y →֒ X is a mor-
phism. Leti∗OY be the sheaf onX defined byi∗OY(U) = OY(U ∩Y). Restricting
functions onX to functions onY gives a map of sheavesOX→ i∗OY whose kernel
is the subsheafIY ⊆OX of functions vanishing onY, meaning

IY(U) = { f ∈ OX(U) | f (p) = 0 for all p∈Y∩U}.
In the language of Chapter 6, we have an exact sequence of sheaves

0−→IY −→OX −→ i∗OY −→ 0.

All of the types of “variety” introduced so far can be subsumed under the con-
cept of “abstract variety.” From now on, we will usually be thinking of abstract
varieties. Hence we will usually say “variety” rather than “abstract variety.”

Local Rings and Rational Functions. Let p be a point of an affine varietyV.
Elements of the local ringOV,p are quotientsf/g in a suitable localization with
f ,g∈C[V] andg(p) 6= 0. It follows thatVg is a neighborhood ofp in V and f/g is
a regular function onVg. In this way, we can think of elements ofOV,p as regular
functions defined in a neighborhood ofp.

This idea extends to the abstract case. Given a pointp of an varietyX and
neighborhoodsU1,U2 of p, regular functionsfi :Ui→C areequivalent at p, written
f1∼ f2, if there is a neighbhorhoodp∈U ⊆U1∩U2 such thatf1|U = f2|U .

Definition 3.0.9. Let p be a point of a varietyX. Then

OX,p = { f : U → C |U is a neighborhood ofp in X}/∼
is thelocal ring of X at p.
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Every φ ∈ OX,p has a well-defined valueφ(p). It is not difficult to see that
OX,p is a local ring with unique maximal ideal

mX,p = {φ ∈ OX,p | φ(p) = 0}.

The local ringOX,p can also be defined as the direct limit

OX,p = lim
−→
p∈U

OX(U)

over all neighborhoods ofp in X (see Definition 6.0.1).

WhenX is irreducible, we can also define the field of rational functionsC(X).
A rational functionon X is a regular functionf : U → C defined on a nonempty
Zariski open setU ⊆ X, and two rational functions onX are equivalentif they
agree on a nonempty Zariski open subset. In Exercise 3.0.4 you will show that this
relation is an equivalence relation and that the set of equivalence classes is a field,
called thefunction fieldof X, denotedC(X).

Normal Varieties. We return to the notion of normality introduced in Chapter 1.

Definition 3.0.10. An variety X is callednormal if it is irreducible and the local
ringsOX,p are normal for allp∈ X.

At first glance, this looks different from the definition given for affine varieties
in Definition 1.0.3. In fact, the two notions are equivalent in the affine case.

Proposition 3.0.11.Let V be an irreducible affine variety. ThenC[V] is normal if
and only if the local ringsOV,p are normal for all p∈V.

Proof. If OV,p is normal for allp, then (3.0.2) shows thatC[V] is an intersection
of normal domains, all of which have the same field of fractions. Since such an
intersection is normal by Exercise 1.0.7, it follows thatC[V] is normal.

For the converse, suppose thatC[V] is normal and letα ∈ C(V) satisfy

αk +a1α
k−1 + · · ·+ak = 0, ai ∈ OV,p.

Write ai = gi/ fi with gi , fi ∈ C[V] and fi(p) 6= 0. The productf = f1 · · · fk has
the properties thatai ∈ C[V] f and f (p) 6= 0. The localizationC[V] f is normal by
Exercise 1.0.7 and is contained inOV,p since f (p) 6= 0. Henceα ∈ C[V] f ⊆ OV,p.
This completes the proof. �

Here is a consequence of Proposition 3.0.11 and Definition 3.0.10.

Proposition 3.0.12. Let X be an irreducible variety with a cover consisting of
affine open sets Vα. Then X is normal if and only if each Vα is normal. �



§3.0. Background: Abstract Varieties 101

Smooth Varieties. For an affine varietyV, the definition of asmooth point p∈V
(Definition 1.0.7) usedTp(V), the Zariski tangent space ofV at p, and dimpV,
the maximum dimension of an irreducible component ofV containingp. You will
show in Exercise 3.0.2 thatTp(X) and dimpX are well-defined for a pointp∈ X of
a general variety.

Definition 3.0.13. Let X be a variety. A pointp ∈ X is smooth if dim Tp(X) =
dimpX, andX is smoothif every point ofX is smooth.

Products of Varieties. As another example of abstract varieties and gluing, we
indicate why the productX1×X2 of varietiesX1 andX2 also has the structure of
a variety. In §1.0 we constructed the product of affine varieties. From here, it is
relatively routine to see that ifX1 is obtained by gluing together affine varietiesUα

andX2 is obtained by gluing together affinesU ′β, thenX1×X2 is obtained by gluing
together theUα×U ′β in the corresponding fashion. Furthermore,X1×X2 has the
correct universal mapping property. Namely, given a diagram

W φ1

""

φ2

$$

ν
##

X1×X2 π1
//

π2

��

X1

X2

whereφi : W→ Xi are morphisms, there is a unique morphismν : W→ X1×X2

(the dotted arrow) that makes the diagram commute.

Example 3.0.14.Let us construct the productP1×C2. Write P1 = V0∪V1 where
V0 = Spec(C[u]) andV1 = Spec(C[v]), with the gluing given by

C[v]v ≃ C[u]u, v 7→ 1/u.

ThenP1×C2 is constructed from

U0×C2 = Spec(C[u]⊗C C[x,y]) ≃ C3

U1×C2 = Spec(C[v]⊗C C[x,y]) ≃ C3,

with gluing given by
(U0×C2)u≃ (U1×C2)v

corresponding to the obvious isomorphism of coordinate rings. ♦

Separated Varieties. From the point of view of the classical topology, arbitrary
gluings can lead to varieties with some strange properties.

Example 3.0.15.In Example 3.0.14 we saw how to constructP1 from affine va-
rietiesV0 = Spec(C[u]) ≃ C andV1 = Spec(C[v]) ≃ C with the gluing given by
v 7→ 1/u on open setsC∗ ≃ (V0)u⊆V0 andC∗ ≃ (V1)v⊆V1. This expressesP1 as
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consisting ofC∗ plus two additional points. But now consider the abstract variety
arising from the gluing map

(V0)u−→ (V1)v

that corresponds to the map ofC-algebras defined byv 7→ u. As before, the glued
variety X consists ofC∗ together with two additional points. However here we
have a morphismπ : X→ C whose fiberπ−1(a) overa∈ C∗ contains one point,
but whose fiber over 0 consists of two points,p1 corresponding to 0∈V0 and p2

corresponding to 0∈ V1. If U1,U2 are classical open sets inX with p1 ∈U1 and
p2 ∈U2, thenU1∩U2 6= ∅. So theclassicaltopology onX is not Hausdorff. ♦

Since varieties are rarely Hausdorff in the Zariski topology (Exercise 3.0.5), we
need a different way to think about Example 3.0.15. Considerthe productX×X
and thediagonal mapping∆ : X→ X×X defined by∆(p) = (p, p) for p∈ X. For
X from Example 3.0.15, there is a morphismX×X→ C whose fiber over over 0
consists of the four points(pi , p j). Any Zariski closed subset ofX×X containing
one of these four points must contain all of them. The image ofthe diagonal
mapping contains(p1, p1) and (p2, p2), but not the other two, so the diagonal is
not Zariski closed. This example motivates the following definition.

Definition 3.0.16. We say a varietyX is separatedif the image of the diagonal
map∆ : X→ X×X is Zariski closed inX×X.

For instance,Cn is separated because the image of the diagonal inCn×Cn =
Spec(C[x1, . . . ,xn,y1, . . . ,yn]) is the affine varietyV(x1−y1, . . . ,xn−yn). Similarly,
any affine variety is separated.

The connection between failure of separatedness and failure of the Hausdorff
property in the classical topology seen in Example 3.0.15 isa general phenomenon.

Theorem 3.0.17.A variety is separated if and only if it is Hausdorff in the classical
topology. �

Here are some additional properties of separated varieties(Exercise 3.0.6).

Proposition 3.0.18.Let X be a separated variety.

(a) If f ,g : Y→ X are morphisms, then{y∈Y | f (y) = g(y)} is Zariki closed in Y .

(b) If U ,V are affine open subsets of X, then U∩V is also affine. �

The requirement thatX be separated is often included in thedefinitionof an
abstract variety. When this is done, what we have called a variety is sometimes
called apre-variety.

Fiber Products. Finally in this section, we will discuss fiber products of varieties,
a construction required for the discussion of proper morphisms in §3.4. First, if we
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have mappings of setsf : X → S andg : Y→ S, then thefiber product X×SY is
defined to be

(3.0.5) X×SY = {(x,y) ∈ X×Y | f (x) = g(y)}.

The fiber product construction gives a very flexible languagefor describing or-
dinary products, intersections of subsets, fibers of mappings, the set where two
mappings agree, and so forth:

• If S is a point, thenX×SY is the ordinary productX×Y.

• If X,Y are subsets ofSand f ,g are the inclusions, thenX×SY ≃ X∩Y.

• If Y = {s} ⊆ S, thenX×SY ≃ f−1({s}).
The third property is the reason for the name. All are easy exercises that we leave
to the reader.

In analogy with the universal mapping property of the product discussed above,
the fiber product has the following universal property. Whenever we have map-
pingsφ1 : W→ X andφ2 : W → Y such that f ◦ φ1 = g◦ φ2, there is a unique
ν : W→ X×SY that makes the following diagram commute.

W φ1

!!

φ2

%%

ν
##

X×SY
π1

//

π2

��

X

f
��

Y g
// S

Equation (3.0.5) definesX×SY as a set. To prove thatX×SY is a variety, we
assume for simplicity thatS is separated. Thenf : X → S andg : Y→ S give a
morphism( f ,g) : X×Y→ S×S, and one easily checks that

X×SY = ( f ,g)−1(∆(S)),

where∆(S) ⊆ S×S is the diagonal. This is closed inS×S sinceS is separated,
and it follows thatX×SY is closed inX×Y and hence has a natural structure as
a variety. From here, it is straightforward to show thatX×SY has the desired uni-
versal mapping property. Proving thatX×SY is a variety whenS is not separated
takes more work and will not be discussed here.

In the affine case, we can also describe the coordinate ring ofX×SY. Let
X = Spec(R1), Y = Spec(R2), andS= Spec(R). The morphismsf ,g correspond
to ring homomorphismsf ∗ : R→ R1, g∗ : R→ R2. Hence bothR1,R2 have the
structure ofR-modules, and we have the tensor productR1⊗R R2. This is also a
finitely generatedC-algebra, though it may have nilpotents (Exercise 3.0.9). To
get a coordinate ring, we need to take the quotient by the ideal N of all nilpotents.
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Then one can prove that

X×SY = Spec(R1⊗RR2/N).

We can avoid worrying about nilpotents by constructingX×SY as theaffine scheme
Spec(R1⊗RR2). Interested readers can learn about the construction of fiber prod-
ucts as schemes in [48, I.3.1] and [77, pp. 87–89].

Exercises for §3.0.

3.0.1. LetV = Spec(R) be an affine variety.

(a) Show that every idealI ⊆ R can be written in the formI = 〈 f1, . . . , fs〉, where fi ∈ R.
(This is the Hilbert Basis Theorem inR.)

(b) LetW ⊆V be a subvariety. Show that the complement ofW in V can be written as a
union of a finite collection of open affine sets of the formVf .

(c) Deduce that every open cover ofV (in the Zariski topology) has a finite subcover.
(This says that affine varieties arequasicompactin the Zariski topology.)

3.0.2. As in the affine case, we want to say a varietyX is smooth atp if dim Tp(X) =
dimp X. In this exercise, you will show that this is a well-defined notion.

(a) Show that ifp ∈ X is in the intersection of two affine open setsVα ∩Vβ, then the
Zariski tangent spacesTVα,p andTVβ ,p are isomorphic as vector spaces overC.

(b) Show that dimp X is a well-defined integer.

(c) Deduce that the proposed notion of smoothness atp is well-defined.

3.0.3. This exercise explores some properties of the morphisms defined in Definition 3.0.3.

(a) Prove the claim made in Example 3.0.4. Hint: Take a pointp ∈ V1 and definemp =
{ f ∈R1 | f (p) = 0}. Then describe(Φ∗)−1(mp) in terms ofΦ(p).

(b) Prove the properties of morphisms listed on page 96.

3.0.4. Let X be an irreducible abstract variety.

(a) Let f ,g be rational functions onX. Show thatf ∼ g if f |U = g|U for some nonempty
open setU ⊆ X is an equivalence relation.

(b) Show that the set of equivalence classes of the relation in part (a) is a field.

(c) Show that ifU ⊆ X is a nonempty open subset ofX, thenC(U)≃ C(X).

3.0.5. Show that a variety is Hausdorff in the Zariski topology if and only if it consists of
finitely many points.

3.0.6. Consider Proposition 3.0.18.

(a) Prove part (a) of the proposition. Hint: Show first that ifF : Y→ X×X is defined by
F(y) = ( f (y),g(y)), thenZ = F−1(∆(X)).

(b) Prove part (b) of the proposition. Hint: Show first thatU ∩V can be identified with
∆(X)∩ (U×V)⊆ X×X.

3.0.7. Let V = Spec(R) be an affine variety. The diagonal mapping∆ : V → V×V cor-
responds to aC-algebra homomorphismR⊗C R→ R. Which one? Hint: Consider the
universal mapping property ofV×V.
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3.0.8. In this exercise, we will study an important variety inPn−1×Cn, the blowupof
Cn at the origin, denoted Bl0(C

n). This generalizes Bl0(C
2) from Example 3.0.8. Write

the homogeneous coordinates onPn−1 asx0, . . . ,xn−1, and the affine coordinates onCn as
y1, . . . ,yn. Let

(3.0.6) W = Bl0(C
n) = V(xi−1y j −x j−1yi | 1≤ i < j ≤ n)⊆ Pn−1×Cn.

LetUi−1, i = 1, . . . ,n, be the standard affine opens inPn−1:

Ui−1 = Pn−1\V(xi−1),

i = 1, . . . ,n (note the slightly non-standard indexing). So theUi−1×Cn form a cover of
Pn−1×Cn.

(a) Show that for eachi = 1, . . . ,n, Wi−1 = W∩ (Ui−1×Cn)≃

Spec

(
C
[

x0

xi−1
, . . . ,

xi−2

xi−1
,

xi

xi−1
, . . . ,

xn−1

xi−1
,yi

])

using the equations (3.0.6) definingW.

(b) Give the gluing data for identifying the subsetsWi−1\V(x j−1) andWj−1 \V(xi−1).

3.0.9. LetV = V(y2−x)⊆ C2 and consider the morphismπ : V→C given by projection
onto thex-axis. We will study the fibers ofπ.

(a) As noted in the text, the fiberπ−1(0) = {(0,0)} can be represented as the fiber
product{0}×C V. In terms of coordinate rings, we have{0} = Spec(C[x]/〈x〉),
C = Spec(C[x]) andV = Spec(C[x,y]/〈y2−x〉. Prove that

C[x]/〈x〉⊗C[x] C[x,y]/〈y2−x〉 ≃ C[y]/〈y2〉.

Thus, the coordinate ringsC[x]/〈x〉, C[x] andC[x,y]/〈y2−x〉 lead to a tensor product
that has nilpotents and hence cannot be a coordinate ring.

(b) If a 6= 0 in C, thenπ−1(a) = {(a,±√a)}. Show that the analogous tensor product is

C[x]/〈x−a〉⊗C[x] C[x,y]/〈y2−x〉 ≃ C[y]/〈y2−a〉
≃ C[y]/〈y−√a〉⊕C[y]/〈y+

√
a〉.

This has no nilpotents and hence is the coordinate ring ofπ−1(a).

What happens in part (a) is that the two square roots coincide, so that we get only one
point with “multiplicity 2.” The multiplicity informationis recorded in the affine scheme
Spec(C[y]/〈y2〉). This is an example of the power of schemes.

§3.1. Fans and Normal Toric Varieties

In this section we construct the toric varietyXΣ corresponding to a fanΣ. We will
also relate the varietiesXΣ to many of the examples encountered previously, and
we will see how properties of the fan correspond to properties such as smoothness
and compactness ofXΣ.



106 Chapter 3. Normal Toric Varieties

The Toric Variety of a Fan. A toric variety continues to mean the same thing as in
Chapters 1 and 2, although we now allow abstract varieties asin §3.0.

Definition 3.1.1. A toric variety is an irreducible varietyX containing a torus
TN≃ (C∗)n as a Zariski open subset such that the action ofTN on itself extends to an
algebraic action ofTN on X. (By algebraic action, we mean an actionTN×X→ X
given by a morphism.)

The other ingredient in this section is a fan in the vector spaceNR.

Definition 3.1.2. A fan Σ in NR is a finite collection of conesσ such that:

(a) Everyσ ∈ Σ is a strongly convex rational polyhedral cone.

(b) For allσ ∈ Σ, each face ofσ is also inΣ.

(c) For allσ1,σ2 ∈ Σ, the intersectionσ1∩σ2 is a face of each (hence also inΣ).

Furthermore, ifΣ is a fan, then:

• Thesupportof Σ is |Σ|=⋃σ∈Σσ ⊆ NR.

• Σ(r) is the set ofr-dimensional cones ofΣ.

We have already seen some examples of fans. Theorem 2.3.2 shows that the
normal fanΣP of a full dimensional lattice polytopeP⊆MR is a fan in the sense
of Definition 3.1.2. However, there exist fans that are not equal to the normal fan
of any lattice polytope. An example of such a fan will be givenin Example 4.2.13.

We now show how the cones in any fan give the combinatorial data necessary
to glue a collection of affine toric varieties together to yield an abstract toric variety.
By Theorem 1.2.18, each coneσ in Σ gives the affine toric variety

Uσ = Spec(C[Sσ]) = Spec(C[σ∨∩M]).

Recall from Definition 1.2.5 that a faceτ � σ is given byτ =σ∩Hm, wherem∈σ∨
andHm = {u∈ NR | 〈m,u〉 = 0} is the hyperplane defined bym. In Chapter 1, we
proved two useful facts:

First, Proposition 1.3.16 used the equality

(3.1.1) Sτ = Sσ+Z(−m)

to show thatC[Sτ ] is the localizationC[Sσ]χm. ThusUτ = (Uσ)χm whenτ � σ.

Second, ifτ = σ1∩σ2, then Lemma 1.2.13 implies that

(3.1.2) σ1∩Hm = τ = σ2∩Hm,

for somem∈ σ∨1 ∩ (−σ2)
∨∩M. This shows that

(3.1.3) Uσ1 ⊇ (Uσ1)χm = Uτ = (Uσ2)χ−m ⊆Uσ2.

The following proposition gives an additional property of the Sσ and their
semigroup rings that we will need.
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Proposition 3.1.3. If σ1,σ2 ∈ Σ andτ = σ1∩σ2, then

Sτ = Sσ1 +Sσ2.

Proof. The inclusionSσ1 + Sσ2 ⊆ Sτ follows directly from the general fact that
σ∨1 + σ∨2 = (σ1∩σ2)

∨ = τ∨. For the reverse inclusion, takep ∈ Sτ and assume
thatm∈ σ∨1 ∩ (−σ2)

∨ ∩M satisfies (3.1.2). Then (3.1.1) applied toσ1 gives p =
q+ ℓ(−m) for someq∈ Sσ1 andℓ ∈ Z≥0. But−m∈ σ∨2 implies−m∈ Sσ2, so that
p∈ Sσ1 +Sσ2. �

This result is sometimes called theSeparation Lemmaand is a key ingredient
in showing that the toric varietiesXΣ are separated in the sense of Definition 3.0.16.

Example 3.1.4. Let σ1 = Cone(e1 + e2,e2) (as in Exercise 1.2.11), and letσ2 =
Cone(e1,e1 + e2) in NR = R2. Thenτ = σ1∩σ2 = Cone(e1 + e2). We show the
dual conesσ∨1 = Cone(e1,−e1 + e2), σ∨2 = Cone(e1−e2,e2), andτ∨ = σ∨1 +σ∨2
in Figure 1.

σ1

σ2

τ σ1← ←

σ2

←
→

τ

Figure 1. The conesσ1,σ2, τ and their duals

The dark shaded region on the right isσ∨1 ∩σ∨2 . Noteτ = σ1∩Hm = σ2∩H−m,
wherem= −e1 +e2 ∈ σ∨1 and−m= e1−e2 ∈ σ∨2 . SinceSτ is the set of all sums
m+m′ with m∈ σ∨1 ∩M andm′ ∈ σ∨2 ∩M, we see thatSτ = Sσ1 +Sσ2. ♦

Now consider the collection of affine toric varietiesUσ = Spec(C[Sσ]), where
σ runs over all cones in a fanΣ. Let σ1 andσ2 be any two of these cones and let
τ = σ1∩σ2. By (3.1.3), we have an isomorphism

gσ2,σ1 : (Uσ1)χm ≃ (Uσ2)χ−m

which is the identity onUτ . By Exercise 3.1.1, the compatibility conditions as in
§3.0 for gluing the affine varietiesUσ along the subvarieties(Uσ)χm are satisfied.
Hence we obtain an abstract varietyXΣ associated to the fanΣ.

Theorem 3.1.5.LetΣ be a fan in NR. The variety XΣ is a normal separated toric
variety.
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Proof. Since each cone inΣ is strongly convex,{0} ⊆ N is a face of allσ ∈
Σ. Hence we haveTN = Spec(C[M]) ≃ (C∗)n ⊆Uσ for all σ. These tori are all
identified by the gluing, so we haveTN ⊆ XΣ. We know from Chapter 1 that each
Uσ has an action ofTN. The gluing isomorphismgσ2,σ1 reduces to the identity
mapping onC[Sσ1∩σ2]. Hence the actions are compatible on the intersections of
every pair of sets in the open affine cover, and patch togetherto give an algebraic
action ofTN onXΣ.

The varietyXΣ is irreducible because all of theUσ are irreducible affine toric
varieties containing the torusTN. Furthermore,Uσ is a normal affine variety by
Theorem 1.3.5. Hence the varietyXΣ is normal by Proposition 3.0.12.

To see thatXΣ is separated it suffices to show that for each pair of conesσ1,σ2

in Σ, the image of the diagonal map

∆ : Uτ →Uσ1×Uσ2, τ = σ1∩σ2

is Zariski closed (Exercise 3.1.2). But∆ comes from theC-algebra homomor-
phism

∆∗ : C[Sσ1]⊗C C[Sσ2]−→ C[Sτ ]

defined byχm⊗χn 7→ χm+n. By Proposition 3.1.3,∆∗ is surjective, so that

C[Sτ ]≃ (C[Sσ1]⊗C C[Sσ2])/ker(∆∗).

Hence the image of∆ is a Zariski closed subset ofUσ1×Uσ2. �

Toric varieties were originally known astorus embeddings, and the varietyXΣ

would be writtenTNemb(Σ) in older references such as [134]. Other commonly
used notations areX(Σ), or X(∆), if the fan is denoted by∆. When we want to
emphasize the dependence on the latticeN, we will write XΣ asXΣ,N.

Many of the toric varieties encountered in Chapters 1 and 2 come from fans.
For example, Theorem 1.3.5 implies that a normal affine toricvariety comes from
a fan consisting of a single coneσ together with all of its faces. Furthermore, the
projective toric variety associated to a lattice polytope in Chapter 2 comes from a
fan. Here is the precise result.

Proposition 3.1.6. Let P⊆ MR be a full dimensional lattice polytope. Then the
projective toric variety XP≃ XΣP, whereΣP is the normal fan of P.

Proof. WhenP is very ample, this follows immediately from the description of the
intersections of the affine open pieces ofXP in Proposition 2.3.12 and the definition
of the normal fanΣP. The general case follows since the normal fans ofP andkP
are the same for all positive integersk. �

In general, every separated normal toric varieties comes from a fan. This is a
consequence of a theorem of Sumihiro from [167].
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Theorem 3.1.7(Sumihiro). Let the torus TN act on a normal separated variety X.
Then every point p∈ X has a TN-invariant affine open neighborhood. �

Corollary 3.1.8. Let X be a normal separated toric variety with torus TN. Then
there exists a fanΣ in NR such that X≃ XΣ.

Proof. The proof will be sketched in Exercise 3.2.11 after we have developed the
properties ofTN-orbits on toric varieties. �

Examples. We now turn to some concrete examples. Many of these are toricvari-
eties already encountered in previous chapters.

Example 3.1.9. Consider the fanΣ in NR = R2 in Figure 2, whereN = Z2 has
standard basise1,e2. This is the normal fan of the simplex∆2 as in Example 2.3.8.
Here we show all points in the cones inside a rectangular viewing box (all figures
of fans in the plane in this chapter will be drawn using the same convention.)

σ0

σ2

σ1

Figure 2. The fanΣ for P2

From the discussion in Chapter 2, we expectXΣ ≃ P2, and we will show
this in detail. The fanΣ has three 2-dimensional conesσ0 = Cone(e1,e2), σ1 =
Cone(−e1− e2,e2), and σ2 = Cone(e1,−e1− e2), together with the three rays
τi j = σi ∩ σ j for i 6= j, and the origin. The toric varietyXΣ is covered by the
affine opens

Uσ0 = Spec(C[Sσ0])≃ Spec(C[x,y])

Uσ1 = Spec(C[Sσ1])≃ Spec(C[x−1,x−1y])

Uσ2 = Spec(C[Sσ2])≃ Spec(C[xy−1,y−1]).

Moreover, by Proposition 3.1.3, the gluing data on the coordinate rings is given by

g∗10 : C[x,y]x ≃ C[x−1,x−1y]x−1

g∗20 : C[x,y]y ≃ C[xy−1,y−1]y−1

g∗21 : C[x−1,x−1y]x−1y≃ C[xy−1,y−1]xy−1.
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It is easy to see that if we use the usual homogeneous coordinates(x0,x1,x2) onP2,
thenx 7→ x1

x0
andy 7→ x2

x0
identifies the standard affine openUi ⊆ P2 with Uσi ⊆ XΣ.

Hence we have recoveredP2 as the toric varietyXΣ. ♦

Example 3.1.10.Generalizing Example 3.1.9, letNR = Rn, whereN = Zn has
standard basise1, . . . ,en. Set

e0 =−e1−e2−·· ·−en

and letΣ be the fan inNR consisting of the cones generated by all proper subsets
of {e0, . . . ,en}. This is the normal fan of then-simplex∆n, andXΣ ≃ Pn by Ex-
ample 2.3.14 and Exercise 2.3.6. You will check the details to verify that this gives
the usual affine open cover ofPn in Exercise 3.1.3.

Example 3.1.11.We classify all 1-dimensional normal toric varieties as follows.
We may assumeN = Z andNR = R. The only cones are the intervalsσ0 = [0,∞)
andσ1 = (−∞,0] and the trivial coneτ = {0}. It follows that there are only four
possible fans, which gives the following list of toric varieties:

{τ}, which givesC∗

{σ0,τ} and{σ1,τ}, both of which giveC

{σ0,σ1,τ}, which givesP1.

Here is a picture of the fan forP1:

s

0σ1 σ0

This is the fan of Example 3.1.10 whenn = 1. ♦

Example 3.1.12.By Example 2.4.8,Pn×Pm is the toric variety of the polytope
∆n×∆m. The normal fan of∆n×∆m is the product of the normal fans of each
factor (Proposition 2.4.9). These normal fans are described in Example 3.1.10. It
follows that the product fanΣ givesXΣ ≃ Pn×Pm.

Whenn = m= 1, we obtain the fanΣ ⊆ R2≃ NR pictured in Figure 3 on the
next page. Here, we can use an elementary gluing argument to show that this fan
givesP1×P1 Label the 2-dimensional conesσi j = σi×σ′j as above. Then

Spec(C[Sσ00])≃ C[x,y]

Spec(C[Sσ10])≃ C[x−1,y]

Spec(C[Sσ11])≃ C[x−1,y−1]

Spec(C[Sσ01])≃ C[x,y−1].

We see that ifU0 andU1 are the standard affine open sets inP1, thenUσi j ≃Ui×U j

and it is easy to check that the gluing makesXΣ ≃ P1×P1. ♦
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σ00σ10

σ11 σ01

Figure 3. A fan Σ with XΣ ≃ P1
×P1

Example 3.1.13.Let N = N1×N2, with N1 = Zn andN2 = Zm. Let Σ1 in (N1)R

be the fan givingPn, but letΣ2 be the fan consisting of the cone Cone(e1, . . . ,em)
together with all its faces. ThenΣ = Σ1×Σ2 is a fan inNR and the the corre-
sponding toric variety isXΣ ≃ Pn×Cm. The caseP1×C2 was studied in Exam-
ple 3.0.14. ♦

Examples 3.1.12 and 3.1.13 are special cases of the following general con-
struction, whose proof will be left to the reader (Exercise 3.1.4).

Proposition 3.1.14.Suppose we have fansΣ1 in (N1)R andΣ2 in (N2)R. Then

Σ1×Σ2 = {σ1×σ2 | σi ∈Σi}

is a fan in N1×N2 and

XΣ1×Σ2 ≃ XΣ1×XΣ2. �

Example 3.1.15.The two conesσ1 andσ2 in NR = R2 from Example 3.1.4 (see
Figure 1), together with their faces, form a fanΣ. By comparing the descriptions
of the coordinate rings ofVσi given there with what we did in Example 3.0.8, it is
easy to check thatXΣ ≃W, whereW ⊆ P1×C2 is the blowup ofC2 at the origin,
defined asW = V(x0y−x1x) (Exercise 3.1.5).

Generalizing this, letN = Zn with standard basise1, . . . ,en and then sete0 =
e1+ · · ·+en. LetΣ be the fan inNR consisting of the cones generated by all subsets
of {e0, . . . ,en} not containing{e1, . . . ,en}. Then the toric varietyXΣ is isomorphic
to the blowup ofCn at the origin (Exercise 3.0.8). ♦

Example 3.1.16.Let r ∈ Z≥0 and consider the fanΣr in NR = R2 consisting of the
four conesσi shown in Figure 4 on the next page, together with all of their faces.



112 Chapter 3. Normal Toric Varieties

σ1

σ4

σ3

σ2

(−1,r)

Figure 4. A fan Σr with XΣr ≃ Hr

The corresponding toric varietyXΣr is covered by open affine subsets,

Uσ1 = Spec(C[x,y]) ≃ C2

Uσ2 = Spec(C[x,y−1]) ≃ C2

Uσ3 = Spec(C[x−1,x−ry−1])≃ C2

Uσ4 = Spec(C[x−1,xry])≃ C2,

and glued according to (3.1.3). We callXΣr theHirzebruch surfaceHr .

Example 2.3.15 constructed therational normal scroll Sa,b using the polygon
Pa,b with b≥ a≥ 1. The normal fan ofPa,b is the fanΣb−a defined above, so that
as an abstract variety,Sa,b≃Hb−a. Note also thatH0≃ P1×P1. ♦

The Hirzebruch surfacesHr will play an important role in the classification of
smooth projective toric surfaces given in Chapter 10.

Example 3.1.17.Let q0, . . . ,qn ∈ Z>0 satisfy gcd(q0, . . . ,qn) = 1. Consider the
weighted projective spaceP(q0, . . . ,qn) introduced in Chapter 2. Define the lattice
N = Zn+1/Z ·(q0, . . . ,qn) and letui , i = 0, . . . ,n, be the images inN of the standard
basis vectors inZn+1, so the relation

q0u0 + · · ·+qnun = 0

holds inN. Let Σ be the fan made up of the cones generated by all the proper sub-
sets of{u0, . . . ,un}. Whenqi = 1 for all i, we obtainXΣ ≃ Pn by Example 3.1.10.
And indeed,XΣ ≃ P(q0, . . . ,qn) in general. This will be proved in Chapter 5 using
the toric generalization of homogeneous coordinates inPn.

Here, we will consider the special caseP(1,1,2), whereu0 = −u1−2u2. The
fan Σ in NR is pictured in Figure 5 on the next page, using the plane spanned by
u1,u2. This example is different from the ones we have seen so far. Considerσ2 =
Cone(u0,u1) = Cone(−u1−2u2,u1). Thenσ∨2 = Cone(−u2,2u1−u2)⊆M, so the
situation is similar to the case studied in Example 1.2.21. Indeed, there is a change
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σ0

σ1

σ2

Figure 5. A fan Σ with XΣ ≃ P(1,1,2)

of coordinates defined by a matrix in GL(2,Z) that takesσ to the cone withd = 2
from that example. It follows that there is an isomorphismUσ2 ≃ V(xz−y2)⊆ C3

(Exercise 3.1.6). This is the rational normal coneĈ2, hence has a singular point
at the origin. The toric varietyXΣ is singular because of the singular point in this
affine open subset.

In Example 2.4.6, we saw that the polytopeP = Conv(0,2e1,e2) ⊆ R2 gives
XP≃ P(1,1,2) and that the normal fanΣP coincides with the fan shown above.♦

There is a dictionary between properties ofXΣ and properties ofΣ that gener-
alizes Theorem 1.3.12 and Example 1.3.20. We begin with someterminology. The
first two items parallel Definition 1.2.16.

Definition 3.1.18. Let Σ⊆NR be a fan.

(a) We sayΣ is smooth(or regular) if every coneσ in Σ is smooth (or regular).

(b) We sayΣ is simplicial if every coneσ in Σ is simplicial.

(c) We sayΣ is completeif its support|Σ|=⋃σ∈Σσ is all of NR.

Theorem 3.1.19.Let XΣ be the toric variety defined by a fanΣ⊆ NR.

(a) XΣ is a smooth variety if and only if the fanΣ is smooth.

(b) XΣ is an orbifold(that is, XΣ has only finite quotient singularities) if and only
if the fanΣ is simplicial.

(c) XΣ is compact in the classical topology if and only ifΣ is complete.

Proof. Part (a) follows from the corresponding statement for affinetoric varieties,
Theorem 1.3.12, because smoothness is a local property (Definition 3.0.13). In
part (b), Example 1.3.20 gives one implication. The other implication will be
proved in Chapter 11. A proof of part (c) will be given in §3.4. �

The blowup ofC2 at the origin (Example 3.1.15) is not compact, since the
support of the cones in the corresponding fan is not all ofR2. The Hirzebruch
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surfacesHr from Example 3.1.16 are smooth and compact because every cone in
the corresponding fan is smooth, and the union of the cones isR2. The variety
P(1,1,2) from Example 3.1.17 is compact but not smooth. It is an orbifold (it has
only finite quotient singularities) since the corresponding fan is simplicial.

Exercises for §3.1.

3.1.1. Let Σ be a fan inNR. Show that the isomorphismsgσ1,σ2 satisfy the compatibility
conditions from §0 for gluing theUσ together to createXΣ.

3.1.2. Let X be a variety obtained by gluing affine open subsets{Vα} along open subsets
Vαβ ⊆Vα by isomorphismsgαβ : Vαβ ≃Vβα. Show thatX is separated when the image of
∆ : Vαβ →Vα×Vβ defined by∆(p) = (p,gαβ(p)) is Zariski closed for allα,β.

3.1.3. Verify that if Σ is the fan given in Example 3.1.10, thenXΣ ≃ Pn.

3.1.4. Prove Proposition 3.1.14.

3.1.5. Let N≃ Zn, let e1, . . . ,en ∈ N be the standard basis and lete0 = e1 + · · ·+en. Let Σ
be the set of cones generated by all subsets of{e0, . . . ,en} not containing{e1, . . . ,en}.
(a) Show thatΣ is a fan inNR.

(b) Construct the affine open subsets covering the corresponding toric varietyXΣ, and
give the gluing isomorphisms.

(c) Show thatXΣ is isomorphic to the blowup ofCn at the origin, described earlier in
Exercise 3.0.8. Hint: The blowup is the subvariety ofPn−1×Cn given by W =
V(xiy j − x jyi | 1≤ i < j ≤ n). CoverW by affine open subsetsWi = Wxi and com-
pare those affines with your answer to part (b).

3.1.6. In this exercise, you will verify the claims made in Example 3.1.17.

(a) Show that there is a matrixA∈ GL(2,Z) defining a change of coordinates that takes
the cone in this example to the cone from Example 1.2.21, and find the mapping takes
σ∨2 to the dual cone.

(b) Show that Spec(C[Sσ2])≃ V(xz−y2)⊆ C3.

3.1.7. In NR = R2, consider the fanΣ with cones{0}, Cone(e1), and Cone(−e1). Show
thatXΣ ≃ P1×C∗.

§3.2. The Orbit-Cone Correspondence

In this section, we will study the orbits for the action ofTN on the toric varietyXΣ.
Our main result will show that there is a bijective correspondence between cones
in Σ andTN-orbits inXΣ. The connection comes ultimately from looking at limit
points ofone-parameter subgroupsof TN defined in §1.1.

A First Example. We introduce the key features of the correspondence between
orbits and cones by looking at a concrete example.
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Example 3.2.1.ConsiderP2≃ XΣ for the fanΣ from Figure 2 of §3.1. The torus
TN = (C∗)2⊆ P2 consists of points with homogeneous coordinates(1,s, t), s, t 6= 0.
For eachu = (a,b) ∈ N = Z2, we have the corresponding curve inP2:

λu(t) = (1, ta, tb).

We are abusing notation slightly; strictly speaking, the one-parameter subgroupλu

is a curve in(C∗)2, but we view it as a curve inP2 via the inclusion(C∗)2⊆ P2.

We start by analyzing the limit ofλu(t) ast→ 0. The limit point inP2 depends
onu = (a,b). It is easy to check that the pattern is as follows:

limit is (1,0,0)

limit is (0,0,1)

limit is (0,1,0)

↑
 limit is (0,1,1)

↓
limit is (1,1,0)

← limit is (1,0,1)←
limit is (1,1,1)

a

b

Figure 6. limt→0λu(t) for u = (a,b) ∈ Z2

For instance, supposea,b> 0 in Z. These points lie in the first quadrant. Here,
it is obvious that limt→0(1, ta, tb) = (1,0,0). Next suppose thata = b< 0 in Z,
corresponding to points on the diagonal in the third quadrant. Note that

(1, ta, tb) = (1, ta, ta)∼ (t−a,1,1)

since we are using homogeneous coordinates inP2. Then−a > 0 implies that
limt→0(t−a,1,1) = (0,1,1). You will check the remaining cases in Exercise 3.2.1.

The regions ofN described in Figure 6 correspond to cones of the fanΣ. In
each case, the set ofu giving one of the limit points equalsN∩Relint(σ), where
Relint(σ) is therelative interiorof a coneσ∈Σ. In other words, we have recovered
the structure of the fanΣ by considering these limits!

Now we relate this to theTN-orbits inP2. By considering the descriptionP2≃
(C3\{0})/C∗, you will see in Exercise 3.2.1 that there are exactly sevenTN-orbits
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in P2:

O1 = {(x0,x1,x2) | xi 6= 0 for all i} ∋ (1,1,1)

O2 = {(x0,x1,x2) | x2 = 0, andx0,x1 6= 0} ∋ (1,1,0)

O3 = {(x0,x1,x2) | x1 = 0, andx0,x2 6= 0} ∋ (1,0,1)

O4 = {(x0,x1,x2) | x0 = 0, andx1,x2 6= 0} ∋ (0,1,1)

O5 = {(x0,x1,x2) | x1 = x2 = 0, andx0 6= 0}= {(1,0,0)}
O6 = {(x0,x1,x2) | x0 = x2 = 0, andx1 6= 0}= {(0,1,0)}
O7 = {(x0,x1,x2) | x0 = x1 = 0, andx2 6= 0}= {(0,0,1)}.

This list shows that each orbit contains a unique limit point. Hence we obtain a
correspondence between conesσ and orbitsO by

σ corresponds toO ⇐⇒ lim
t→0

λu(t) ∈O for all u∈Relint(σ).

We will soon see that these observations generalize to all toric varietiesXΣ. ♦

Points and Semigroup Homomorphisms. It will be convenient to use the intrinsic
description of the points of an affine toric varietyUσ given in Proposition 1.3.1.
We recall how this works and make some additional observations:

• Points ofUσ are in bijective correspondence with semigroup homomorphisms
γ : Sσ→ C. Recall thatSσ = σ∨∩M andUσ = Spec(C[Sσ]).

• For each coneσ we have a point ofUσ defined by

m∈ Sσ 7−→
{

1 m∈ Sσ ∩σ⊥ = σ⊥∩M

0 otherwise.

This is a semigroup homomorphism sinceσ∨ ∩σ⊥ is a face ofσ∨. Thus, if
m,m′ ∈ Sσ andm+m′ ∈ Sσ ∩σ⊥, thenm,m′ ∈ Sσ ∩σ⊥. We denote this point
by γσ and call it thedistinguished pointcorresponding toσ.

• The pointγσ is fixed under theTN-action if and only if dimσ= dimNR (Corol-
lary 1.3.3).

• If τ � σ is a face, thenγτ ∈Uσ. This follows sinceσ⊥ ⊆ τ⊥.

Limits of One-Parameter Subgroups. In Example 3.2.1, the limit points of one-
parameter subgroups are exactly the distinguished points for the cones in the fan
of P2 (Exercise 3.2.1). We now show that this is true for all affine toric varieties.

Proposition 3.2.2. Letσ ⊆ NR be a strongly convex rational polyhedral cone and
let u∈ N. Then

u∈ σ⇐⇒ lim
t→0

λu(t) exists inUσ.

Moreover, if u∈ Relint(σ), thenlimt→0λ
u(t) = γσ.
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Proof. Givenu∈ N, we have

lim
t→0

λu(t) exists inUσ ⇐⇒ lim
t→0

χm(λu(t)) exists inC for all m∈ Sσ

⇐⇒ lim
t→0

t〈m,u〉 exists inC for all m∈ Sσ

⇐⇒ 〈m,u〉 ≥ 0 for all m∈ σ∨∩M

⇐⇒ u∈ (σ∨)∨ = σ,

where the first equivalence is proved in Exercise 3.2.2 and the other equivalences
are clear. This proves the first assertion of the proposition.

In Exercise 3.2.2 you will also show that whenu∈ σ∩N, limt→0λ
u(t) is the

point corresponding to the semigroup homomorphismSσ→ C defined by

m∈ σ∨∩M 7−→ lim
t→0

t〈m,u〉.

If u∈Relint(σ), then〈m,u〉> 0 for all m∈ Sσ \σ⊥ (Exercise 1.2.2), and〈m,u〉= 0
if m∈ Sσ ∩σ⊥. Hence the limit point is precisely the distinguished pointγσ. �

Using this proposition, we can recover the fanΣ from XΣ cone by cone as in
Example 3.2.1. This is also the key observation needed for the proof of Corol-
lary 3.1.8 from the previous section.

Let us apply Proposition 3.2.2 to a familiar example.

Example 3.2.3.Consider the affine toric varietyV = V(xy−zw) studied in a num-
ber of examples from Chapter 1. For instance, in Example 1.1.18, we showed that
V is the normal toric variety corresponding to a coneσ whose dual cone is

(3.2.1) σ∨ = Cone(e1,e2,e3,e1 +e2−e3),

andV = Spec(C[σ∨∩M]).

In Example 1.1.18, we introduced the torusT = (C∗)3 of V as the image of

(3.2.2) (t1, t2, t3) 7→ (t1, t2, t3, t1t2t
−1
3 ).

Givenu = (a,b,c) ∈ N = Z3, we have the one-parameter subgroup

(3.2.3) λu(t) = (ta, tb, tc, ta+b−c)

contained inV, and we proceed to examine limit points using Proposition 3.2.2.
Clearly, limt→0λ

u(t) exists inV if and only if a,b,c ≥ 0 anda+ b≥ c. These
conditions determine the coneσ ⊆ NR given by

(3.2.4) σ = Cone(e1,e2,e1 +e3,e2 +e3).

One easily checks that (3.2.1) is the dual of this cone (Exercise 3.2.3). Note
also thatu ∈ Relint(σ) meansa,b,c > 0 anda+ b> c, in which case the limit
limt→0λ

u(t) = (0,0,0,0), which is the distinguished pointγσ. ♦
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The Torus Orbits. Now we turn to theTN-orbits in XΣ. We saw above that each
coneσ ∈ Σ has a distinguished pointγσ ∈Uσ ⊆ XΣ. This gives the torus orbit

O(σ) = TN ·γσ ⊆ XΣ.

In order to determine the structure ofO(σ), we need the following lemma, which
you will prove in Exercise 3.2.4.

Lemma 3.2.4. Letσ be a strongly convex rational polyhedral cone in NR. Let Nσ
be the sublattice of N spanned by the points inσ∩N, and let N(σ) = N/Nσ.

(a) There is a perfect pairing

〈 , 〉 : σ⊥∩M×N(σ)→ Z,

induced by the dual pairing〈 , 〉 : M×N→ Z.

(b) The pairing of part(a) induces a natural isomorphism

HomZ(σ⊥∩M,C∗)≃ TN(σ),

where TN(σ) = N(σ)⊗Z C∗ is the torus associated to N(σ). �

To studyO(σ)⊆Uσ, we recall howt ∈ TN acts on semigroup homomorphisms.
If p ∈Uσ is represented byγ : Sσ → C, then by Exercise 1.3.1, the pointt · p is
represented by the semigroup homomorphism

(3.2.5) t ·γ : m 7−→ χm(t)γ(m).

Lemma 3.2.5. Letσ be a strongly convex rational polyhedral cone in NR. Then

O(σ) = {γ : Sσ→ C | γ(m) 6= 0⇔m∈ σ⊥∩M}
≃ HomZ(σ⊥∩M,C∗)≃ TN(σ),

where N(σ) is the lattice defined in Lemma 3.2.4.

Proof. The setO′ = {γ : Sσ → C | γ(m) 6= 0⇔m∈ σ⊥∩M} containsγσ and is
invariant under the action ofTN described in (3.2.5).

Next observe thatσ⊥ is the largest vector subspace ofMR contained inσ∨.
Henceσ⊥ ∩M is a subgroupof Sσ = σ∨ ∩M. If γ ∈ O′, then restrictingγ to
m∈ Sσ ∩σ⊥ = σ⊥ ∩M yields agroup homomorphism̂γ : σ⊥ ∩M → C∗ (Exer-
cise 3.2.5). Conversely, if̂γ : σ⊥∩M→ C∗ is a group homomorphism, we obtain
a semigroup homomorphismγ ∈O′ by defining

γ(m) =

{
γ̂(m) if m∈ σ⊥∩M

0 otherwise.

It follows thatO′ ≃ HomZ(σ⊥∩M,C∗).

Now consider the exact sequence

(3.2.6) 0−→ Nσ −→ N−→ N(σ)−→ 0.
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Tensoring withC∗ and using Lemma 3.2.4, we obtain a surjection

TN = N⊗Z C∗ −→ TN(σ) = N(σ)⊗Z C∗ ≃ HomZ(σ⊥∩M,C∗).

The bijections

TN(σ) ≃ HomZ(σ⊥∩M,C∗)≃O′

are compatible with theTN-action, so thatTN acts transtively onO′. Thenγσ ∈O′

implies thatO′ = TN ·γσ = O(σ), as desired. �

The Orbit-Cone Correspondence. Our next theorem is the major result of this
section. Recall that the face relationτ � σ holds whenτ is a face ofσ.

Theorem 3.2.6(Orbit-Cone Correspondence). Let XΣ be the toric variety of the
fanΣ in NR.

(a) There is a bijective correspondence

{conesσ in Σ} ←→ {TN-orbits inXΣ}
σ←→O(σ)≃ HomZ(σ⊥∩M,C∗).

(b) Let n= dimNR. For each coneσ ∈ Σ, dimO(σ) = n−dimσ.

(c) The affine open subset Uσ is the union of orbits

Uσ =
⋃

τ�σ

O(τ).

(d) τ � σ if and only if O(σ)⊆O(τ), and

O(τ) =
⋃

τ�σ

O(σ),

whereO(τ) denotes the closure in both the classical and Zariski topologies.

For instance, Example 3.2.1 tells us that forP2, there are three types of cones
and torus orbits:

• The trivial coneσ = {(0,0)} corresponds to the orbitO(σ) = TN ⊆ P2, which
satisfies dimO(σ) = 2 = 2− dimσ. This is a face of all the other cones in
Σ, and hence all the other orbits are contained in the closure of this one by
part (d). Note also thatUσ = O(σ) ≃ (C∗)2 by part (c), since there are no
cones properly contained inσ.

• The three 1-dimensional conesτ give the torus orbits of dimension 1. Each is
isomorphic toC∗. The closures of these orbits are the coordinate axesV(xi) in
P2, each a copy ofP1. Note that eachτ is contained in two maximal cones.

• The three maximal conesσi in the fanΣ correspond to the three fixed points
(1,0,0),(0,1,0),(0,0,1) of the torus action onP2. There are two of these in
the closure of each of the 1-dimensional torus orbits.



120 Chapter 3. Normal Toric Varieties

Proof of Theorem 3.2.6.Let O be aTN-orbit in XΣ. SinceXΣ is covered by the
TN-invariant affine open subsetsUσ ⊆ XΣ andUσ1∩Uσ2 =Uσ1∩σ2, there is a unique
minimal coneσ ∈Σ with O⊆Uσ. We claim thatO= O(σ). Note that part (a) will
follow immediately once we prove this claim.

To prove the claim, letγ ∈ O and consider thosem∈ Sσ satisfyingγ(m) 6= 0.
In Exercise 3.2.6, you will show that thesem’s lie on a face ofσ∨. But faces ofσ∨

are all of the formσ∨ ∩ τ⊥ for some faceτ � σ by Proposition 1.2.10. In other
words, there is a faceτ � σ such that

{m∈ Sσ | γ(m) 6= 0} = σ∨∩ τ⊥∩M.

This easily impliesγ ∈Uτ (Exercise 3.2.6), and thenτ = σ by the minimality ofσ.
Hence{m∈ Sσ | γ(m) 6= 0} = σ⊥∩M, and thenγ ∈O(σ) by Lemma 3.2.5. This
impliesO = O(σ) since two orbits are either equal or disjoint.

Part (b) follows from Lemma 3.2.5 and (3.2.6).

Next consider part (c). We know thatUσ is a union of orbits. Ifτ is a face ofσ,
thenO(τ) ⊆Uτ ⊆Uσ implies thatO(τ) is an orbit contained inUσ. Furthermore,
the analysis of part (a) easily implies that any orbit contained inUσ must equal
O(τ) for some faceτ � σ.

We now turn to part (d). We begin with the closure ofO(τ) in the classical
topology, which we denoteO(τ). This is invariant underTN (Exercise 3.2.6) and
hence is a union of orbits. Suppose thatO(σ) ⊆ O(τ). ThenO(τ) ⊆ Uσ, since
otherwiseO(τ)∩Uσ = ∅, which would implyO(τ)∩Uσ = ∅ sinceUσ is open in
the classical topology. Once we haveO(τ)⊆Uσ, it follows thatτ � σ by part (c).
Conversely, assumeτ � σ. To prove thatO(σ) ⊆ O(τ), it suffices to show that
O(τ)∩O(σ) 6= ∅. We will do this by using limits of one-parameter subgroups as
in Proposition 3.2.2.

Let γτ be the semigroup homomorphism corresponding to the distinguished
point ofUτ , soγτ (m) = 1 if m∈ τ⊥∩M, and 0 otherwise. Letu∈ Relint(σ), and
for t ∈ C∗ defineγ(t) = λu(t) ·γτ . As a semigroup homomorphism,γ(t) is

m 7−→ χm(λu(t))γτ (m) = t〈m,u〉γτ (m).

Note thatγ(t) ∈ O(τ) for all t ∈ C∗since the orbit ofγτ is O(τ). Now let t → 0.
Sinceu ∈ Relint(σ), 〈m,u〉 > 0 if m∈ σ∨ \σ⊥, and= 0 if m∈ σ⊥. It follows
thatγ(0) = limt→0γ(t) exists as a point inUσ by Proposition 3.2.2, and represents
a point in O(σ). But it is also in the closure ofO(τ) by construction, so that
O(σ)∩O(τ) 6= ∅. This establishes the first assertion of (d), and

O(τ) =
⋃

τ�σ

O(σ)

follows immediately for the classical topology.
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It remains to show that this set is also the Zariski closure. If we intersectO(τ)
with an affine open subsetUσ′ , parts (c) and (d) imply that

O(τ)∩Uσ′ =
⋃

τ�σ′�σ

O(σ).

In Exercise 3.2.6, you will show that this is the subvarietyV(I)⊆Uσ′ for the ideal

(3.2.7) I = 〈χm |m∈ τ⊥∩ (σ′)∨∩M〉 ⊆ C[(σ′)∨∩M] = Sσ′ .

This easily implies that the classical closureO(τ) is a subvariety ofXΣ and hence
is the Zariski closure ofO(τ). �

Orbit Closures as Toric Varieties. In the example ofP2, the orbit closuresO(τ)
also have the structure of toric varieties. This holds in general. We use the notation

V(τ) = O(τ).

By part (d) of Theorem 3.2.6, we haveτ � σ if and only if O(σ)⊆V(τ), and

V(τ) =
⋃

τ�σ

O(σ).

The torusO(τ) = TN(τ) is an open subset ofV(τ), whereN(τ) is defined in
Lemma 3.2.4. We will show thatV(τ) is a normal toric variety by constructing
its fan. For each coneσ ∈ Σ containingτ , letσ be the image cone inN(τ)R under
the quotient map

NR −→ N(τ)R

in (3.2.6). Then

(3.2.8) Star(τ) = {σ ⊆N(τ)R | τ � σ ∈Σ}

is a fan inN(τ)R (Exercise 3.2.7).

Proposition 3.2.7. For anyτ ∈Σ, the orbit closure V(τ) = O(τ) is isomorphic to
the toric variety XStar(τ).

Proof. This follows from parts (a) and (d) of Theorem 3.2.6 (Exercise 3.2.7). �

Example 3.2.8.Consider the fanΣ in NR = R3 shown in Figure 7 on the next page.
The support ofΣ is the cone in Figure 2 of Chapter 1, andΣ is obtained from this
cone by adding a new 1-dimensional coneτ in the center and subdividing. The
orbit O(τ) has dimension 2 by Theorem 3.2.6. By Proposition 3.2.7, the orbit
closureV(τ) is constructed from the cones ofΣ containingτ and then collapsing
τ to a point inN(τ)R = (N/Nτ )R ≃ R2. This clearly gives the fan forP1×P1, so
thatV(τ)≃ P1×P1. ♦
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z

y

x

τ

Figure 7. The fanΣ and its 1-dimensional coneτ

A nice example of orbit closures comes from the toric varietyXP of a full
dimensional lattice polytopeP⊆MR. Here, we use the normal fanΣP of P, which
by Theorem 2.3.2 consists of cones

(3.2.9) σQ = Cone(uF | F is a facet ofP containingQ)

for each faceQ� P. Recall thatuF is the facet normal ofF.

The basic idea is that the orbit closure ofV(σQ) is the toric variety of the lattice
polytopeQ. SinceQ need not be full dimensional inMR, we need to be careful.
The idea is to translateP by a vertex ofQ so that the origin is a vertex ofQ. This
affects neitherΣP norXP, butQ is now full dimensional in Span(Q) and is a lattice
polytope relative to Span(Q)∩M. This gives the toric varietyXQ, which is easily
seen to be independent of how we translate to the origin. Hereis our result.

Proposition 3.2.9. For each face Q� P, we have V(σQ)≃ XQ.

Proof. We sketch the proof and leave the details to reader (Exercise3.2.8). Let

P = {m∈MR | 〈m,uF〉 ≥ aF for all facetsF ≺ P}
be the facet presentation ofP. The facets ofP containingQ also contain the origin,
so thataF = 0 for these facets. This implies that

σ⊥Q = Span(Q),

and thenN(σQ) is dual to Span(Q)∩M. Note also thatN(σQ)R = NR/Span(σQ).

To keep track of which polytope we are using, we will write thecone (3.2.9)
associated to a faceQ� P asσQ,P. ThenXP andXQ are given by the normal fans

ΣP = {σQ′,P⊆ NR |Q′ ≺ P}
ΣQ = {σQ′,Q⊆ N(σQ,P)R |Q′ ≺Q}.
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By Proposition 3.2.7, the toric varietyV(σQ) = V(σQ,P) is determined by the fan

Star(σQ,P) = {σ | σQ,P≺ σ ∈ ΣP}
= {σQ′,P | σQ,P≺ σQ′,P ∈ ΣP}= {σQ′,P |Q′ �Q}.

Then the proposition follows once one proves thatσQ′,P = σQ′,Q. �

Final Comments. The technique of using limit points of one-parameter subgroups
to study a group action is also a major tool in Geometric Invariant Theory as in
[127], where the main problem is to construct varieties (or possibly more general
objects) representing orbit spaces for the actions of algebraic groups on varieties.
We will apply ideas from group actions and orbit spaces to thestudy of toric vari-
eties in Chapters 5 and 14.

We also note the observation made in part (d) of Theorem 3.2.6that torus orbits
have the same closure in the classical and Zariski topologies. For arbitrary subsets
of a variety, these closures may differ. A torus orbit is an example of aconstructible
subset, and we will see in §3.4 that constructible subsets have the same classical
and Zariski closures since we are working overC.

Exercises for §3.2.

3.2.1. In this exercise, you will verify the claims made in Example 3.2.1 and the following
discussion.

(a) Show that the remaining limits of one-parameter subgroupsP2 are as claimed in the
example.

(b) Show that the(C∗)2-orbits inP2 are as claimed in the example.

(c) Show that the limit point equals the distinguished pointγσ of the corresponding cone
in each case.

3.2.2. Let σ ⊆ NR be a strongly convex rational polyhedral cone. This exercise will con-
sider limt→0 f (t), wheref : C∗→ TN is an arbitrary function.

(a) Prove that limt→0 f (t) exists inUσ if and only if limt→0χ
m( f (t)) exists inC for all

m∈ Sσ. Hint: Consider a finite set of charactersA such thatSσ = NA .

(b) When limt→0 f (t) exists inUσ, prove that the limit is given by the semigroup homo-
morphism that mapsm∈ Sσ to limt→0χ

m( f (t)).

3.2.3. Consider the situation of Example 3.2.3.

(a) Show that the cones in (3.2.1) and (3.2.4) are dual.

(b) Identify the limits of all one-parameter subgroups in this example, and describe the
Orbit-Cone Correspondence in this case.

(c) Show that the matrix

A =




1 1 −1
1 0 0
−1 0 1




defines an automorphism ofN≃Z3 and the corresponding linear map onNR maps the
coneσ∨ to σ.
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(d) Deduce that the affine toric varietiesUσ andUσ∨ are isomorphic. Hint: Use Proposi-
tion 1.3.15.

3.2.4. Prove Lemma 3.2.4.

3.2.5. Let O′ be as defined in the proof of Lemma 3.2.5. In this exercise, youwill complete
the proof thatO′ is aTN-orbit in Uσ.

(a) Show that ifγ ∈O′, thenγ̂ : σ⊥∩M→ C∗ is a group homomorphism.

(b) Deduce thatO′ has the structure of a group.

(c) Verify carefully that we have an isomorphism of groupsO′ ≃ HomZ(σ⊥ ∩M,C∗).

3.2.6. This exercise is concerned with the proof of Theorem 3.2.6.

(a) Let γ : Sσ → C be a semigroup homomorphism giving a point ofUσ. Prove that
{m∈ Sσ | γ(m) 6= 0}= Γ∩M for some faceΓ� σ∨.

(b) ShowO(τ) is invariant under the action ofTN.

(c) Prove thatO(τ)∩Uσ′ is the variety of the idealI defined in (3.2.7).

3.2.7. Let τ be a cone in a fanΣ, and let Star(τ) be as defined in (3.2.8).

(a) Show that Star(τ) is a fan inN(τ)R.

(b) Prove Proposition 3.2.7.

3.2.8. Supply the details omitted in the proof of Proposition 3.2.9.

3.2.9. Consider the action ofTN on the affine toric varietyUσ. Use parts (c) and (d) of
Theorem 3.2.6 to show thatO(σ) is the unique closed orbit ofTN acting onUσ.

3.2.10.In Proposition 1.3.16, we saw that ifτ is a face of the strongly convex rational poly-
hedral coneσ in NR thenUτ = Spec(C[Sτ ]) is an affine open subset ofUσ = Spec(C[Sσ]).
In this exercise, you will prove the converse, i.e., that ifτ ⊆ σ and the induced map of
affine toric varietiesφ : Uτ →Uσ is an open immersion, thenτ � σ, i.e.,τ is a face ofσ.

(a) Letu,u′ ∈N∩σ, and assumeu+u′ ∈ τ . Show that

lim
t→0

λu(t) · lim
t→0

λu′(t) ∈Uτ .

(b) Show that limt→0λ
u(t) and limt→0λ

u′(t) are each inUτ . Hint: Use the description of
points as semigroup homomorphisms.

(c) Deduce thatu,u′ ∈ τ , soτ is a face ofσ.

3.2.11. In this exercise, you will use Proposition 3.2.2 and Theorem3.2.6 to deduce Corol-
lary 3.1.8 from Theorem 3.1.7.

(a) By Theorem 3.1.7, and the results of Chapter 1, a separated toric variety has an open
cover consisting of affine toric varietiesUi =Uσi for some collection of conesσi . Show
that for all i, j, Ui ∩U j is also affine. Hint: Use the fact thatX is separated.

(b) Show thatUi ∩U j is the affine toric variety corresponding to the coneτ = σi ∩ σ j .
Hint: Exercise 3.2.2 will be useful.

(c) If τ = σi ∩σ j , then show thatτ is a face of bothσi andσ j . Hint: Use Exercise 3.2.10.

(d) Deduce thatX ≃ XΣ for the fan consisting of theσi and all their faces.
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§3.3. Toric Morphisms

Recall from §3.0 that ifX andY are varieties with affine open coversX =
⋃
αUα

andY =
⋃
βU ′β, then a morphismφ : X→Y is a Zariski-continuous mapping such

that the restrictions

φ|Uα∩φ−1(U ′
β
) : Uα∩φ−1(U ′β)−→U ′β

are morphisms in the sense of Definition 3.0.3 for allα,β.

In §1.3 we definedtoric morphismsbetween affine toric varieties and studied
their properties. When applied to arbitrary normal toric varieties, these results yield
a class of morphisms whose construction comes directly fromthe combinatorics of
the associated fans. The goal of this section is to study these special morphisms.

Definition 3.3.1. Let N1,N2 be two lattices withΣ1 a fan in(N1)R andΣ2 a fan in
(N2)R. A Z-linear mappingφ : N1→ N2 is compatiblewith the fansΣ1 andΣ2 if
for every coneσ1 ∈ Σ1, there exists a coneσ2 ∈ Σ2 such thatφR(σ1)⊆ σ2.

Example 3.3.2.Let N1 = Z2 with basise1,e2 and letΣr be the fan from Figure 4
in §3.1. By Example 3.1.16,XΣr is the Hirzebruch surfaceHr . Also let N2 = Z
and consider the fanΣ giving P1:

s

0σ1 σ0

as in Example 3.1.11. The mapping

φ : N1−→ N2, ae1 +be2 7−→ a

is compatible with the fansΣr andΣ since each cone ofΣr maps onto a cone ofΣ.
If r 6= 0, on the other hand, the mapping

ψ : N1−→ N2, ae1 +be2 7−→ b

is not compatible with these fans sinceσ3 ∈Σr does not map into a cone ofΣ. ♦

The Definition of Toric Morphism. In §1.3, we defined a toric morphism in the
affine case and gave an equivalent condition in Proposition 1.3.14. For general
toric varieties, it more convenient to take the result of Proposition 1.3.14 as the
definitionof toric morphism.

Definition 3.3.3. Let XΣ1, XΣ2 be normal toric varieties, withΣ1 a fan in(N1)R

andΣ2 a fan in (N2)R. A morphismφ : XΣ1 → XΣ2 is toric if φ maps the torus
TN1 ⊆ XΣ1 into TN2 ⊆ XΣ2 andφ|TN1

is a group homomorphism.
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The proof of part (b) of Proposition 1.3.14 generalizes easily to show that any
toric morphismφ : XΣ1 → XΣ2 is an equivariant mappingfor the TN1- and TN2-
actions. That is, we have a commutative diagram

(3.3.1)

TN1×XΣ1
//

φ|TN1
×φ

��

XΣ1

φ
��

TN2×XΣ2
// XΣ2

where the horizontal maps give the torus actions.

Our first result shows that toric morphismsφ : XΣ1 → XΣ2 correspond toZ-
linear mappingsφ : N1→ N2 that are compatible with the fansΣ1 andΣ2.

Theorem 3.3.4.Let N1,N2 be lattices and letΣi be a fan in(Ni)R, i = 1,2.

(a) If φ : N1→N2 is aZ-linear map that is compatible withΣ1 andΣ2, then there
is a toric morphismφ : XΣ1→ XΣ2 such thatφ|TN1

is the map

φ⊗1 : N1⊗Z C∗ −→ N2⊗Z C∗.

(b) Conversely, ifφ : XΣ1 → XΣ2 is a toric morphism, thenφ induces aZ-linear
mapφ : N1→ N2 that is compatible with the fansΣ1 andΣ2.

Proof. To prove part (a), letσ1 be a cone inΣ1. Sinceφ is compatible withΣ1

andΣ2, there is a coneσ2 ∈ Σ2 with φR(σ1)⊆ σ2. Then Proposition 1.3.15 shows
thatφ induces a toric morphismφσ1 : Uσ1 →Uσ2. Using the general criterion for
gluing morphisms from Exercise 3.3.1, you will show in Exercise 3.3.2 that the
φσ1 glue together to give a morphismφ : XΣ1 → XΣ2. Moreover,φ is toric be-
cause takingσ1 = {0} givesφ{0} : TN1 → TN2, which is easily seen to be the group
homomorphism induced by theZ-linear mapφ : N1→ N2.

For part (b), we show first that the toric morphismφ induces aZ-linear map
φ : N1→ N2. This follows sinceφ|TN1

is a group homomorphism. Hence, given

u∈ N1, the one-parameter subgroupλu : C∗→ TN1 can be composed withφ|TN1
to

give the one-parameter subgroupφ|TN1
◦λu : C∗ → TN2. This defines an element

φ(u) ∈ N2. It is straightforward to show thatφ : N1→ N2 is Z-linear.

It remains to show thatφ is compatible with the fansΣ1 andΣ2. Because of the
equivariance (3.3.1), eachTN1-orbit O1⊆XΣ1 is mapped into aTN2-orbit O2⊆ XΣ2.
By the Orbit-Cone Correspondence (Theorem 3.2.6), eachTN1-orbit isO1 = O(σ1)
for some coneσ1 in Σ1, and similarly eachTN2-orbit isO2 = O(σ2) for some cone
σ2 in Σ2. Furthermore, ifτ1 � σ1 is a face, then by the same reasoning, there is
some coneτ2 in Σ2 such thatφ(O(τ1))⊆O(τ2).

We claim that in this situationτ2 must be a face ofσ2. This follows since
O(σ) ⊆ O(τ) by part (d) of Theorem 3.2.6. Sinceφ is continuous in the Zariski

topology,φ
(

O(τ1)
)
⊆O(τ2). But the only orbits contained in the closure ofO(τ2)
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are the orbits corresponding to cones which haveτ2 as a face. Soτ2 is a face ofσ2.
It follows from part (c) of Theorem 3.2.6 thatφ also maps the affine open subset
Uσ1 ⊆ XΣ1 into Uσ2 ⊆ XΣ2, i.e.,

(3.3.2) φ(Uσ1)⊆Uσ2.

Henceφ induces a toric morphismUσ1→Uσ2, which by Proposition 1.3.15 implies
thatφR(σ1)⊆ σ2. Henceφ is compatible with the fansΣ1 andΣ2. �

First Examples. Here are some examples of toric morphisms defined by mappings
compatible with the corresponding fans.

Example 3.3.5.Let N1 = Z2 andN2 = Z, and let

φ : N1−→ N2, ae1 +be2 7−→ a,

be the first mapping in Example 3.3.2. We saw thatφ is compatible with the fans
Σr of the Hirzebruch surfaceHr andΣ of P1. Theorem 3.3.4 implies that there is
a corresponding toric morphismφ : Hr → P1. We will see later in the section that
this mapping givesHr the structure of aP1-bundle overP1. ♦

Example 3.3.6.Let N = Zn andΣ be a fan inNR. Forℓ ∈ Z>0, the multiplication
map

φℓ : N −→ N, a 7−→ ℓ ·a
is compatible withΣ. By Theorem 3.3.4, there is a corresponding toric morphism
φℓ : XΣ→ XΣ whose restriction toTN ⊆ XΣ is the group endomorphism

φℓ|TN
(t1, . . . , tn) = (t ℓ1, . . . , t

ℓ
n).

For a concrete example, letΣ be the fan inNR = R2 from Figure 2 and takeℓ= 2.
Then we obtain the morphismφ2 : P2→ P2 defined in homogeneous coordinates
by φ2(x0,x1,x2) = (x2

0,x
2
1,x

2
2). We will useφℓ in Chapter 9. ♦

Sublattices of Finite Index. We get an interesting toric morphism when a lattice
N′ has finite index in a larger latticeN. If Σ is a fan inNR, then we can viewΣ as
a fan either inN′R or in NR, and the inclusionN′ →֒ N is compatible with the fanΣ
in N′R andNR. As in Chapter 1, we obtain toric varietiesXΣ,N′ andXΣ,N depending
on which lattice we consider, and the inclusionN′ →֒ N induces a toric morphism

φ : XΣ,N′ −→ XΣ,N.

Proposition 3.3.7. Let N′ be a sublattice of finite index in N and letΣ be a fan in
NR = N′R. Let G= N/N′. Then

φ : XΣ,N′ −→ XΣ,N

induced by the inclusion N′ →֒ N presents XΣ,N as the quotient XΣ,N′/G.
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Proof. SinceN′ has finite index inN, Proposition 1.3.18 shows that the finite group
G = N/N′ is the kernel ofTN′ → TN. It follows that G acts onXΣ,N′ . This ac-
tion is compatible with the inclusionUσ,N′ ⊆ XΣ,N′ for each coneσ ∈ Σ. Using
Proposition 1.3.18 again, we see thatUσ,N′/G≃Uσ,N, which easily implies that
XΣ,N′/G≃ XΣ,N. �

We will revisit Proposition 3.3.7 in Chapter 5, where we willshow that the
mapφ : XΣ,N′ → XΣ,N is ageometric quotient.

Example 3.3.8.Let N = Z2, andΣ be the fan shown in Figure 5, soXΣ,N gives
the weighted projective spaceP(1,1,2). Let N′ be the sublattice ofN given by
N′ = {(a,b) ∈N | b≡ 0 mod 2}, soN′ has index 2 inN. Note thatN′ is generated
by u1 = e1, u2 = 2e2 and that

u0 =−e1−2e2 =−u1−u2 ∈ N′.

Let φ : N′ →֒ N be the inclusion map. It is not difficult to see that with respect to
the latticeN′, XΣ,N′ ≃ P2 (Exercise 3.3.3). By Theorem 3.3.4, theZ-linear mapφ
induces a toric morphismφ : P2→ P(1,1,2), and by Proposition 3.3.7, it follows
thatP(1,1,2) ≃ P2/G for G = N/N′ ≃ Z/2Z.

σ2

Figure 8. The semigroupsσ∨
2 ∩M andσ∨

2 ∩M′

The coneσ2 from Figure 5 has the dual coneσ∨2 shown in Figure 8. It is
instructive to consider howσ∨2 interacts with the latticeM′ dual toN′. One checks
that M′ ≃ {(a,b/2) : a,b ∈ Z} andσ∨2 = Cone(2e1− e2,−e2). In Figure 8, the
points inσ∨2 ∩M are shown in white, and the points inσ∨2 ∩M′ not in σ∨2 ∩M
are shown in black. Note that the picture inσ∨2 ∩M is the same (up to a change
of coordinates in GL(2,Z)) as Figure 10 from Chapter 1. This shows again that
P(1,1,2) contains the affine open subsetUσ2,N isomorphic to the rational normal
coneĈ2. On the other handUσ2,N′ ≃ C2 is smooth. The other affine open subsets
corresponding toσ1 andσ0 are isomorphic toC2 in bothP2 and inP(1,1,2). ♦
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Torus Factors. A toric variety XΣ has atorus factorif it is equivariantly isomor-
phic to the product of a nontrivial torus and a toric variety of smaller dimension.

Proposition 3.3.9. Let XΣ be the toric variety of the fanΣ. Then the following are
equivalent:

(a) XΣ has a torus factor.

(b) There is a nonconstant morphism XΣ→ C∗.

(c) The uρ, ρ ∈ Σ(1), do not span NR.

Recall thatΣ(1) consists of the 1-dimensional cones ofΣ, i.e., its rays, and
thatuρ is the minimal generator of a rayρ ∈ Σ(1).

Proof. If XΣ ≃ XΣ′× (C∗)r for r > 0 and some toric varietyXΣ′, then a nontrivial
character of(C∗)r gives a nonconstant morphismXΣ→ (C∗)r → C∗.

If φ : XΣ→C∗ is a nonconstant morphism, then Exercise 3.3.4 implies thatthe
restriction ofφ to TN is cχm wherec ∈ C∗ andm∈ M. Multiplying by c−1, we
may assume thatφ|TN

= χm. Thenφ is a toric morphism coming from a surjective

homomorphismφ : N→ Z. SinceC∗ comes from the trivial fan,φ maps all cones
of Σ to the origin. Henceuρ ∈ ker(φ) for all ρ ∈ Σ(1), so theuρ do not spanNR.

Finally, suppose that theuρ, ρ∈Σ(1) span a proper subspace ofNR. ThenN′=
Span(uρ | ρ ∈Σ(1))∩N is proper sublattice ofN such thatN/N′ is torsion-free, so
N′ has a complementN′′ with N = N′×N′′. Furthermore,Σ can be regarded as a
fan Σ′ in N′R, and thenΣ is the product fanΣ = Σ′×Σ′′, whereΣ′′ is the trivial
fan inN′′R. Then Proposition 3.1.14 gives an isomorphism

XΣ ≃ XΣ′,N′×TN′′ ≃ XΣ′,N′× (C∗)n−k,

where dimNR = n and dimN′R = k. �

In later chapters, torus varietieswithout torus factors will play an important
role. Hence we state the following corollary of Proposition3.3.9.

Corollary 3.3.10. Let XΣ be the toric variety of the fanΣ. Then the following are
equivalent:

(a) XΣ has no torus factors.

(b) Every morphism XΣ→ C∗ is constant, i.e.,Γ(XΣ,OXΣ
)∗ = C∗.

(c) The uρ, ρ ∈ Σ(1), span NR. �

We can also think about torus factors from the point of view ofsublattices.

Proposition 3.3.11.Let N′ ⊆ N be a sublattice withdimNR = n, dimN′R = k. Let
Σ be a fan in N′R, which we can regard as a fan in NR.

(a) If N ′ is spanned by a subset of a basis of N, then we have an isomorphism

φ : XΣ,N ≃ XΣ,N′×TN/N′ ≃ XΣ,N′× (C∗)n−k.
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(b) In general, a basis for N′ can be extended to a basis of a sublattice N′′ ⊆ N of
finite index. Then XΣ,N is isomorphic to the quotient of

XΣ,N′′ ≃ XΣ,N′×TN′′/N′ ≃ XΣ,N′× (C∗)n−k

by the finite abelian group N/N′′.

Proof. Part (a) follows from the proof of Proposition 3.3.9, and part (b) follows
from part (a) and Proposition 3.3.7. �

Refinements of Fans and Blowups. Given a fanΣ in NR, a fanΣ′ refinesΣ if
every cone ofΣ′ is contained in a cone ofΣ and|Σ′|= |Σ|. Hence every cone ofΣ
is a union of cones ofΣ′. WhenΣ′ refinesΣ, the identity mapping onN is clearly
compatible withΣ′ andΣ. This yields a toric morphismφ : XΣ′ → XΣ.

Example 3.3.12.Consider the fanΣ′ in N ≃ Z2 pictured in Figure 1 from §3.1.
This is a refinement of the fanΣ consisting of Cone(e1,e2) and its faces. The
corresponding toric varieties areXΣ ≃C2 andXΣ′ ≃W = V(x0y−x1x)⊆ P1×C2,
the blowup ofC2 at the origin (see Example 3.1.15). The identity map onN induces
a toric morphismφ :W→C2. This “blowdown” morphism mapsP1×{0} ⊆W to
0∈ C2 and is injective outside ofP1×{0} in W. ♦

We can generalize this example and Example 3.1.5 as follows.

Definition 3.3.13. Let Σ be a fan inNR ≃ Rn. Let σ = Cone(u1, . . . ,un) be a
smooth cone inΣ, so thatu1, . . . ,un is a basis forN. Let u0 = u1 + · · ·+un and let
Σ′(σ) be the set of all cones generated by subsets of{u0, . . . ,un} not containing
{u1, . . . ,un}. Then

Σ∗(σ) = (Σ\{σ})∪Σ′(σ)

is a fan inNR called thestar subdivisionof Σ alongσ.

Example 3.3.14.Let σ = Cone(u1,u2,u3)⊆ NR ≃R3 be a smooth cone. Figure 9
on the next page shows the star subdivision ofσ into three cones

Cone(u0,u1,u2), Cone(u0,u1,u3), Cone(u0,u2,u3).

The fanΣ∗(σ) consists of these cones, together with their faces. ♦

Proposition 3.3.15.Σ∗(σ) is a refinement ofΣ, and the induced toric morphism

φ : XΣ∗(σ) −→ XΣ

makes XΣ∗(σ) the blowup of XΣ at the distinguished pointγσ corresponding to the
coneσ.

Proof. SinceΣ andΣ∗(σ) are the same outside the coneσ, without loss of gener-
ality, we may reduce to the case thatΣ is the fan consisting ofσ and all of its faces,
andXΣ is the affine toric varietyUσ ≃ Cn.
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u1 u3

u2

u0

Figure 9. The star subdivisionΣ∗(σ)

Under the Orbit-Cone Correspondence (Theorem 3.2.6),σ corresponds to the
distinguished pointγσ, the origin (the unique fixed point of the torus action). By
Theorem 3.3.4, the identity map onN induces a toric morphism

φ : XΣ∗(σ)→Uσ ≃ Cn.

It is easy to check that the affine open sets coveringXΣ∗(σ) are the same as for the
blowup ofCn at the origin from Exercise 3.0.8, and they are glued together in the
same way by Exercise 3.1.5. �

The blowupXΣ at γσ is sometimes denoted Blγσ(XΣ). In this notation, the
blowup ofCn at the origin is written Bl0(Cn).

The point blown up in Proposition 3.3.15 is a fixed point of thetorus action.
In some cases, torus-invariant subvarieties of larger dimension have equally nice
blowups. We begin with the affine case. The standard basise1, . . . ,en of Zn gives
σ = Cone(e1, . . . ,en) with Uσ = Cn, and the faceτ = Cone(e1, . . . ,er), 2≤ r ≤ n,
gives the orbit closure

V(τ) = O(τ) = {0}×Cn−r .

To construct the blowup ofV(τ), let u0 = u1 + · · ·+ur and consider the fan

(3.3.3) Σ∗(τ) = {Cone(A) | A⊆ {u0, . . . ,un}, {u1, . . . ,ur} 6⊆ A}.

Example 3.3.16.Let σ = Cone(e1,e2,e3) ⊆ NR ≃ R3 andτ = Cone(e1,e2). The
star subdivision relative toτ subdividesσ into the cones

Cone(e0,e1,e3), Cone(e0,e2,e3),

as shown in Figure 10 on the next page. The fanΣ∗(τ) consists of these two cones,
together with their faces. ♦
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e1 e3

e2

e0

τ

Figure 10. The star subdivisionΣ∗(τ )

For the fan (3.3.3), the toric varietyXΣ∗(τ) is the blowup of{0}×Cn−r ⊆ Cn.
To see why, observe thatΣ∗(τ) is a product fan. Namely,Zn = Zr×Zn−r , and

Σ∗(τ) = Σ1×Σ2,

whereΣ1 is the fan for Bl0(Cr) (coming from a refinement of Cone(u1, . . . ,ur ))
andΣ2 is the fan forCn−r (coming from Cone(ur+1, . . . ,un)). It follows that

XΣ∗(τ) = Bl0(C
r)×Cn−r .

Since Bl0(Cr) is built by replacing 0∈ Cr with Pr−1, it follows that XΣ∗(τ) =

Bl0(Cr)×Cn−r is built by replacing{0} ×Cn−r ⊆ Cn with Pr−1×Cn−r . The
intuitive idea is that Bl0(Cr) separates directions through the origin inCr , while
the blowup Bl{0}×Cn−r (Cn) = XΣ∗(τ) separatesnormaldirections to{0}×Cn−r in
Cn. One can also study Bl{0}×Cn−r (Cn) by working on affine pieces given by the
maximal cones ofΣ∗(τ)—see [134, Prop. 1.26].

We generalize (3.3.3) as follows.

Definition 3.3.17. Let Σ be a fan inNR ≃ Rn and assumeτ ∈ Σ has the property
that all cones ofΣ containingτ are smooth. Letuτ =

∑
ρ∈τ(1) uρ and for each cone

σ ∈ Σ containingτ , set

Σ∗σ(τ) = {Cone(A) | A⊆ {uτ}∪σ(1), τ(1) 6⊆ A}.
Then thestar subdivisionof Σ relative toτ is the fan

Σ∗(τ) = {σ ∈ Σ | τ 6⊆ σ}∪
⋃

τ⊆σ

Σ∗σ(τ).

The fanΣ∗(τ) is a refinement ofΣ and hence induces a toric morphism

φ : XΣ∗(τ)→ XΣ.
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Under the mapφ, XΣ∗(τ) becomes the blowup BlV(τ)(XΣ) of XΣ along the orbit
closureV(τ).

In Chapters 10 and 11 we will use toric morphisms coming from ageneralized
version of star subdivision to resolve the singularities oftoric varieties.

Exact Sequences and Fibrations. Next, we consider a class of toric morphisms
that have a nice local structure. To begin, consider a surjective Z-linear mapping

φ : N ։ N′.

If Σ in NR andΣ′ in N′R are compatible withφ, then we have a corresponding toric
morphism

φ : XΣ→ XΣ′ .

Now let N0 = ker(φ), so that we have an exact sequence

(3.3.4) 0−→ N0−→ N
φ−−→ N′ −→ 0.

It is easy to check that

Σ0 = {σ ∈ Σ | σ ⊆ (N0)R}
is a subfan ofΣ whose cones lie in(N0)R ⊆ NR. By Proposition 3.3.11,

(3.3.5) XΣ0,N ≃ XΣ0,N0×TN′

sinceN/N0≃ N′. Furthermore,φ is compatible withΣ0 in NR and the trivial fan
{0} in N′R. This gives the toric morphism

φ|XΣ0,N
: XΣ0,N→ TN′ .

In fact, by the reasoning to prove Proposition 3.3.4,

(3.3.6) φ−1(TN′) = XΣ0,N ≃ XΣ0,N0×TN′ .

In other words, the part ofXΣ lying overTN′ ⊆ XΣ′ is identified with the product
of TN′ and the toric varietyXΣ0,N0. We say this subset ofXΣ is afiber bundleover
TN′ with fiber XΣ0,N0.

When the fanΣ has a suitable structure relative toφ, we can make a similar
statement for every torus-invariant affine open subset ofXΣ′ .

Definition 3.3.18. In the situation of (3.3.4), we sayΣ is split byΣ′ andΣ0 if there
exists a subfan̂Σ⊆ Σ such that:

(a) φR maps each conêσ ∈ Σ̂ bijectively to a coneσ′ ∈Σ′ such that̂σ 7→ σ′ defines
a bijectionΣ̂→ Σ′.

(b) Given coneŝσ ∈ Σ̂ andσ0 ∈ Σ0, the sumσ̂+σ0 lies in Σ, and every cone of
Σ arises this way.
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Theorem 3.3.19. If Σ is split byΣ′ and Σ0 as in Definition 3.3.18, then XΣ is a
locally trival fiber bundle over XΣ′ with fiber XΣ0,N0, i.e., XΣ′ has a cover by affine
open subsets U satisfying

φ−1(U)≃ XΣ0,N0×U .

Proof. Fix σ′ in Σ′ and letΣ(σ′) = {σ ∈ Σ | φ(σ)⊆ σ′}. Then

φ−1(Uσ′) = XΣ(σ′).

It remains to show thatXΣ(σ′) ≃ XΣ0,N0×Uσ′ . SinceΣ(σ′) is split byΣ0∩Σ(σ′)

andΣ̂∩Σ(σ′), we may assumeXΣ′ = Uσ′ . In other words, we are reduced to the
case whenΣ′ consists ofσ′ and its proper faces.

A Z-linear mapν : N′→ N splitsthe exact sequence (3.3.4) providedφ◦ ν is
the identity onN′. A splitting induces an isomorphism

N0×N′ ≃N.

By Definition 3.3.18, there is a conêσ ∈ Σ̂ such thatφR mapsσ̂ bijectively toσ′.
Using σ̂, one can find a splittingν with the property thatνR mapsτ ′ to τ̂ for all
τ̂ ∈ Σ̂ (Exercise 3.3.5). Using Definition 3.3.18 again, we see that

(N0)R×N′R ≃ NR

carries the product fan(Σ0,(N0)R)× (Σ′,N′R) to the fan(Σ,NR). By Proposi-
tion 3.1.14, we conclude that

XΣ ≃ XΣ0,N0×XΣ′ ≃ XΣ0,N0×Uσ′ ,

and the theorem is proved. �

Example 3.3.20.To complete the discussion from Examples 3.3.2 and 3.3.5, con-
sider the toric morphismφ : Hr → P1 induced by the mapping

φ : Z2−→ Z, ae1 +be2 7−→ a.

The fanΣr of Hr is split by the fan ofP1 and Σ0 = {σ ∈ Σr | φR(σ) = {0}}
because of the subfan̂Σ of Σr consisting of the cones

Cone(−e1 + re2),{0},Cone(e1).

These cones are mapped bijectively to the cones inΣ′ underφR. Note also thatΣ0

consists of the cones
Cone(e2),{0},Cone(−e2).

The fansΣ̂ andΣ0 are shown in Figure 11 on the next page.

As we vary over all̂σ ∈ Σ̂ andσ0 ∈ Σ0, the sumŝσ+σ0 give all cones ofHr .
Hence Theorem 3.3.19 shows thatHr is a locally trivial fibration overP1, with
fibers isomorphic to

XΣ0,N0 ≃ P1,
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σ1

σ4

σ3

σ2

(−1,r)

↓ ↓↓

Σ0
↓

Σ
↓

← Σ

〉

〉

Figure 11. The Splitting of the FanΣr

whereN0 = ker(φ) gives the vertical axis in Figure 11. This fibration is not globally
trivial when r > 0, i.e., it is not true thatHr ≃ P1×P1. There is some “twisting”
on the fibers involved when we try to glue together theφ−1(Uσ′) ≃Uσ′ ×P1 to
obtainHr . ♦

We will give another, more precise, description of these fiber bundles and the
“twisting” mentioned above using the language of sheaves inChapter 7.

Images of Distinguished Points. Each orbitO(σ) in a toric varietyXΣ contains
a distinguished pointγσ, and each orbit closureV(σ) is a toric variety in its own
right. These structures are compatible with toric morphisms as follows.

Lemma 3.3.21. Let φ : XΣ→ XΣ′ be the toric morphism coming from a mapφ :
N→ N′ that is compatible withΣ andΣ′. Givenσ ∈Σ, letσ′ ∈ Σ′ be the minimal
cone ofΣ′ containingφR(σ). Then:

(a) φ(γσ) = γσ′ , whereγσ ∈O(σ) andγσ′ ∈O(σ′) are the distinguished points.

(b) φ(O(σ)) ⊆O(σ′) andφ
(
V(σ)

)
⊆V(σ′).

(c) The induced mapφ|V(σ) : V(σ)→V(σ′) is a toric morphism.

Proof. First observe that ifσ′1,σ
′
2 ∈ Σ′ containφR(σ), then so does their intersec-

tion. HenceΣ′ has a minimal cone containingφR(σ).
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To prove part (a), picku∈Relint(σ) and observe thatφ(u) ∈Relint(σ′) by the
minimality of σ′. Then

φ(γσ) = φ
(
limt→0λ

u(t)
)

= limt→0φ(λu(t)) = limt→0λ
φ(u)(t) = γσ′ ,

where the first and last equalities use Proposition 3.2.2.

The first assertion of part (b) follows immediately from part(a) by the equiv-
ariance, and the second assertion follows by continuity (asusual, we get the same
closure in the classical and Zariski topologies).

For (c), observe thatφ|O(σ) : O(σ)→O(σ′) is a morphism that is also a group
homomorphism—this follows easily from equivariance. Since the orbit closures
are toric varieties by Proposition 3.2.7, the mapφ|V(σ) : V(σ)→ V(σ′) is a toric
morphism according to Definition 3.3.3. �

Exercises for §3.3.

3.3.1. Let X be a variety with an affine open cover{Ui}, and letY be a second variety. Let
φi : Ui →Y be a collection of morphisms. We say that a morphismφ : X→Y is obtained
by gluing theφi if φ|Ui

= φi for all i. Show that there exists such aφ : X→Y if and only if
for every pairi, j,

φi |Ui∩U j
= φ j |Ui∩U j

.

3.3.2. Let N1,N2 be lattices, and letΣ1 in (N1)R, Σ2 in (N2)R be fans. Letφ : N1→ N2 be
a Z-linear mapping that is compatible with the corresponding fans. Using Exercise 3.3.1
above, show that the toric morphismsφσ1 : Uσ1 →Uσ2 constructed in the proof of Theo-
rem 3.3.4 glue together to form a morphismφ : XΣ1 → XΣ2.

3.3.3. This exercise asks you to verify some of the claims made in Example 3.3.8.

(a) Verify thatXΣ,N′ ≃ P2 with respect to the latticeN′.

(b) Verify carefully that the affine open subsetUσ2,N ≃ Ĉ2, whereĈ2 is the rational normal
coneĈd with d = 2.

3.3.4. A characterχm, m∈M, gives a morphismTN → C∗. Here you will determineall
morphismsTN→ C∗.

(a) Explain why morphismsTN→ C∗ correspond to invertible elements in the coordinate
ring of TN.

(b) Let c ∈ C∗ andα ∈ Zn. Prove thatctα is invertible inC[t±1
1 , . . . ,t±1

n ] and that all
invertible elements ofC[t±1

1 , . . . ,t±1
n ] are of this form.

(c) Use part (a) to show that all morphismsTN→C∗ onTN are of the formcχm for c∈C∗

andm∈M.

3.3.5. Let φ : N→ N′ be a surjectiveZ-linear mapping and let̂σ andσ′ be cones inNR

andN′R respectively with the property thatφR mapŝσ bijectively ontoσ′. Prove thatφ has
a splittingν : N′→N such thatν mapsσ′ to σ̂.

3.3.6. Let Σ′ be the fan obtained from the fanΣ for P2 in Example 3.1.9 by the following
process. Subdivide the coneσ2 into two new conesσ21 andσ22 by inserting an edge
Cone(−e2).
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(a) Show that the resulting toric varietyXΣ′ is smooth.

(b) Show thatXΣ′ is the blowup ofP2 at the pointV(σ2).

(c) Show thatXΣ′ is isomorphic to the Hirzebruch surfaceH1.

3.3.7. Let XΣ be the toric variety obtained fromP2 by blowing up the pointsV(σ1) and
V(σ2) (see Figure 2 in Example 3.1.9). Show thatXΣ is isomorphic to the blowup of
P1×P1 at the pointV(σ11) (see Figure 3 in Example 3.1.12).

3.3.8. Let Σ′ be the fan obtained from the fanΣ for P(1,1,2) in Example 3.1.17 by the
following process. Subdivide the coneσ2 into two new conesσ21 andσ22 by inserting an
edge Cone(−u2).

(a) Show that the resulting toric varietyXΣ′ is smooth.

(b) Construct a morphismφ : XΣ′ → XΣ and determine the fiber over the unique singular
point ofXΣ.

(c) One of our smooth examples is isomorphic toXΣ′ . Which one is it?

3.3.9. Consider the action of the groupG = {(ζ,ζ3) | ζ5 = 1} ⊆ (C∗)2 on C2. We will
study the quotientC2/G and its resolution of singularities using toric morphisms.

(a) LetN′= Z2 andN = {(a/5,b/5) | a,b∈Z, b≡ 3a mod 5}. Also letζ5 = e2πi/5. Prove
that the mapN→ (C∗)2 defined by(a/5,b/5) 7→ (ζa

5 , ζ
b
5 ) induces an exact sequence

0−→ N′ −→N−→G−→ 0.

(b) Let σ = Cone(e1,e2) ⊆ N′R = NR = R2. The inclusionN′ → N induces a toric mor-
phismUσ,N′ →Uσ,N. Prove that this is the quotient mapC2→ C2/G for the above
action ofG onC2.

(c) Find the Hilbert basis (i.e., the set of irreducible elements) of the semigroupσ∩N.
Hint: The Hilbert basis has four elements.

(d) Use the Hilbert basis from part (c) to subdivideσ. This gives a fanΣ with |Σ| = σ.
Prove thatΣ is smooth relative toN and that the resulting toric morphism

XΣ,N→Uσ,N = C2/G

is a resolution of singularities. See Chapter 10 for more details.

(e) The groupG gives the finite setG⊆ (C∗)2 ⊆ C2 with ideal I(G) = 〈x5−1,y− x3〉.
Read about theGröbner fanin [36, Ch. 8, §4] and compute the Gröbner fan ofI(G).
The answer will be identical to the fan described in part (d).This is no accident, as
shown in the paper [94] (see also §10.3). There is a lot of interesting mathematics
going on here, including the McKay correspondence and theG-Hilbert scheme. See
also [124] for the higher dimensional case.

3.3.10. Consider the fanΣ in R3 shown in Figure 12 on the next page. This fan has
five 1-dimensional cones with four “upward” ray generators(±1,0,1),(0,±1,1) and one
“downward” generator(0,0,−1). There are also nine 1-dimensional cones. Figure 12
shows five of the 2-dimensional cones; the remaining four aregenerated by the combining
the downward generator with the four upward generators.

(a) Show that projection onto they-axis induces a toric morphismXΣ→ P1.

(b) Show thatXΣ→ P1 is a locally trivial fiber bundle overP1 with fiber P(1,1,2). Hint:
Theorem 3.3.19 and(1,0,1)+ (−1,0,1)+2(0,0,−1)= 0. See Example 3.1.17.
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z

y

x

Figure 12. A fan Σ in R3

(c) Explain how you can see the splitting (in the sense of Definition 3.3.18) in Figure 12.
Also explain why the figure makes it clear that the fiber isP(1,1,2).

3.3.11. Consider the fanΣ in R2 with ray generators

u0 = e1 +e2, u1 = e1, u2 = e2, u3 =−e1

and 1-dimensional cones Cone(u0,u1), Cone(u0,u2), Cone(u2,u3).

(a) Draw a picture ofΣ and prove thatXΣ is the blowup ofP1×C at one point.

(b) Show that the mapae1 + be2 7→ b induces a toric morphismφ : XΣ → C such that
φ−1(α)≃ P1 for α ∈C∗ andφ−1(0) is a union of two copies ofP1 meeting at a point.
Hint: Once you understandφ−1(0), show that the fan forXΣ \φ−1(0) givesP1×C∗.

(c) To get a better picture ofXΣ, consider the mapΦ : (C∗)2→ P3×C defined by

Φ(s,t) = ((s3,s2,st,t2),t).

Let X = Φ((C∗)2) ⊆ P3×C be the closure of the image. Prove thatX ≃ XΣ and
that the restriction of the projectionP3×C→ C to X gives the toric morphismφ of
part (b).

(d) Letx,y,z,w be coordinates onP3. Prove thatX ⊆ P3×C is defined by the equations

yw−z2 = 0, xz− ty2 = 0, xw− tyz= 0.

Also use these equations to describe the fibersφ−1(α) for α ∈C, and explain how this
relates to part (b). Hint: The twisted cubic is relevant.

This is asemi-stable degeneration of toric varieties. See [90] for more details.
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§3.4. Complete and Proper

The Compactness Criterion. We begin by proving part (c) of Theorem 3.1.19.

Theorem 3.4.1.The following are equivalent for a toric variety XΣ.

(a) XΣ is compact in the classical topology.

(b) The limit limt→0λ
u(t) exists in XΣ for all u ∈ N.

(c) Σ is complete, i.e.,|Σ|=⋃σ∈Σσ = NR.

Proof. First observe that sinceXΣ is separated (Theorem 3.1.5), it is Hausdorff in
the classical topology (Theorem 3.0.17). In fact, since theclassical topology on
each affine open setUσ is a metric topology,XΣ is compact if and only if every
sequence of points inXΣ has a convergent subsequence.

For (a)⇒ (b), assume thatXΣ is compact and fixu ∈ N. Given a sequence
tk ∈C∗ converging to 0, we get the sequenceλu(tk)∈XΣ. By compactness, this se-
quence has a convergent subsequence. Passing to this subsequence, we can assume
that limk→∞λ

u(tk) = γ ∈ XΣ. BecauseXΣ is the union of the affine open subsets
Uσ for σ ∈Σ, we may assumeγ ∈Uσ. Now takem∈ σ∨∩M. The characterχm is
a regular function onUσ and hence is continuous in the classical topology. Thus

χm(γ) = lim
k→∞

χm(λu(tk)) = lim
k→∞

t〈m,u〉k .

Sincetk→ 0, the exponent must be nonnegative, i.e.,〈m,u〉 ≥ 0 for all m∈ σ∨∩M.
This implies〈m,u〉 ≥ 0 for all m∈ σ∨, so thatu ∈ (σ∨)∨ = σ. Then Proposi-
tion 3.2.2 implies that limt→0λ

u(t) exists inUσ and hence inXΣ.

To prove (b)⇒ (c), takeu ∈ N and consider the limit limt→0λ
u(t). This lies

in some affine openUσ, which impliesu∈ σ∩N by Proposition 3.2.2. Thus every
lattice point ofNR is contained in a cone ofΣ. It follows thatΣ is complete.

We will prove (c)⇒ (a) by induction onn = dimNR. In the casen = 1, the
only complete fanΣ is the fan inR pictured in Example 3.1.11. The corresponding
toric variety isXΣ = P1. This is homeomorphic toS2, the 2-dimensional sphere,
and hence is compact.

Now assume the statement is true for all complete fans of dimension strictly
less thann, and consider a complete fanΣ in NR ≃Rn. Letγk ∈ XΣ be a sequence.
We will show thatγk has a convergent subsequence.

SinceXΣ is the union of finitely many orbitsO(τ), we may assume the se-
quenceγk lies entirely within an orbitO(τ). If τ 6= {0}, then the closure ofO(τ) in
XΣ is the toric varietyV(τ) = XStar(τ) of dimension≤ n−1 by Proposition 3.2.7.
SinceΣ is complete, it is easy to check that the fan Star(τ) is complete inN(τ)R

(Exercise 3.4.1). Then the induction hypothesis implies that there is a convergent
subsequence inV(τ). Hence, without loss of generality again, we may assume that
our sequence lies entirely in the torusTN ⊆ XΣ.
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Recall from the discussion following Lemma 3.2.5 that

TN ≃ HomZ(M,C∗).

Moreover, when we regardγ ∈ TN as a group homomorphismγ : M→C∗, then for
anyσ ∈ Σ, restriction yields a semigroup homomorphismσ∨∩M→ C and hence
a pointγ in Uσ.

A key ingredient of the proof will be the logarithm mapL : TN→ NR defined
as follows. Given a pointγ : M→ C∗ of TN, consider the mapM→ R defined by
the formula

m 7−→ log|γ(m)|.
This is a homomorphism and hence gives an elementL(γ) ∈ HomZ(M,R) ≃ NR.
For more properties of this mapping, see Exercise 3.4.2 below.

For us, the most important property ofL is the following. Suppose that a point
γ ∈ TN satisfiesL(γ) ∈ −σ for someσ ∈ Σ. If m∈ σ∨∩M, then the definition of
L implies that

(3.4.1) log|γ(m)|= 〈m,L(γ)〉,
which is≤ 0 sincem∈ σ∨ and L(γ) ∈ −σ. Hence|γ(m)| ≤ 1. Thus we have
proved that

(3.4.2) L(γ) ∈−σ =⇒ |γ(m)| ≤ 1 for all m∈ σ∨∩M.

Now applyL to our sequence, which gives a sequenceL(γk) ∈ NR. SinceΣ is
complete, the same is true for the fan consisting of the cones−σ for σ ∈Σ. Hence,
by passing to a subsequence, we may assume that there isσ ∈ Σ such that

L(γk) ∈ −σ
for all k. By (3.4.2), we conclude that|γk(m)| ≤ 1 for all m∈ σ∨∩M. It follows
that theγk are a sequence of mappings to the closed unit disk inC. Since the closed
unit disk is compact, there is a subsequenceγkℓ

which converges to a pointγ ∈Uσ.
You will check the details of this final assertion in Exercise3.4.3. �

Proper Mappings. The property of compactness also has a relative version thatis
used often in the theory of complex manifolds.

Definition 3.4.2. A continuous mappingf : X→Y is proper if the inverse image
f−1(T) is compact inX for every compact subsetT ⊆Y.

It is immediate thatX is compact if and only if the constant mapping fromX
to the spaceY = {pt} consisting of a single point is proper. This relative version
of compactness may also be reformulated, for reasonably nice topological spaces,
in the following way.

Proposition 3.4.3.Let f : X→Y be a continuous mapping of locally compact first
countable Hausdorff spaces. Then the following are equivalent:
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(a) f is proper.

(b) f is a closed mapping, i.e., f(U) ⊆Y is closed for all closed subsets U⊆ X,
and all fibers f−1(y), y∈Y, are compact.

(c) Exery sequence xk ∈ X such that f(xk) ∈Y converges in Y has a subsequence
xkℓ

that converges in X.

Proof. A proof of (a)⇔ (b) can be found in [69, Ch. 9,§4]. See Exercise 3.4.4 for
(a)⇔ (c). �

Before we can give a definition of properness that works for morphisms, we
need another criterion for properness. Recall from §3.0 that morphismsf : X→ S
andg : Y→ S give the fiber productX×SY. Fiber products can also be defined
for continuous maps between topological spaces. In Exercise 3.4.4, you will prove
that properness can be formulated using fiber products as follows.

Proposition 3.4.4. Let f : X→Y be a continuous map between locally compact
Hausdorff spaces. Then f is proper if and only if f isuniversally closed, meaning
that for all spaces Z and all continuous mappings g: Z→ Y, the projectionπZ

defined by the commutative diagram

X×Y Z
πX //

πZ

��

X

f
��

Z g
// Y

is a closed mapping.

In algebraic geometry, it is customary to use the following definition of proper-
ness for morphisms of algebraic varieties.

Definition 3.4.5. A morphism of varietiesφ : X→Y is proper if it is universally
closed, in the sense that for all varietiesZ and morphismsψ : Z→Y, the projection
πZ defined by the commutative diagram

X×Y Z
πX

//

πZ

��

X

φ

��

Z
ψ

// Y

is a closed mapping in the Zariski topology. A varietyX is said to becompleteif
the constant morphismφ : X→{pt} is proper.

Example 3.4.6. The Projective Extension Theorem [35, Thm. 6 of Ch. 8, §5]
shows that forX = Pn, the mapping

πCm : Pn×Cm→ Cm
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is closed in the Zariski topology for allm. It follows that if V ⊆ Cm is any affine
variety, the projection

πV : Pn×V→V

is a closed mapping in the Zariski topology. By the gluing construction, it follows
that the constant morphismPn→{pt} is proper, soPn is a complete variety. In fact,
one can think ofPn as the prototypical complete variety. Moreover, any projective
variety is complete (Exercise 3.4.5). However, there are complete varieties that are
not projective—we will give a toric example in Chapter 6.

On the other hand, consider the morphismC→{pt}. We claim that this is not
proper, soC is not complete. To see this, considerC×{pt}C = C2 and the diagram

C2
π2 //

π1

��

C

��

C // {pt}.

The closed subsetV(xy− 1) ⊆ C2 does not map to a Zariski-closed subset ofC
underπ1. Henceπ1 is not a closed mapping, so thatC is not complete. ♦

Completeness is the algebraic version of compactness, and it can be shown
that a variety is complete if and only if it is compact in the classical topology. This
is proved in Serre’s famous paperGéoḿetrie alǵebrique et ǵeoḿetrie analytique,
called GAGA for short. See [155, Prop. 6, p. 12].

The Properness Criterion. Theorem 3.4.1 can be understood as a special case of
the following statement for toric morphisms.

Theorem 3.4.7.Let φ : XΣ→ XΣ′ be the toric morphism corresponding to a ho-
momorphismφ : N→ N′ that is compatible with fansΣ in NR andΣ′ in N′R. Then
the following are equivalent:

(a) φ : XΣ→ XΣ′ is proper in the classical topology(Definition 3.4.2).

(b) φ : XΣ→ XΣ′ is a proper morphism(Definition 3.4.5).

(c) If u ∈ N andlimt→0λ
φ(u)(t) exists in XΣ′ , thenlimt→0λ

u(t) exists in XΣ.

(d) φ
−1
R (|Σ′|) = |Σ|.

Proof. The proof of (a)⇒ (b) uses two fundamental results in algebraic geometry.

First, given any morphism of varietiesf : X→Y and a Zariski closed subset
W ⊆ X, a theorem of Chevalley tells us that the imagef (W) ⊆Y is constructible,
meaning that it can be written as a finite unionf (W) =

⋃
i(Vi \Wi), whereVi and

Wi are Zariski closed inY. A proof appears in [77, Ex. II.3.19].

Second, given any constructible subsetC of a varietyY, its closure inY in the
classical topology equals its closure in the Zariski topology. WhenC is open in the
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Zariski topology, a proof is given in [125, Thm. (2.33)], and whenC is the image
of a morphism, a proof can be found in GAGA [155, Prop. 7, p. 12].

Now suppose thatφ : XΣ → XΣ′ is proper in the classical topology and let
ψ : Z→ XΣ′ be a morphism. This gives the commutative diagram

XΣ×XΣ′ Z //

πZ

��

XΣ

φ

��

Z
ψ

// XΣ′ .

LetY⊆XΣ×XΣ′ Z be Zariski closed. We need to prove thatπZ(Y) is Zariski closed
in Z. First observe thatY is also closed in the classical topology, so thatπZ(Y)
is closed inZ in the classical topology by Proposition 3.4.4. However,πZ(Y) is
constructible by Chevalley’s Theorem, and then, being classically closed, it is also
Zariski closed by GAGA. HenceπZ is a closed map in the Zariski topology for any
morphismψ : Z→ XΣ′. It follows thatφ is a proper morphism.

To prove (b)⇒ (c), letu∈N and assume thatγ′= limt→0λ
φ(u)(t) exists inXΣ′ .

We first prove limt→0λ
u(t) exists inXΣ under the extra assumption thatφ(u) 6= 0.

This means thatλφ(u) is a nontrivial one-parameter subgroup inXΣ′ .

Let λu(C∗) ⊆ XΣ be the closure ofλu(C∗) ⊆ XΣ in the classical topology.
Our earlier remarks imply that this equals the Zariski closure. Sinceφ is proper,
it is closed in the Zariski topology, so thatφ

(
λu(C∗)

)
is closed inXΣ′ in both

topologies. It follows that

λφ(u)(C∗)⊆ φ
(
λu(C∗)

)
.

Hence there isγ ∈ λu(C∗) mapping toγ′. Thus there is a sequence of pointstk∈C∗

such thatλu(tk)→ γ. Then

γ′ = φ(γ) = lim
k→∞

φ(λu(tk)) = lim
k→∞

λφ(u)(tk).

This, together withγ′ = limt→0λ
φ(u)(t) andφ(u) 6= 0, imply thattk→ 0. From

here, the arguments used to prove (a)⇒ (b)⇒ (c) of Theorem 3.4.1 easily imply
that limt→0λ

u(t) exists inXΣ.

For the general case when we no longer assumeφ(u) 6= 0, consider the map
(φ,1C) : XΣ×C→ XΣ′ ×C. This is proper sinceφ is proper (Exercise 3.4.6).
Furthermore,XΣ×C andXΣ′ ×C are toric varieties by Proposition 3.1.14, and
the corresponding map on lattices is(φ,1Z) : N×Z→ N′×Z. Then applying the
above argument to(u,1) ∈ N×Z shows that limt→0λ

u(t) exists inXΣ. We leave
the details to the reader (Exercise 3.4.6).

For (c)⇒ (d), first observe that the inclusion

|Σ| ⊆ φ−1
R (|Σ′|)
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is automatic sinceφ is compatible withΣ and Σ′. For the opposite inclusion,

takeu∈ φ−1
R (|Σ′|)∩N. Thenφ(u) ∈ |Σ′|, which by Proposition 3.2.2 implies that

limt→0λ
φ(u)(t) exists inXΣ′ . By assumption, limt→0λ

u(t) exists inXΣ. Using
Proposition 3.2.2, we conclude thatu ∈ σ ∩N for someσ ∈ Σ. Because all the

cones are rational, this immediately impliesφ
−1
R (|Σ′|)⊆ |Σ|.

Finally, we prove (d)⇒ (a). We begin with two special cases.

Special Case 1.Suppose that a toric morphismφ : XΣ→ TN′ satisfies (d) and
has the additional property thatφ : N→ N′ is onto. The fan ofTN′ consists of the
trivial cone{0}, so that (d) implies

(3.4.3) |Σ|= φ
−1
R (0) = ker(φR).

When we think ofΣ as a fanΣ′′ in ker(φR)⊆ NR, (3.3.5) implies that

XΣ ≃ XΣ′′×TN′ .

Thenφ corresponds to the projectionXΣ′′×TN′ → TN′ . The fanΣ′′ is complete in
ker(φR) by (3.4.3), so thatXΣ′′ is compact by Theorem 3.4.1. ThusXΣ′′ →{pt} is
proper, which easily implies thatXΣ′′×TN′ → TN′ is proper. We conclude thatφ is
proper in the classical topology.

Special Case 2.Suppose that a homomorphism of toriφ : TN → TN′ has the
additional property thatφ : N→N′ is injective. Then (d) is obviously satisfied. An
elementary proof thatφ is proper is given in Exercise 3.4.7.

Now consider a general toric morphismφ : XΣ→ XΣ′ satisfying (d). We will
prove thatφ is proper in the classical topology using part (c) of Proposition 3.4.3.
Thus assume thatγk ∈ XΣ is a sequence such thatφ(γk) converges inXΣ′ . We need
to prove that a subsequence ofγk converges inXΣ.

SinceXΣ has only finitely manyTN-orbits, we may assume that the sequence
lies in an orbitO(σ). As in Lemma 3.3.21, letσ′ be the minimal cone ofΣ′

containingφR(σ). The restriction

φ|V(σ) : V(σ)→V(σ′)

is a toric morphism by Lemma 3.3.21, and the fans ofV(σ) andV(σ′) are given by
Star(σ) in N(σ)R and Star(σ′) in N′(σ′)R respectively. Furthermore, one can check
that sinceΣ andΣ′ satisfy (d), the same is true for the fans Star(σ) and Star(σ′)
(Exercise 3.4.8). Hence we may assume thatγk ∈ TN andφ(γk) ∈ TN′ for all k.

The limit γ′ = limk→∞φ(γk) lies in an orbitO(τ ′) for someτ ′ ∈ Σ′. Thus the
sequenceφ(γk) and its limitγ′ all lie in Uτ ′ . Note that{σ ∈ Σ | φ(σ) ⊂ τ ′} is the
fan givingφ−1(Uτ ′). Since (d) implies that

φ
−1
R (τ ′) =

⋃

φR(σ)⊆τ ′

σ,

we can assume thatXΣ′ = Uτ ′ , i.e.,φ : XΣ→Uτ ′ andφ
−1

(τ ′) = |Σ|.
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If τ ′ = {0}, thenO(τ ′) = Uτ ′ = T ′N. If we writeφ as the composition

N ։ φ(N) →֒ N′,

thenφ : XΣ → TN′ factorsXΣ→ Tφ(N) → TN′ . Special Cases 1 and 2 imply that
these maps are proper, and since the composition of proper maps is proper, we
conclude thatφ is proper.

It remains to consider the case whenτ ′ 6= {0}. When we think ofγ′ ∈Uτ ′ as a
semigroup homomorphismγ′ : (τ ′)∨∩M→ C, Lemma 3.2.5 tells us that

γ′(m′) = 0 for all m′ ∈ (τ ′)∨∩M′ \ (τ ′)⊥∩M′.

Since theφ(γk) : M→ C∗ converge toγ′ in Uτ ′ , we see that

lim
k→∞

φ(γk)(m
′) = 0 for all m′ ∈ (τ ′)∨∩M′ \ (τ ′)⊥∩M′.

Since(τ ′)∨∩M′ is finitely generated, it follows that we may pass to a subsequence
and assume that

(3.4.4) |φ(γk)(m
′)| ≤ 1 for all k and allm′ ∈ (τ ′)∨∩M′ \ (τ ′)⊥∩M′.

The logarithm map from the proof of Theorem 3.4.1 gives mapsLN : TN→NR

andLN′ : TN′ → N′R linked by a commutative diagram:

TN
LN

//

φ|TN
��

NR

φR
��

TN′

LN′

// N′R

Letφ
∗
: M′→M be dual toφ : N→N′. Thenm′ ∈ (τ ′)∨∩M′ \ (τ ′)⊥∩M′ implies

that for allk, we have

(3.4.5)
〈φ∗(m′),LN(γk)〉= 〈m′,φR(LN(γk))〉

= 〈m′,LN′(φ(γk))〉= log|φ(γk)(m
′)| ≤ 0,

where the first equality is standard, the second follows fromthe above commutative
diagram, the third follows from (3.4.1), and the final inequality uses (3.4.4).

Now consider the following equivalences:

u∈ φ−1
R (τ ′) ⇐⇒ φR(u) ∈ τ ′

⇐⇒ 〈m′,φR(u)〉 ≥ 0 for all m′ ∈ (τ ′)∨∩M′

⇐⇒ 〈φ∗(m′),u〉 ≥ 0 for all m′ ∈ (τ ′)∨∩M′,

where the first and third equivalences are obvious and the second usesτ ′ = (τ ′)∨∨

and the rationality ofτ ′. But we also know thatτ ′ 6= {0}, which means that(τ ′)∨

is a cone whose maximal subspace(τ ′)⊥ is a proper subset. This implies that

u∈ φ−1
R (τ ′) ⇐⇒ 〈φ∗(m′),u〉 ≥ 0 for all m′ ∈ (τ ′)∨∩M′ \ (τ ′)⊥∩M′
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(Exercise 3.4.9). Using (3.4.5), we conclude that−LN(γk)∈ φ−1
R (τ ′) for all k. But,

as noted above, (d) meansφ
−1

(τ ′) = |Σ|. It follows that

−LN(γk) ∈ |Σ|

for all k. Passing to a subsequence, we may assume that there isσ ∈ Σ such that

LN(γk) ∈−σ

for all k. From here, the proof of (c)⇒ (a) in Theorem 3.4.1 implies that there is
a subsequenceγkℓ

which converges to a pointγ ∈Uσ ⊆ XΣ. This proves thatφ is
proper in the classical topology. The proof of the theorem isnow complete. �

An immediate corollary of Theorem 3.4.7 is the following more complete ver-
sion of Theorem 3.4.1.

Corollary 3.4.8. The following are equivalent for a toric variety XΣ.

(a) XΣ is compact in the classical topology.

(b) XΣ is complete.

(c) The limit limt→0λ
u(t) exists in XΣ for all u ∈ N.

(d) Σ is complete, i.e.,|Σ|=⋃σ∈Σσ = NR. �

We noted earlier that a variety is complete if and only if it iscompact. In a
similar way, a morphismf : X→Y of varieties is a proper morphism if and only if
it is proper in the classical topology. This is proved in [72, Prop. 3.2 of Exp. XII].
Thus the equivalences (a)⇔ (b) of Theorem 3.4.7 and Corollary 3.4.8 are special
cases of this general phenomenon.

Theorem 3.4.7 and Corollary 3.4.8 show that properness and completeness
can be tested using one-parameter subgroups. In the case of completeness, we
can formulate this as follows. Givenu ∈ N, the one-parameter subgroup gives a
mapλu : C \ {0} → TN ⊆ XΣ, and saying that limt→0λ

u(t) exists inXΣ means
thatλu extends to a morphismλu

0 : C→ XΣ. In other words, whenever we have a
commutative diagram

C\{0} λu
//

i

��

XΣ

φ
��

C

λu
0

::v
v

v
v

v
v

λ
φ(u)
0

// {pt},

the dashed arrowλu
0 exists. The existence ofλu

0 tells us thatXΣ is not missing
any points, which is where the term “complete” comes from. Ina similar way, the
properness criterion given in part (c) of Theorem 3.4.7 can be formulated as saying
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that wheneveru∈ N gives a commutative diagram,

C\{0} λu
//

i
��

XΣ

φ

��

C
λu

0

;;v
v

v
v

v

λ
φ(u)
0

// XΣ′ ,

the dashed arrowλu
0 exists so that the diagram remains commutative.

For general varieties, there are similar criteria for completeness and properness
that replaceλu : C \{0} → XΣ andλu

0 : C→ XΣ with maps coming fromdiscrete
valuation rings, to be discussed in Chapter 4. An example of a discrete valuation
ring is the ring of formal power seriesR= C[[t]], whose field of fractions is the field
of formal Laurent seriesK = C((t)). By replacingC with Spec(R) andC\{0}with
Spec(K) in the above diagrams, whereR is now an arbitrary discrete valuation
ring, one gets thevaluative criterion for properness([77, Ex. II.4.11 and Thm.
II.4.7]). This requires the full power of scheme theory since Spec(R) and Spec(K)
are not varieties as defined in this book. Using the valuativecriterion of properness,
one can give a direct, purely algebraic proof of (d)⇒ (b) in Theorem 3.4.7 and
Corollary 3.4.8 (see [58, Sec. 2.4] or [134, Sec. 1.5]).

Example 3.4.9.An important class of proper morphisms are the toric morphisms
φ : XΣ′ → XΣ induced by a refinementΣ′ of Σ. Condition (d) of Theorem 3.4.7 is
obviously fulfilled sinceφ : N→ N is the identity and every cone ofΣ is a union
of cones ofΣ′. In particular, the blowups

φ : XΣ∗(σ)→ XΣ

studied in Proposition 3.3.15 are always proper. ♦

Exercises for §3.4.

3.4.1. Let Σ be a complete fan inNR and letτ be a cone inΣ. Show that the fan Star(τ)
defined in (3.2.8) is a complete fan inN(τ)R.

3.4.2. In this exercise, you will develop some additional properties of the logarithm map-
pingL : TN→ NR defined in the proof of Theorem 3.4.1.

(a) LetS1 be the unit circle in the complex plane, a subgroup of the multiplicative group
C∗. Show that there is an isomorphism of groups

Φ : C∗ −→ S1×R

z 7−→ (|z|, log|z|),
where the operation in the second factor on the right is addition.

(b) Show that the compact realn-dimensional torus(S1)n can be viewed as a subgroup of
TN and thatL : TN → NR induces an isomorphismTN/(S1)n ≃ NR. Hint: UseΦ from
part (a).
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(c) LetΣ be a fan inN. Show that the action of the compact real torus(S1)n ⊆ TN on TN

extends to an action on the toric varietyXΣ and that the quotient space

(XΣ)/(S1)n ∼=
⋃

σ

N(σ)R,

where∼= denotes homeomorphism of topological spaces, and the unionis over all
cones in the fan. Hint: Use the Orbit-Cone Correspondence (Theorem 3.2.6).

(d) Let Σ in R2 be the fan from Example 3.1.9, so thatXΣ ≃ P2. Show that under the
action of(S1)2 ⊆ (C∗)2 as in part (c),P2/(S1)2 ∼= ∆2, the 2-dimensional simplex.

We will say more about the topology of toric varieties in Chapter 12.

3.4.3. This exercise will complete the proof of Theorem 3.4.1. Let Hom(σ∨ ∩M,C) be
the set of semigroup homomorphismsσ∨∩M→C. Assume thatγk ∈Hom(σ∨∩M,C) is
a sequence such that|γk(m)| ≤ 1 for all m∈ σ∨∩M and allk. We want to show that there
is a subsequenceγkℓ

that converges to a pointγ ∈ Hom(σ∨∩M,C).

(a) The semigroupSσ = σ∨ ∩M is generated by a finite set{m1, . . . ,ms}. Use this fact
and the compactness of{z∈ C | |z| ≤ 1} to show that there exists a subsequenceγkℓ

such that the sequencesγkℓ
(mj) converge inC for all j.

(b) Deduce that the subsequenceγkℓ
converges to aγ ∈ Hom(σ∨∩M,C).

3.4.4. Here you will prove some characterizations of properness stated in the text.

(a) Prove (a)⇔ (c) from Proposition 3.4.3.

(b) Prove Proposition 3.4.4. Hint: Show first that compactness ofX is equivalent to the
statement that the mappingf : X→{pt} is universally closed. Then use the easy fact
that any composition of universally closed mappings is universally closed.

3.4.5. Show that any projective variety is complete according to Definition 3.4.5.

3.4.6. Complete the proof of (b)⇒ (c) of Theorem 3.4.7 begun in the text.

3.4.7. Let φ : TN → TN′ be a map of tori corresponding to an injective homomorphism
φ : N→N′. Also letφ

∗
: M′→M be the dual map. Finally, letγk ∈ TN be a sequence such

thatφ(γk) converges to a point ofTN′ .

(a) Prove that im(φ
∗
)⊆M has finite index. Hence we can pick an integerd> 0 such that

dM⊆ im(φ
∗
).

(b) Show thatχm(γk) converges for allm∈ im(φ
∗
). Conclude thatχm(γ d

k ) converges for
all m∈M, whered is as in part (a).

(c) Pick a basis ofM so thatTN ≃ (C∗)n and writeγk = (γ1,k, . . . ,γn,k) ∈ (C∗)n. Show
that(γ d

1,k, . . . ,γ
d
n,k) converges to a point(γ̃1, . . . , γ̃n) ∈ (C∗)n.

(d) Show that thedth rootsγ̃1/d
i can be chosen so that a subsequence of the sequence

γk = (γ1,k, . . . ,γn,k) converges to a pointγ = (γ̃
1/d
1 , . . . , γ̃

1/d
n ) ∈ TN.

(e) Explain why this implies thatTN→ TN′ is proper in the classical topology.

3.4.8. To finish the proof of (d)⇒ (a) of Theorem 3.4.7, suppose we have a toric morphism
φ : XΣ→ XΣ′ and a coneσ ∈ Σ. Letσ′ ∈ Σ′ be the smallest cone containingφR(σ).

(a) Prove thatφ induces a homomorphismφσ : N(σ)→ N(σ′).

(b) Assume further thatφ
−1
R (|Σ′|) = |Σ|. Prove that(φσ)−1

R (|Star(σ′)|) = |Star(σ)|.
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3.4.9. Let τ ′ 6= {0} be a strongly convex polyhedral cone inN′R. Prove that

u′ ∈ τ ′ ⇐⇒ 〈m′,u′〉 ≥ 0 for all m′ ∈ (τ ′)∨∩M \ (τ ′)⊥∩M

and then apply this tou′ = φR(u) to complete the argument in the text. Hint: To prove
⇐, first show that the right hand side of the equivalence implies that〈m′,u′〉 ≥ 0 for all
m′ ∈ (τ ′)∨ ∩MQ \ (τ ′)⊥ ∩MQ. Then show thatτ ′ 6= {0} implies that any element of
(τ ′)∨∩M is a limit of elements in(τ ′)∨∩MQ \ (τ ′)⊥∩MQ.

3.4.10. Give a second argument for the implication

XΣ compact⇒ Σ complete

from part (c) of Theorem 3.1.19 using induction on the dimension n of N. Hint: If Σ is not
complete andn> 1, then there is a 1-dimensional coneτ in the boundary of the support of
Σ. Consider the fan Star(τ) and the corresponding toric subvariety ofXΣ.

3.4.11. Let Σ′,Σ be fans inNR compatible with the identity mapN→ N. Prove that the
toric morphismφ : XΣ′ → XΣ is proper if and only ifΣ′ is a refinement ofΣ.

Appendix: Nonnormal Toric Varieties

In this appendix, we discuss toric varieties that are not necessarily normal. We begin with
an example to show that Sumihiro’s Theorem (Theorem 3.1.7) on the existence of a torus-
invariant affine open cover can fail in the nonnormal case.

Example 3.A.1. Consider the nodal cubicC⊆ P2 defined byy2z= x2(x+ z). The only
singularity ofC is p = (0,0,1). We claim thatC is a toric variety withC\ {p} ≃ C∗ as
torus. Assuming this for the moment, consider a torus-invariant neighborhood ofp. It
containsp and the torus and hence is the whole curve! We conclude thatp has no torus-
invariant affine open neighborhood. Thus Sumihiro’s Theorem fails forC.

To see thatC is a toric variety, we begin with the standard parametrization obtained
by intersecting linesy = t x with the affine curvey2 = x2(x+ 1). This easily leads to the
parametrization

x = t2−1, y = t(t2−1).

The valuest = ±1 map to the singular pointp. To get a parametrization that looks more
like a torus, we replacet with t+1

t−1 to obtain

x =
4t

(t−1)2
, y =

4t(t +1)

(t−1)3
.

Thent = 0,∞ map top andt ∈ C∗ maps bijectively toC\ {p}.
Using this parametrization, we getC∗ ⊆ C, and the action ofC∗ on itself given by

multiplication extends to an action onC by makingp a fixed point of the action. With
some work, one can show that this action is algebraic and hence gives a toric variety. (For
readers familiar with elliptic curves, the basic idea is that the description of the group law
in terms of lines connecting points on the curve reduces to multiplication in C∗ ⊆C for
our curveC.) ♦

In contrast, the projective toric varieties constructed inChapter 2 satisfy Sumihiro’s
Theorem by Proposition 2.1.8. Since these nonnormal toric varieties have a good local
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structure, it is reasonable to expect that they share some ofthe nice properties of nor-
mal toric varieties. In particular, they satisfy a version of the Orbit-Cone Correspondence
(Theorem 3.2.6).

We begin with the affine case. GivenM and a finite subsetA = {m1, . . . ,ms} ⊆ M,
we get the affine toric varietyYA ⊆ Cs whose torus has character groupZA (Proposi-
tion 1.1.8). AssumeM = ZA and letσ ⊆ NR be dual to Cone(A ) ⊆ MR. By Proposi-
tion 1.3.8, the normalization ofYA is the map

Uσ −→YA

induced by the inclusion of semigroup algebras

C[NA ]⊆ C[σ∨∩M].

Recall thatC[σ∨ ∩M] is the integral closure ofC[NA ] in its field of fractions. We now
apply standard results in commutative algebra and algebraic geometry:

• Since the integral closureC[σ∨ ∩M] is a finitely generatedC-algebra, it is a finitely
generated module overC[NA ] (see [3, Cor. 5.8]).

• Thus the corresponding morphismUσ→YA is finite as defined in [77, p. 84].

• A finite morphism is proper with finite fibers (see [77, Ex. II.3.5 and II.4.1]).

SinceUσ→YA is the identity on the torus, the image of the normalization is Zariski dense
in YA . But the image is also closed since the normalization map is proper. This proves that
the normalization map is onto.

Here is an example of how the normalization map can fail to be one-to-one.

Example 3.A.2. The setA = {e1,e1+e2,2e2}⊆Z2 gives the parametrizationΦA (s,t) =
(s,st, t2), and one can check that

YA = V(y2−x2z)⊆ C3.

Furthermore,ZA = Z2 andσ = Cone(A )∨ = Cone(e1,e2). It follows easily that the
normalization is given by

C2−→YA

(s,t) 7−→ (s,st,t2).

This map is one-to-one on the torus (the torus ofYA is normal and hence is unchanged
under normalization) but not on thet-axis, since here the map is(0,t) 7→ (0,0,t2). We will
soon see the intrinsic reason why this happens. ♦

We now determine the orbit structure ofYA .

Theorem 3.A.3. Let YA be an affine toric variety with M= ZA and letσ ⊆ NR be as
above. Then:

(a) There is a bijective correspondence

{facesτ of σ}←→ {TN-orbits inYA }
such that a face ofσ of dimension k corresponds to an orbit of dimensiondimYA −k.

(b) If O′ ⊆ YA is the orbit corresponding to a faceτ of σ, then O′ is the torus with
character groupZ(τ⊥ ∩A ).
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(c) The normalization Uσ→YA induces a bijection

{TN-orbits inUσ}←→ {TN-orbits inYA }
such that if O⊆Uσ and O′⊆YA are the orbits corresponding to a faceτ ofσ, then the
induced map O→O′ is the map of tori corresponding to the inclusionZ(τ⊥ ∩A ) ⊆
τ⊥∩M of character groups.

Proof. We will sketch the main ideas and leave the details for the reader. The proof uses
the Orbit-Cone Correspondence (Theorem 3.2.6). We regard points ofUσ andYA as semi-
group homomorphisms, so thatγ : σ∨ ∩M→ C in Uσ maps toγ|NA

: NA → C in YA .
Note also thatUσ→YA is equivariant with respect to the action ofTN.

By Lemma 3.2.5, the orbitO(τ) ⊆ Uσ corresponding to a faceτ of σ is the torus
consisting of homomorphismsγ : τ⊥ ∩M→ C∗. Thusτ⊥ ∩M is the character group of
O(τ). The normalization maps this orbit onto an orbitO′(τ) ⊆ YA , where a pointγ of
O(τ) maps to its restriction toNA . Since

(τ⊥ ∩M)∩ZA = τ⊥ ∩ZA = Z(τ⊥ ∩A ),

it follows thatZ(τ⊥ ∩A ) is the character group ofO′(τ). This proves part (b), and the
final assertion of part (c) follows easily.

Sinceσ∨ ∩M is the saturation ofNA , it follows that there is an integerd > 0 such
thatdσ∨∩M ⊆ NA . It follows easily thatZ(τ⊥ ∩A ) has finite index inτ⊥∩M, so that

dimO′(τ) = dimO(τ) = dimUσ−dimτ = dimYA −dimτ,

proving the final assertion of part (a).

Finally, every orbit inYA comes from an orbit inUσ sinceUσ→YA is onto. If orbits
O(τ1),O(τ2) map to the same orbit ofYA , then

Z(τ⊥1 ∩A ) = Z(τ⊥2 ∩A ).

This impliesτ⊥1 = τ⊥2 , so thatτ1 = τ2. The bijections in parts (a) and (c) now follow.�

We leave it to the reader to work out other aspects of the Orbit-Cone Correspondence
(specifically, the analogs of parts (c) and (d) of Theorem 3.2.6) forYA .

Let us apply Theorem 3.A.3 to our previous example.

Example 3.A.4. Let A = {e1,e1 + e2,2e2} ⊆ Z2 as in Example 3.A.2. The coneσ =
Cone(A )∨ = Cone(e1,e2) has a faceτ such thatτ⊥ = Span(e2). Thus

Z(τ⊥ ∩A ) = Z(2e2)

τ⊥∩M = Ze2.

It follows thatZ(τ⊥ ∩A ) has index 2 inτ⊥ ∩M, which explains why the normalization
map is two-to-one on the orbit corresponding toτ . ♦

We now turn to the projective case. Here,A = {m1, . . . ,ms} ⊆M gives the projective
toric varietyXA ⊆ Ps−1 whose torus has character groupZ′A (Proposition 2.1.6). Recall
thatZ′A =

{∑s
i=1aimi | ai ∈ Z,

∑s
i=1ai = 0

}
.

One observation is that translatingA by m∈M leaves the corresponding projective
variety unchanged. In other words,Xm+A = XA (see part (a) of Exercise 2.1.6). Thus, by
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translating an element ofA to the origin, we may assume 0∈ A . Note that the torus of
XA has character latticeZ′A = ZA when 0∈A .

We defined the normalization of an affine variety in §1.0. Using a gluing construction,
one can define the normalization of any variety (see [77, Ex. II.3.8]). We can describe the
normalization of a projective toric varietyXA as follows.

Theorem 3.A.5. Let XA be a projective toric variety where0 ∈ A and M = ZA . If
P = Conv(A )⊆MR, then the normalization of XA is the toric variety XΣP of the normal
fan of P with respect to the lattice N= HomZ(M,Z).

Proof. Again, we sketch the proof and leave the details to the reader. We use the local
description ofXA given in Propositions 2.1.8 and 2.1.9. There, we saw thatXA has an
affine open covering given by the affine toric varietiesYAv = Spec(NAv), wherev∈A is
a vertex ofP = Conv(A ) andAv = A −v= {m−v |m∈A }.

For the moment, assume thatP is very ample. Then Theorem 2.3.1 implies thatXP has
an affine open cover given by the affine toric varietiesUσv = Spec(σ∨v ∩M), wherev∈A

is a vertex ofP andσ∨v = Cone(P∩M−v). One can check thatσ∨v ∩M is the saturation of
NAv, so thatUσv is the normalization ofYAv. The gluings are also compatible by equations
(2.1.6), (2.1.7) and Proposition 2.3.12. It follows that weget a natural mapXΣP→ XA that
is the normalization ofXA .

In the general case, we note thatk0P is very ample for some integerk0 ≥ 1 and that
P andk0P have the same normal fan. Sinceσv is a maximal cone of the normal fan, the
above argument now applies in general, and the theorem is proved. �

Combining this result with the Orbit-Cone Correspondence and Theorem 3.A.3 gives
the following immediate corollary.

Corollary 3.A.6. With the same hypotheses as Theorem 3.A.5, we have:

(a) There is a bijective correspondence

{conesτ of ΣP}←→ {TN-orbits inXA }
such that a coneτ of dimension k corresponds to an orbit of dimensiondimXA −k.

(b) If O′ ⊆ XA is the orbit corresponding to a coneτ of ΣP, then O′ is the torus with
character groupZ(τ⊥ ∩A ).

(c) The normalization XΣP → XA induces a bijection

{TN-orbits inXΣP}←→ {TN-orbits inXA }
such that if O⊆ XΣP and O′ ⊆ XA are the orbits corresponding toτ ∈ ΣP, then the
induced map O→O′ is the map of tori corresponding to the inclusionZ(τ⊥ ∩A ) ⊆
τ⊥∩M of character groups.

We leave it to the reader to work out other aspects of the Orbit-Cone Correspondence
for XA . A different approach to the study ofXA appears in [62, Ch. 5].



Chapter 4

Divisors on Toric Varieties

§4.0. Background: Valuations, Divisors and Sheaves

Divisors are defined in terms of irreducible codimension onesubvarieties. In this
chapter, we will considerWeil divisorsandCartier divisors. These classes coincide
on a smooth variety, but for a normal variety, the situation is more complicated. We
will also studydivisor classes, which are defined using the order of vanishing of
a rational function on an irreducible divisor. We will see that normal varieties are
the natural setting to develop a theory of divisors and divisor classes.

First, we give a simple motivational example.

Example 4.0.1. If f (x) ∈ C(x) is nonzero, then there is a uniquen∈ Z such that
f (x) = xn g(x)

h(x) , whereg(x), h(x) ∈ C[x] are not divisible byx. This works because
C[x] is a UFD. The integern describes the behavior off (x) at 0: if n> 0, f (x)
vanishes to ordern at 0, and ifn< 0, f (x) has a pole of order|n| at 0. Furthermore,
the map from the multiplicative groupC(x)∗ to the additive groupZ defined by
f (x) 7→ n is easily seen to be a group homomorphism. This works in the same way
if we replace 0 with any point ofC. ♦

Discrete Valuation Rings. The simple construction given in Example 4.0.1 applies
in far greater generality. We begin by reviewing the algebric machinery we will
need.

Definition 4.0.2. A discrete valuationon a fieldK is a group homomorphism

ν : K∗ −→ Z

that is onto and satisfiesν(x+y)≥min(ν(x),ν(y)) whenx,y,x+y∈K∗= K \{0}.
The correspondingdiscrete valuation ringis the ring

R= {x∈ K∗ | ν(x) ≥ 0}∪{0}.

153
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One can check that a DVR is indeed a ring. Here are some properties of DVRs.

Proposition 4.0.3. Let R be a DVR with valuationν : K∗→ Z. Then:

(a) x∈ R is invertible in R if and only ifν(x) = 0.

(b) R is a local ring with maximal idealm = {x∈ R | ν(x)> 0}∪{0}.
(c) R is normal.

(d) R is a principal ideal domain(PID).

(e) R is Noetherian.

(f) The only proper prime ideals of R are{0} andm.

Proof. First observe that sinceν is a homomorphism, we have

(4.0.1) ν(x−1) =−ν(x)
for all x ∈ K∗. If x ∈ R is a unit, thenν(x), ν(x−1) ≥ 0 sincex, x−1 ∈ R. Thus
ν(x) = 0 by (4.0.1). Conversely, ifν(x) = 0, thenν(x−1) = 0 by (4.0.1), so that
x−1 ∈R. This proves part (a).

For part (b), note thatm = {x ∈ R | ν(x) > 0} ∪ {0} is an ideal ofR (this
follows directly from Definition 4.0.2). Then part (a) easily implies thatR is local
with maximal idealm (Exercise 4.0.1).

To prove part (c), supposex∈ K∗ = K \{0} satisfies

xn + rn−1xn−1 + · · ·+ r0 = 0,

with r i ∈ R. If x ∈ R, we are done, so supposex /∈ R. Thenn> 1 andν(x) < 0.
Using (4.0.1) again, we see thatx−1 ∈ R. Sox1−n = (x−1)n−1 ∈R and hence

x1−n · (xn + rn−1xn−1 + · · ·+ r0) = 0,

showing thatx =−(rn−1 + rn−2x−1 + · · ·+ r0x1−n) ∈ R.

Let π ∈ R satisfyν(π) = 1 and letI 6= {0} be an ideal ofR. Pick x∈ I \{0}
with k = ν(x) minimal. Theny = xπ−k ∈ K satisfiesν(y) = ν(x)−kν(π) = 0, so
that y is invertible inR. From here, one proves without difficulty thatI = 〈πk〉.
This proves part (d), and part (e) follows immediately.

For part (f), it is obvious that{0} and the maximal idealm are prime. Note
also thatm = 〈π〉. Now let P 6= {0} be a proper prime ideal. By the previous
paragraph,P = 〈πk〉 for somek> 0. If k> 1, thenπ ·πk−1 ∈ P andπ,πk−1 /∈ P
give a contradiction. �

This shows that every DVR is a Noetherian local domain of dimension one.
In general, thedimensiondimR of a Noetherian ringR is one less than the length
of the longest chainP0 ( · · · ( Pd of proper prime ideals contained inR. Among
Noetherian local domains of dimension one, DVRs are characterized as follows.
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Theorem 4.0.4. If (R,m) is a Noetherian local domain of dimension one, then the
following are equivalent.

(a) R is a DVR.

(b) R is normal.

(c) m is principal.

(d) (R,m) is a regular local ring.

Proof. The implications (a)⇒ (b) and (a)⇒ (c) follow from Proposition 4.0.3, and
the equivalence (c)⇔ (d) is covered in Exercise 4.0.2. The remaining implications
can be found in [3, Prop. 9.2]. �

DVRs and Prime Divisors. DVRs have a natural geometric interpretation. LetX
be an irreducible variety. Aprime divisor D⊆ X is an irreducible subvariety of
codimension one, meaning that dimD = dimX− 1. Recall from §3.0 thatX has
a field of rational functionsC(X). Our goal is to define a ringOX,D with field
of fractionsC(X) such thatOX,D is a DVR whenX is normal. This will give
a valuationνD : C(X)∗ → Z such that forf ∈ C(X)∗, νD( f ) gives the order of
vanishing off alongD.

Definition 4.0.5. For a variety X and prime divisorD ⊆ X,OX,D is the subring of
C(X) defined by

OX,D = {φ ∈ C(X) | φ is defined onU ⊆ X open withU ∩D 6= ∅}.

We will see below thatOX,D is a ring. Intuitively, this ring is built from rational
functions onX that are defined somewhere onD (and hence defined on most ofD
sinceD is irreducible).

SinceX is irreducible, Exercise 3.0.4 implies thatC(X) = C(U) whenever
U ⊆ X is open and nonempty. If we further assume thatU ∩D is nonempty, then

(4.0.2) OX,D = OU ,U∩D

follows easily (Exercise 4.0.3).

Hence we can reduce to the affine caseX = Spec(R) for an integral domain
R. The codimensionof a prime idealp, also called itsheight, is defined to be
codimp = dimR−dimV(p). It follows easily thatp 7→ V(p) induces a bijection

{codimension one prime ideals ofR} ≃ {prime divisors ofX}.
Given a prime divisorD = V(p), we can interpretOX,D in terms ofR as follows.
The field of rational functionsC(X) is the field of fractionsK of R, and a rational
functionφ= f/g∈K, f ,g∈R, is defined somewhere onD = V(p) precisely when
g /∈ I(D) = p. It follows that

OX,D = { f/g∈ K | f ,g∈ R, g /∈ p},
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which is the localizationRp of R at the multiplicative subsetR\p (note thatR\p
is closed under multiplication becausep is prime). This localization is a local ring
with maximal idealpRp (Exercise 4.0.3). It follows that

(4.0.3) OX,D = Rp

whenX = Spec(R) andp is a codimension one prime ideal ofR.

Example 4.0.6. In Example 4.0.1, we constructed a discrete valuation onC(x) by
sendingf (x) ∈ C(x)∗ to n∈ Z, provided

f (x) = xn g(x)
h(x)

, g(x), h(x) ∈ C[x], g(0), h(0) 6= 0.

The corresponding DVR is the localizationC[x]〈x〉. It follows that the prime divisor
{0}= V(x)⊆ C = Spec(C[x]) has the local ring

OC,{0} = C[x]〈x〉

which is a DVR. ♦

More generally, a normal ring or variety gives a DVR as follows.

Proposition 4.0.7.

(a) Let R be a normal domain andp⊆ R be a codimension one prime ideal. Then
the localization Rp is a DVR.

(b) Let X be a normal variety and D⊆X a prime divisor. Then the local ringOX,D

is a DVR.

Proof. By Proposition 3.0.12, part (b) follows immediately from part (a) together
with (4.0.2) and (4.0.3).

It remains to prove part (a). The maximal ideal ofRp is the idealmp = pRp

generated byp in Rp. The localization of a Noetherian ring is Noetherian (Exer-
cise 4.0.4), and the same is true for normality by Exercise 1.0.7. It follows that the
local domain(Rp,mp) is Noetherian and normal.

We compute the dimension ofRp as follows. Since dimX = dimR (see [35,
Ex. 17 and 18 of Ch. 9, §4]), our hypothesis onD = V(p) implies that there are no
prime ideals strictly between{0} andp in R. By [3, Prop. 3.11], the same is true
for {0} andmp in Rp. It follows thatRp has dimension one. ThenRp is a DVR by
Theorem 4.0.4. �

WhenD is a prime divisor on a normal varietyX, the DVROX,D means that
we have a discrete valuation

νD : C(X)∗ −→ Z.

Given f ∈ C(X)∗, we call νD( f ) the order of vanishingof f along the divisor
D. Thus the local ringOX,D consists of those rational functions whose order of
vanishing alongD is ≥ 0, and its maximal idealmX,D consists of those rational
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functions that vanish onD. WhenνD( f ) = n< 0, we say thatf has apoleof order
|n| alongD.

Weil Divisors. Recall that a prime divisor on an irreducible varietyX is an irre-
ducible subvariety of codimension one.

Definition 4.0.8. Div(X) is the free abelian group generated by the prime divisors
onX. A Weil divisor is an element of Div(X).

Thus a Weil divisorD∈Div(X) is a finite sumD =
∑

i ai Di ∈Div(X) of prime
divisorsDi with ai ∈ Z for all i. The divisorD is effective, written D ≥ 0, if theai

are all nonnegative. Thesupportof D is the union of the prime divisors appearing
in D:

Supp(D) =
⋃

ai 6=0

Di.

The Divisor of a Rational Function. An important class of Weil divisors comes
from rational functions. IfX is normal, any prime divisorD onX corresponds to a
DVR OX,D with valuationνD : C(X)∗→ Z. Given f ∈ C(X)∗, the integersνD( f )
tell us how f behaves on the prime divisors ofX. Here is an important property of
these integers.

Lemma 4.0.9. If X is normal and f∈C(X)∗, thenνD( f ) is zero for all but a finite
number of prime divisors D⊆ X.

Proof. If f is constant, then it is a nonzero constant sincef ∈ C(X)∗. It follows
thatνD( f ) = 0 for all D. On the other hand, iff is nonconstant, then we can find
a nonempty open subsetU ⊆ X such thatf : U → C is a nonconstant morphism.
ThenV = f−1(C∗) is a nonempty open subset ofX such thatf |V : V → C∗. The
complementX \V is Zariski closed and hence is a union of irreducible compo-
nents of dimension< n. Denote the irreducible components of codimension one
by D1, . . . ,Ds.

Now let D be prime divisor inX. If V ∩D = ∅, thenD ⊆ X \V, so thatD is
contained in an irreducible component ofX \V sinceD is irreducible. Dimension
considerations imply thatD = Di for somei. On the other hand, ifV ∩D 6= ∅, then
f is an invertible element ofOX,D = OV,V∩D, which implies thatνD( f ) = 0. �

Definition 4.0.10. Let X be a normal variety.

(a) Thedivisor of f ∈C(X)∗ is

div( f ) =
∑

D

νD( f )D,

where the sum is over all prime divisorsD⊆ X.

(b) div( f ) is called aprincipal divisor, and the set of all principal divisors is de-
noted Div0(X).
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(c) DivisorsD andE arelinearly equivalent, written D ∼ E, if their difference is
a principal divisor, i.e.,D−E = div( f ) ∈Div0(X) for somef ∈ C(X)∗.

Lemma 4.0.9 implies that div( f ) ∈ Div(X). If f ,g ∈ C(X)∗, then div( f g) =
div( f ) + div(g) and div( f−1) = −div( f ) since valuations are group homomor-
phisms onC(X)∗. It follows that Div0(X) is a subgroup of Div(X).

Example 4.0.11.Let f = c(x−a1)
m1 · · · (x−ar)

mr ∈ C[x] be a polynomial of de-
greem> 0, wherec∈ C∗ anda1, . . . ,ar ∈ C are distinct. Then:

• WhenX = C, div( f ) =
∑r

i=1 mi {ai}.
• WhenX = P1 = C∪{∞}, div( f ) =

∑r
i=1mi {ai}−m{∞}. ♦

The divisor of f ∈ C(X)∗ can be written div( f ) = div0( f )−div∞( f ), where

div0( f ) =
∑

νD( f )>0

νD( f )D

div∞( f ) =
∑

νD( f )<0

−νD( f )D.

We call div0( f ) the divisor of zerosof f and div∞( f ) the divisor of polesof f .
Note that these are effective divisors.

Cartier Divisors. If D =
∑

i ai Di is a Weil divisor onX andU ⊆ X is a nonempty
open subset, then

D|U =
∑

U∩Di 6=0

ai U ∩Di

is a Weil divisor onU called therestrictionof D toU .

We now define a special class of Weil divisors.

Definition 4.0.12. A Weil divisor D on a normal varietyX is Cartier if it is locally
principal, meaning thatX has an open cover{Ui}i∈I such thatD|Ui

is principal in
Ui for everyi ∈ I . If D|Ui

= div( fi)|Ui
for i ∈ I , then we call{(Ui , fi)}i∈I the local

data for D.

A principal divisor is obviously locally principal. Thus div( f ) is Cartier for all
f ∈C(X)∗. One can also show that ifD andE are Cartier divisors, thenD+E and
−D are Cartier (Exercise 4.0.5). It follows that the Cartier divisors onX form a
group CDiv(X) satisfying

Div0(X)⊆ CDiv(X)⊆ Div(X).

Divisor Classes. For Weil and Cartier divisors, linear equivalence classes form the
following important groups
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Definition 4.0.13. Let X be a normal variety. Itsclass groupis

Cl(X) = Div(X)/Div0(X),

and itsPicard groupis

Pic(X) = CDiv(X)/Div0(X).

We will give a more sophisticated definition of Pic(X) in Chapter 6. Note that
since CDiv(X) is a subgroup of Div(X), we get a canonical injection

Pic(X) →֒ Cl(X).

In [77, II.6], Hartshorne writes “The divisor class group of a scheme is a very
interesting invariant. In general it is not easy to calculate.” Fortunately, divisor
class groups of normal toric varieties are easy to describe,as we will see in §4.1.

More Algebra. Before we can derive further properties of divisors, we needto
learn more about normal domains. Equation (3.0.2) shows that if X = Spec(R) is
irreducible, then

R =
⋂

p∈X

OX,p.

If a point p∈ X corresponds to a maximal idealm⊆ R, then the local ringOX,p is
the localizationRm. Hence the above equality can be written

R =
⋂

m maximal

Rm.

WhenR is normal, we get a similar result using codimension one prime ideals.

Theorem 4.0.14.If R is a Noetherian normal domain, then

R =
⋂

codimp=1

Rp.

Proof. Let K be the field of fractions ofR and assume thata/b∈ K, a,b∈ R, lies
in Rp for all codimension one prime idealsp. It suffices to prove thata∈ 〈b〉. This
is obviously true whenb is invertible inR, so we may assume that〈b〉 is a proper
ideal ofR. Then we have a primary decomposition (see [35, Ch. 4, §7])

(4.0.4) 〈b〉= q1∩ ·· ·∩qs,

and each prime idealpi =
√

qi is of the formpi = 〈b〉 : ci for someci ∈ R. In the
terminology of [118, p. 38], thepi are theprime divisorsof 〈b〉.

SinceR is Noetherian and normal, the Krull Principal Ideal Theoremstates that
every prime divisor of〈b〉 has codimension one (see [118, Thm. 11.5] for a proof).
This implies that in the primary decomposition (4.0.4), theprime divisorspi have
codimension one and hence are distinct.
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Note thata/b∈ Rpi for all i by our assumption ona/b. This impliesa∈ bRpi .
Since(q j)pi = Rpi for j 6= i (Exercise 4.0.6), localizing (4.0.4) atpi shows that for
all i, we have

a∈ bRpi = qiRpi .

SinceqiRpi ∩R= qi (Exercise 4.0.6), we obtaina∈⋂s
i=1qi = 〈b〉. �

This result has the following useful corollary.

Corollary 4.0.15. Let X be a normal variety and let f: U → C be a morphism
defined on an open set U⊆ X. If X \U has codimension≥ 2 in X, then f extends
to a morphism defined on all of X.

Proof. SinceX has an affine open cover, we can assume thatX = Spec(R), where
R is a Noetherian normal domain. IfD ⊆ X is a prime divisor, thenU ∩D 6= ∅ for
dimension reasons. It follows thatf ∈OU ,U∩D = OX,D, so that

(4.0.5) f ∈
⋂

D

OU ,U∩D =
⋂

D

OX,D =
⋂

codimp=1

Rp = R,

where the final equality is Theorem 4.0.14. �

These results enable us to determine when the divisor of a rational function is
effective.

Proposition 4.0.16.Let X be a normal variety. If f∈C(X)∗, then:

(a) div( f )≥ 0 if and only if f : X→ C is a morphism, i.e., f∈ OX(X).

(b) div( f ) = 0 if and only if f : X→ C∗ is a morphism, i.e., f∈ O∗X(X).

In general,O∗X is the sheaf onX defined by

O
∗
X(U) = {invertible elements ofOX(U)}.

This is a sheaf of abelian groups under multiplication.

Proof. If f : X→C is a morphism, thenf ∈OX,D for every prime divisorD, which
in turn impliesνD( f ) ≥ 0. Hence div( f ) ≥ 0. Going the other way, suppose that
div( f )≥ 0. This remains true when we restrict to an affine open subset,so we may
assume thatX is affine. Then div( f )≥ 0 implies

f ∈
⋂

D

OX,D,

where the intersection is over all prime divisors. By (4.0.5), we conclude thatf is
defined everywhere. This proves part (a), and part (b) follows immediately since
div( f ) = 0 if and only if div( f )≥ 0 and div( f−1)≥ 0. �
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Singularities and Normality. The set of singular points of a varietyX is denoted

Sing(X)⊆ X.

We call Sing(X) the singular locusof X. One can show that Sing(X) is a proper
closed subvariety ofX (see [77, Thm. I.5.3]). WhenX is normal, things are even
nicer.

Proposition 4.0.17.Let X be a normal variety. Then:

(a) Sing(X) has codimension≥ 2 in X.

(b) If X is a curve, then X is smooth.

Proof. You will prove part (b) in Exercise 4.0.7. A proof of part (a) can be found
in [152, Vol. 2, Thm. 3 of §II.5]. �

Computing Divisor Classes. There are two results, one algebraic and one geomet-
ric, that enable us to compute class groups in some cases.

We begin with the algebraic result.

Theorem 4.0.18.Let R be a UFD and set X= Spec(R). Then:

(a) R is normal and every codimension one prime ideal is principal.

(b) Cl(X) = 0.

Proof. For part (a), we know that a UFD is normal by Exercise 1.0.5. Let p be a
codimension one prime ideal ofRand picka∈ p\{0}. SinceR is a UFD,

a = c
s∏

i=1

pai
i ,

with the pi prime andc is invertible inR. Becausep is prime, this means some
pi ∈ p, and since codimp = 1, this forcesp = 〈pi〉.

Turning to part (b), letD ⊆ X be a prime divisor. Thenp = I(D) is a codi-
mension one prime ideal and hence is principal, sayp = 〈 f 〉. Then f generates the
maximal ideal of the DVRRp, which impliesνD( f ) = 1 (see the proof of Propo-
sition 4.0.3). It follows easily that div( f ) = D. Then Cl(X) = 0 since all prime
divisors are linearly equivalent to 0. �

In fact, more is true: a normal Noetherian domain is a UFD if and only if every
codimension one prime ideal is principal (Exercise 4.0.8).

Example 4.0.19.C[x1, . . . ,xn] is a UFD, so Cl(Cn) = 0 by Theorem 4.0.18. ♦

Before stating the geometric result, note that ifU ⊆ X is open and nonempty,
then restriction of divisorsD 7→ D|U induces a well-defined map Cl(X)→ Cl(U)
(Exercise 4.0.9).
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Theorem 4.0.20.Let U be a nonempty open subset of a normal variety X and let
D1, . . . ,Ds be the irreducible components of X\U that are prime divisors. Then
the sequence

s⊕

j=1

ZD j −→ Cl(X)−→ Cl(U)−→ 0

is exact, where the first map sends
∑s

j=1a j D j to its divisor class inCl(X) and the
second is induced by restriction to U.

Proof. Let D′ =
∑

i ai D′i ∈ Div(U) with D′i a prime divisor inU . Then the Zariski
closureD′i of D′i in X is a prime divisor inX, andD =

∑
i aiD′i satisfiesD|U = D′.

Hence Cl(X)→ Cl(U) is surjective.

Since eachD j restricts to 0 in Div(U), the composition of the two maps is
trivial. To finish the proof of exactness, suppose that[D] ∈ Cl(X) restricts to 0 in
Cl(U). This means thatD|U is the divisor of somef ∈C(U)∗. SinceC(U) = C(X)
and the divisor off in Div(X) restricts to the divisor off in Div(U), it follows that
we havef ∈ C(X)∗ such that

D|U = div( f )|U .
This implies that the differenceD− div( f ) is supported onX \U , which means
thatD−div( f ) ∈⊕s

j=1ZD j by the definition of theD j . �

Example 4.0.21.Write P1 = C∪{∞} and note that{∞} is a prime divisor onP1.
Then Theorem 4.0.20 and Example 4.0.21 give the exact sequence

Z{∞} −→ Cl(P1)−→ Cl(C) = 0.

Hence the mapZ→ Cl(P1) defined bya 7→ [a{∞}] is surjective. This map is
injective sincea{∞} = div( f ) implies div( f )|C = 0, so thatf ∈ Γ(C,OC)∗ = C∗

by Proposition 4.0.16. Hencef is constant, which forcesa = 0. If follows that
Cl(P1)≃ Z. ♦

Later in the chapter we will use similar methods to compute the class group of
an arbitrary normal toric variety.

Comparing Weil and Cartier Divisors. Once we understand Cartier divisors on
normal toric varieties, it will be easy to give examples of Weil divisors that are not
Cartier. On the other hand, there are varieties whereeveryWeil divisor is Cartier.

Theorem 4.0.22.Let X be a normal variety. Then:

(a) If the local ringOX,p is a UFD for every p∈ X, then every Weil divisor on X
is Cartier.

(b) If X is smooth, then every Weil divisor on X is Cartier.
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Proof. If X is smooth, thenOX,p is a regular local ring for allp∈ X. Since every
regular local ring is a UFD (see §1.0), part (b) follows from part (a).

For part (a), it suffices to show that prime divisors are locally principal. This
condition is obviously local onX, so we may assume thatX = Spec(R) is affine.
Let D = V(p) be a prime divisor onX, wherep ⊆ R is a codimension one prime
ideal. Note thatD is obviously principal onU = X \D sinceD|U = 0. It remains
to show thatD is locally principal in a neighborhood of a pointp∈ D.

The pointp corresponds to a maximal idealm⊆R. Thusp∈D impliesp⊆m.
Sincep⊆Rhas codimension one, it follows that the prime idealpRm⊆Rm also has
codimension one (this follows from [3, Prop. 3.11]). Then Theorem 4.0.18 implies
that pRm is principal sinceRm is a UFD by hypothesis. ThuspRm = (a/b)Rm

wherea,b∈ Randb /∈m. Sinceb is invertible inRm, we in fact havepRm = aRm.

Now supposep = 〈a1, . . . ,as〉 ⊆R. Thenai ∈ pRm = aRm, so thatai = (gi/hi)a,
wheregi ,hi ∈ R andhi /∈ m, i.e.,hi(p) 6= 0. If we seth = h1 · · ·hs, thenpRh = aRh

follows easily. ThenU = Spec(Rh) is a neighborhood ofp, and from here, it is
straightforward to see thatD = div(a) onU . �

Example 4.0.23.SinceP1 is smooth, Theorem 4.0.22 and Example 4.0.21 imply
that Pic(P1) = Cl(P1)≃ Z. ♦

Sheaves ofOX-modules. Weil and Cartier divisors onX lead to some important
sheaves onX. Hence we need a brief excursion into sheaf theory (we will godeeper
into the subject in Chapter 6). The sheafOX was defined in §3.0. The definition
of a sheafF of OX-modulesis similar: for each open subsetU ⊆ X, there is an
OX(U)-moduleF (U) with the following properties:

• WhenW⊆U , there is a restriction map

ρU ,W : F (U)→F (W)

such thatρU ,U is the identity andρV,W ◦ρU ,V = ρU ,W whenW ⊆V ⊆U . Fur-
thermore,ρU ,W is compatible with the restriction mapOX(U)→OX(W).

• If {Uα} is an open cover ofU ⊆ X, then the sequence

0−→F (U)−→
∏

α

F (Uα) −→−→
∏

α,β

F (Uα∩Uβ)

is exact, where the second arrow is defined by the restrictions ρU ,Uα and the
double arrow is defined byρUα,Uα∩Uβ

andρUβ ,Uα∩Uβ
.

WhenU 7→F (U) satisfies just the first bullet, we say thatF is apresheaf.

Given a sheaf ofOX-modulesF , elements ofF (U) are calledsections ofF
over U. In practice, the module of sections ofF overU ⊆X is expressed in several
ways:

F (U) = Γ(U ,F ) = H0(U ,F ).
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We will useΓ in this chapter and switch toH0 in later chapters. Traditionally,
Γ(X,F ) is called the module ofglobal sectionsof F .

Example 4.0.24.Let f : X→Y be a morphism of varieties and letF be a sheaf
of OX-modules onX. Thedirect image sheaf f∗F onY is defined by

U 7−→F ( f−1(U))

for U ⊆ Y open. Thenf∗F is a sheaf ofOY-modules. Fori : Y →֒ X, the direct
imagei∗OY was mentioned in §3.0. ♦

If F and G are sheaves ofOX-modules, then ahomomorphism of sheaves
φ : F → G consists ofOX(U)-module homomorphisms

φU : F (U)−→ G (U),

such that the diagram

F (U)

ρU,V

��

φU
// G (U)

ρU,V

��

F (V)
φV

// G (V)

commutes wheneverV ⊆U . It should be clear what it means for sheavesF ,G of
OX-modules to be isomorphic, writtenF ≃ G .

Example 4.0.25.Let f : X→Y be a morphism of varieties. IfU ⊆Y is open, then
composition withf induces a natural map

OY(U)−→OX( f−1(U)) = f∗OX(U).

This defines a sheaf homomorphismOY→ f∗OX. ♦

Over an affine varietyX = Spec(R), there is a standard way to get sheaves of
OX-modules. Recall that a nonzero elementf ∈ R gives the localizationRf such
thatXf = Spec(Rf ) is the open subsetX \V( f ). Given anR-moduleM, we get the
Rf -moduleM f = M⊗R Rf . Then there is a unique sheaf̃M of OX-modules such
that

M̃(Xf ) = M f

for every nonzerof ∈ R. This is proved in [77, Prop. II.5.1].

We globalize this construction as follows.

Definition 4.0.26. A sheafF of OX-modules on a varietyX is quasicoherentif
X has an affine open cover{Uα}, Uα = Spec(Rα), such that for eachα, there is
an Rα-moduleMα satisfyingF |Uα

≃ M̃α. Furthermore, if eachMα is a finitely
generatedRα-module, then we say thatF is coherent.
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The Sheaf of a Weil Divisor. Let D be a Weil divisor on a normal varietyX. We
will show thatD determines a sheafOX(D) of OX-modules onX. Recall that if
U ⊆ X is open, thenOX(U) consists of all morphismsU → C. Proposition 4.0.16
tells us that an arbitrary elementf ∈ C(X)∗ is a morphism onU if and only if
div( f )|U ≥ 0. It follows that the sheafOX is defined by

U 7−→OX(U) = { f ∈ C(X)∗ | div( f )|U ≥ 0}∪{0}.

In a similar way, we define the sheafOX(D) by

U 7−→ OX(D)(U) = { f ∈ C(X)∗ | (div( f )+D)|U ≥ 0}∪{0}.(4.0.6)

Proposition 4.0.27.Let D be a Weil divisor on a normal variety X. Then the sheaf
OX(D) defined in(4.0.6)is a coherent sheaf ofOX-modules on X.

Proof. In Exercise 4.0.10 you will show thatOX(D) is a sheaf ofOX-modules.
The proof is a nice application of the properties of valuations.

To show thatOX(D) is coherent, we may assume thatX = Spec(R). Let K be
the field of fractions ofR. It suffices to prove the following two assertions:

• M = Γ(X,OX(D)) = { f ∈ K | div( f ) + D ≥ 0} ∪ {0} is a finitely generated
R-module.

• Γ(Xf ,OX(D)) = M f for all nonzerof ∈ R.

For the first bullet, we will prove the existence of an elementh∈ R\{0} such
that hΓ(X,OX(D)) ⊆ R. This will imply that hΓ(X,OX(D)) is an ideal ofR and
hence has a finite basis sinceR is Noetherian. It will follow immediately that
Γ(X,OX(D)) is a finitely generatedR-module.

Write D =
∑s

i=1 ai Di. Since supp(D) is a proper subvariety ofX, we can find
g∈R\{0} that vanishes on eachDi. ThenνDi (g)> 0 for everyi, so there ism∈N
with mνDi(g)> ai for all i. Since div(g)≥ 0, it follows thatmdiv(g)−D≥ 0. Now
let f ∈ Γ(X,OX(D)). Then div( f )+D≥ 0, so that

div(gm f ) = mdiv(g)+div( f ) = mdiv(g)−D+div( f )+D≥ 0

since a sum of effective divisors is effective. By Proposition 4.0.16, we conclude
thatgm f ∈OX(X) = R. Henceh = gm∈ Rhas the desired property.

To prove the second bullet, observe thatM ⊆ K and f ∈R\0 imply that

M f =
{ g

f m | g∈ Γ(X,OX(D)), m≥ 0
}
.

It is also easy to see thatM f ⊆ Γ(Xf ,OX(D)). For the opposite inclusion, letD =∑s
i=1ai Di and write{1, . . . ,s} = I ∪J whereDi ∩Xf 6= ∅ for i ∈ I andD j ⊆ V( f )

for j ∈ J. Givenh∈ Γ(Xf ,OX(D)), (div(h)+D)|Xf
≥ 0 implies thatνDi (h) ≥−ai

for i ∈ I . There is no constraint onνD j (h) for j ∈ J, but f vanishes onD j for j ∈ J,
so thatνD j ( f )> 0. Hence we can pickm∈ N sufficiently large such that

mνD j ( f )+νD j (h)> 0 for j ∈ J.
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Since div( f ) ≥ 0, it follows easily that div( f mh)+ D ≥ 0 onX. Thusg = f mh∈
Γ(X,OX(D)), and thenh = g/ f m has the desired form. �

The sheavesOX(D) are more than just coherent; they have the additional prop-
erty of beingreflexive. Furthermore, whenD is Cartier,OX(D) is invertible. The
definitions of invertible and reflexive will be given in Chapters 6 and 8 respectively.

For now, we give two results about the sheavesOX(D). Here is the first.

Proposition 4.0.28.Distinct prime divisors D1, . . . ,Ds on a normal variety X give
the divisor D= D1 + · · ·+ Ds and the subvariety Y= Supp(D) = D1∪ ·· · ∪Ds.
ThenOX(−D) is the ideal sheafIY of Y , i.e.,

Γ(U ,OX(−D)) = { f ∈ OX(U) | f vanishes onY}
for all open subsets U⊆ X.

Proof. Since sheaves are local, we may assume thatX = Spec(R). Then note that
f ∈ Γ(X,OX(−D)) implies div( f )−D≥ 0, so div( f )≥D≥ 0 sinceD is effective.
Thus f ∈R by Proposition 4.0.16 and henceΓ(X,OX(−D)) is an ideal ofR.

Let pi = I(Di)⊆ Rbe the prime ideal ofDi. Then, for f ∈ R, we have

νDi ( f )> 0 ⇐⇒ f ∈ piRpi ⇐⇒ f ∈ pi ,

where the last equivalence uses the easy equalitypiRpi ∩R= pi . Hence div( f )≥D
if and only if f vanishes onD1, . . . ,Ds, and the proposition follows. �

Linear equivalence of divisors tells us the following interesting fact about the
associated sheaves.

Proposition 4.0.29. If D ∼ E are linearly equivalent Weil divisors, thenOX(D)
andOX(E) are isomorphic as sheaves ofOX-modules.

Proof. By assumption, we haveD = E +div(g) for someg∈ C(X)∗. Then

f ∈ Γ(X,OX(D)) ⇐⇒ div( f )+D≥ 0

⇐⇒ div( f )+E +div(g)≥ 0

⇐⇒ div( f g)+E ≥ 0

⇐⇒ f g∈ Γ(X,OX(E)).

Thus multiplication byg induces an isomorphismΓ(X,OX(D)) ≃ Γ(X,OX(E))
which is clearly an isomorphism ofΓ(X,OX)-modules.

The same argument works over any Zariski open setU , and the isomorphisms
are easily seen to be compatible with the restriction maps. �

The converse of Proposition 4.0.29 is also true, i.e., anOX-module isomor-
phism OX(D) ≃ OX(E) implies thatD ∼ E. The proof requires knowing more
about the sheavesOX(D) and hence will be postponed until Chapter 8.



§4.0. Background: Valuations, Divisors and Sheaves 167

Exercises for §4.0.

4.0.1. Complete the proof of part (b) of Proposition 4.0.3.

4.0.2. Prove (c)⇔ (d) in Theorem 4.0.4. Hint: Letm be the maximal ideal ofR. SinceR
has dimension one, it is regular if and only ifm/m2 has dimension one as a vector space
overR/m. For (d)⇒ (c), use Nakayama’s Lemma (see [3, Props. 2.6 and 2.8]).

4.0.3. This exercise will study the ringsOX,D andRp.

(a) Prove (4.0.2).

(b) Let p be a prime ideal of a ringR and letRp denote the localization ofR with respect
to the multiplicative subsetR\ p. Prove thatRp is a local ring and that its maximal
ideal is the idealpRp ⊆ Rp generated byp.

4.0.4. Let Sbe a multiplicative subset of a Noetherian ringR. Prove that the localization
RS is Noetherian.

4.0.5. Let D andE be Weil divisors on a normal variety.

(a) If D andE are Cartier, show thatD+E and−D are also Cartier.

(b) If D∼ E, show thatD is Cartier if and only ifE is Cartier.

4.0.6. Complete the proof of Theorem 4.0.14.

4.0.7. Prove that a normal curve is smooth.

4.0.8. Let R be a Noetherian normal domain. Prove that the following are equivalent:

(a) R is a UFD.

(b) Cl(Spec(R)) = 0.

(c) Every codimension one prime ideal ofR is principal.

Hint: For (b)⇒ (c), assume thatD = div( f ) corresponds top. Use Theorem 4.0.14 to
show f ∈ R and use the Krull Principal Ideal Theorem to show〈 f 〉 is primary inR. Then
pRp = f Rp and [3, Prop. 4.8] implyp = 〈 f 〉. For (c)⇒ (a), leta∈ R be noninvertible and
let D1, . . . ,Ds be the codimension one irreducible components ofV(a). If I(Di) = 〈ai〉,
compare the divisors ofa and

∏s
i=1 a

νDi (a)
i using Proposition 4.0.16.

4.0.9. Prove that the restriction mapD 7→ D|U induces a well-defined homomorphism
Cl(X)→Cl(U).

4.0.10. Let D be a Weil divisor on a normal varietyX. Prove that (4.0.6) defines a sheaf
OX(D) of OX-modules.

4.0.11.For each of the following ringsR, give a careful description of the field of fractions
K and show that the ring is a DVR by constructing an appropriatediscrete valuation onK.

(a) R= {a/b∈Q | a,b∈ Z,b 6= 0,gcd(b, p) = 1}, wherep is a fixed prime number.

(b) R= C{{z}}, the ring consisting of all power series inzwith coefficient inC that have
a positive radius of convergence.

4.0.12. The plane curveV(x3− y2) ⊆ C2 has coordinate ringR= C[x,y]/〈x3− y2〉. As
noted in Example 1.1.15, this is the coordinate ring of the affine toric variety given by
the affine semigroupS = {0,2,3, . . .}. This semigroup is not saturated, which means that
R≃ C[S] = C[t2, t3] is not normal by Theorem 1.3.5. It follows thatR is not a DVR by
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Theorem 4.0.4. Give a direct proof of this fact using only thedefinition of DVR. Hint: The
field of fractions ofC[t2, t3] is C(t). If C[t2,t3] comes from the discrete valuationν, what
is ν(t)?

4.0.13. Let X be a normal variety. Use Proposition 4.0.16 to prove that there is an exact
sequence

1−→OX(X)∗ −→C(X)∗ −→Div(X)−→Cl(X)−→ 0,

where the mapC(X)∗→Div(X) is f 7→ div( f ) and Div(X)→Cl(X) is D 7→ [D]. Similarly,
prove that there is an exact sequence

1−→ OX(X)∗ −→ C(X)∗ −→ CDiv(X)−→ Pic(X)−→ 0.

4.0.14.LetD =
∑

codimp=1ap Dp be a Weil divisor on a normal affine varietyX = Spec(R).
As usual, letK be the field of fractions ofR. Here you give give an algebraic description
of Γ(X,OX(D)) in terms of the prime idealsp.

(a) Letp be a codimension one prime ofR, so thatRp is a DVR. Hence the maximal ideal
pRp is principal. Use this to definepaRp ⊆ K for all a∈ Z.

(b) Prove that

Γ(X,OX(D)) =
⋂

codimp=1

p
−apRp.

(c) Now assume thatD is effective, i.e.,ap ≥ 0 for all p. Prove thatΓ(X,OX(−D)) is the
ideal ofR given by

Γ(X,OX(−D)) =
⋂

codimp=1

p
apRp.

4.0.15. Let R be an integral domain with field of fractionsK. A finitely generatedR-
submodule ofK is called afractional ideal. If R is normal andD is a Weil divisor on
X = Spec(R), explain whyΓ(X,OX(D)) ⊆ K is a fractional ideal.

§4.1. Weil Divisors on Toric Varieties

Let XΣ be the toric variety of a fanΣ in NR with dimNR = n. ThenXΣ is normal
of dimensionn. We will use torus-invariant prime divisors and charactersto give a
lovely description of the class group ofXΣ.

The Divisor of a Character. The order of vanishing of a character along a torus-
invariant prime divisor is determined by the polyhedral geometry of the fan.

By the Orbit-Cone Correspondence (Theorem 3.2.6),k-dimensional conesσ
of Σ correspond to(n− k)-dimensionalTN-orbits in XΣ. As in Chapter 3,Σ(1)
is the set of 1-dimensional cones (i.e., the rays) ofΣ. Thusρ ∈ Σ(1) gives the
codimension one orbitO(ρ) whose closureO(ρ) is a TN-invariant prime divisor
XΣ. To emphasize thatO(ρ) is a divisor we will denote it byDρ rather thanV(ρ).
ThenDρ = O(ρ) gives the DVROXΣ,Dρ with valuation

νρ = νDρ : C(XΣ)∗→ Z.
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Recall that the rayρ ∈ Σ(1) has a minimal generatoruρ ∈ ρ∩N. Also note that
whenm∈M, the characterχm : TN→C∗ is a rational function inC(XΣ)∗ sinceTN

is Zariski open inXΣ.

Proposition 4.1.1. Let XΣ be the toric variety of a fanΣ. If the rayρ ∈ Σ(1) has
minimal generator uρ andχm is character corresponding to m∈M, then

νρ(χ
m) = 〈m,uρ〉.

Proof. Sinceuρ ∈N is primitive, we can extenduρ to a basise1 = uρ,e2, . . . ,en of
N, then we can assumeN = Zn andρ = Cone(e1) ⊆ Rn. By Example 1.2.20, the
corresponding affine toric variety is

Uρ = Spec(C[x1,x
±1
2 , . . . ,x±1

n ]) = C× (C∗)n−1

andDρ∩Uρ is defined byx1 = 0. It follows easily that the DVR is

OXΣ,Dρ = OUρ,Uρ∩Dρ = C[x1, . . . ,xn]〈x1〉.

Similar to Example 4.0.6,f ∈ C(x1, . . . ,xn)
∗ has valuationνρ( f ) = n∈ Z when

f = xn
1

g
h
, g,h∈ C[x1, . . . ,xn]\ 〈x1〉.

To relate this toνρ(χm), note thatx1, . . . ,xn are the characters of the dual basis
of e1 = uρ,e2, . . . ,en ∈ N. It follows that given anym∈M, we have

χm = x〈m,e1〉
1 x〈m,e2〉

2 · · ·x〈m,en〉
n = x〈m,uρ〉

1 x〈m,e2〉
2 · · ·x〈m,en〉

n .

Comparing this to the previous equation implies thatνρ(χ
m) = 〈m,uρ〉. �

We next compute the divisor of a character. As above, a rayρ ∈ Σ(1) gives:

• A minimal generatoruρ ∈ ρ∩N.

• A prime TN-invariant divisorDρ = O(ρ) onXΣ.

We will use this notation for the remainder of the chapter.

Proposition 4.1.2. For m∈M, the characterχm is a rational function on XΣ, and
its divisor is given by

div(χm) =
∑

ρ∈Σ(1)

〈m,uρ〉Dρ.

Proof. The Orbit-Cone Correspondence (Theorem 3.2.6) implies that the Dρ are
the irreducible components ofX \TN. Sinceχm is defined and nonzero onTN, it
follows thatχm is supported on

⋃
ρ∈Σ(1) Dρ. Hence

div(χm) =
∑

ρ∈Σ(1)

νDρ(χ
m)Dρ.

Then we are done sinceνDρ(χ
m) = 〈m,uρ〉 by Proposition 4.1.1. �
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Computing the Class Group. Divisors of the form
∑

ρ∈Σ(1) aρDρ are precisely the
divisors invariant under the torus action onXΣ (Exercise 4.1.1). Thus

DivTN(XΣ) =
⊕

ρ∈Σ(1)

ZDρ ⊆ Div(XΣ)

is the group ofTN-invariant Weil divisors onXΣ. Here is the main result of this
section.

Theorem 4.1.3.We have the exact sequence

M −→ DivTN(XΣ)−→ Cl(XΣ)−→ 0,

where the first map is m7→ div(χm) and the second sends a TN-invariant divisor to
its divisor class inCl(XΣ). Furthermore, we have a short exact sequence

0−→M −→ DivTN(XΣ)−→ Cl(XΣ)−→ 0

if and only if{uρ | ρ ∈Σ(1)} spans NR, i.e., XΣ has no torus factors.

Proof. Since theDρ are the irreducible components ofXΣ \TN, Theorem 4.0.20
implies that we have an exact sequence

DivTN(XΣ)−→ Cl(XΣ)−→ Cl(TN)−→ 0.

SinceC[x1, . . . ,xn] is a UFD, the same is true forC[x±1
1 , . . . ,x±1

n ]. This is the co-
ordinate ring of the torus(C∗)n, which is isomorphic to the coordinate ringC[M]
of the torusTN. HenceC[M] is also a UFD, which implies Cl(TN) = 0 by Theo-
rem 4.0.18. We conclude that DivTN(XΣ)→ Cl(XΣ) is surjective.

The compositionM → DivTN(XΣ)→ Cl(XΣ) is obviously zero since the first
map ism 7→ div(χm). Now suppose thatD∈DivTN(XΣ) maps to 0 in Cl(XΣ). Then
D = div( f ) for some f ∈ C(XΣ)∗. Since the support ofD missesTN, this implies
that div( f ) restricts to 0 onTN. When regarded as an element ofC(TN)∗, f has
zero divisor onTN, so that f ∈ C[M]∗ by Proposition 4.0.16. Thusf = cχm for
somec∈ C∗ andm∈M (Exercise 3.3.4). It follows that onXΣ,

D = div( f ) = div(cχm) = div(χm),

which proves exactness at DivTN(XΣ).

Finally, suppose thatm∈ M with div(χm) =
∑

ρ∈Σ(1)〈m,uρ〉Dρ is the zero
divisor. Then〈m,uρ〉 = 0 for all ρ ∈ Σ(1), which forcesm= 0 when theuρ span
NR. This gives the desired exact sequence. Conversely, if the sequence is exact,
then one easily sees that theuρ spanNR, which by Corollary 3.3.10 is equivalent
to XΣ having no torus factors. �

In particular, we see that Cl(XΣ) is a finitely generated abelian group.
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Examples. It is easy to compute examples of class groups of toric varieties. In
practice, one usually picks a basise1, . . . ,en of M, so thatM ≃ Zn and (via the dual
basis)N ≃ Zn. Then the pairing〈m,u〉 becomes dot product. We list the rays of
Σ asρ1, . . . ,ρr with corresponding ray generatorsu1, . . . ,ur ∈ Zn. We will think
of ui as the column vector(〈e1,ui〉, . . . ,〈en,ui〉)T , where the superscript denotes
transpose.

With this setup, the mapM→ DivTN(XΣ) in Theorem 4.1.3 is the map

A : Zn−→ Zr

represented by the matrix whose columns are the ray generators. In other words,
A = (u1, . . . ,ur)

T . By Theorem 4.1.3, the class group ofXΣ is the cokernel of this
map, which is easily computed from the Smith normal form ofA.

When we want to think in terms of divisors, we letDi be theTN-invariant prime
divisor corresponding toρi ∈Σ(1).

Example 4.1.4.The affine toric surface described in Example 1.2.21 comes from
the coneσ = Cone(de1−e2,e2). Ford = 3, σ is shown in Figure 1. The resulting

ρ2

u2

ρ1

u1

Figure 1. The coneσ∨ whend = 3

toric varietyUσ is the rational normal conêCd. Using the ray generatorsu1 =
de1− e2 = (d,−1) andu2 = e2 = (0,1), we get the mapZ2→ Z2 given by the
matrix

A =

(
d 0
−1 1

)
.

This makes it easy to compute that

Cl(Ĉd)≃ Z/dZ.

We can also see this in terms of divisors as follows. The classgroup Cl(Ĉd) is
generated by the classes of the divisorsD1,D2 corresponding toρ1,ρ2, subject to
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the relations coming from the exact sequence of Theorem 4.1.3:

0∼ div(χe1) = 〈e1,u1〉D1 + 〈e1,u2〉D2 = d D1

0∼ div(χe2) = 〈e2,u1〉D1 + 〈e2,u2〉D2 =−D1+D2.

Thus Cl(Ĉd) is generated by[D1] with d[D1] = 0, giving Cl(Ĉd)≃ Z/dZ. ♦

Example 4.1.5. In Example 3.1.4, we saw that the blowup ofC2 at the origin is
the toric variety Bl0(C2) given by the fanΣ shown in Figure 2.

ρ1

ρ2 ρ0

u1

u0
u2

Figure 2. The fan for the blowup ofC2 at the origin

The ray generators areu1 = e1,u2 = e2,u0 = e1 +e2 corresponding to divisors
D1,D2,D0. By Theorem 4.1.3, the class group is generated by the classes of theDi

subject to the relations

0∼ div(χe1) = D1 +D0

0∼ div(χe2) = D2 +D0.

Thus Cl(Bl0(C2)) ≃ Z with generator[D1] = [D2] = −[D0]. This calculation can
also be done using matrices as in the previous example. ♦

Example 4.1.6.The fan ofPn has ray generators given byu0 =−e1−·· ·−en and
u1 = e1, . . . ,un = en. Thus the mapM→ DivTN(Pn) can be written as

Zn−→ Zn+1

(a1, . . . ,an) 7−→ (−a1−·· ·−an,a1, . . . ,an).

Using the map

Zn+1−→ Z

(b0, . . . ,bn) 7−→ b0 + · · ·+bn,

one gets the exact sequence

0−→ Zn−→ Zn+1−→ Z−→ 0,
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which proves that Cl(Pn)≃ Z, generalizing Example 4.0.21. It is easy to redo this
calculation using divisors as in the previous example. ♦

Example 4.1.7.The class group Cl(Pn×Pm) is isomorphic toZ2. More generally,

Cl(XΣ1×XΣ2)≃ Cl(XΣ1)⊕Cl(XΣ2).

You will prove this in Exercise 4.1.2. ♦

Example 4.1.8. The Hirzebruch surfacesHr are described in Example 3.1.16.
The fan forHr appears in Figure 3, along with the ray generatorsu1 = −e1 + re2,
u2 = e2, u3 = e1, u4 =−e2.

u2

u4

u3

u1 = (−1,r)

Figure 3. A fan Σr with XΣr ≃ Hr

The class group is generated by the classes ofD1,D2,D3,D4, with relations

0∼ div(χe1) =−D1+D3

0∼ div(χe2) = rD1 +D2−D4.

It follows that Cl(Hr) is the free abelian group generated by[D1] and[D2]. Thus

Cl(Hr)≃ Z2.

In particular,r = 0 gives Cl(H0) = Cl(P1×P1) ≃ Z2, which is a special case of
Example 4.1.7. ♦

Exercises for §4.1.

4.1.1. This exercise will determine which divisors are invariant under theTN-action on
XΣ. Given t ∈ TN and p ∈ XΣ, the TN-action givest · p ∈ XΣ. If D is a prime divisor,
the TN-action gives the prime divisort ·D. For an arbitrary Weil divisorD =

∑
i ai Di ,

t ·D =
∑

i ai(t ·Di). ThenD is TN-invariant if t ·D = D for all t ∈ TN.

(a) Show that
∑

ρ∈Σ(1) aρ Dρ is TN-invariant.

(b) Conversely, show that anyTN-invariant Weil divisor can be written as in part (a). Hint:
Consider Supp(D) and use the Orbit-Cone Correspondence.
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4.1.2. Given fansΣ1 in (N1)R andΣ2 in (N2)R, we get the product fan

Σ1×Σ2 = {σ1×σ2 | σi ∈Σi},
which by Proposition 3.1.14 is the fan of the toric varietyXΣ1×XΣ2. Prove that

Cl(XΣ1×XΣ2)≃ Cl(XΣ1)⊕Cl(XΣ2).

Hint: The product fan has raysρ1×{0} and{0}×ρ2 for ρ1 ∈Σ1(1) andρ2 ∈Σ2(1).

4.1.3. Redo the divisor class group calculation given in Example 4.1.5 using matrices, and
redo the calculation given in Example 4.1.6 using divisors.

4.1.4. The blowup ofCn at the origin is the toric variety Bl0(C
n) of the fanΣ described in

Example 3.1.15. Prove that Cl(Bl0(C
n))≃ Z.

4.1.5. The weighted projective spaceP(q0, . . . ,qn), gcd(q0, . . . ,qn) = 1, is built from a fan
in N = Zn+1/Z(q0, . . . ,qn). The dual lattice is

M = {(a0, . . . ,an) ∈ Zn+1 | a0q0 + · · ·+anqn = 0}.
Let u0, . . . ,un ∈N denote the images of the standard basise0, . . . ,en ∈ Zn+1. Theui are the
ray generators of the fan givingP(q0, . . . ,qn). Define maps

M −→ Zn+1 : m 7−→ (〈m,u0〉, . . . ,〈m,un〉)
Zn+1 −→ Z : (a0, . . . ,an) 7−→ a0q0 + · · ·+anqn.

Show that these maps give an exact sequence

0−→M −→ Zn+1 −→ Z−→ 0

and conclude that Cl(P(q0, . . . ,qn))≃ Z.

§4.2. Cartier Divisors on Toric Varieties

Let XΣ be the toric variety of a fanΣ. We will use the same notation as in §4.1,
where eachρ ∈ Σ(1) gives a minimal ray generatoruρ and aTN-invariant prime
divisor Dρ ⊆ XΣ. In what follows, we write

∑
ρ for a summation over the rays

ρ ∈ Σ(1) when there is no danger of confusion.

Computing the Picard Group. A Cartier divisorD on XΣ is also a Weil divisor
and hence

D∼
∑

ρ

aρDρ, aρ ∈ Z,

by Theorem 4.1.3. Then
∑

ρaρDρ is Cartier sinceD is (Exercise 4.0.5). Let

CDivTN(XΣ)⊆ DivTN(XΣ)

denote the subgroup of DivTN(XΣ) consisting ofTN-invariant Cartier divisors. Since
div(χm) ∈CDivTN(XΣ) for all m∈M, we get the following immediate corollary of
Theorem 4.1.3.
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Theorem 4.2.1.We have an exact sequence

M −→ CDivTN(XΣ)−→ Pic(XΣ)−→ 0,

where the first map is defined above and the second sends a TN-invariant divisor to
its divisor class inPic(XΣ). Furthermore, we have a short exact sequence

0−→M −→ CDivTN(XΣ)−→ Pic(XΣ)−→ 0

if and only if{uρ | ρ ∈Σ(1)} spans NR. �

Our next task is to determine the structure of CDivTN(XΣ). In other words,
which TN-invariant divisors are Cartier? We begin with the affine case.

Proposition 4.2.2. Letσ ⊆ NR be a strongly convex polyhedral cone. Then:

(a) Every TN-invariant Cartier divisor on Uσ is the divisor of a character.

(b) Pic(Uσ) = 0.

Proof. Let R= C[σ∨ ∩M]. First suppose thatD =
∑

ρaρDρ is an effectiveTN-
invariant Cartier divisor. Using Proposition 4.0.16 as in the proof of Proposi-
tion 4.0.28, we see that

Γ(Uσ,OUσ(−D)) = { f ∈ K | f = 0, or f 6= 0 and div( f )≥ D}
is an idealI ⊆ R. Furthermore,I is TN-invariant sinceD is. Hence

(4.2.1) I =
⊕

χm∈I

C ·χm =
⊕

div(χm)≥D

C ·χm

by Lemma 1.1.16.

Under the Orbit-Cone Correspondence (Theorem 3.2.6), a rayρ ∈ σ(1) gives
an inclusion ofTN-orbitsO(σ)⊆O(ρ)⊆O(ρ) = Dρ. Thus

O(σ)⊆
⋂

ρ

Dρ.

Now fix a pointp∈O(σ). SinceD is Cartier, it is locally principal, and in particular
is principal in a neighborhoodU of p. ShrinkingU if necessary, we may assume
thatU = (Uσ)h = Spec(Rh), whereh∈ R satisfiesh(p) 6= 0.

ThusD|U = div( f )|U for some f ∈ C(Uσ)
∗. SinceD is effective, f ∈ Rh by

Proposition 4.0.16, and sinceh is invertible onU , we may assumef ∈ R. Then

div( f ) =
∑

ρ

νDρ( f )Dρ+
∑

E 6=Dρ

νE( f )E ≥
∑

ρ

νDρ( f )Dρ = D.

Here,
∑

E 6=Dρ
denotes the sum over all prime divisors different from theDρ. The

first equality is the definition of div( f ), the second inequality follows sincef ∈ R,
and the final equality follows fromD|U = div( f )|U sincep ∈U ∩Dρ for all ρ ∈
σ(1). This shows that div( f )≥ D, so thatf ∈ I .
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Using (4.2.1), we can writef =
∑

i ai χ
mi with ai ∈ C∗ and div(χmi ) ≥ D.

Restricting toU , this becomes div(χmi )|U ≥ div( f )|U , which implies thatχmi/ f is
a morphism onU by Proposition 4.0.16. Then

1 =

∑
i ai χ

mi

f
=
∑

i

ai
χmi

f

andp∈U imply that(χmi/ f )(p) 6= 0 for somei. Henceχmi/ f is nonvanishing in
some open setV with p∈V ⊆U . It follows that

div(χmi )|V = div( f )|V = D|V .
Since div(χmi ) andD have support contained in

⋃
ρDρ and everyDρ meetsV (this

follows from p∈V ∩Dρ), we have div(χmi ) = D.

To finish the proof of (a), letD be an arbitraryTN-invariant Cartier divisor on
Uσ. Since dimσ∨ = dimMR (σ is strongly convex), we can findm∈ σ∨∩M such
that〈m,uρ〉> 0 for all ρ ∈ σ(1). Thus div(χm) is a positive linear combination of
theDρ, which implies thatD′ = D+div(χkm)≥ 0 for k∈N sufficiently large. The
above argument implies thatD′ is the divisor of a character, so that the same is true
for D. This completes the proof of part (a), and part (b) follows immediately using
Theorem 4.2.1. �

Example 4.2.3.The rational normal conêCd is the affine toric variety of the cone
σ = Cone(de1− e2,e2) ⊆ R2. We saw in Example 4.1.4 that Cl(Uσ) ≃ Z/dZ.
The edgesρ1,ρ2 of σ give prime divisorsD1,D2 on Ĉd, and the computations of
Example 4.1.4 show that[D1] = [D2] generates Cl(Uσ). Since Pic(Uσ) = 0 by
Proposition 4.2.2, it follows that the Weil divisorsD1,D2 are not Cartier ifd> 1.

Next consider the fanΣ0 consisting of the conesρ1,ρ2,{0}. This is a subfan of
the fanΣ giving Ĉd, and the corresponding toric variety isXΣ0 ≃ Ĉd \{γσ}, where
γσ is the distinguished point that is the unique fixed point of the TN-action on
Ĉd. The varietyXΣ0 is smooth since every cone inΣ0 is smooth (Theorem 3.1.19).
SinceΣ0 andΣ have the same 1-dimensional cones, they have the same class group
by Theorem 4.1.3. Thus

Pic(XΣ0) = Cl(XΣ0) = Cl(XΣ) = Cl(Ĉd)≃ Z/dZ.

It follows thatXΣ0 is a smooth toric surface whose Picard group has torsion.♦

Example 4.2.4.One of our favorite examples isX = V(xy−zw)⊆C4, which is the
toric variety of the coneσ= Cone(e1,e2,e1+e3,e2+e3)⊆R3. The ray generators
are

u1 = e1, u2 = e2, u3 = e1 +e3, u4 = e2 +e3.

Note thatu1 + u4 = u2 + u3. Let Di ⊆ X be the divisor corresponding toui . In
Exercise 4.2.1 you will verify that

a1 D1 +a2D2+a3 D3+a4 D4 is Cartier⇐⇒ a1 +a4 = a2 +a3



§4.2. Cartier Divisors on Toric Varieties 177

and that Cl(X) ≃ Z. Since Pic(X) = 0, we see that theDi are not Cartier, and in
fact no positive multiple ofDi is Cartier. ♦

Example 4.2.3 shows that the Picard group of a normal toric variety can have
torsion. However, if we assume thatΣ has a cone of maximal dimension, then the
torsion goes away. Here is the precise result.

Proposition 4.2.5.Let XΣ be the toric variety of a fanΣ in NR ≃Rn. If Σ contains
a cone of dimension n, thenPic(XΣ) is a free abelian group.

Proof. By the exact sequence in Theorem 4.2.1, it suffices to show that if D is a
TN-invariant Cartier divisor andkD is the divisor of a character for somek> 0,
then the same is true forD. To prove this, writeD =

∑
ρaρDρ and assume that

kD = div(χm), m∈M.

Let σ have dimensionn. SinceD is Cartier, its restriction toUσ is also Cartier.
Using the Orbit-Cone Correspondence, we have

D|Uσ
=
∑

ρ∈σ(1)

aρDρ.

This is principal onUσ by Proposition 4.2.2, so that there ism′ ∈ M such that
D|Uσ

= div(χm′

)|Uσ
. This implies that

aρ = 〈m′,uρ〉 for all ρ ∈ σ(1).

On the other hand,kD = div(χm) implies that

kaρ = 〈m,uρ〉 for all ρ ∈ Σ(1).

Together, these equations imply

〈km′,uρ〉= kaρ = 〈m,uρ〉 for all ρ ∈ σ(1).

The uρ spanNR since dimσ = n. Then the above equation forceskm′ = m, and
D = div(χm′

) follows easily. �

This proposition does not contradict the torsion Picard group in Example 4.2.3
since the fanΣ0 in that example has no maximal cone.

Comparing Weil and Cartier Divisors. Here is an application of Proposition 4.2.2.

Proposition 4.2.6. Let XΣ be the toric variety of the fanΣ. Then the following are
equivalent:

(a) Every Weil divisor on XΣ is Cartier.

(b) Pic(XΣ) = Cl(XΣ).

(c) XΣ is smooth.
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Proof. (a)⇔ (b) is obvious, and (c)⇒ (a) follows from Theorem 4.0.22. For
the converse, suppose that every Weil divisor onXΣ is Cartier and letUσ ⊆ XΣ be
the affine open subset corresponding toσ ∈ Σ. Since Cl(XΣ)→ Cl(Uσ) is onto
by Theorem 4.0.20, it follows that every Weil divisor onUσ is Cartier. Using
Pic(Uσ) = 0 from Proposition 4.2.2 and the exact sequence from Theorem4.1.3,
we conclude thatm 7→ div(χm) induces a surjective map

M −→ DivTN(Uσ) =
⊕

ρ∈σ(1)

ZDρ.

Writing σ(1) = {ρ1, . . . ,ρs}, this map becomes

(4.2.2)
M −→ Zs

m 7−→ (〈m,uρ1〉, . . . ,〈m,uρs〉).
Now defineΦ : Zs→ N by Φ(a1, . . . ,as) =

∑s
i=1 ai uρi . The dual map

Φ∗ : M = HomZ(N,Z)−→ HomZ(Zs,Z) = Zs

is easily seen to be (4.2.2). In Exercise 4.2.2 you will show that

(4.2.3)
Φ∗ is surjective⇐⇒ Φ is injective andN/Φ(Zs) is torsion-free.

⇐⇒ uρ1, . . . ,uρs can be extended to a basis ofN.

The first part of the proof shows thatΦ∗ is surjective. Then (4.2.3) implies that the
uρ for ρ ∈ σ(1) can be extended to a basis ofN, which implies thatσ is smooth.
ThenXΣ is smooth by Theorem 3.1.19. �

Proposition 4.2.6 has a simplicial analog. Recall thatXΣ is simplicial when
everyσ ∈ Σ is simplicial, meaning that the minimal generators ofσ are linearly
independent overR. You will prove the following result in Exercise 4.2.2.

Proposition 4.2.7. Let XΣ be the toric variety of the fanΣ. Then the following are
equivalent:

(a) Every Weil divisor on XΣ has a positive integer multiple that is Cartier.

(b) Pic(XΣ) has finite index inCl(XΣ).

(c) XΣ is simplicial. �

In the literature, a Weil divisor is calledQ-Cartier if some positive integer mul-
tiple is Cartier. Thus Proposition 4.2.7 characterizes those normal toric varieties for
which all Weil divisors areQ-Cartier.

Describing Cartier Divisors. We can use Proposition 4.2.2 to characterizeTN-
invariant Cartier divisors as follows. LetΣmax⊆ Σ be the set of maximal cones
of Σ, meaning cones inΣ that are not proper subsets of another cone inΣ.
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Theorem 4.2.8. Let XΣ be the toric variety of the fanΣ and let D=
∑

ρaρDρ.
Then the following are equivalent:

(a) D is Cartier.

(b) D is principal on the affine open subset Uσ for all σ ∈Σ.

(c) For eachσ ∈ Σ, there is mσ ∈M with 〈mσ,uρ〉=−aρ for all ρ ∈ σ(1).

(d) For eachσ ∈ Σmax, there is mσ ∈M with 〈mσ,uρ〉=−aρ for all ρ ∈ σ(1).

Furthermore, if D is Cartier and{mσ}σ∈Σ is as in part(c), then:

(1) mσ is unique modulo M(σ) = σ⊥∩M.

(2) If τ is a face ofσ, then mσ ≡mτ modM(τ).

Proof. SinceD|Uσ
=
∑

ρ∈σ(1) aρDρ, the equivalences (a)⇔ (b)⇔ (c) follow im-
mediately from Proposition 4.2.2. The implication (c)⇒ (d) is clear, and (d)⇒ (c)
follows because every cone inΣ is a face of someσ ∈ Σmax and if mσ ∈ Σmax

works forσ, it also works for all faces ofσ.

For (1), suppose thatmσ ∈M satisfies〈m,uρ〉 = −aρ for all ρ ∈ σ(1). Then,
givenm′σ ∈M, we have

〈m′σ,uρ〉=−aρ for all ρ ∈ σ(1) ⇐⇒ 〈m′σ−mσ,uρ〉= 0 for all ρ ∈ σ(1)

⇐⇒ 〈m′σ−mσ,u〉 = 0 for all u∈ σ
⇐⇒ m′σ−mσ ∈ σ⊥∩M = M(σ).

It follows that mσ is unique moduloM(σ). Sincemσ works for any faceτ of σ,
uniqueness implies thatmσ ≡mτ modM(τ), and (2) follows. �

Themσ of part (c) of the theorem satisfyD|Uσ
= div(χ−mσ)|Uσ

for all σ ∈ Σ.
Thus{(Uσ ,χ

−mσ)}σ∈Σ is local data forD in the sense of Definition 4.0.12. We
call {mσ}σ∈Σ theCartier dataof D.

The minus signs in parts (c) and (d) of the theorem are relatedto the minus
signs in the facet presentation of a lattice polytope given in (2.2.2), namely

P = {m∈MR | 〈m,uF〉 ≥ −aF for all facetsF of P}.
We will say more about this below. The minus signs are also related tosupport
functions, to be discussed later in the section.

WhenΣ is a complete fan inNR ≃Rn, part (d) of Theorem 4.2.8 can be recast
as follows. LetΣ(n) = {σ ∈ Σ | dimσ = n}. In Exercise 4.2.3 you will show that
a Weil divisorD =

∑
ρaρDρ is Cartier if and only if:

(d)′ For eachσ ∈Σ(n), there is mσ ∈M with 〈m,uρ〉=−aρ for all ρ ∈ σ(1).

Part (1) of Theorem 4.2.8 shows that thesemσ ’s are uniquely determined.

In general, eachmσ in Theorem 4.2.8 is only unique moduloM(σ). Hence we
can regardmσ as a uniquely determined element ofM/M(σ). Furthermore, ifτ is
a face ofσ, then the canonical mapM/M(σ)→M/M(τ) sendsmσ to mτ .
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There are two ways to turn these observations into a completedescription of
CDivTN(XΣ). For the first, write

Σmax = {σ1, . . . ,σr}
and consider the map

⊕

i

M/M(σi)−→
⊕

i< j

M/M(σi ∩σ j)

(mi)i 7−→ (mi −mj)i< j .

In Exercise 4.2.4 you will prove the following.

Proposition 4.2.9. There is a natural isomorphism

CDivTN(XΣ)≃ ker
(⊕

iM/M(σi)→
⊕

i< jM/M(σi ∩σ j)
)
. �

For readers who know inverse limits (see [3, p. 103]), a more sophisticated
description of CDivTN(XΣ) comes from the directed set(Σ,�), where� is the face
relation. We get an inverse system whereτ � σ givesM/M(σ)→M/M(τ), and
the inverse limit gives an isomorphism

CDivTN(XΣ) ≃ lim
←−
σ∈Σ

M/M(σ).

The Toric Variety of a Polytope. In Chapter 2, we constructed the toric variety
XP of a full dimensional lattice polytopeP⊆ MR. If MR ≃ Rn, this means that
dimP = n. As noted above,P has a canonical presentation

(4.2.4) P = {m∈MR | 〈m,uF〉 ≥ −aF for all facetsF of P},
whereaF ∈ Z anduF ∈ N is the inward-pointing facet normal that is the minimal
generator of the rayρF = Cone(uF ). The normal fanΣP consists of conesσQ

indexed by facesQ� P, where

σQ = Cone(uF | F containsQ).

Proposition 2.3.6 implies that the fanΣP is complete. Furthermore, the vertices of
P correspond to the maximal cones inΣP(n), and the facets ofP correspond to the
rays inΣP(1).

The ray generators of the normal fanΣP are the facet normalsuF . The corre-
sponding prime divisors inXP will be denotedDF . Everything is now indexed by
the facetsF of P. The normal fan tells us the facet normalsuF in (4.2.4), butΣP

cannot give us the integersaF in (4.2.4). For these, we need the divisor

(4.2.5) DP =
∑

F

aF DF .

As we will see in later chapters, this divisor plays a centralrole in the study of
projective toric varieties. For now, we give the following useful result.

Proposition 4.2.10.DP is a Cartier divisor on XP and DP 6∼ 0.
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Proof. A vertexv∈P corresponds to a maximal coneσv, and a rayρF lies inσv(1)
if and only if v∈ F. But v∈ F implies that〈v,uF 〉 = −aF . Note also thatv∈M
sinceP is a lattice polytope. Thus we havev∈M such that〈v,uF 〉 = −aF for all
ρF ∈ σv(1), so thatDP is Cartier by Theorem 4.2.8. You will prove thatDP 6∼ 0 in
Exercise 4.2.5. �

In the notation of Theorem 4.2.8,mσv is the vertexv. Thus the Cartier data of
the Cartier divisorDP is the set

(4.2.6) {mσv}σv∈ΣP(n) = {v | v is a vertex ofP}.

This is very satisfying and explains why the minus signs in (4.2.4) correspond to
the minus signs in Theorem 4.2.8.

The divisor class[DP]∈ Pic(XP) also has a nice interpretation. IfD∼DP, then
D = DP + div(χm) for somem∈ M. In Proposition 2.3.7 we saw thatP and its
translateP−m have the same normal fan and hence give the same toric variety,
i.e.,XP = Xm+P. We also have

D = DP +div(χm) = DP−m

(Exercise 4.2.5), so that the divisor class ofDP gives all translates ofP.

The divisorDP has many more wonderful properties. We will get a glimpse
of this in §4.3 and learn the full power ofDP in Chapter 6 when we study ample
divisors on toric varieties.

Support Functions. The Cartier data{mσ}σ∈Σ that describes a torus-invariant
Cartier divisor can be cumbersome to work with. Here we introduce a more ef-
ficient computational tool. Recall thatΣ has support|Σ|=⋃σ∈Σσ ⊆ NR.

Definition 4.2.11. Let Σ be a fan inNR.

(a) A support functionis a functionϕ : |Σ| → R that is linear on each cone ofΣ.
The set of all support functions is denoted SF(Σ).

(b) A support functionϕ is integral with respect to the latticeN if

ϕ(|Σ|∩N)⊆ Z.

The set of all such support functions is denoted SF(Σ,N).

Let D =
∑

ρaρDρ be Cartier and let{mσ}σ∈Σ be the Cartier data ofD as in
Theorem 4.2.8. Thus

(4.2.7) 〈mσ,uρ〉=−aρ for all ρ ∈ σ(1).

We now describe Cartier divisors in terms of support functions.
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Theorem 4.2.12.LetΣ be a fan in NR.

(a) Given D=
∑

ρaρDρ with Cartier data{mσ}σ∈Σ, the function

ϕD : |Σ| −→ R

u 7−→ ϕD(u) = 〈mσ,u〉 when u∈ σ
is a well-defined support function that is integral with respect to N.

(b) ϕD(uρ) =−aρ for all ρ ∈ Σ(1), so that

D =−
∑

ρ

ϕD(uρ)Dρ.

(c) The map D7→ ϕD induces an isomorphism

CDivTN(XΣ)≃ SF(Σ,N).

Proof. Theorem 4.2.8 tells us that eachmσ is unique moduloσ⊥ ∩M and that
mσ ≡mσ′ mod(σ∩σ′)⊥∩M. It follows easily thatϕD is well-defined. Also,ϕD

is linear on eachσ sinceϕD|σ(u) = 〈mσ,u〉 for u∈ σ, and it is integral with respect
to N sincemσ ∈M. This proves part (a), and part (b) follows from the definition of
ϕD and (4.2.7).

It remains to prove part (c). First note thatϕD ∈ SF(Σ,N) by part (a). Since
D,E ∈ CDivTN(XΣ) andk∈ Z imply that

ϕD+E = ϕD +ϕE

ϕkD = kϕD,

the map CDivTN(XΣ)→SF(Σ,N) is a homomorphism, and injectivity follows from
part (b). To prove surjectivity, takeϕ ∈ SF(Σ,N). Fix σ ∈ Σ. Sinceϕ is integral
with respect toN, it defines aN-linear mapϕ|σ∩N : σ∩N→ Z, which extends to
N-linear mapφσ : Nσ→ Z, whereNσ = Span(σ)∩N. Since

HomZ(Nσ,Z)≃M/M(σ),

it follows that there ismσ ∈ M such thatϕ|σ(u) = 〈mσ,u〉 for u ∈ σ. ThenD =
−∑ρϕD(uρ)Dρ is a Cartier divisor that maps toϕ. �

In terms of support functions, the exact sequence of Theorem4.2.1 becomes

(4.2.8) M −→ SF(Σ,N)−→ Pic(XΣ)−→ 0,

wherem∈ M maps to the linear support function defined byu 7→ −〈m,u〉 and
ϕ ∈ SF(Σ,N) maps to the divisor class[−∑ρϕ(uρ)Dρ] ∈ Pic(XΣ). Be sure you
understand the minus signs.

Here is an example of how to compute with support functions.

Example 4.2.13.The eight points±e1±e2±e3 are the vertices of a cube inR3.
Taking the cones over the six faces gives a complete fan inR3. Modify this fan by
replacinge1 + e2 + e3 with e1 + 2e2 + 3e3. The resulting fanΣ has the surprising
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property that Pic(XΣ) = 0. In other words,XΣ is a complete toric variety whose
Cartier divisors are all principal.

We will prove Pic(XΣ) = 0 by showing that all support functions forΣ are
linear. Label the ray generators as follows, using coordinates for compactness:

u1 = (1,2,3), u2 = (1,−1,1), u3 = (1,1,−1), u4 = (−1,−1,1)

u5 = (1,−1,−1), u6 = (−1,−1,1), u7 = (−1,1,−1), u8 = (−1,−1,−1).

The ray generators are shown in Figure 4. The figure also includes three maximal
cones ofΣ:

σ1 = Cone(u1,u2,u3,u5)

σ2 = Cone(u1,u3,u4,u7)

σ3 = Cone(u1,u2,u4,u6).

The shading in Figure 4 indicatesσ1∩σ2,σ1∩σ3,σ2∩σ3. Besidesσ1,σ2,σ3, the
fan Σ has three other maximal cones, which we callleft, down, andback. Thus
the coneleft has ray generatorsu2,u5,u6,u8, and similarly for the other two.

σ2

σ1

σ3
u1

u2

u3

u4

u5

u6

u7u8

Figure 4. A fan Σ with Pic(XΣ) = 0

Takeϕ ∈ SF(Σ,Z3). We show thatϕ is linear as follows. Sinceϕ|σ1
is linear,

there ism1 ∈ Z3 such thatϕ(u) = 〈m1,u〉 for u∈ σ1. Hence the support function

u 7−→ ϕ(u)−〈m1,u〉
vanishes identically onσ1. Replacingϕwith this support function, we may assume
thatϕ|σ1

= 0. Once we proveϕ = 0 everywhere, it will follow that all support
functions are linear, and then Pic(XΣ) = 0 by (4.2.8).

Since u1,u2,u3,u5 ∈ σ1 and ϕ vanishes onσ1, we haveϕ(u1) = ϕ(u2) =
ϕ(u3) = ϕ(u5) = 0. It suffices to proveϕ(u4) = ϕ(u6) = ϕ(u7) = ϕ(u8) = 0.
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To do this, we use the fact that each maximal cone has four generators, which
must satisfy a linear relation. Here are the cones and the corresponding relations:

cone relation
σ1 2u1 +5u5 = 4u2 +3u3

σ2 2u1 +4u7 = 3u3 +5u4

σ3 2u1 +3u6 = 4u2 +5u4

left u2 +u8 = u5 +u6

down u3 +u8 = u5 +u7

back u4 +u8 = u6 +u7

Sinceϕ is linear on each cone andϕ(u1) =ϕ(u2) =ϕ(u3) =ϕ(u5) = 0, the second,
third, fourth and fifth relations imply

4ϕ(u7) = 5ϕ(u4)

3ϕ(u6) = 5ϕ(u4)

ϕ(u8) = ϕ(u6)

ϕ(u8) = ϕ(u7).

The last two equation giveϕ(u6) = ϕ(u7), and substituting these into the first two
shows thatϕ(u4) = ϕ(u6) = ϕ(u7) = ϕ(u8) = 0. ♦

Since the toric variety of a polytopeP has the non-principal Cartier divisor
DP, its follows that the fanΣ of Example 4.2.13 is not the normal fan ofany 3-
dimensional lattice polytope. As we will see later, this implies thatXΣ is complete
but not projective.

A full dimensional lattice polytopeP ⊆ MR leads to an interesting support
function on the normal fanΣP.

Proposition 4.2.14. Assume P⊆ MR is a full dimensional lattice polytope with
normal fanΣP. Then the functionϕP : NR→ R defined by

ϕP(u) = min(〈m,u〉 |m∈ P)

has the following properties:

(a) ϕP is a support function forΣP and is integral with respect to N.

(b) The divisor corresponding toϕP is the divisor DP defined in(4.2.5).

Proof. First note that minimum used in the definition ofϕP exists becauseP is
compact. Now write

P = {m∈MR | 〈m,uF〉 ≥ −aF for all facetsF of P}.
ThenDP =

∑
F aF DF is Cartier by Proposition 4.2.10, and Theorem 4.2.12 shows

that the corresponding support function mapsuF to−aF .
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It remains to show thatϕP(u) ∈ SF(ΣP) andϕP(uF) =−aF . Recall that maxi-
mal cones ofΣP correspond to vertices ofP, where the vertexv gives the maximal
coneσv = Cone(uF | v ∈ F). Takeu =

∑
v∈F λF uF ∈ σv, whereλF ≥ 0. Then

m∈ P implies

(4.2.9) 〈m,u〉=
∑

v∈F

λF〈m,uF〉 ≥ −
∑

v∈F

λF aF .

ThusϕP(u) ≥ −∑v∈F λF aF . Since equality occurs in (4.2.9) whenm = v, we
obtain

ϕP(u) =−
∑

v∈F

λF aF = 〈v,u〉.

This shows thatϕP ∈ SF(ΣP,N). Furthermore, whenv ∈ F, we haveϕP(uF) =
〈v,uF〉=−aF , as desired. �

We will return to support functions in Chapter 6, where we will use them to
give elegant criteria for a divisor to be ample or generated by its global sections.

Exercises for §4.2.

4.2.1. Prove the assertions made in Example 4.2.4.

4.2.2. Prove (4.2.3) and Proposition 4.2.7.

4.2.3. WhenΣ is complete, prove thatD =
∑

ρ aρ Dρ is Cartier if and only if it satisfies
condition (d)′ stated in the discussion following Theorem 4.2.8.

4.2.4. Prove Proposition 4.2.9.

4.2.5. A lattice polytopeP gives the toric varietyXP and the divisorDP from (4.2.5).

(a) Prove thatDP +div(χm) = DP−m for anym∈M.

(b) Prove thatDP 6∼ 0. Hint: The normal fan ofP is complete.

4.2.6. Let D be aTN-invariant Cartier divisor onXΣ. By Theorem 4.2.8,D is determined
by its Cartier data{mσ}σ∈Σ. Given anym∈ M, show thatD + div(χm) has Cartier data
{mσ−m}σ∈Σ. Be sure to explain where the minus sign comes from.

4.2.7. Let XΣ be the toric variety of the fanΣ. Prove the following consequences of the
Orbit-Cone Correspondence (Theorem 3.2.6).

(a) O(σ) =
⋂

ρ∈σ(1) Dρ.

(b) Raysuρ1, . . . ,uρr ∈ Σ(1) lie in a cone ofΣ if and only if Dρ1 ∩·· ·∩Dρr 6= ∅.
4.2.8. Let Σ be a fan inNR ≃ Rn and assume thatΣ has a cone of dimensionn.

(a) Fix a coneσ ∈Σ of dimensionn. Prove that

Pic(XΣ)≃ {ϕ ∈ SF(Σ,N) | ϕ|σ = 0}.
(b) Explain how part (a) relates to Example 4.2.13.

(c) Use part (a) to give a different proof of Proposition 4.2.5.
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4.2.9. Let σ be as in Example 4.2.4, but instead of using the lattice generated bye1,e2,e3,
instead useN = Z · 1

2be1 +Z · 1
be2 +Z · 1

ae3 +Z · 1
2b(e1 +e2 +e3), wherea,b are relatively

prime positive integers witha> 1. Prove that no multiple ofD1 +D2 +D3+D4 is Cartier.
Hint: The first step will be to find the minimal generators (relative toN) of the edges ofσ.

4.2.10. Let XP be the toric variety of the octahedronP = Conv(±e1,±e2,±e3)⊆ R3.

(a) Show that Cl(XP)≃ Z5⊕ (Z/2Z)2.

(b) Use support functions and the strategy of Example 4.2.13to show that Pic(XP)≃ Z.

4.2.11. In Exercise 4.1.5, you showed that the weighted projective spaceP(q0, . . . ,qn) has
class group Cl(P(q0, . . . ,qn))≃ Z. Prove that Pic(P(q0, . . . ,qn))⊆ Cl(P(q0, . . . ,qn)) maps
to the subgroupmZ⊆ Z, wherem= lcm(q0, . . . ,qn). Hint: Show that

∑n
i=0 biDi generates

the class group, where
∑n

i=0biqi = 1. Also note thatm∈ MQ lies in M if and only if
〈m,ui〉 ∈ Z for all i, where theui are from Exercise 4.1.5.

4.2.12. Let XΣ be a smooth toric variety and letτ ∈ Σ be a cone of dimension≥ 2. This
gives the orbit closureV(τ) = O(τ) ⊆ XΣ. In §3.3 we defined the blowup BlV(τ)(XΣ).
Prove that

Pic(BlV(τ)(XΣ))≃ Pic(XΣ)⊕Z.

4.2.13. A nonzero polynomialf =
∑

m∈Zn cmxm∈ C[x1, . . . ,xn] hasNewton polytope

P( f ) = Conv(m | cm 6= 0)⊂ Rn.

When P( f ) has dimensionn, Proposition 4.2.14 tells us that the functionϕP( f )(u) =
min(〈m,u〉 | m∈ P( f )) is the support function of a divisor onXP( f ). Here we interpret
ϕP( f ) as thetropicalizationof f .

Thetropical semiring(R,⊕,⊙) has operations

a⊕b= min(a,b) (tropical addition)
a⊙b= a+b (tropical multiplication).

A tropical polynomialin real variablesx1, . . . ,xn is a finite tropical sum

F = c1⊙xa1,1

1 ⊙·· ·⊙xa1,n
n ⊕ ·· · ⊕ cr ⊙xar,1

1 ⊙·· ·⊙xar,n
n

whereci ∈ R andxa
i = xi ⊙ ·· ·⊙ xi (a times). For a more compact representation, define

a tropical monomial to bexm = xa1
1 ⊙·· ·⊙xan

n for m= (a1, . . . ,an) ∈ Nn. Then, using the
tropical analog of summation notation, the tropical polynomial F is

F =
⊕r

i=1ci⊙xmi , mi = (ai,1, . . . ,ai,n).

(a) Show thatF = min1≤i≤r(ci +ai,1x1 + · · ·+ai,nxn).

(b) Thetropicalizationof our original polynomialf is the tropical polynomial

Ff =
⊕

cm6=00⊙xm.

Prove thatFf = ϕP( f ). (The 0 is explained as follows. In general, the coefficients
of f are Puiseux series, and the tropicalization uses the order of vanishing of the
coefficients. Here, the coefficients are nonzero constants,with order of vanishing 0.)

(c) Thetropical varietyof a tropical polynomialF is the set of points inRn whereF is
not linear. Forf = x+ 2y+ 3x2− xy2 + 4x2y, compute the tropical variety ofFf and
show that it consists of the rays in the normal fan ofP( f ).

A nice introduction to tropical algebraic geometry can be found in [148].
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§4.3. The Sheaf of a Torus-Invariant Divisor

If D =
∑

ρaρDρ is aTN-invariant divisor on the normal toric varietyXΣ, we get the
sheafOXΣ

(D) defined in §4.0. We will study these sheaves in detail in Chapters 6
and 8. In this section we will focus primarily on global sections.

We begin with a classic example of the sheafOXΣ
(D).

Example 4.3.1.ForPn, the divisorsD0, . . . ,Dn correpsond to the ray generators of
the usual fan forPn. The computation Cl(Pn)≃ Z from Example 4.1.6 shows that
D0∼ D1∼ ·· · ∼ Dn. These linear equivalences give isomorphisms

OPn(D0)≃ OPn(D1)≃ ·· · ≃ OPn(Dn)

by Proposition 4.0.29. In the literature, these sheaves aredenotedOPn(1). Simi-
larly, the sheavesOPn(kDi), k∈ Z, are denotedOPn(k). ♦

Global Sections. Let D be aTN-invariant divisor on a toric varietyXΣ. We will
give two descriptions of the global sectionsΓ(XΣ,OXΣ

(D)). Here is the first.

Proposition 4.3.2. If D is a TN-invariant Weil divisor on XΣ, then

Γ(XΣ,OXΣ
(D)) =

⊕

div(χm)+D≥0

C ·χm.

Proof. If f ∈ Γ(XΣ,OXΣ
(D)), then div( f ) + D ≥ 0 implies div( f )|TN

≥ 0 since
D|TN

= 0. SinceC[M] is the coordinate ring ofTN, Proposition 4.0.16 implies
f ∈ C[M]. Thus

Γ(XΣ,OXΣ
(D))⊆ C[M].

Furthermore,Γ(XΣ,OXΣ
(D)) is invariant under theTN-action onC[M] sinceD is

TN-invariant. By Lemma 1.1.16, we obtain

Γ(XΣ,OXΣ
(D)) =

⊕

χm∈Γ(XΣ,OXΣ(D))

C ·χm.

Sinceχm∈ Γ(XΣ,OXΣ
(D)) if and only if div(χm)+D≥ 0, we are done. �

The Polyhedron of a Divisor. For D =
∑

ρaρDρ andm∈M, div(χm)+D ≥ 0 is
equivalent to

〈m,uρ〉+aρ ≥ 0 for all ρ ∈ Σ(1),

which can be rewritten as

〈m,uρ〉 ≥ −aρ for all ρ ∈ Σ(1).(4.3.1)

This explains the minus signs! To emphasize the underlying geometry, we define

(4.3.2) PD = {m∈MR | 〈m,uρ〉 ≥ −aρ for all ρ ∈ Σ(1)}.
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We say thatPD is a polyhedronsince it is an intersection of finitely many closed
half spaces. This looks very similar to the canonical presentation of a polytope
(see (4.2.4), for example). However, the reader should be aware thatPD need not
be a polytope, and even when it is a polytope, it need not be a lattice polytope. All
of this will be explained in the examples given below.

For now, we simply note that (4.3.1) is equivalent tom∈ PD∩M. This gives
our second description of the global sections.

Proposition 4.3.3. If D is a TN-invariant Weil divisor on XΣ, then

Γ(XΣ,OXΣ
(D)) =

⊕

m∈PD∩M

C ·χm,

where PD ⊆MR is the polyhedron defined in(4.3.2). �

As noted above, a polyhedron is an intersection of finitely many closed half
spaces. A polytope is a bounded polyhedron.

Examples. Here are some examples to illustrate the kinds of polyhedra that can
occur in Proposition 4.3.3.

Example 4.3.4. The fanΣ for the blowup Bl0(C2) of C2 at the origin has ray
generatorsu0 = e1 + e2, u1 = e1, u2 = e2 and correponding divisorsD0, D1, D2.
For the divisorD = D0+D1+D2, a pointm= (x,y) lies in PD if and only if

〈m,u0〉 ≥ −1 ⇐⇒ x+y≥−1

〈m,u1〉 ≥ −1 ⇐⇒ x≥−1

〈m,u2〉 ≥ −1 ⇐⇒ y≥−1.

u0

u1

u2

Σ
e1

e2

PD

Figure 5. The fanΣ and the polyhedronPD

The fanΣ and the polyhedronPD are shown in Figure 5. Note thatPD is not
bounded. By Proposition 4.3.3, the lattice points ofPD (the dots in Figure 5) give
characters that form a basis ofΓ(Bl0(C2),OBl0(C2)(D)). ♦
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Example 4.3.5. The fanΣ2 for the Hirzebruch surfaceH2 has ray generators
u1 = −e1 + 2e2, u2 = e2, u3 = e1, u4 = −e2. The corresponding divisors are
D1, D2, D3, D4, and Example 4.1.8 implies that the classes ofD1 andD2 are a
basis of Cl(H2)≃ Z2.

Consider the divisoraD1 + D2, a∈ Z, and letPa ⊆ R2 be the corresponding
polyhedron, which is a polytope in this case. A pointm= (x,y) lies in Pa if and
only if

〈m,u1〉 ≥ −a ⇐⇒ y≥ 1
2x− a

2

〈m,u2〉 ≥ −1 ⇐⇒ y≥−1

〈m,u3〉 ≥ 0 ⇐⇒ x≥ 0.

〈m,u4〉 ≥ 0 ⇐⇒ y≤ 0.

Figure 6 showsΣ2, together with shaded areas markedA, B, C. These are related

u2

u4

u3

u1

Σ2

−e2 e1 − e2

0

A
B

C

a = 1 a = 2 a = 3

Figure 6. The fanΣ2 and the polyhedraPa

to the polygonsPa for a = 1,2,3 by the equations

P1 = A

P2 = A∪B

P3 = A∪B∪C.

Notice that as we increasea, the liney = 1
2x− a

2 corresponding tou1 moves to the
right and makes the polytope bigger. In fact, you can see thatΣ2 is the normal fan
of the lattice polytopePa for anya≥ 3. Fora = 2, we get a lattice polytopeP2, but
its normal fan is notΣ2—you can see how the “facet” with inward normal vector
u2 collapses to a point ofP2. Fora = 1, P1 is not a lattice polytope since−1

2e2 is a
vertex. ♦

Chapters 6 and 7 will explain how the geometry of the polyhedronPD relates to
the properties of the divisorD. In particular, we will see that the divisoraD1 +D2

from Example 4.3.5 isampleif and only if a≥ 3 since these are the onlya’s for
whichΣ2 is the normal fanPa.
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Example 4.3.6. By Example 4.3.1, the sheafOPn(k) can be writtenOPn(kD0),
where the divisorD0 corresponds to the ray generatoru0 from Example 4.1.6. It is
straightforward to show that the polyhedron ofD = kD0 is

PD =

{
∅ k< 0

k∆n k≥ 0,

where∆n ⊆ Rn is the standardn-simplex. We can think of characters as Laurent
monomialstm = ta1

1 · · · tan
n , wherem= (a1, . . . ,an). It follows that

Γ(Pn,OPn(k))≃ { f ∈ C[t1, . . . , tn] | deg( f )≤ k}.
Thehomogenizationof such a polynomial is

F = xk
0 f (x1/x0, . . . ,xn/x0) ∈ C[x0, . . . ,xn].

In this way, we get an isomorphism

Γ(Pn,OPn(k)) ≃ { f ∈ C[x0, . . . ,xn] | f is homogeneous with deg( f ) = k}.
The toric interpretation of homogenization will be discussed in Chapter 5. ♦

Example 4.3.7.Let XP be the toric variety of a full dimensional lattice polytope
P⊆MR. The facet presentation ofP gives the Cartier divisorDP defined in (4.2.5),
and one checks easily that the polyhedronPDP is the polytopeP that we began with
(Exercise 4.3.1). It follows from Proposition 4.3.3 that

Γ(XP,OXP(DP)) =
⊕

m∈P∩M

C ·χm.

Recall from Chapter 2 that the charactersχm for m∈ P∩M give the projective
toric varietyXP∩M. The divisorkDP gives the polytopekP (Exercise 4.3.2), so that

Γ(XP,OXP(kDP)) =
⊕

m∈kP∩M

C ·χm.

In Chapter 2 we proved thatkP is very ample fork sufficiently large, in which case
X(kP)∩M is the toric varietyXP. So the charactersχm that realizeXP as a projective
variety come from global sections ofOXP(kDP). In Chapter 6, we will pursue these
ideas when we studyampleandvery ampleCartier divisors.

Note also that dimΓ(XP,OXP(kDP)) gives number of lattice points in multiples
of P. This will have important consequences in later chapters. ♦

The operation sending aTN-invariant Weil divisorD ⊆ XΣ to the polyhedron
PD ⊆MR defined in (4.3.2) has the following properties:

• PkD = kPD for k≥ 0.

• PD+div(χm) = PD−m.

• PD +PE ⊆ PD+E.

You will prove these in Exercise 4.3.2. The multiplekPD and Minkowski sum
PD +PE are defined in §2.2, andP−m is translation.
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Complete Fans. When the fanΣ is complete, we have the following finiteness
result that you will prove in Exercise 4.3.3.

Proposition 4.3.8. Let XΣ be the toric variety of a complete fanΣ in NR. Then:

(a) Γ(XΣ,OXΣ
) = C, so the only morphisms XΣ→ C are the constant ones.

(b) PD is a polytope for any TN-invariant Weil divisor D on XΣ.

(c) Γ(XΣ,OXΣ
(D)) has finite dimension as a vector space overC for any Weil

divisor on XΣ.

The assertions of parts (a) and (c) are true more generally: if X is anycomplete
variety andF is a coherent sheaf onX, thenΓ(X,OX) = C and dimΓ(X,F )<∞
(see [152, Vol. 2, §VI.1.1 and §VI.3.4]).

Exercises for §4.3.

4.3.1. Prove the assertionPDP = P made in Example 4.3.7.

4.3.2. Prove the properties ofD 7→ PD listed above.

4.3.3. Prove Proposition 4.3.8. Hint: For part (a), use completeness to show thatm = 0
when〈m,uρ〉 ≥ 0 for all ρ. For part (b), assumeMR = Rn and supposemi ∈ PD satisfy
||mi || →∞. Then consider the pointsmi

||mi||
on the sphereSn−1⊆ Rn.

4.3.4. Let Σ be a fan inNR with convex support. Then|Σ| ⊆ NR is a convex polyhedral
cone with dual|Σ|∨ ⊆MR.

(a) Prove that|Σ|∨ is the polyhedron associated to the divisorD = 0 onXΣ.

(b) Conclude thatΓ(XΣ,OXΣ
) =

⊕
m∈|Σ|∨∩M C ·χm.

(c) Use part (b) to prove part (a) of Proposition 4.3.8.

4.3.5. Example 4.3.5 studied divisors on the Hirzebruch surfaceH2. This exercise will
consider the divisorsD = D4 andD′ = D+D2 = D2 +D4.

(a) Show thatD′ gives the same polygonP asD.

(b) SinceH2 is smooth,D and D′ are Cartier. Compute their respective Cartier data
{mσ}σ∈Σ2(2) and{m′σ}σ∈Σ2(2).

(c) Show thatP = Conv(mσ | σ ∈Σ2(2)) and thatP 6= Conv(m′σ | σ ∈ Σ2(2)).

ThusD andD′ give the same polygon but differ in how their Cartier data relates to the
polygon. In Chapter 6 we will use this to prove thatOH2(D) is generated by global sections
while OH2(D

′) hasbase points.





Chapter 5

Homogeneous Coordinates

§5.0. Background: Quotients in Algebraic Geometry

Projective spacePn is usually defined as the quotient

Pn = (Cn+1\{0})/C∗,
whereC∗ acts onCn+1 by scalar multiplication, i.e.,

λ · (a0, . . . ,an) = (λa0, . . . ,λan).

The above representation definesPn as aset; makingPn into a variety requires
the notion of abstract variety introduced in Chapter 3. The main goal of this chapter
is to prove that every toric variety has a similar quotient construction as a variety.

Group Actions. Let G be a group acting on a varietyX. We always assume that
for every g ∈ G, the mapφg(x) = g · x defines a morphismφg : X → X. When
X = Spec(R) is affine,φg : X→ X comes from a homomorphismφ∗g : R→ R. We
define theinduced actionof G onR by

g· f = φ∗g−1( f )

for f ∈ R. In other words,(g · f )(x) = f (g−1 · x) for all x∈ X. You will check in
Exercise 5.0.1 this gives an action ofG onR. Thus we have two objects:

• The setG-orbitsX/G = {G ·x | x∈ X}.
• The ring of invariantsRG = { f ∈ R | g· f = f for all g∈G}.

To makeX/G into an affine variety, we need to define its coordinate ring, i.e., we
need to determine the “polynomial” functions onX/G. A key observation is that if
f ∈ RG, then

f̄ (G ·x) = f (x)

193
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gives a well-defined function̄f : X/G→ C. Hence elements ofG give obvious
polynomial functions onX/G, which suggests that

as an affine variety, X/G = Spec(RG).

As shown by the following examples, this works in some cases but fails in others.

Example 5.0.1. Let µ2 = {±1} act onC2 = Spec(C[s, t]), where−1 ∈ µ2 acts
by multiplication by−1. Note that every orbit consists of two elements, with the
exception of the orbit of the origin, which is the unique fixedpoint of the action.

The ring of invariantsC[s, t]µ2 = C[s2,st, t2] is the coordinate ring of the affine
toric varietyV(xz−y2). Hence we get a map

Φ : C2/µ2−→ Spec(C[s, t]µ2) = V(xz−y2)⊆ C3

where the orbitµ2 · (a,b) maps to(a2,ab,b2). This is easily seen to be a bijection,
so that Spec(C[s, t]µ2) is the perfect way to makeC2/µ2 into an affine variety.

This is actually an example of the toric morphism induced by changing the
lattice—see Examples 1.3.17 and 1.3.19. ♦

Example 5.0.2.Let C∗ act onC4 = Spec(C[x1,x2,x3,x4]), whereλ ∈C∗ acts via

λ · (a1,a2,a3,a4) = (λa1,λa2,λ
−1a3,λ

−1a4).

In this case, the ring of invariants is

C[x1,x2,x3,x4]
C∗

= C[x1x3,x2x4,x1x4,x2x3],

which gives the map

Φ : C4/C∗ −→ Spec(C[x1,x2,x3,x4]
C∗

) = V(xy−zw)⊆ C4

where the orbitC∗ · (a1,a2,a3,a4) maps to(a1a3,a2a4,a1a4,a2a3). Then we have
(Exercise 5.0.2):

• Φ is surjective.

• If p ∈ V(xy− zw) \ {0}, thenΦ−1(p) consists of a singleC∗-orbit which is
closed inC4.

• Φ−1(0) consists of allC∗-orbits contained inC2×{(0,0)} ∪ {(0,0)} ×C2.
ThusΦ−1(0) consists of infinitely manyC∗-orbits.

This looks bad until we notice one further fact (Exercise 5.0.2):

• The fixed point 0∈C4 gives the unique closed orbit mapping to 0 underΦ.

If (a,b) 6= (0,0), then an example of a non-closed orbit is given by

C∗ · (a,b,0,0) = {(λa,λb,0,0) | λ ∈ C∗}
since limλ→0(λa,λb,0,0) = 0. However, restricting to closed orbits gives

{closedC∗-orbits} ≃ V(xy−zw).

We will see that this is the best we can do for this group action. ♦
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Example 5.0.3.Let C∗ act onCn+1 = Spec(C[x0, . . . ,xn]) by scalar multiplication.
Then the ring of invariants consists of polynomials satsifying

f (λx0, . . . ,λxn) = f (x0, . . . ,xn)

for all λ ∈ C∗. Such polynomials must be constant, so that

C[x0, . . . ,xn]
C∗

= C.

It follows that the “quotient” is Spec(C), which is just a point. The reason for this
is that the only closed orbit is the orbit of the fixed point 0∈ Cn+1. ♦

Examples 5.0.2 and 5.0.3 show what happens when there are notenough in-
variant functions to separateG-orbits.

The Ring of Invariants. WhenG acts on an affine varietyX = Spec(R), a natural
question concerns the structure of the ring of invariants. The coordinate ringR is a
finitely generatedC-algebra without nilpotents. Is the same true forRG? It clearly
has no nilpotents sinceRG ⊆ R. But isRG finitely generated as aC-algebra? This
is related to Hilbert’s Fourteenth Problem, which was settled by a famous example
of Nagata thatRG need notbe a finitely generatedC-algebra! An exposition of
Hilbert’s problem and Nagata’s example can be found in [45, Ch. 4].

If we assume thatRG is finitely generated, then Spec(RG) is an affine variety
that is the “best” candidate for a quotient in the following sense.

Lemma 5.0.4. Let G act on X= Spec(R) such that RG is a finitely generatedC-
algebra, and letπ : X→Y = Spec(RG) be the morphism of affine varieties induced
by the inclusion RG⊆ R. Then:

(a) Given any diagram

X
φ

//

π

��
??

??
??

? Z

Y

φ
??

whereφ is a morphism of affine varieties such thatφ(g · x) = φ(x) for g∈ G
and x∈ X, there is a unique morphismφ making the diagram commute, i.e.,
φ◦π = φ.

(b) If X is irreducible, then Y is irreducible.

(c) If X is normal, then Y is normal.

Proof. Suppose thatZ = Spec(S) and thatφ is induced byφ∗ : S→ R. Then
φ∗(S) ⊆ RG follows easily fromφ(g · x) = φ(x) for g ∈ G,x ∈ X. Thusφ∗ fac-
tors uniquely as

S
φ
∗

−−→ RG π∗

−−→ R.

The induced mapφ : Y→ Z clearly has the desired properties.
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Part (b) is immediate sinceRG is a subring ofR. For part (c), letK be the field
of fractions ofRG. If a∈ K is integral overRG, then it is also integral overR and
hence lies inRsinceR is normal. It follows thata∈R∩K, which obviously equals
RG sinceG acts trivially onK. ThusRG is normal. �

This shows thatY = Spec(RG) has some good properties whenRG is finitely
generated, but there are still some unanswered questions, such as:

• Is π : X→Y surjective?

• DoesY have the right topology? Ideally, we would likeU ⊆ Y to be open if
and only ifπ−1(U) ⊆ X is open. (Exercise 5.0.3 explores how this works for
group actions on topological spaces.)

• While Y is the best affine approximation of the quotientX/G, could there be a
non-affine variety that is a better approximation?

We will see that the answers to these questions are all “yes” once we work with the
correct type of group action.

Good Categorical Quotients. In order to get the best properties of a quotient map,
we consider the general situation whereG is a group acting on a varietyX and
π : X→Y is a morphism that is constant onG-orbits. Then we have the following
definition.

Definition 5.0.5. Let G act onX and letπ : X→Y be a morphism that is constant
onG-orbits. Thenπ is agood categorical quotientif:

(a) If U ⊆ Y is open, then the natural mapOY(U)→ OX(π−1(U)) induces an
isomorphism

OY(U)≃OX(π−1(U))G.

(b) If W⊆ X is closed andG-invariant, thenπ(W)⊆Y is closed.

(c) If W1,W2 are closed, disjoint, andG-invariant inX, thenπ(W1) andπ(W2) are
disjoint inY.

We often write a good categorical quotient asπ : X→ X//G. Here are some
properties of good categorical quotients.

Theorem 5.0.6.Letπ : X→ X//G be a good categorical quotient. Then:

(a) Given any diagram

X
φ

//

π

!!DD
DD

DD
DD

Z

X//G

φ

==

whereφ is a morphism such thatφ(g·x) = φ(x) for g∈ G and x∈ X, there is
a unique morphismφ making the diagram commute, i.e.,φ◦π = φ.
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(b) π is surjective.

(c) A subset U⊆ X//G is open if and only ifπ−1(U)⊆ X is open.

(d) If U ⊆ X//G is open and nonempty, thenπ|π−1(U) : π−1(U)→ U is a good
categorical quotient.

(e) Given points x,y∈ X, we have

π(x) = π(y)⇐⇒G ·x∩G ·y 6= ∅.

Proof. The proof of part (a) can be found in [45, Prop. 6.2]. The proofs of the
remaining parts are left to the reader (Exercise 5.0.4). �

Algebraic Actions. So far, we have allowedG to be an arbitrary group acting on
X, assuming only that for everyg∈G, the mapx 7→ g·x is a morphismφg : X→X.
We now make the further assumption thatG is an affine variety. To define this
carefully, we first note that the group GLn(C) of n× n invertible matrices with
entries inC is the affine variety

GLn(C) = {A∈Cn×n = Cn2 | det(A) 6= 0}.
A subgroupG⊆ GLn(C) is anaffine algebraic groupif it is also a subvariety of
GLn(C). Examples include GLn(C), SLn(C), (C∗)n, and finite groups.

If G is an affine algebraic group, then the connected component ofthe identity,
denotedG◦, has the following properties (see [92, 7.3]):

• G◦ is a normal subgroup of finite index inG.

• G◦ is an irreducible affine algebraic group.

An affine algebraic groupG acts algebraicallyon a varietyX if the G-action
(g,x) 7→ g·x defines a morphism

G×X→ X.

Examples of algebraic actions include toric varieties since the torusTN ⊆ X acts
algebraically onX. Examples 5.0.1, 5.0.2 and 5.0.3 are also algebraic actions.

Algebraic actions have the property thatG-orbits are constructible sets inX.
This has the following nice consequence for good categorical quotients.

Proposition 5.0.7. Let an affine algebraic group G act algebraically on a variety
X, and assume that a good categorical quotientπ : X→ X//G exists. Then:

(a) If p ∈ X//G, thenπ−1(p) contains a unique closed G-orbit.

(b) π induces a bijection

{closedG-orbits inX} ≃ X//G.

Proof. For part (a), first note that uniqueness follows immediatelyfrom part (e) of
Theorem 5.0.6. To prove the existence of a closed orbit inπ−1(p), let G◦ ⊆ G be
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the connected component of the identity. Thenπ−1(p) is stable underG◦, so we
can pick an orbitG◦ ·x⊂ π−1(p) such thatG◦ ·x has minimal dimension.

Note thatG◦ ·x is irreducible sinceG◦ is irreducible, and sinceG◦ · x is con-
structible, there is a nonempty Zariski open subsetU of G◦ ·x such thatU ⊆G◦ ·x.
If G◦ ·x is not closed, thenG◦ ·x contains an orbitG◦ ·y 6= G◦ ·x. Thus

G◦ ·y ⊆ G◦ ·x\G◦ ·x ⊆ G◦ ·x\U .
However,G◦ ·x is irreducible, so that

dim(G◦ ·x\U)< dimG◦ ·x.
HenceG◦ ·y has strictly smaller dimension, a contradiction. ThusG◦ ·x is closed.
If g1, . . . ,gt are coset representatives ofG/G◦, then

G ·x =
t⋃

i=1

gi G
◦ ·x

shows thatG ·x is also closed. This proves part (a) of the proposition, and part (b)
follows immediately from part (a) and the surjectivity ofπ. �

For the rest of the section, we will always assume thatG is an affine algebraic
group acting algebraically on a varietyX.

Geometric Quotients. The best quotients are those where points are orbits. For
good categorical quotients, this condition is captured by requiring that orbits be
closed. Here is the precise result.

Proposition 5.0.8. Let π : X → X//G be a good categorical quotient. Then the
following are equivalent:

(a) All G-orbits are closed in X.

(b) Given points x,y∈ X, we have

π(x) = π(y)⇐⇒ x and y lie in the same G-orbit.

(c) π induces a bijection

{G-orbits inX} ≃ X//G.

(d) The image of the morphism G×X→ X×X defined by(g,x) 7→ (g·x,x) is the
fiber product X×X//G X.

Proof. This follows easily from Theorem 5.0.6 and Proposition 5.0.7. We leave
the details to the reader (Exercise 5.0.5). �

In general, a good categorical quotient is called ageometric quotientif it
satisfies the condtions of Proposition 5.0.8. We write a geometric quotient as
π : X→ X/G since points inX/G correspond bijectively toG-orbits inX.
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We have yet to give an example of a good categorical or geometric quotient.
For instance, it is not clear that Examples 5.0.1, 5.0.2 and 5.0.3 satisfy Defini-
tion 5.0.5. Fortunately, once we restrict to the right kind of algebraic group, exam-
ples become abundant.

Reductive Groups. An affine algebraic groupG is calledreductiveif its maximal
connected solvable subgroup is a torus. Examples of reductive groups include finite
groups, tori, and semisimple groups such as SLn(C).

For us, actions by reductive groups have the following key properties.

Proposition 5.0.9. Let G be a reductive group acting algebraically on an affine
variety X= Spec(R). Then

(a) RG is a finitely generatedC-algebra.

(b) The morphismπ : X → Spec(RG) induced by RG ⊆ R is a good categorical
quotient.

Proof. See [45, Prop. 3.1] for part (a) and [45, Thm. 6.1] for part (b). �

In the situation of Proposition 5.0.9, we can write Spec(R)//G = Spec(RG).
Examples 5.0.1, 5.0.2 and 5.0.3 involve reductive groups acting on affine varieties.
Hence these are good categorical quotients that have all of the properties listed in
Theorem 5.0.6 and Proposition 5.0.7. Furthermore, Example5.0.1 (the action of
µ2 on C2) is a geometric quotient. This last example generalizes as follows.

Example 5.0.10.Given a strongly convex rational polyhedral coneσ ⊆ NR and
a sublatticeN′ ⊆ N of finite index, part (b) of Proposition 1.3.18 implies that the
finite groupG= N/N′ acts onUσ,N′ such that the induced map on coordinate rings
is given by

C[σ∨∩M]
∼−→ C[σ∨∩M′]G⊆ C[σ∨∩M′].

It follows that φ : Uσ,N′ → Uσ,N is a good categorical quotient. In fact,φ is a
geometric quotient since theG-orbits are finite and hence closed. This completes
the proof of part (c) of Proposition 1.3.18. ♦

Almost Geometric Quotients. Let us examine Examples 5.0.2 and 5.0.3 more
closely. As noted above, both give good categorical quotients. However:

• (Example 5.0.3) Here we have the quotient

Cn+1//C∗ = Spec(C[x0, . . . ,xn]
C∗

) = Spec(C) = {pt}.
So the “good” categorical quotientCn+1→ Cn+1//C∗ = {pt} is really bad.

• (Example 5.0.2) In this case, the quotient is

π : C4→ C4//C∗ = V(xy−zw).

LetU = V(xy−zw)\{0} andU0 = π−1(U). Thenπ|U0
:U0→U is a good cat-

egorical quotient by Theorem 5.0.6, and by Example 5.0.2, orbits of elements
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in U0 are closed inC4. Thenπ|U0
is a geometric quotient by Proposition 5.0.8,

so thatC4//C∗ = V(xy−zw) is a geometric quotient outside of the origin.

The difference between these two examples is that the secondis very close to being
a geometric quotient. Here is a result that describes this phenomenon in general.

Proposition 5.0.11.Let π : X→ X//G be a good categorical quotient. Then the
following are equivalent:

(a) X has a G-invariant Zariski dense open subset U0 such that G·x is closed in X
for all x ∈U0.

(b) X//G has a Zariski dense open subset U such thatπ|π−1(U) : π−1(U)→U is
a geometric quotient.

Proof. GivenU0 satisfying (a), thenW = X \U0 is closed andG-invariant. For
x ∈ U0, the orbit G · x ⊂ U0 is also closed andG-invariant. These are disjoint,
which impliesπ(x) /∈ π(W) sinceπ is a good categorical quotient. Sinceπ is onto,
we see thatX//G = π(U0)∪π(W) is a disjoint union. If we setU = π(U0), then
U0 = π−1(U). Note also thatU is open sinceπ(W) is closed and Zariski dense
sinceU0 is Zariski dense inX. Thenφ|U0

: U0→U is a good categorical quotient

by Theorem 5.0.6, and by assumption, orbits of elements inU0 are closed inC4

and hence inU0. It follows thatφ|U0
is a geometric quotient by Proposition 5.0.8.

The proof going the other way is similar and is omitted (Exercise 5.0.6). �

In general, a good categorical quotient is called analmost geometric quotient
if it satisfies the conditions of Proposition 5.0.11. Example 5.0.2 is an almost
geometric quotient while Example 5.0.3 is not.

Constructing Quotients. Now that we can handle affine quotients in the reductive
case, the next step is to handle more general quotients. Hereis a useful result.

Proposition 5.0.12.Let G act on X and letπ : X→Y be a morphism of varieties
that is constant on G-orbits. If Y has an open cover Y=

⋃
αVα such that

π|π−1(Vα) : π−1(Vα)−→Vα

is a good categorical quotient for everyα, thenπ : X→Y is a good categorical
quotient.

Proof. The key point is that the properties listed in Definition 5.0.5 can be checked
locally. We leave the details to the reader (Exercise 5.0.7). �

Example 5.0.13.Consider a latticeN and a sublatticeN′ ⊆ N of finite index, and
let Σ be a fan inN′R = NR. This gives a toric morphism

φ : XΣ,N′ → XΣ,N.
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By Proposition 1.3.18, the finite groupG= N/N′ is the kernel ofTN′→ TN, so that
G acts onXΣ,N′. Since

φ−1(Uσ,N) = Uσ,N′

for σ ∈ Σ, Example 5.0.10 and Propostion 5.0.12 imply thatφ is a geometric quo-
tient. This strengthens the result proved in Proposition 3.3.7. ♦

It is sometimes possible to construct the quotient ofX by G by taking rings
of invariants for a suitable affine open cover. If the local quotients patch together
to form a separated varietyY, then the resulting morphismπ : X → Y is a good
categorical quotient by Proposition 5.0.12. Here are two examples that illustrate
this strategy.

Example 5.0.14.Let C∗ act onC2 \ {0} by scalar multiplication, whereC2 =
Spec(C[x0,x1]). ThenC2\{0}= U0∪U1, where

U0 = C2\V(x0) = Spec(C[x±1
0 ,x1])

U1 = C2\V(x1) = Spec(C[x0,x
±1
1 ])

U0∩U1 = C2\V(x0x1) = Spec(C[x±1
0 ,x±1

1 ]).

The rings of invariants are

C[x±1
0 ,x1]

C∗

= C[x1/x0]

C[x0,x
±1
1 ]C

∗

= C[x0/x1]

C[x±1
0 ,x±1

1 ]C
∗

= C[(x1/x0)
±1].

It follows that theVi = Ui//C∗ glue together in the usual way to createP1. Since
C∗-orbits are closed inC2\{0}, it follows that

P1 = (C2\{0})/C∗

is a geometric quotient. ♦

This example generalizes to show that

Pn = (Cn+1\{0})/C∗

is a good geometric quotient whenC∗ acts onCn+1 by scalar multiplication. At
the beginning of the section, we wrote this quotient as a set-theoretic construction.
It is now an algebro-geometric construction.

Our second example shows the importance of being separated.

Example 5.0.15.Let C∗ act onC2\{0} byλ(a,b) = (λa,λ−1b). ThenC2\{0}=
U0∪U1, whereU0, U1 andU0∩U1 are as in Example 5.0.14. Here, the rings of
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invariants are

C[x±1
0 ,x1]

C∗

= C[x0x1]

C[x0,x
±1
1 ]C

∗

= C[x0x1]

C[x±1
0 ,x±1

1 ]C
∗

= C[(x0x1)
±1].

Gluing togetherVi = Ui//C∗ alongU0∩U1//C∗ gives the variety obtained from
two copies ofC by identifying all nonzero points. This is the non-separated variety
constructed in Example 3.0.15.

In Exercise 5.0.8 you will draw a picture of theC∗-orbits that explains why the
quotient cannot be separated in this example. ♦

In this book, we usually use the word “variety” to mean “separated variety”.
For example, when we say thatπ : X→Y is a good categorical or geometric quo-
tient, we always assume thatX andY are separated. So Example 5.0.15 isnot a
good categorical quotient. In algebraic geometry, most operations on varieties pre-
serve separatedness. Quotient constructions are one of thefew exceptions where
care has to be taken to check that the resulting variety is separated.

Exercises for §5.0.

5.0.1. Let G act on an affine varietyX = Spec(R) such thatφg(x) = g·x is a morphism for
all g∈G.

(a) Show thatg · f = φ∗g−1( f ) defines an action ofG on R. Be sure you understand why
the inverse is necessary.

(b) Theevaluation map R×X→ C is defined by( f ,x) 7→ f (x). Show that this map is
invariant under the action ofG onR×X given byg · ( f ,x) = (g · f ,g ·x).

5.0.2. Prove the claims made in Example 5.0.2.

5.0.3. Let G be a group acting on a Hausdorff topological space, and letX/G be the set of
G-orbits. Defineπ : X→ X/G by π(x) = G ·x. Thequotient topologyon X/G is defined
by saying thatU ⊆ X/G is open if and only ifπ−1(U)⊆ X is open.

(a) Prove that ifX/G is Hausdorff, then theG-orbits are closed subsets ofX.

(b) Prove that ifW⊆ X is closed andG-invariant, thenπ(W)⊆ X/G is closed.

(c) Prove that ifW1,W2 are closed, disjoint, andG-invariant inX, thenπ(W1) andπ(W2)
are disjoint inX/G.

5.0.4. Prove parts (b), (c), (d) and (e) of Theorem 5.0.6. Hint for part (b): Part (a) of Def-
inition 5.0.5 implies thatOX//G(U) injects intoOX(π−1(U)) for all open setsU ⊆ X//G.
Use this to prove thatπ(X) is Zariski dense inX//G. Then use part (b) of Definition 5.0.5.

5.0.5. Prove Proposition 5.0.8.

5.0.6. Complete the proof of Proposition 5.0.11.

5.0.7. Prove Proposition 5.0.12.

5.0.8. Consider theC∗ action onC2\ {0} described in Example 5.0.15.
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(a) Show that with two exceptions, theC∗-orbits are the hyperbolasx1x2 = a, a 6= 0. Also
describe the two remainingC∗-orbits.

(b) Give an intuitive explanation, with picture, to show that the “limit” of the orbitsx1x2 =
a asa→ 0 consists of two distinct orbits.

(c) Explain how part (b) relates to the non-separated quotient constructed in the example.

5.0.9. Give an example of a reductiveG-action on an affine varietyX such thatX has
a nonemptyG-invariant affine open setU ⊆ X with the property that the induced map
U//G→ X//G is not an inclusion.

5.0.10. Let a finite groupG act onX. Then a good categorical quotientπ : X → X//G
exists since finite groups are reductive. Explain whyπ is a good geometric quotient.

§5.1. Quotient Constructions of Toric Varieties

Let XΣ be the toric variety of a fanΣ in NR. The goal of this section is to construct
XΣ as an almost geometric quotient

XΣ ≃ (Cr \Z)//G

for an appropriate choice of affine spaceCr , exceptional setZ⊆ Cr , and reductive
groupG. We will use our standard notation, where eachρ ∈ Σ(1) gives a minimal
generatoruρ ∈ ρ∩N and aTN-invariant prime divisorDρ ⊆ XΣ.

No Torus Factors. Toric varieties with no torus factors have the nicest quotient
constructions. Recall from Proposition 3.3.9 thatXΣ has no torus factors whenNR

is spanned byuρ, ρ ∈ Σ(1), and when this happens, Theorem 4.1.3 gives the short
exact sequence

0−→M −→⊕ρZDρ −→ Cl(XΣ)−→ 0,

wherem∈ M maps to div(χm) =
∑

ρ〈m,uρ〉Dρ and Cl(XΣ) is the class group
defined in §4.0. We use the convention that in expressions such as

⊕
ρ,
∑

ρ and∏
ρ, the indexρ ranges over allρ ∈ Σ(1).

We write the above sequence more compactly as

(5.1.1) 0−→M −→ ZΣ(1) −→ Cl(XΣ)−→ 0.

Applying HomZ(−,C∗) gives

1−→ HomZ(Cl(XΣ),C∗)−→ HomZ(ZΣ(1),C∗)−→ HomZ(M,C∗)−→ 1,

which remains a short exact sequence since HomZ(−,C∗) is left exact andC∗ is
divisible. We have natural isomorphisms

HomZ(ZΣ(1),C∗)≃ (C∗)Σ(1)

HomZ(M,C∗)≃ TN,

and we define the groupG by

G = HomZ(Cl(XΣ),C∗).
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This gives the short exact sequence of affine algebraic groups

(5.1.2) 1−→G−→ (C∗)Σ(1) −→ TN −→ 1.

The Group G. The groupG defined above will appear in the quotient construction
of the toric varietyXΣ. For the time being, we assume thatXΣ has no torus factors.

The following result describes the structure ofG and gives explicit equations
for G as a subgroup of the torus(C∗)Σ(1).

Lemma 5.1.1. Let G⊆ (C∗)Σ(1) be as in(5.1.2). Then:

(a) Cl(XΣ) is the character group of G.

(b) G◦ is a torus, so that G is isomorphic to a product of a torus and a finite
abelian group. In particular, G is reductive.

(c) Given a basis e1, . . . ,en of M, we have

G =
{
(tρ) ∈ (C∗)Σ(1) |∏ρt

〈m,uρ〉
ρ = 1 for all m∈M

}

=
{
(tρ) ∈ (C∗)Σ(1) |∏ρt

〈ei ,uρ〉
ρ = 1 for 1≤ i ≤ n

}
.

Proof. Since Cl(XΣ) is a finitely generated abelian group, Cl(XΣ)≃Zℓ×H, where
H is a finite abelian group. Then

G = HomZ(Cl(XΣ),C∗)≃ HomZ(Zℓ×H,C∗)≃ (C∗)ℓ×HomZ(H,C∗).

This proves part (b) since HomZ(H,C∗) is a finite abelian group. For part (a), note
thatα∈Cl(XΣ) gives the map that sendsg∈G= HomZ(Cl(XΣ),C∗) to g(α)∈C∗.
Thus elements of Cl(XΣ) give characters onG, and the above isomorphisms make
it easy to see that all characters ofG arise this way.

For part (c), the first description ofG follows from (5.1.2) sinceM→ ZΣ(1) is
defined bym∈M 7→ (〈m,uρ〉) ∈ ZΣ(1), and the second description follows imme-
diately. �

Example 5.1.2. The ray generators of the fan forPn are u0 = −∑n
i=1 ei ,u1 =

e1, . . . ,un = en. By Lemma 5.1.1,(t0, . . . , tn) ∈ (C∗)n+1 lies in G if and only if

t〈m,−e1−···−en〉
0 t〈m,e1〉

1 · · · t〈m,en〉
n = 1

for all m∈M = Zn. Takingmequal toe1, . . . ,en, we see thatG is defined by

t−1
0 t1 = · · ·= t−1

0 tn = 1.

Thus

G = {(λ, . . . ,λ) | λ ∈ C∗} ≃ C∗,

which is the action ofC∗ onCn+1 given by scalar multiplication. ♦
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Example 5.1.3. The fan forP1×P1 has ray generatorsu1 = e1,u2 = −e1,u3 =
e2,u4 = −e2 in N = Z2. By Lemma 5.1.1,(t1, t2, t3, t4) ∈ (C∗)4 lies in G if and
only if

t〈m,e1〉
1 t〈m,−e1〉

2 t〈m,e2〉
3 t〈m,−e2〉

4 = 1

for all m∈M = Z2. Takingmequal toe1,e2, we obtain

t1t
−1
2 = t3t

−1
4 = 1.

Thus

G = {(µ,µ,λ,λ) | µ,λ ∈ C∗} ≃ (C∗)2. ♦

Example 5.1.4.Letσ = Cone(de1−e2,e2)⊆R2, which gives the rational normal
coneĈd. Example 4.1.4 shows that Cl(Ĉd)≃ Z/dZ, so that

G = HomZ(Z/dZ,C∗)≃ µd,

whereµd ⊆ C∗ is the group ofdth roots of unity. To see howG acts onC2, one
uses the ray generatorsu1 = de1−e2 andu2 = e2 to compute that

G = {(ζ,ζ) | ζd = 1} ≃ µd

(Exercise 5.1.1). This shows thatG can have torsion. ♦

The Exceptional Set. For the quotient representation ofXΣ, we have the groupG
and the affine spaceCΣ(1). All that is missing is the exceptional setZ⊆CΣ(1) that
we remove fromCΣ(1) before taking the quotient byG.

One useful observation is thatG andCΣ(1) depend only onΣ(1). In order to
getXΣ, we need something that encodes the rest of the fanΣ. We will do this using
a monomial ideal in the coordinate ring ofCΣ(1). Introduce a variablexρ for each
ρ ∈ Σ(1) and let

S= C[xρ | ρ ∈ Σ(1)].

Then Spec(S) = CΣ(1). We callS the total coordinate ringof XΣ.

For each coneσ ∈ Σ, define the monomial

xσ̂ =
∏

ρ/∈σ(1)

xρ.

Thusxσ̂ is the product of the variables corresponding to rays not inσ. Then define
the irrelvant ideal

B(Σ) = 〈xσ̂ | σ ∈ Σ〉 ⊆ S.

A useful observation is thatxτ̂ is a multiple ofxσ̂ wheneverτ � σ. Hence, ifΣmax

is the set of maximal cones ofΣ, then

B(Σ) = 〈xσ̂ | σ ∈Σmax〉.
Furthermore, one sees easily that the minimal generators ofB(Σ) are precisely the
xσ̂ for σ ∈ Σmax. Hence, once we haveΣ(1), B(Σ) determinesΣ uniquely.
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Now define
Z(Σ) = V(B(Σ))⊆CΣ(1).

The variety of a monomial ideal is a union of coordinate subspaces. ForB(Σ), the
coordinate subspaces can be described in terms ofprimitive collections, which are
defined as follows.

Definition 5.1.5. A subsetC⊆ Σ(1) is aprimitive collectionif:

(a) C 6⊆ σ(1) for all σ ∈ Σ.

(b) For every proper subsetC′ ( C, there isσ ∈ Σ with C′ ⊆ σ(1).

Proposition 5.1.6. The Z(Σ) as a union of irreducible components is given by

Z(Σ) =
⋃

C

V(xρ | ρ ∈C),

where the union is over all primitive collections C⊆ Σ(1).

Proof. It suffices to determine the maximal coordinate subspaces contained in
Z(Σ). Suppose thatV(xρ1, . . . ,xρs) ⊆ Z(Σ) is such a subspace and takeσ ∈ Σ.
Sincexσ̂ vanishes onZ(Σ) and〈xρ1, . . . ,xρs〉 is prime, the Nullstellensatz implies
xσ̂ is divisible by somexρi , i.e., ρi /∈ σ(1). It follows thatC = {ρ1, . . . ,ρs} sat-
isfies condition (a) of Definition 5.1.5, and condition (b) follows easily from the
maximality ofV(xρ1, . . . ,xρs). HenceC is a primitive collection.

Conversely, every primitive collectionC gives a maximal coordinate subspace
V(xρ | ρ ∈C) contained inZ(Σ), and the proposition follows. �

In Exercise 5.1.2 you will show that the algebraic analog of Proposition 5.1.6
is the primary decomposition

B(Σ) =
⋂

C

〈xρ | ρ ∈C〉.

Here are some easy examples.

Example 5.1.7.The fan forPn consists of cones generated by proper subsets of
{u0, . . . ,un}, whereu0, . . . ,un are as in Example 5.1.2. Letui generateρi , 0≤ i ≤ n,
and letxi be the corresponding variable in the total coordinate ring.We compute
Z(Σ) in two ways:

• The maximal cones of the fan are given byσi = Cone(u0, . . . , ûi , . . . ,un). Then
xσ̂i = xi , so thatB(Σ) = 〈x0, . . . ,xn〉. HenceZ(Σ) = {0}.
• The only primitive collection is{ρ0, . . . ,ρn}, soZ(Σ) = V(x0, . . . ,xn) = {0}

by Proposition 5.1.6. ♦

Example 5.1.8. The fan forP1×P1 has ray generatorsu1 = e1,u2 = −e1,u3 =
e2,u4 = −e2. See Example 3.1.12 for a picture of this fan. Eachui gives a rayρi

and a variablexi . We computeZ(Σ) in two ways:
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• The maximal cone Cone(u1,u3) gives the monomialx2x4, and similarly the
other maximal cones give the monomialsx1x4,x1x3,x2x3. Thus

B(Σ) = 〈x2x4,x1x4,x1x3,x2x3〉,
and one checks thatZ(Σ) = {0}×C2∪C2×{0}.
• The only primitive collections are{ρ1,ρ2} and{ρ3,ρ4}, so that

Z(Σ) = V(x1,x2)∪V(x3,x4) = {0}×C2∪C2×{0}
by Proposition 5.1.6. Note also thatB(Σ) = 〈x1,x2〉∩ 〈x3,x4〉. ♦

A final observation is that(C∗)Σ(1) acts onCΣ(1) by diagonal matrices and
hence induces an action onCΣ(1) \Z(Σ). It follows thatG⊆ (C∗)Σ(1) also acts on
CΣ(1) \Z(Σ). We are now ready to take the quotient.

The Quotient Construction. To representXΣ as a quotient, we first construct a
toric morphismCΣ(1) \Z(Σ)→ XΣ. Let {eρ | ρ ∈ Σ(1)} be the standard basis of
the latticeZΣ(1). For eachσ ∈ Σ, define the cone

σ̃ = Cone(eρ | ρ ∈ σ(1)) ⊆ RΣ(1).

It is easy to see that these cones and their faces form a fan

Σ̃ = {τ | τ � σ̃ for someσ ∈ Σ}
in (ZΣ(1))R = RΣ(1). This fan has the following nice properties.

Proposition 5.1.9. Let Σ̃ be the fan defined above.

(a) CΣ(1) \Z(Σ) is the toric variety of the fañΣ.

(b) The map eρ 7→ uρ defines a map of latticesZΣ(1)→ N that is compatible with
the fansΣ̃ in RΣ(1) andΣ in NR.

(c) The resulting toric morphism

π : CΣ(1) \Z(Σ)−→ XΣ

is constant on G-orbits.

Proof. For part (a), letΣ̃0 be the fan consisting of Cone(eρ | ρ ∈ Σ(1)) and its
faces. Note that̃Σ is a subfan of̃Σ0. SinceΣ̃0 is the fan ofCΣ(1), we get the
toric variety ofΣ̃ by takingCΣ(1) and then removing the orbits corresponding to
all cones inΣ̃0 \ Σ̃. By the Orbit-Cone Correspondence (Theorem 3.2.6), this is
equivalent to removing the orbit closures of the minimal elements ofΣ̃0 \ Σ̃. But
these minimal elements are precisely the primitive collectionsC⊆Σ(1). Since the
corresponding orbit closure isV(xρ | ρ ∈C), removing these orbit closures means
removing

Z(Σ) =
⋃

C

V(xρ | ρ ∈C).



208 Chapter 5. Homogeneous Coordinates

For part (b), defineπ : ZΣ(1)→N byπ(eρ) = uρ. Since the minimal generators
of σ ∈ Σ are given byuρ, ρ ∈ σ(1), we haveπR(σ̃) = σ by the definition ofσ̃.
Henceπ is compatible with respect to the fansΣ̃ andΣ.

The map of tori induced byπ is the map(C∗)Σ(1) → TN from the exact se-
quence (5.1.2) (you will check this in Exercise 5.1.3). Hence, if g∈G⊆ (C∗)Σ(1)

andx∈ CΣ(1) \Z(Σ), then

π(g·x) = π(g) ·π(x) = π(x),

where the first equality holds by equivariance and the secondholds sinceG is the
kernel of(C∗)Σ(1)→ TN. This proves part (c) of the proposition. �

We can now give the quotient construction ofXΣ.

Theorem 5.1.10.Let XΣ be a toric variety without torus factors and consider the
toric morphismπ : CΣ(1) \Z(Σ)→ XΣ from Proposition 5.1.9. Then:

(a) π is an almost geometric quotient for the action of G onCΣ(1) \Z(Σ), so that

XΣ ≃
(
CΣ(1) \Z(Σ)

)
//G.

(b) π is a geometric quotient if and only ifΣ is simplicial.

Proof. We begin by studying the map

(5.1.3) π|π−1(Uσ) : π−1(Uσ)−→Uσ

for σ ∈ Σ. First observe that ifτ,σ ∈ Σ, thenπR(τ̃) ⊆ σ is equivalent toτ � σ.
It follows thatπ−1(Uσ) is the toric varietyUeσ of σ̃ = Cone(eρ | ρ ∈ σ(1)). This
shows that (5.1.3) is the toric morphism

πσ : Ueσ −→Uσ,

where for simplicity we writeπσ instead ofπ|π−1(Uσ).

Our first task is to show thatπσ is a good categorical quotient. SinceG is
reductive, Proposition 5.0.9 reduces this to showing that the mapπ∗σ on coordinate
rings induces an isomorphism

(5.1.4) C[Uσ]≃ C[Ueσ]
G.

The mapπ∗σ can be described as follows:

• ForUeσ, the conẽσ gives the semigroup

σ̃∨∩ZΣ(1) = {(aρ) ∈ ZΣ(1) | aρ ≥ 0 for all ρ ∈ σ(1)}.
Hence the coordinate ring ofUeσ is the semigroup algebra

C[Ueσ] = C
[∏

ρ xaρ
ρ | aρ ≥ 0 for all ρ ∈ σ(1)

]
= Sxσ̂ ,

whereSxσ̂ is the localizationS= C[xρ | ρ ∈Σ(1)] at xσ̂ =
∏
ρ/∈σ(1) xρ.

• ForUσ, the coordinate ring is the usual semigroup algebraC[σ∨∩M].
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• The mapπ : ZΣ(1) → N dualizes to the mapM → ZΣ(1) sendingm∈ M to
(〈m,uρ〉) ∈ ZΣ(1). It follows thatπ∗σ : C[σ∨∩M]→ Sxσ̂ is given by

π∗σ(χ
m) =

∏
ρ x〈m,uρ〉
ρ .

Note that〈m,uρ〉 ≥ 0 for all ρ ∈ σ(1), so that the expression on the right really
lies inSxσ̂ .

Thusπ∗σ can be writtenπ∗σ : C[σ∨∩M]→Sxσ̂ , and sinceπσ is constant onG-orbits,
π∗σ factors

C[σ∨∩M]−→
(
Sxσ̂

)G⊆ Sxσ̂ .

The mapπσ has Zariski dense image inUσ sinceπσ((C∗)Σ(1)) = TN by the
exact sequence (5.1.2). It follows thatπ∗σ is injective. To show that its image is
(Sxσ̂)G, take f ∈ Sxσ̂ and write it as

f =
∑

a

caxa

where eachxa =
∏
ρ xaρ
ρ satisfiesaρ ≥ 0 for all ρ ∈ σ(1). Then f is G-invariant if

and only if for allt = (tρ) ∈G, we have
∑

a

ca xa =
∑

a

ca taxa.

Thus f is G-invariant if and only ifta = 1 for all t ∈ G wheneverca 6= 0. The
map t 7→ ta is a character onG and hence is an element of its character group
Cl(XΣ) (Lemma 5.1.1). This character is trivial whenca 6= 0, so that by (5.1.1), the
exponent vectora = (aρ) must come from an elementm∈M, i.e.,aρ = 〈m,uρ〉 for
all ρ ∈ Σ(1). But xa ∈ Sxσ̂ , which implies that

〈m,uρ〉= aρ ≥ 0 for all ρ ∈ σ(1).

Hencem∈ σ∨∩M, which implies thatf is in the image ofπ∗σ. This proves (5.1.4).
We conclude thatπσ is a good categorical quotient.

We next prove that

(5.1.5) πσ : Uσ̃→Uσ is a geometric quotient⇐⇒ σ is simplicial.

First suppose thatσ is simplicial. Then its ray generatorsuρ, ρ ∈ σ(1), are lin-
early independent, and by hypothesis, the ray generatorsuρ, ρ ∈Σ(1), spanRΣ(1).
Hence we can writeΣ(1) as a disjoint union

Σ(1) = σ(1)∪A∪B

such that theuρ for ρ ∈ σ(1)∪A form a basis ofRΣ(1). Projection onto the coordi-
nates coming fromσ(1)∪A gives an exact sequence

0−→ ZB−→ ZΣ(1) −→ Zσ(1)∪A −→ 0.
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Note also that since theuρ, ρ∈ σ(1)∪A, form a basis, the mapM→Zσ(1)∪A given
by m 7→ (〈m,uρ〉)ρ∈σ(1)∪A gives an exact sequence

0−→M −→ Zσ(1)∪A −→Q−→ 0

where the cokernelQ is finite.

Combining the two above exact sequences with (5.1.1), we geta commutative
diagram with exact rows and columns:

0 0
↓ ↓

ZB = ZB

↓ ↓
0 → M → ZΣ(1) → Cl(XΣ) → 0

‖ ↓ ↓
0 → M → Zσ(1)∪A → Q → 0

↓ ↓
0 0

Now let H = HomZ(Q,C∗). Then applying HomZ(−,C∗) to the column on the
right gives the exact sequence

(5.1.6) 1−→ H −→G
Φ−−→ (C∗)B−→ 1

of affine algebraic groups. Note thatH is finite sinceQ is.

We can writeUeσ as the product

Ueσ = Cσ(1)× (C∗)A

︸ ︷︷ ︸
Y

×(C∗)B = Y× (C∗)B,

and note that theG-action on the second factor ofUeσ = Y× (C∗)B is given by the
mapΦ from (5.1.6). We regardY as a subset ofUeσ via the mapy∈Y 7→ (y,1) ∈
Y× (C∗)B. ThusH = ker(Φ) acts onY. Hence we have a commutative diagram

(5.1.7)

Ueσ
// Uσ

Y

OO ==||||||||

We showed above thatC[Uσ] ≃ C[Ueσ]
G, andC[Uσ] ≃ C[Y]H follows by a similar

argument (Exercise 5.1.4). ButH is finite, so that theH-orbits are closed. Hence
Y→Uσ is a geometric quotient by Proposition 5.0.8.

Now consider two distinctG-orbits in Ueσ. Using the action of(C∗)B and
(5.1.6), we can assume that the orbits areG · y,G · y′ for y,y′ ∈ Y. These orbits
containH ·y,H ·y′, which are also distinct. SinceY→Uσ is a geometric quotient,
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theseH-orbits map to distinct points inUσ, and then the same is true for theG-
orbits by the commutativity of (5.1.7). By Proposition 5.0.8, it follows thatπσ is a
geometric quotient whenΣ is simplicial.

To prove the other implication of (5.1.5), suppose thatσ ∈Σ is non-simplicial.
We construct a non-closed orbit inUeσ as follows. Sinceσ is non-simplicial, there
is a relation

∑
ρ∈σ(1) aρuρ = 0 whereaρ ∈ Z andaρ > 0 for at least oneρ. If we

setaρ = 0 for ρ /∈ σ(1), then the one-parameter subgroup

λa(t) = (taρ) ∈ (C∗)Σ(1)

is actually a one-parameter subgroup ofG. This follows easily from Lemma 5.1.1
and

∑
ρaρuρ = 0 (Exercise 5.1.4).

The affine open subsetUeσ ⊆ CΣ(1) consists of all points whoseρth coordinate
is nonzero for allρ /∈ σ(1). Hence the pointu = (uρ), where

uρ =

{
1 aρ ≥ 0

0 aρ < 0,

lies in Ueσ. Now consider limt→0λ
a(t) ·u. The limit exists inCΣ(1) sinceuρ = 0

wheneveraρ < 0. Furthermore, ifρ /∈ σ(1), theρth coordinateλa(t) ·u is 1 for allt,
so that the limitu0 = limt→0λ

a(t) ·u lies inUeσ. By assumption, there isρ0 ∈ σ(1)
with aρ0 > 0. This has the following consequences:

• Since theρ0th coordinate ofu is nonzero, the same is true for every element in
its G-orbit G ·u.

• Sinceaρ0 > 0, theρ0th coordinate ofu0 = limt→0λ
a(t) ·u is zero.

ThenG·u is not closed inUeσ since its Zariski closure containsu0 ∈Ueσ \G·u. This
shows thatπσ is not a geometric quotient and completes the proof of (5.1.5).

We can now prove the theorem. Since the maps (5.1.3) are good categorical
quotients, the same is true forπ : CΣ(1) \Z(Σ)→ XΣ by Proposition 5.0.12. To
prove part (a), letΣ′ ⊆ Σ be the subfan of simplicial cones ofΣ and set

U =
⋃

σ∈Σ′

Uσ, U0 = π−1(U) =
⋃

σ∈Σ′

Ueσ.

As above,π|U0
: U0→ U is a good categorical quotient, and by (5.1.5),πσ is a

geometric quotient for eachσ ∈ Σ′. It follows easilyπ|U0
is a geometric quotient,

so thatπ satisfies the second condition of Proposition 5.0.11. Thusπ is an almost
geometric quotient. This argument also shows thatπ is a geometric quotient when
Σ is simplicial, which proves half of part (b). The other half follows form (5.1.5),
and then the proof of the theorem is complete. �
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One nice feature of the quotientXΣ = (CΣ(1)\Z(Σ))//G is that it is compatible
with the tori, meaning that we have a commutative diagram

XΣ ≃ (CΣ(1) \Z(Σ))//G

↑ ↑
TN ≃ (C∗)Σ(1)/G

where the isomorphism on the bottom comes from (5.1.2) and the vertical arrows
are inclusions.

Examples. Here are some examples of the quotient construction.

Example 5.1.11.By Examples 5.1.2 and 5.1.7,Pn has quotient representation

Pn = (Cn+1\{0})/C∗,
whereC∗ acts by scalar multiplication. This is a geometric quotientsinceΣ is
smooth and hence simplicial. ♦

Example 5.1.12.By Examples 5.1.3 and 5.1.8,P1×P1 has quotient representation

P1×P1 =
(
C4\ ({0}×C2∪C2×{0})

)
/(C∗)2,

where(C∗)2 acts via(µ,λ) ·(a,b,c,d) = (µa,µb,λc,λd). This is again a geometric
quotient. ♦

Example 5.1.13.Fix positive integersq0, . . . ,qn with gcd(q0, . . . ,qn) = 1 and let
N be the latticeZn+1/Z(q0, . . . ,qn). The images of the standard basis inZn+1 give
primitive elementsu0, . . . ,un ∈N satisfyingq0u0+ · · ·+qnun = 0. LetΣ be the fan
consisting of all cones generated by proper subsets of{u0, . . . ,un}.

As in Example 3.1.17, the corresponding toric variety is denotedP(q0, . . . ,qn).
Using the quotient construction, we can now explain why thisis called a weighted
projective space.

We haveCΣ(1) = Cn+1 sinceΣ hasn+1 rays, andZ(Σ)= {0} by the argument
used in Example 5.1.7. It remains to computeG⊆ (C∗)n+1. In Exercise 4.1.5, you
showed that the mapsm∈ M 7→ (〈m,u0〉, . . . ,〈m,un〉) ∈ Zn+1 and (a0, . . . ,an) ∈
Zn+1 7→ a0q0 + · · ·+anqn ∈ Z give the short exact sequence

(5.1.8) 0−→M −→ Zn+1−→ Z−→ 0.

This shows that the class group isZ. Note also thatei ∈ Zn+1 maps toqi ∈ Z. In
Exercise 5.1.5 you will compute that

G = {(tq0, . . . , tqn) | t ∈C∗} ≃ C∗.

This is the action ofC∗ on Cn+1 given by

t · (u0, . . . ,un) = (tq0 u0, . . . , t
qn un).
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SinceΣ is simplicial (every proper subset of{u0, . . . ,un} is linearly independent in
NR), we get the geometric quotient

P(q0, . . . ,qn) = (Cn+1\{0})/C∗.
This gives the set-theoretic definition ofP(q0, . . . ,qn) from §2.0 and also gives its
structure as a variety since we have a geometric quotient. ♦

Example 5.1.14.Consider the coneσ = Cone(e1,e2,e1 + e3,e2 + e3) ⊆ R3. To
find the quotient representation ofUσ, we label the ray generators as

u1 = e1, u2 = e2 +e3, u3 = e2, u4 = e1 +e3.

ThenCΣ(1) = C4 andZ(Σ) = ∅ sincexσ̂ = 1. To determine the groupG⊆ (C∗)4,
note that the exact sequence (5.1.1) becomes

0−→ Z3−→ Z4−→ Z−→ 0,

where(a1,a2,a3,a4) ∈ Z4 7→ a1 +a2−a3−a4 ∈ Z. This makes it straightforward
to show that

G = {(λ,λ,λ−1,λ−1) | λ ∈ C∗} ≃ C∗.

Hence we get the quotient presentation

Uσ = C4//C∗.

In Example 5.0.2, we gave a naive argument that the quotient wasV(xy−zw). We
now see that the intrinsic meaning of Example 5.0.2 is the quotient construction of
Uσ given by Theorem 5.1.10. This example is not a geometric quotient sinceσ is
not simplicial. ♦

Example 5.1.15.Let Bl0(C2) be the blowup ofC2 at the origin, whose fanΣ is
shown in Figure 1 on the next page. By Example 4.1.5, Cl(Bl0(C2)) ≃ Z with

ρ1

ρ2 ρ0

u1

u0
u2

Figure 1. The fanΣ for the blowup ofC2 at the origin

generator[D1] = [D2] = −[D0]. HenceG = C∗ and the irrelevant ideal isB(Σ) =
〈x,y〉. This gives the geometric quotient

Bl0(C2)≃
(
C3\ (C×{0,0})

)
/C∗,
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where theC∗-action is given byλ · (t,x,y) = (λ−1t,λx,λy).

We also haveC[t,x,y]C
∗

= C[tx, ty]. Then the inclusion

C3\ (C×{0,0}) ⊆ C3

induces the map on quotients

φ : Bl0(C2)≃
(
C3\ (C×{0,0})

)
/C∗ −→ C3//C∗ ≃ C2,

where the final isomorphism uses

C3//C∗ = Spec(C[t,x,y]C
∗

) = Spec(C[tx, ty]).

In terms of homogeneous coordinates,φ(t,x,y) = (tx, ty). This map is the toric
morphism Bl0(C2)→ C2 induced by the refinement of Cone(u1,u2) given byΣ.

The quotient representation makes it easy to see why Bl0(C2) is the blowup of
C2 at the origin. Given a point of Bl0(C2) with homogeneous coordinates(t,x,y),
there are two possibilities:

• t 6= 0, in which caset · (t,x,y) = (1, tx, ty). This maps to(tx, ty) ∈ C2 and
is nonzero sincex,y cannot both be zero. It follows that the part of Bl0(C2)
wheret 6= 0 looks likeC2\{0,0}.
• t = 0, in which case(0,x,y) maps to the origin inC2. Sinceλ · (0,x,y) =
(λx,λy) andx,y cannot both be zero, it follows that the part of Bl0(C2) where
t = 0 looks likeP1.

This shows that Bl0(C2) is a built fromC2 by replacing the origin with a copy
of P1, which is called theexceptional locus E. SinceE = φ−1(0,0), we see that
φ : XΣ→ C2 induces an isomorphism

Bl0(C2)\E ≃ C2\{(0,0)}.

Note also thatE is the divisorD0 corresponding to the rayρ0. You should be able
to look at Figure 1 and see instantly thatD0≃ P1.

We can also check that lines through the origin behave properly. Consider the
line L defined byax+ by = 0, where(a,b) 6= (0,0). When we pull this back to
Bl0(C2), we get the subvariety defined by

a(tx)+b(ty) = 0.

This is thetotal transformof L. It factors ast(ax+by) = 0. Note thatt = 0 defines
the exceptional locus, so that once we remove this, we get thecurve in Bl0(C2)
defined byax+by= 0. This is theproper transformof L, which meets the excep-
tional locusE at the point with homogeneous coordinates(0,−b,a), corresponding
to (−b,a) ∈ P1. In this way, we see how blowing up separates tangent directions
through the origin. ♦
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The General Case. So far, we have assumed thatXΣ has no torus factors. When
torus factors are present,XΣ still has a quotient construction, though it is no longer
canonical.

Let XΣ be a toric variety with a torus factor. By Proposition 3.3.9,the ray
generatorsuρ, ρ ∈ Σ(1), span a proper subspace ofNR. Let N′ be the intersection
of this subspace withN, and pick a complementN′′ so thatN = N′⊕N′′. The cones
of Σ all lie in N′R and hence give a fanΣ′ in N′R. As in the proof of Proposition 3.3.9.
we obtain

XΣ ≃ XΣ′,N′× (C∗)r

whereN′′ ≃ Zr . Theorem 5.1.10 applies toXΣ′,N′ sinceuρ, ρ∈Σ′(1) = Σ(1), span
N′R by construction. Note also thatB(Σ′) = B(Σ) andZ(Σ′) = Z(Σ). Hence

XΣ′,N′ ≃
(
CΣ(1) \Z(Σ)

)
//G.

It follows that

(5.1.9)

XΣ ≃ XΣ′,N′× (C∗)r

≃
(
CΣ(1) \Z(Σ)

)
//G × (C∗)r

≃
(
CΣ(1)× (C∗)r \Z(Σ)× (C∗)r)//G,

In the last line, we use the trivial action ofG on (C∗)r . You will verify the last
isomorphism in Exercise 5.1.6.

We can rewrite (5.1.9) as follows. Using(C∗)r = Cr \V(x1 · · ·xr), we obtain

CΣ(1)× (C∗)r \Z(Σ)× (C∗)r = CΣ(1)+r \Z′(Σ),

whereCΣ(1)+r = CΣ(1)×Cr andZ′(Σ) = Z(Σ)×Cr ∪ CΣ(1)×V(x1 · · ·xr). Hence
the quotient presentation ofXΣ is the almost geometric quotient

(5.1.10) XΣ ≃
(
CΣ(1)+r \Z′(Σ)

)
//G.

This differs from Theorem 5.1.10 in two ways:

• The representation (5.1.10) is non-canonical since it depends on the choice of
the complementN′′.

• Z′(Σ) containsV(x1 · · ·xr)×CΣ(1) and hence has codimension 1 inCΣ(1)+r .
In constrast,Z(Σ) always has codimension≥ 2 in CΣ(1) (this follows from
Proposition 5.1.6 since every primitive collection has at least two elements).

In practice, (5.1.10) is rarely used, while Theorem 5.1.10 is a common tool in toric
geometry.

Exercises for §5.1.

5.1.1. In Example 5.1.4, verify carefully thatG = {(ζ,ζ) | ζ ∈ µd}.
5.1.2. Prove thatB(Σ) =

⋂
C〈xρ | ρ ∈C〉, where the intersection ranges over all primitive

collectionsC⊆ Σ(1).
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5.1.3. In Proposition 5.1.9, we definedπ : ZΣ(1)→ N, and in the proof we use the map of
tori (C∗)Σ(1)→ TN induced byπ. Show that this is the map appearing in (5.1.2).

5.1.4. This exercise is concerned with the proof of Theorem 5.1.10.

(a) Prove that the mapY→Uσ in (5.1.7) induces an isomorphismC[Uσ]≃ C[Y]H .

(b) Prove thatλa(t) = (taρ) ∈ G when
∑

ρ aρuρ = 0. Hint: Use Lemma 5.1.1. You can
give a more conceptual proof by taking the dual of (5.1.1).

5.1.5. Show that the groupG in Example 5.1.13 is given byG = {(tq0, . . . ,tqn) | t ∈ C∗}.
Hint: Pick integersbi such that

∑n
i=0 biqi = 1. Given(t0, . . . ,tn) ∈G, sett =

∏n
i=0 tai

i . Also
note that ife0, . . . ,en is the standard basis ofZn+1, thenqiej −q jei ∈ Zn+1 maps to 0∈ Z
in (5.1.8).

5.1.6. Let X be a variety with trivialG action. Prove that(X×Ueσ)//G≃ X×Uσ and use
this to verify the final line of (5.1.9).

5.1.7. Consider the usual fanΣ for P2 with the latticeN = {(a,b)∈Z2 | a+b≡ 0 modd},
whered is a positive integer.

(a) Prove that the ray generators areu1 = (d,0), u2 = (0,d) and

u0 =

{
(−d,−d) d odd

(−d/2,−d/2) d even.

(b) Prove that the dual lattice isM = {(a/d,b/d) | a,b∈ Z, a−b≡ 0 modd}.
(c) Prove that Cl(XΣ) = Z⊕Z/dZ (d odd) orZ⊕Z/ d

2Z (d even).

(d) Compute the quotient representation ofXΣ.

5.1.8. Find the quotient representation of the Hirzeburch surfaceHr in Example 3.1.16.

5.1.9. Prove thatG acts freely onCΣ(1) \Z(Σ) when the fanΣ is smooth. Hint: Letσ ∈Σ
and suppose thatg = (tρ) ∈ G fixesu = (uρ) ∈Ueσ. Show thattρ = 1 for ρ /∈ σ and then
use Lemma 5.1.1 to show thattρ = 1 for all ρ.

5.1.10.Prove thatG acts with finite isotropy subgroups onCΣ(1) \Z(Σ) when the fanΣ is
simplicial. Hint: Use the proof of Theorem 5.1.10.

5.1.11. Prove that 2≤ codim(Z(Σ)) ≤ |Σ(1)|. WhenΣ is a complete simplicial fan, a
stronger result states that either

(a) 2≤ codim(Z(Σ))≤ ⌊ 1
2dimXΣ⌋+1, or

(b) |Σ(1)|= dimXΣ +1 andZ(Σ) = {0}.
This is proved in [9, Prop. 2.8]. See the next exercise for more on part (b).

5.1.12. Let Σ be a complete fan such that|Σ(1)| = n+ 1, wheren = dimXΣ. Prove
that there is a weighted projective spaceP(q0, . . . ,qn) and a finite groupH acting on
P(q0, . . . ,qn) such that

XΣ ≃ P(q0, . . . ,qn)/H.

Also prove that the following are equivalent:

(a) XΣ is a weighted projective space.

(b) Cl(XΣ)≃ Z.

(c) N is generated byuρ, ρ ∈Σ(1).
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Hint: Label the ray generatorsu0, . . . ,un. First show thatΣ is simplicial and that there
are positive integersq0, . . . ,qn satisfying

∑n
i=0 qi ui = 0 and gcd(q0, . . . ,qn) = 1. Then

consider the sublattice ofN generated by theui and use Example 5.1.13. You will also
need Proposition 3.3.7. If you get stuck, see [9, Lem. 2.11].

5.1.13. In the proof of Theorem 5.1.10, we showed that a non-simplicial cone leads to a
non-closedG-orbit. Show that the non-closedG-orbit exhibited in Example 5.0.2 is an
example of this construction. See also Example 5.1.14.

5.1.14. The proof of Theorem 5.1.10 used the fanΣ′ consisting of the simplicial cones of
Σ. Show that the quotient construction ofXΣ′ is the mapπ|U0

: U0→U used in the proof
of the theorem.

5.1.15. Example 5.1.15 gave the quotient construction of the blowupof 0∈ C2 and used
the quotient construction to describe the properties of theblowup. Give a similar treatment
for the blowup ofCr ⊆ Cn using the star subdivision described in §3.3.

§5.2. The Total Coordinate Ring

In this section we assume thatXΣ is a toric variety without torus factors. Itstotal
coordinate ring

S= C[xρ | ρ ∈ Σ(1)]

was defined in §5.1. This ring givesCΣ(1) = Spec(S) and contains the irrelevant
ideal

B(Σ) = 〈xσ̂ | σ ∈Σ〉
used in the quotient construction ofXΣ. In this section we will explore how this
ring relates to the algebra and geometry ofXΣ.

The Grading. An important feature of the total coordinate ringS is its grading by
the class group Cl(XΣ). We have the exact sequence (5.1.1)

0−→M −→ ZΣ(1) −→ Cl(XΣ)−→ 0,

wherea = (aρ) ∈ ZΣ(1) maps to the divisor class
[∑

ρaρDρ

]
∈ Cl(XΣ). Given a

monomialxa =
∏
ρ xaρ
ρ ∈ S, define its degree to be

deg(xa) =
[∑

ρaρDρ

]
∈ Cl(XΣ).

Forβ ∈Cl(XΣ), we letSβ denote the corresponding graded piece ofS.

The grading onS is closely related to the groupG = HomZ(Cl(XΣ),C∗). Re-
call that Cl(XΣ) is the character group ofG, where as usualβ ∈ Cl(XΣ) gives the
characterχβ : G→ C∗. The action ofG on CΣ(1) induces an action onSwith the
property that givenf ∈ S, we have

(5.2.1)
f ∈ Sβ ⇐⇒ g· f = χβ(g−1) f for all g∈G

⇐⇒ f (g·x) = χβ(g) f (x) for all g∈G, x∈ CΣ(1)

(Exercise 5.2.1). Thus the graded pieces ofSare the eigenspaces of the action of
G on S. We say thatf ∈ Sβ is homogeneousof degreeβ.
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Example 5.2.1.The total coordinate ring ofPn is C[x0, . . . ,xn]. By Example 4.1.6,
the mapZn+1→ Z = Cl(Pn) is (a0, . . . ,an) 7→ a0 + · · ·+ an. This gives the grad-
ing on C[x0, . . . ,xn] where each variablexi has degree 1, so that “homogeneous
polynomial” has the usual meaning.

In Exercise 5.2.2 you will generalize this by showing that the total coordi-
nate ring of the weighted projective spaceP(q0, . . . ,qn) is C[x0, . . . ,xn], where the
variablexi now has degreeqi . Here, “homogeneous polynomial” means weighted
homogeneous polynomial. ♦

Example 5.2.2.The fan forPn×Pm is the product of the fans ofPn andPm, and
by Example 4.1.7, the class group is

Cl(Pn×Pm)≃ Cl(Pn)×Cl(Pm)≃ Z2.

The total coordinate ring isC[x0, . . . ,xn,y0, . . . ,ym], where

deg(xi) = (1,0) deg(yi) = (0,1)

(Exercise 5.2.3). For this ring, “homogeneous polynomial”means bihomogeneous
polynomial. ♦

Example 5.2.3. Example 5.1.15 gave the quotient representation of the blowup
Bl0(C2) of C2 at the origin. The fanΣ of Bl0(C2) is shown in Example 5.1.15 and
has ray generatorsu0, u1, u2, corresponding to variablest,x,y in the total coordinate
ring S= C[t,x,y]. Since Cl(Bl0(C2)) ≃ Z, one can check that the grading onS is
given by

deg(t) =−1 and deg(x) = deg(y) = 1

(Exercise 5.2.4). Thus total coordinate rings can have someelements of positive
degree and other elements of negative degree. ♦

The Toric Ideal-Variety Correspondence. Forn-dimensional projective spacePn,
a homogeneous idealI ⊆C[x0, . . . ,xn] defines a projective varietyV(I)⊆ Pn. This
generalizes to more general toric varietiesXΣ as follows.

We first assume thatΣ is simplical, so that we have a geometric quotient

π : CΣ(1) \Z(Σ)−→ XΣ

by Theorem 5.1.10. Givenp∈ XΣ, we say a pointx∈ π−1(p) giveshomogeneous
coordinatesfor p. Sinceπ is a geometric quotient, we haveπ−1(p) = G ·x. Thus
all homogeneous coordinates forp are of the formg·x for someg∈G.

Now letSbe the total coordinate ring ofXΣ and let f ∈ Sbe homogeneous for
the Cl(XΣ)-grading onS, say f ∈ Sβ. Then

f (g·x) = χβ(g) f (x)

by (5.2.1), so thatf (x) = 0 for onechoice of homogeneous coordinates ofp∈ XΣ

if and only if f (x) = 0 for all homogeneous coordinates ofp. It follows that the
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equationf = 0 is well-defined inXΣ. We can use this to define subvarieties ofXΣ

as follows.

Proposition 5.2.4. Let S be the total coordinate ring of the simplicial toric variety
XΣ. Then:

(a) If I ⊆ S is a homogeneous ideal, then

V(I) = {π(x) ∈ XΣ | f (x) = 0 for all f ∈ I}
is a closed subvariety of XΣ.

(b) All closed subvarieties of XΣ arise this way.

Proof. GivenI ⊆ Sas in part (a), notice that

W = {x∈ CΣ(1) \Z(Σ) | f (x) = 0 for all f ∈ I}
is a closedG-invariant subset ofCΣ(1) \Z(Σ). By part (b) of the definition of good
categorical quotient (Definition 5.0.5),V(I) = π(W) is closed inXΣ.

Conversely, given a closed subsetY ⊆ XΣ, its inverse image

π−1(Y)⊆CΣ(1) \Z(Σ)

is closed andG-invariant. Then the same is true for the Zariski closure

π−1(Y)⊆ CΣ(1).

It follows without difficulty thatI = I(π−1(Y)) ⊆ S is a homogeneous ideal satis-
fying V(I) = Y. �

Example 5.2.5. The equationxρ = 0 defines theTN-invariant closed subvariety
V(xρ) ⊆ XΣ which is easily seen to be the prime divisorDρ. This shows thatDρ

always has a global equation, though it fails to have local equations whenDρ is not
Cartier (see Example 4.2.3). ♦

Classically, the Weak Nullstellensatz gives a necessary and sufficient condition
for the variety of an ideal to be empty. This applies toCn andPn as follows:

• ForCn: Given an idealI ⊆ C[x1, . . . ,xn],

V(I) = ∅ in Cn ⇐⇒ 1∈ I .

• ForPn: Given a homogeneous idealI ⊆ C[x0, . . . ,xn],

V(I) = ∅ in Pn ⇐⇒ 〈x0, . . . ,xn〉ℓ ⊆ I for someℓ≥ 0.

For a toric version of the weak Nullstellensatz, we use the irrelevant idealB(Σ) =
〈xσ̂ | σ ∈ Σ〉 ⊆ S.

Proposition 5.2.6(The Toric Weak Nullstellensatz). Let XΣ be a simplicial toric
variety with total coordinate ring S and irrelevant ideal B(Σ) ⊆ S. If I⊆ S is a
homogeneous ideal, then

V(I) = ∅ in XΣ ⇐⇒ B(Σ)ℓ ⊆ I for someℓ≥ 0.



220 Chapter 5. Homogeneous Coordinates

Proof. Let Va(I)⊆ CΣ(1) denote the affine variety defined byI ⊆ S. Then:

V(I) = ∅ in XΣ ⇐⇒ Va(I)∩
(
CΣ(1) \Z(Σ)

)
= ∅

⇐⇒ Va(I)⊆ Z(Σ) = Va(B(Σ))

⇐⇒ B(Σ)ℓ ⊆ I for someℓ≥ 0,

where the last equivalence uses the Nullstellensatz inCΣ(1). �

For Cn and Pn, the irrelevant ideal is〈1〉 ⊆ C[x1, . . . ,xn] and 〈x0, . . . ,xn〉 ⊆
C[x0, . . . ,xn] respectively. Furthermore, forCn, the grading onC[x1, . . . ,xn] is triv-
ial, so that every ideal is homogeneous. Thus the toric weak Nullstellensatz implies
the classical version of the weak Nullstellensatz for bothCn andPn.

The relation between ideals and varieties is not perfect because different ideals
can define the same subvariety. InCn andPn, we avoid this by using radical ideals:

• ForCn: There is a bijective correspondence

{closed subvarieties ofCn}←→ {radical idealsI ⊆ C[x1, . . . ,xn]}.
• ForPn: There is a bijective correspondence

{closed subvarieties ofPn} ←→
{

radical homogeneous ideals
I ⊆ 〈x0, . . . ,xn〉 ⊆ C[x0, . . . ,xn]

}
.

Here is the toric version of this correspondence.

Proposition 5.2.7(The Toric Ideal-Variety Correspondence). Let XΣ be a simpli-
cial toric variety. Then there is a bijective correspondence

{closed subvarieties ofXΣ} ←→
{

radical homogeneous
idealsI ⊆ B(Σ)⊆ S

}
.

Proof. Given a closed subvarietyY ⊆ XΣ, we can find a homogeneous idealI ⊆ S
with V(I) = Y by Proposition 5.2.4. Then

√
I is also homogeneous and satisfies

V(
√

I) = V(I) = Y, so we may assume thatI is radical. Since

Va(I ∩B(Σ)) = Va(I)∪Va(B(Σ)) = Va(I)∪Z(Σ)

in CΣ(1), we see thatI ∩B(Σ) ⊆ B(Σ) is a radical homogeneous ideal satisfying
V(I ∩B(Σ)) = Y. This proves surjectivity.

To prove injectivity, suppose thatI ,J ⊆ B(Σ) are radical homogeneous ideals
with V(I) = V(J) in XΣ. Then

Va(I)∩
(
CΣ(1) \Z(Σ)

)
= Va(J)∩

(
CΣ(1) \Z(Σ)

)
.

However,I ,J ⊆ B(Σ) implies thatZ(Σ) is contained inVa(I) andVa(J). Hence
the above equality implies

Va(I) = Va(J),

so thatI = J by the Nullstellensatz sinceI andJ are radical. �
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For general ideals, another way to recover injectivity is towork with closed
subschemes rather than closed subvarieties. We will say more about this in the
appendix to Chapter 6.

WhenXΣ is not simplicial, there is still a relation between ideals in the total
coordinate ring and closed subvarieties ofXΣ.

Proposition 5.2.8.Let S be the total coordinate ring of the toric variety XΣ. Then:

(a) If I ⊆ S is a homogeneous ideal, then

V(I) = {p∈ XΣ | there is x∈ π−1(p) with f(x) = 0 for all f ∈ I}
is a closed subvariety of XΣ.

(b) All closed subvarieties of XΣ arise this way.

Proof. The proof is identical to the proof of Proposition 5.2.4. �

The main difference between Propositions 5.2.4 and 5.2.8 isthe phrase “there
is x∈ π−1(p)”. In the simplicial case, all suchx are related by the groupG, while
this may fail in the non-simplicial case. One consequence isthat the ideal-variety
correspondence of Proposition 5.2.7 breaks down in the nonsimplicial case. Here
is a simple example.

Example 5.2.9. In Example 5.1.14 we described the quotient representationof
Uσ = C4//C∗ for the coneσ = Cone(e1,e2,e1 + e3,e2 + e3) ⊆ R3, and in Exam-
ple 5.0.2 we saw that the quotient map

π : C4−→Uσ = V(xy−zw)⊆ C4

is given byπ(a1,a2,a3,a4) = (a1a3,a2a4,a1a4,a2a3). Note that the irrelevant ideal
is B(Σ) = C[x1,x2,x3,x4].

The idealsI1 = 〈x1,x2〉 andI2 = 〈x3,x4〉 are distinct radical homogeneous ideals
contained inB(Σ) that give the same subvariety inUσ:

V(I1) = π(Va(I1)) = π(C2×{0}) = {0} ∈Uσ

V(I2) = π(Va(I2)) = π({0}×C2) = {0} ∈Uσ.

Thus Proposition 5.2.7 fails to hold for this toric variety. ♦

Local Coordinates. Let XΣ be ann-dimensional toric variety. WhenΣ contains a
smooth coneσ of dimensionn, we get an affine open set

Uσ ⊆ XΣ with Uσ ≃ Cn

The usual coordinates forCn are compatible with the homogeneous coordinates
for XΣ in the following sense. The coneσ gives the mapφσ : Cσ(1) → CΣ(1) that
sends(aρ)ρ∈σ(1) to the point(bρ)ρ∈Σ(1) defined by

bρ =

{
aρ ρ ∈ σ(1)

1 otherwise.
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Proposition 5.2.10.Letσ ∈ Σ be a smooth cone of dimension n= dimXΣ and let
φσ : Cσ(1)→ CΣ(1) be defined as above. Then we have a commutative diagram

Cσ(1) � � φσ
//

��

CΣ(1) \Z(Σ)

��

Uσ
� � // XΣ,

where the vertical maps are the quotient maps from Theorem 5.1.10. Furthermore,
the vertical map on the left is an isomorphism.

Proof. We first show commutativity. In the proof of Theorem 5.1.10 wesaw that
π−1(Uσ) = Ueσ. Since the image ofφσ lies inUeσ, we are reduced to the diagram

Cσ(1) � � φσ
//

!!C
CC

CC
CC

C
Ueσ

��~~
~~

~~
~

Uσ.

Since everything is affine, we can consider the corresponding diagram of coordi-
nate rings

C[xρ | ρ ∈ σ(1)] C[xρ | ρ ∈ Σ(1)]xσ̂

φ∗σoo

C[σ∨∩M],

β∗

99ssssssssssα∗

ddIIIIIIIII

whereα∗(χm) =
∏
ρ∈σ(1) x〈m,uρ〉

ρ andβ∗(χm) =
∏
ρ∈Σ(1) x〈m,uρ〉

ρ for m∈ σ∨∩M. It
is clear thatφ∗σ ◦β∗ = α∗, and commutativity follows.

For the final assertion, note thatα∗ is an isomorphism since theuρ, ρ ∈ σ(1),
form a basis ofN by our assumption onσ. This completes the proof. �

It follows that if a closed subvarietyY ⊆ XΣ is defined by an idealI ⊆ S,
then the affine pieceY∩Uσ ⊆Uσ ≃ Cσ(1) is defined by the dehomogenized ideal
Ĩ ⊆ C[xρ | ρ ∈ σ(1)] obtained by settingxρ = 1, ρ /∈ σ(1), in all polynomials ofI .
We will give examples of this below, and in §5.4, we will explore the corresponding
notion of homogenization.

Proposition 5.2.10 can be generalized to any coneσ ∈ Σ satisfying dimσ =
dimXΣ (Exercise 5.2.5).

Example 5.2.11.In Example 5.1.15 we described the quotient construction ofthe
blowup ofC2 at the origin. This variety can be expressed as the union Bl0(C2) =
Uσ1 ∪Uσ2, whereσ1,σ2 ∈Σ are as in Example 5.1.15.
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The map Bl0(C2)→C2 is given by(t,x,y) 7→ (tx, ty) in homogeneous coordi-
nates. Combining this with the local coordinate maps from Proposition 5.2.10, we
obtain

Uσ1 ⊆ XΣ→ C2 : (t,x) 7→ (t,x,1) 7→ (tx, t)

Uσ2 ⊆ XΣ→ C2 : (t,y) 7→ (t,1,y) 7→ (t, ty).

Consider the curvef (x,y) = 0 in the planeC2, where f (x,y) = x3−y2. We study
this on the blowup Bl0(C2) using local coordinates as follows:

• On Uσ1, we get f (tx, t) = 0, i.e., (tx)3− t2 = t2(tx3− 1) = 0. Sincet = 0
defines the exceptional locus, we get the proper transformtx3−1 = 0.

• OnUσ2, we get f (t, ty) = 0, i.e.,t3− (ty)2 = t2(t−y2) = 0, with proper trans-
form t−y2 = 0.

Hence the proper transform is a smooth curve in Bl0(C2). This method of studying
the blowup of a curve is explained in many elementary texts onalgebraic geometry,
such as [145, p. 100].

We relate this to the homogeneous coordinates of Bl0(C2) as follows. Using
the above mapXΣ → C2, we get the curve inXΣ defined by f (tx, ty) = 0, i.e.,
(tx)3− (ty)2 = t2(tx3−y2) = 0. Hence the proper transform istx3−y2 = 0. Then:

• Settingy = 1 gives the proper transformtx3−1 = 0 onUσ1.

• Settingx = 1 gives the proper transformt−y2 = 0 onUσ2.

Hence the “local” proper transforms computed above are obtained from the homo-
geneous proper transform by setting appropriate coordinates equal to 1. ♦

Exercises for §5.2.

5.2.1. Prove (5.2.1).

5.2.2. Show that the total coordinate ring of the weighted projective spaceP(q0, . . . ,qn) is
C[x0, . . . ,xn] where deg(xi) = qi . Hint: See Example 5.1.13.

5.2.3. Prove the claims made about the total coordinate ring of the productPn×Pm made
in Example 5.2.2.

5.2.4. Prove the claims made about the class group and the total coordinate ring of the
blowup ofP2 at the origin made in Example 5.2.3.

5.2.5. Let XΣ be the toric variety of the fanΣ and assume as usual thatXΣ has no torus
factors. A subfanΣ′ ⊆ Σ is full if Σ′ = {σ ∈ Σ | σ(1) ⊆ Σ′(1)}. Consider a full subfan
Σ′ ⊆ Σ with the property thatXΣ′ has no torus factors.

(a) Define the mapφ : CΣ
′
(1) → CΣ(1) by sending(aρ)ρ∈Σ′(1) to the point(bρ)ρ∈Σ(1)

given by

bρ =

{
aρ ρ ∈ Σ′(1)

1 otherwise.
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Prove that there is a commutative diagram

CΣ
′
(1) \Z(Σ′)

� � φ
//

��

CΣ(1) \Z(Σ)

��

XΣ′
� � // XΣ,

where the vertical maps are the quotient maps from Theorem 5.1.10.

(b) Explain how part (a) generalizes Proposition 5.2.10.

(c) Use part (a) to give a version of Proposition 5.2.10 that applies to any coneσ ∈ Σ
satisfying dimσ = dimXΣ.

5.2.6. The quinticy2 = x5 in C2 has a unique singular point at the origin. We will resolve
the singularity using successive blowups.

(a) Show that the proper transform of this curve in Bl0(C
2) is defined byy2− t3x5 = 0.

This uses the homogeneous coordinatest,x,y from Example 5.2.3.

(b) Show that the proper transform is smooth onUσ1 but singular onUσ2.

(c) Subdivideσ2 to obtain a smooh fanΣ′. The toric varietyXΣ′ has variablesu,t,x,y,
whereu corresponds to the ray that subdividesσ2. Show that Cl(XΣ′)≃ Z2 with

deg(u) = (0,−1), deg(t) = (−1,0), deg(x) = (1,1), deg(y) = (1,2).

(d) Show that(u, t,x,y) 7→ (utx,u2ty) defines a toric morphismXΣ′ → C2 and use this to
show that the proper transform of the quintic inC2 is defined byy2−ut3x5 = 0.

(e) Show that the proper transform is smooth by inspecting itin local coordinates.

5.2.7. Adapt the method Exercise 5.2.6 to desingularizey2 = x2n+1, n≥ 1 an integer.

5.2.8. Given an idealI in a commutative ringR, its Rees algebrais the graded ring

R[I ] =
∞⊕

i=0

I it i ⊆ R[t],

wheret is a new variable andI 0 = R. There is also theextended Rees algebra

R[I ,t−1] =
⊕

i∈Z

I it i ⊆ R[t,t−1],

whereI i = R for i ≤ 0. These rings are graded by letting deg(t) = 1, so that elements ofR
have degree 0. See [29, 4.4] and §11.3 for more about Rees algebras.

(a) WhenI = 〈x,y〉 ⊆ R = C[x,y], prove that the extended Rees algebraR[I ,t−1] is the
polynomial ringC[xt,yt, t−1]

(b) Prove that the ring of part (a) is isomorphic to the total coordinate ring of the blowup
of C2 at the origin.

(c) Generalize parts (a) and (b) to the case ofI = 〈x1, . . . ,xn〉 ⊆ R= C[x1, . . . ,xn].

§5.3. Sheaves on Toric Varieties

Given a toric varietyXΣ, we show that graded modules over the total coordinate
ring S= C[xρ | ρ∈Σ(1)] give quasicoherent sheaves onXΣ. We continue to assume
thatXΣ has no torus factors.
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Graded Modules. The grading onSgives a direct sum decomposition

S=
⊕

α∈Cl(XΣ)

Sα

such thatSα ·Sβ ⊆ Sα+β for all α,β ∈ Cl(XΣ).

Definition 5.3.1. An S-moduleM is gradedif it has a decomposition

M =
⊕

α∈Cl(XΣ)

Mα

such thatSα ·Mβ ⊆Mα+β for all α,β ∈Cl(XΣ). Givenα∈Cl(XΣ), theshift M(α)
is the gradedS-module satisfying

M(α)β = Mα+β

for all β ∈ Cl(XΣ).

The passage from a gradedS-module to a quasicoherent sheaf onXΣ requires
some tools from the proof of Theorem 5.1.10. A coneσ ∈ Σ gives the monomial

xσ̂ =
∏
ρ6∈σ(1) xρ ∈ S, and by (5.1.4), the mapχm 7→ x〈m〉 =

∏
ρ x〈m,uρ〉
ρ induces an

isomorphism

π∗σ : C[σ∨∩M]
∼−→ (Sxσ̂ )G⊆ Sxσ̂ ,

whereSxσ̂ is the localization ofSatxσ̂. Since monomials are homogeneous,Sxσ̂ is
also graded by Cl(XΣ), and its elements of degree 0 are precisely itsG-invariants
(Exercise 5.3.1), i.e.,(Sxσ̂ )0 = (Sxσ̂ )G. Hence the above isomorphism becomes

(5.3.1) π∗σ : C[σ∨∩M]
∼−→ (Sxσ̂ )0.

These isomorphisms glue together just as we would hope.

Lemma 5.3.2. Let τ = σ∩m⊥ be a face ofσ. Then(Sxτ̂ )0 = ((Sxσ̂ )0)π∗
σ(χm), and

there is a commutative diagram of isomorphisms

(Sxσ̂)0 //

��

((Sxτ̂ )0)π∗
σ(χm)

��

C[σ∨∩M] // C[τ∨∩M]χm.

Proof. Sinceτ =σ∩m⊥, we have〈m,uρ〉= 0 whenρ∈ τ(1) and〈m,uρ〉> 0 when
ρ∈ σ(1)\τ(1). This means thatSxτ̂ = (Sxσ̂ )π∗

σ(χm). Taking elements of degree zero
commutes with localization, hence(Sxτ̂ )0 = ((Sxσ̂ )0)π∗

σ(χm). The vertical maps
in the diagram come from (5.3.1), and the horizontal maps arelocalization. In
Exercise 5.3.2 you will chase the diagram to show that it commutes. �
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From Modules to Sheaves. We now construct the sheaf of a graded module.

Proposition 5.3.3. Let M be a graded S-module. Then there is a quasicoherent
sheafM̃ on XΣ such that for everyσ ∈ Σ, the sections of̃M over Uσ ⊆ XΣ are

Γ(Uσ,M̃) = (Mxσ̂)0.

Proof. SinceM is a gradedS-module, it is immediate thatMxσ̂ is a gradedSxσ̂ -
module. Hence(Mxσ̂)0 is an (Sxσ̂ )0-module, which induces a sheaf(Mxσ̂)0̃ on
Uσ = Spec(C[σ∨ ∩M]) = Spec((Sxσ̂ )0). The argument of Lemma 5.3.2 applies
verbatim to show that

(Mxτ̂ )0 = ((Mxσ̂)0)π∗
σ(χm).

Thus the sheaves(Mxσ̂)0̃ patch to give a sheaf̃M on XΣ which is quasicoherent by
construction. �

Example 5.3.4.The total coordinate ring ofPn is S= C[x0, . . . ,xn] with the stan-
dard grading where every variable has degree 1. The quasicoherent sheaf onPn

associated to a gradedS-module was first described by Serre in his foundational
paperFaisceaux alǵebriques coh́erents[154], called FAC for short. ♦

An important special case is whenM is a finitely generated gradedS-module.
We will need the following finiteness result to understand the sheafM̃.

Lemma 5.3.5. (Sxσ̂ )α is finitely generated as a(Sxσ̂ )0-module for allσ ∈ Σ and
α ∈ Cl(XΣ).

Proof. Write α= [
∑

ρaρDρ] and consider rational polyhedral cone

σ̂ = {(m,λ) ∈MR×R | λ≥ 0, 〈m,uρ〉 ≥ −λaρ for all ρ} ⊆MR×R.

By Gordan’s Lemma,̂σ∩ (M×Z) is a finitely generated semigroup. Let the gen-
erators with last coordinate equal to 1 be(m1,1), . . . ,(mr ,1). Then you will prove

in Exercise 5.3.3 that the monomials
∏
ρ x〈mi ,uρ〉+aρ
ρ , i = 1, . . . , r, generate(Sxσ̂ )α

as a(Sxσ̂ )0-module. �

Here are some coherent sheaves onXΣ.

Proposition 5.3.6. The sheaf̃M on XΣ is coherent whenM is a finitely generated
graded S-module.

Proof. BecauseM is graded, we may assume its generators are homogeneous of
degreesα1, . . . ,αr . Givenσ ∈ Σ, it follows immediately thatMxσ̂ is finitely gen-
erated overSxσ̂ with generators in the same degrees. However, we need to be
careful when taking elements of degree 0. Multiply a generator of degreeαi by
the (Sxσ̂)0-module generators of(Sxσ̂ )−αi (finitely many by the previous lemma).
Doing this for alli gives finitely many elements in(Mxσ̂)0 that generate(Mxσ̂)0 as
an(Sxσ̂ )0-module (Exercise 5.3.3). It follows that̃M is coherent. �
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Givenα ∈ Cl(XΣ), the shiftedS-moduleS(α) gives a coherent sheaf onXΣ

denotedOXΣ
(α). This is a sheaf we already know.

Proposition 5.3.7. Fix α ∈ Cl(XΣ). Then:

(a) There is a natural isomorphism Sα ≃ Γ(XΣ,OXΣ
(α)).

(b) If D =
∑

ρaρDρ is a Weil divisor satisfyingα= [D], then

OXΣ
(D)≃ OXΣ

(α).

Proof. By definition, the sections ofOXΣ
(α) overUσ are

Γ(Uσ,OXΣ
(α)) = (S(α)xσ̂ )0 = (Sxσ̂ )α

for σ ∈ Σ. Since the open cover{Uσ}σ∈Σ of XΣ satisfiesUσ ∩Uτ = Uσ∩τ , the
sheaf axiom gives the exact sequence

0−→ Γ(XΣ,OXΣ
(α)) −→

∏

σ

(Sxσ̂ )α−→−→
∏

σ,τ

(Sxσ̂∩τ )α.

The localization(Sxσ̂ )α has a basis consisting of all Laurent monomials
∏
ρ xbρ
ρ of

degreeα such thatbρ ≥ 0 for all ρ ∈ σ(1). Then the exact sequence implies that

Γ(XΣ,OXΣ
(α)) basis consisting of all Laurent monomials

∏
ρ xbρ
ρ of degreeα such

thatbρ ≥ 0 for all ρ ∈ Σ(1). These are precisely the monomials inSof degreeα,
which gives the desired isomorphismSα ≃ Γ(XΣ,OXΣ

(α)).

We turn to part (b). Given a Weil divisorD =
∑

ρaρDρ with α= [D], we need
to construct a sheaf isomorphismOXΣ

(D) ≃ OXΣ
(α). By the above description of

the sections overUσ, it suffices to prove that for everyσ ∈ Σ, we have isomor-
phisms

(5.3.2) Γ(Uσ,OXΣ
(D))≃ (Sxσ̂ )α.

compatible with inclusionsUτ ⊆Uσ induced byτ � σ in Σ.

To construct this isomorphism, we apply Proposition 4.3.3 toUσ to obtain

Γ(Uσ,OXΣ
(D)) =

⊕

m∈M
〈m,uρ〉≥aρ,ρ∈σ(1)

C ·χm.

A lattice pointm∈M gives the Laurent monomial

(5.3.3) x〈m,D〉 =
∏

ρ

x〈m,uρ〉+aρ
ρ .

When〈m,uρ〉 ≥−aρ for ρ∈Σ(1), this lies inSxσ̂ , and in factx〈m,D〉 ∈ (Sxσ̂ )α since

deg(x〈m,D〉) =
[∑

ρ(〈m,uρ〉+aρ)Dρ

]
=
[
div(χm)+D

]
= [D] = α.

We claim that mapχm 7→ x〈m,D〉 induces the desired isomorphism (5.3.2).

Suppose thatχm,χm′

map to the same monomial. Then〈m,uρ〉 = 〈m′,uρ〉
for all ρ. This impliesm = m′ sinceXΣ has no torus factors. Furthermore, if
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xb =
∏
ρ xbρ
ρ ∈ (Sxσ̂ )α, then[

∑
ρbρDρ] = α = [

∑
ρaρDρ], so that there ism∈M

such thatbρ = 〈m,uρ〉+ aρ for all ρ. Sincexb is a monomial inSxσ̂ , bρ ≥ 0 for
ρ ∈ σ(1), hence〈m,uρ〉 ≥ −aρ for ρ ∈ σ(1). Thenχm ∈ Γ(Uσ,OXΣ

(D)) maps to
xb. This defines an isomorphism (5.3.2) which is easily seen to be compatible with
the inclusion of faces. �

Example 5.3.8. For Pn we haveS= C[x0, . . . ,xn] with the standard grading by
Z = Cl(Pn). ThenOPn(k) is the sheaf associated toS(k) for k∈ Z. The classes of
the toric divisorsD0∼ ·· · ∼ Dn correspond to 1∈ Z, so that

OPn(k)≃ OPn(kD0)≃ ·· · ≃ OPn(kDn).

ThusOPn(k) is a canonical model for the sheafOPn(kDi). This justifies what we
did in Example 4.3.1.

Also note that whenk≥ 0, we have

Γ(Pn,OPn(k)) = Sk.

Hence global sections ofOPn(k) are homogeneous polynomials inx0, . . . ,xn of
degreek, which agrees with what we computed in Example 4.3.6. ♦

Sheaves versus Modules. An important result is thatall quasicoherent sheaves on
XΣ come from graded modules.

Proposition 5.3.9. LetF be a quasicoherent sheaf on XΣ. Then:

(a) There is a graded S-moduleM such thatM̃≃F .

(b) If F is coherent, thenM can be chosen to be finitely generated over S.

The proof will be given in the appendix to Chapter 6 since it involves tensor
products of sheaves from §6.0.

Although the mapM 7→ M̃ is surjective (up to isomorphism), it is far from
injective. In particular, there are nontrivial graded modules that give the trivial
sheaf. This phenomenon is well-known forPn, where a finitely generated graded
moduleM overS= C[x0, . . . ,xn] gives the trivial sheaf onPn if and only if Mℓ = 0
for ℓ≫ 0 (see [77, Ex. II.5.9]). This is equivalent to

〈x0, . . . ,xn〉ℓM = 0

for ℓ≫ 0 (Exercise 5.3.4). Since〈x0, . . . ,xn〉 is the irrelevant ideal forPn, this
suggests a toric generalization. In the smooth case, we havethe following result.

Proposition 5.3.10. Let B(Σ) ⊆ S be the irrelevant ideal of S for a smooth toric
variety XΣ, and letM be a finitely generated graded S-module. ThenM̃ = 0 if and
only if B(Σ)ℓM = 0 for ℓ≫ 0.

Proof. First observe that̃M = 0 if and only if it vanishes on each affine open subset
Uσ ⊆ XΣ. But on an affine variety, the correspondence between quasicoherent
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sheaves and modules is bijective (see [77, Cor. II.5.5]). HencẽM = 0 if and only if
(Mxσ̂)0 = 0 for all σ ∈ Σ.

First suppose thatB(Σ)ℓM = 0 for someℓ≥ 0. Then(xσ̂)ℓM = 0, which easily
implies thatMxσ̂ = 0. ThenM̃ = 0 follows from the previous paragraph. This part
of the argument works for any toric variety.

For the converse, we have(Mxσ̂)0 = 0 for all σ ∈ Σ. Givenh∈Mα, we will
show that(xσ̂)ℓh= 0 for someℓ≥ 0, which will imply B(Σ)ℓM = 0 for ℓ≫ 0 since
M is finitely generated. Letα= [D], whereD =

∑
ρaρDρ. Sinceσ is smooth, there

mσ ∈M such that〈mσ,uρ〉 = −aρ for all ρ ∈ σ(1) (this is part of the Cartier data
for D). ReplacingD with D+div(χmσ), we may assume thatD =

∑
ρ/∈σ(1) aρDρ.

Now setk = max(0,aρ | ρ /∈ σ(1)) and observe that

xb = (xσ̂)k
∏

ρ/∈σ(1)

x−aρ
ρ =

∏

ρ/∈σ(1)

xk−aρ
ρ ∈ S.

Furthermore,xbh/(xσ̂)k ∈Mxσ̂ has degree 0. Hencexbh/(xσ̂)k = 0 in Mxσ̂ , which
by the definition of localization implies that there iss≥ 0 with

(xσ̂)s ·xbh = 0 in M.

Sincexb involves onlyxρ for ρ /∈ σ(1), we can findxa ∈ S such thatxa · xb is a
power ofxσ̂. Hence multiplying the above equation byxa implies (xσ̂)ℓh = 0 for
someℓ≥ 0, as desired. �

Unfortunately, the situation is more complicated whenXΣ is not smooth. Here
is an example to show what can go wrong whenXΣ is simplicial.

Example 5.3.11. The weighted projective spaceP(1,1,2) has total coordinate
ring S= C[x,y,z], wherex,y have degree 1 andz has degree 2, and the irrele-
vant ideal isB(Σ) = 〈x,y,z〉. The gradedS-moduleM = S(1)/(xS(1) + yS(1))
has only elements of odd degree. Then(Mz)0 = 0 sincez has degree 2, and it is
clear that(Mx)0 = (My)0 = 0. It follows thatM̃ = 0, yet one easily checks that
B(Σ)ℓM = zℓM 6= 0 for all ℓ≥ 0. Thus Proposition 5.3.10 fails forP(1,1,2). ♦

Exercise 5.3.5 explores a version of Proposition 5.3.10 that applies to simpli-
cial toric varieties. The condition thatB(Σ)ℓM = 0 is replaced with the weaker
condition thatB(Σ)ℓMα = 0 for all α ∈ Pic(XΣ).

We will say more about the relation between quasicoherent sheaves and graded
S-modules in the appendix to Chapter 6.

Exercises for §5.3.

5.3.1. As described in §5.0, the action ofG on CΣ(1) induces an action ofG on the total
coordinate ringS. Also recall thatg∈G is a homomorphismg : Cl(XΣ)→C∗.

(a) Givenxa ∈ Sandg∈G, show thatg ·xa = g−1(α)xa, whereα= deg(xa).
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(b) Show thatSG = S0 and that a similar result holds for the localizationSxb.

5.3.2. Complete the proof of Lemma 5.3.2.

5.3.3. Complete the proofs of Lemma 5.3.5 and Proposition 5.3.6.

5.3.4. Let S= C[x0, . . . ,xn] where deg(xi) = 1 for all i, and letM be a finitely generated
gradedS-module. Prove thatMℓ = 0 for ℓ≫ 0 if and only if B(Σ)ℓ M = 0 for ℓ≫ 0.

5.3.5. Let XΣ be a simplicial toric variety and letM be a finitely generated gradedS-
module. Prove that̃M = 0 if and only if B(Σ)ℓ Mα = 0 for all ℓ≫ 0 andα ∈ Pic(XΣ).

5.3.6. Let XΣ be a smooth toric variety. State and prove a version of Proposition 5.3.10
that applies to arbitrary gradedS-modulesM. Also explain what happens whenXΣ is
simplicial, as in Exercise 5.3.5.

§5.4. Homogenization and Polytopes

The final section of the chapter will explore the relation between torus-invariant
divisors on a toric varietyXΣ and its total coordinate ring. We will also see that
whenXΣ comes from a polytopeP, the quotient construction ofXΣ relates nicely
to the definition of projective toric variety given in Chapter 2.

Homogenization. When working with affine and projective space, one often needs
to homogenize polynomials. This process generalizes nicely to the toric context.
The full story involves characters, polyhedra, divisors, sheaves, and graded pieces
of the total coordinate ring.

A Weil divisor D =
∑

ρaρDρ on XΣ gives the polyhedron

PD = {m∈MR | 〈m,uρ〉 ≥ −aρ for all ρ ∈ Σ(1)}.
Proposition 4.3.3 tells us that the global sections of the sheafOXΣ

(D) are spanned
by characters coming from lattice points ofPD, i.e.,

Γ(XΣ,OXΣ
(D)) =

⊕

m∈PD∩M

C ·χm.

This relates to the total coordinate ringS= C[xρ | ρ ∈ Σ(1)] as follows. Given
m∈ PD∩M, theD-homogenizationof χm is the monomial

x〈m,D〉 =
∏

ρ

x〈m,uρ〉+aρ
ρ

defined in (5.3.3). The inequalities definingPD guarantee thatx〈m,D〉 lies inS. Here
are the basic properties of these monomials.

Proposition 5.4.1. Assume that XΣ has no torus factors. If D and PD are as above
andα= [D] ∈Cl(XΣ) is the divisor class of D, then:

(a) For each m∈ PD∩M, the monomial x〈m,D〉 lies in Sα.



§5.4. Homogenization and Polytopes 231

(b) The map sending the characterχm of m∈ PD ∩M to the monomial x〈m,D〉

induces an isomorphism

Γ(XΣ,OXΣ
(D))≃ Sα.

Proof. Part (a) follows from the proof of Proposition 5.3.7. As for part (b), we use
the same proposition to conclude that

Γ(XΣ,OXΣ
(D))≃ Γ(XΣ,OXΣ

(α)) ≃ Sα.

One easily sees that this isomorphism is given byχm 7→ x〈m,D〉. �

Here are some examples of homogenization.

Example 5.4.2.The fan forPn has ray generatorsu0 = −∑n
i=1 ei andui = ei for

i = 1, . . . ,n. This gives variablesxi and divisorsDi for i = 0, . . . ,n. SinceM = Zn,
the character ofm= (b1, . . . ,bn) ∈ Zn is the Laurent monomialtm =

∏n
i=1 tbi

i .

For a positive integerd, the divisorD = d D0 has polyhedronPD = d∆n, where
∆n is the standardn-simplex. Givenm= (b1, . . . ,bn)∈ d∆n, its homogenization is

x〈m,D〉 = x〈m,u0〉+d
0 x〈m,u1〉+0

1 · · ·x〈m,un〉+0
n

= x−b1−···−bn+d
0 xb1

1 · · ·xbn
n

= xd
0

(x1

x0

)b1 · · ·
(xn

x0

)bn

,

which is the usual way to homogenizetm =
∏n

i=1 tbi
i with respect tox0.

This monomial has degreed = [dD0]∈Cl(Pn) = Z, in agreement with Proposi-
tion 5.4.1. The proposition also implies the standard fact that monomials of degree
d in x0, . . . ,xn correspond to lattice points ind∆n. ♦

Example 5.4.3. For P1× P1, we have ray generatorsu1 = e1,u2 = −e1,u3 =
e2,u4 = −e2 with corresponding variablesxi and divisorsDi. Given nonnegative
integersk, ℓ, we get the divisorD = kD2 + ℓD4. The polyhedronPD is the rectan-
gle with vertices(0,0),(k,0),(0, ℓ),(k, ℓ), and given(a,b) ∈ PD∩Z2, the Laurent
monomialta

1tb
2 homogenizes to

xa
1xk−a

2 xb
3xℓ−b

4 = xk
2xℓ4
(x1

x2

)a(x3

x4

)b
,

which is the usual way of turning a two-variable monomial into a bihomoge-
neous monomial of degree(k, ℓ) (remember that deg(x1) = deg(x2) = (1,0) and
deg(x3) = deg(x4) = (0,1)). Thus monomials of degree(k, ℓ) correspond to lattice
points in the rectanglePD. ♦

Example 5.4.4. The fan for Bl0(C2) is shown in Example 5.1.15, and its total
coordinate ringS= C[t,x,y] is described in Example 5.2.3. If we pickD = 0, then
the polyhedronPD ⊂ R2 is defined by the inequalities

〈m,ui〉 ≥ 0, i = 0,1,2.
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Sinceu1,u2 form a basis ofN = Z2 andu0 = u1+u2, PD is the first quadrant inR2.
Givenm= (a,b) ∈ PD∩Z2, the monomialta

1tb
2 homogenizes to

t〈m,u0〉x〈m,u1〉y〈m,u2〉 = ta+bxayb = (tx)a(ty)b.

where the ray generatorsu0,u1,u2 correspond to the variablest,x,y.

For example, the singular cubict3
1− t2

2 = 0 homogenizes to(tx)3− (ty)2 = 0,
which is the equation enountered in Example 5.2.11 when resolving the singularity
of this curve. ♦

One thing to keep in mind when doing toric homogenization is that characters
χm (in general) or Laurent monomialstm (in specific examples) are intrinsically
defined on the torusTN or (C∗)n. The homogenization process produces a “global
object” x〈m,D〉 relative to a divisorD that lives in the total coordinate ring or, via
Proposition 5.4.1, in the global sections ofOXΣ

(D).

We next study the isomorphismsSα ≃ Γ(XΣ,OXΣ
(D)) from Proposition 5.4.1.

We will see that they are compatible with linear equivalenceand multiplication.

First suppose thatD andE are linearly equivalent torus-invariant divisors. This
means thatD = E + div(χm) for somem∈ M. Proposition 4.0.29 implies that
f 7→ fχm induces an isomorphism

(5.4.1) Γ(XΣ,OXΣ
(D))≃ Γ(XΣ,OXΣ

(E)).

Turning to the associated polyhedra, we provedPE = PD +m in Exercise 4.3.2. An
easy calculation shows that ifm′ ∈ PD, then

x〈m
′,D〉 = x〈m

′+m,E〉

(Exercise 5.4.1). Hence (5.4.1) fits into a commutative diagram of isomorphisms

(5.4.2)
Γ(XΣ,OXΣ

(D))

∼ ''OOOOOOO

∼ // Γ(XΣ,OXΣ
(E))

∼wwooooooo

Sα.

Here,α= [D] = [E]∈Cl(XΣ) and the “diagonal” maps are the isomorphisms from
Proposition 5.4.1. You will verify these claims in Exercise5.4.1.

It follows thatSα gives a “canonical model” forΓ(XΣ,OXΣ
(D)), since the latter

depends on the particular choice of divisorD in the classα. It is also possible to
give a “canonical model” for the polyhedronPD (Exercise 5.4.2).

Next consider multiplication. LetD andE be torus-invariant divisors onXΣ

and setα= [D], β = [E] in Cl(XΣ). Then f ⊗g 7→ f g induces aC-linear map

Γ(XΣ,OXΣ
(D))⊗C Γ(XΣ,OXΣ

(E))−→ Γ(XΣ,OXΣ
(D+E))
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such that the isomorphisms of Proposition 5.4.1 give a commutative diagram

(5.4.3)

Γ(XΣ,OXΣ
(D))⊗C Γ(XΣ,OXΣ

(E))

��

// Γ(XΣ,OXΣ
(D+E))

��

Sα⊗C Sβ // Sα+β

where the bottom map is multiplication in the total coordinate ring (Exercise 5.4.3).
Thus homogenization turns multiplication of sections intoordinary multiplication.

Polytopes. A full dimensional lattice polytopeP⊆ MR gives a toric varietyXP.
Recall thatXP can be constructed in two ways:

• As the toric varietyXΣP of the normal fanΣP of P (Chapter 3).

• As the projective toric varietyX(kP)∩M of the set of characters(kP)∩M for
k≫ 0 (Chapter 2).

We will see that both descriptions relate nicely to homogenenous coordinates and
the total coordinate ring.

Given P as above, setn = dimP and letP(i) denote the set ofi-dimensional
faces ofP. ThusP(0) consists of vertices andP(n−1) consists of facets. The facet
presentation ofP given in equation (2.2.2) can be written as

(5.4.4) P = {m∈MR | 〈m,uF〉 ≥ −aF for all F ∈ P(n−1)}.
In terms of the normal fanΣP, we have bijections

P(0)←→ΣP(n) (vertices←→ maximal cones)

P(n−1)←→ΣP(1) (facets←→ rays).

When dealing with polytopes we index everything by facets rather than rays. Thus
each facetF ∈ P(n−1) gives:

• The facet normaluF , which is the ray generator of the corresponding cone.

• The torus-invariant prime divisorDF ⊆ XP.

• The variablexF in the total coordinate ringS. We callxF a facet variable.

We also have the divisor
DP =

∑

F

aF DF

from (4.2.5). The polytopePDP of this divisor is the polytopeP we began with
(Exercise 4.3.1). Hence, if we setα= [DP] ∈ Cl(XP), then we get isomorphisms

Sα ≃ Γ(XP,OXP(DP))≃
⊕

m∈P∩M

C ·χm.

In this situation, we write theDP-homogenization ofχm as

x〈m,P〉 =
∏

F

x〈m,uF 〉+aF
F .
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We callx〈m,P〉 aP-monomial.

The exponent of the variablexF in x〈m,P〉 gives thelattice distancefrom m
to the facetF. To see this, note thatF lies in the supporting hyperplane defined
by 〈m,uF〉+ aF = 0. If the exponent ofxF is a≥ 0, then to get from the sup-
porting hyperplane tom, we must pass through thea parallel hyperplanes, namely
〈m,uF〉+aF = j for j = 1, . . . ,a. Here is an example.

Example 5.4.5.Consider the toric varietyXP of the polygonP⊂R2 with vertices

@
@

@

x1

x5

x2

x4

x3

Figure 2. A polygon with facets labeled by variables

(1,1),(−1,1),(−1,0),(0,−1),(1,−1), shown in Figure 2. In terms of (5.4.4), we
havea1 = · · ·= a5 = 1, where the indices correspond to the facet variablesx1, . . . ,x5

indicated in Figure 2. The 8 points ofP∩Z2 give P-monomials

x2x2
3x2

4 x1x2
2x2

3x4 x2
1x3

2x2
3

x3x2
4x5 x1x2x3x4x5 x2

1x2
2x3x5

x1x4x2
5 x2

1x2x2
5,

where the position of eachP-monomialx〈m,P〉 corresponds to the position of the
lattice pointm∈ P∩Z2. The exponents are easy to understand if you think in
terms of lattice distances to facets. ♦

The lattice-distance interpretation of the exponents inx〈m,P〉 shows that lattice
points in the interior int(P) of P correspond to thoseP-monomials divisible by∏

F xF . For example, the onlyP-monomial in Example 5.4.5 divisible byx1 · · ·x5

corresponds to the unique interior lattice point.

We next relate the constructions of toric varieties given inChapter 2 and in
§5.1. In Chapter 2, we wrote the lattice points ofP asP∩M = {m1, . . . ,ms} and
considered the map

(5.4.5) Φ : TN −→ Ps−1, t 7−→ (χm1(t), . . . ,χms(t)).

The projective (possibly non-normal) toric varietyXP∩M is the Zariski closure of
the image ofΦ.
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On the other hand, we have the quotient construction ofXP

XP≃
(
Cr \Z(ΣP)

)
//G,

where we writeCr = CΣP(1). Also, the exceptional setZ(ΣP) can be described in
terms of theP-monomials coming from the vertices of the polytope.

Lemma 5.4.6. Thevertex monomialsx〈v,P〉, v a vertex of P, have the following
properties:

(a)
√
〈x〈v,P〉 | v∈ P(0)〉= B(ΣP), where B(ΣP) = 〈xσ̂ | σ ∈Σ(n)〉 is the irrelevant

ideal of S.

(b) Z(ΣP) = V(x〈v,P〉 | v∈ P(0)).

Proof. We saw above that verticesv∈ P(0) correspond bijectively to conesσv =

Cone(uF | v∈ F) ∈ ΣP(n). Then the lattice-distance interpretation ofx〈v,P〉 shows
the facet variablesxF appearing inx〈v,P〉 are precisely the variables appearing in
xσ̂v. This implies part (a), and part (b) follows immediately. �

If we setα= [DP] as above, then theP-monomialsx〈mi ,P〉, i = 1, . . . ,s, form a
basis ofSα and give a map

(5.4.6) Ψ : Cr \Z(ΣP)−→ Ps−1 p 7−→ (p〈m1,P〉, . . . , p〈ms,P〉),

wherep〈mi ,P〉 is the evaluation of the monomialx〈mi ,P〉 at the pointp∈Cr \Z(ΣP).
This map is well-defined since for eachp∈ Cr \Z(ΣP), Lemma 5.4.6 implies that
at least oneP-monomial (in fact, at least one vertex monomial) must be nonzero.

The maps (5.4.5) and (5.4.6) fit into a diagram

(C∗)r

��

� � // Cr \Z(ΣP)

Ψ

��
::

::
::

::
::

::
::

::
:

π

��

TN
� � //

Φ
**VVVVVVVVVVVVVVVVVVVVVVV XP

φ

&&

Ps−1.

Here, the map(C∗)r → TN is described in (5.1.2) andπ : Cr \Z(ΣP)→ XP is the
quotient map. This diagram has the following properties.

Proposition 5.4.7. There is a morphismφ : XP→ Ps−1 represented by the dotted
arrow in the above diagram that makes the entire diagram commute. Furthermore,
the image ofφ is precisely the projective toric variety XP∩M.

Proof. When we regard thexF as characters on(C∗)r = (C∗)ΣP(1), the exact se-
quence (5.1.1) tells us that

(5.4.7) χm =
∏

F

x〈m,uF 〉
F .
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Multiplying each side by
∏

F xaF
F , we obtain
(∏

F

xaF
F

)
χm = x〈m,D〉.

If we let m = mi, i = 1, . . . ,s and apply this to a point inp ∈ (C∗)r , we see that
Φ(p) andΨ(p) give the same point in projective space since

∏
F paF

F times vector
for Ψ(p) equals the vector forΦ(p). It follows that, ignoringφ for the moment,
the rest of the above diagram commutes.

We next show thatΨ is constant onG-orbits. This holds sinceP-monomials
are homogeneous of the same degree. In more detail, fix pointst = (tF) ∈ G,

p= (pF)∈Cr \Z(ΣP) and aP-monomialx〈m,D〉 =
∏

F x〈m,uF 〉+aF
F . Then evaluating

x〈m,D〉 at t · p gives

(t · p)〈m,D〉 =
∏

F

(tF pF)〈m,uF 〉+aF

=
(∏

F

t〈m,uF 〉
F

)(∏

F

taF
F

)
p〈m,D〉 =

(∏

F

taF
F

)
p〈m,D〉,

where the last equality follows from the description ofG given in Lemma 5.1.1.
Arguing as in the previous paragraph, it follows thatΨ(t · p) andΨ(p) give the
same point inPs−1. This proves the existence ofφ sinceπ is a good categorical
quotient, and this choice ofφ makes the entire diagram commute.

The final step is to show that the image ofφ : XP→ Ps−1 is the Zariski closure
XP∩M of the image ofΦ : TN→ Ps−1. First observe that

φ(XP) = φ(TN)⊆ φ(TN) = Φ(TN) = XP∩M

sinceφ is continuous in the Zariski topology andφ|TN
= Φ by commutivity of the

diagram. However,φ(XP) is Zariski closed inPs−1 sinceXP is projective. You will
give two proofs of this in Exercise 5.4.4, one topological (using constructible sets
and compactness) and one algebraic (using completeness andproperness). Once
we know thatφ(XP) is Zariski closed,Φ(TN)⊆ φ(XP) implies

XP∩M = Φ(TN)⊆ φ(XP),

andφ(XP) = XP∩M follows. �

In Chapter 2, we used the mapΦ—construced from characters—to parametrize
a big chunk of the projective toric varietyXP∩M. In contrast, Proposition 5.4.7 uses
the mapΨ—constructed fromP-monomials—to parametrizeall of XP∩M.

If the lattice polytopeP is very ample, then the results of Chapter 2 imply that
XP∩M is the toric varietyXP. So in the very ample case, theP-monomials give an
explicit construction of the quotient

(
Cr \Z(ΣP)

)
//G by mappingCr \Z(ΣP) to

projective space via theP-monomials. It follows that we have two ways to take the
quotient ofCr by G:
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• At the beginning of the chapter, we tookG-invariant polynomials—elements
of S0—to construct an affine quotient.

• Here, we useP-monomials—elements ofSα—to construct a projective quo-
tient, after removing a setZ(ΣP) of “bad” points.

TheP-monomials are notG-invariant but instead transform thesameway underG.
This is why we map to projective space rather than affine space. We will explore
these ideas further in Chapter 14 when we discussgeometric invariant theory.

WhenP is very ample, we have a projective embeddingXP ⊆ Ps−1 given by
the P-monomials inSα. If y1, . . . ,ys are homogeneous coordinates ofPs−1, then
thehomogeneous coordinate ringof XP is

C[XP] = C[y1, . . . ,ys]/I(XP)

as in §2.0. We also have the affine coneX̂P ⊆ Cr of XP, andC[XP] is the ordinary
coordinate ring of̂XP, i.e.,

C[XP] = C[X̂P].

Recall thatC[XP] is anN-graded ring sinceI(XP) is a homogeneous ideal.

AnotherN-graded ring is
⊕∞

k=0 Skα. This relates toC[XP] as follows.

Theorem 5.4.8. Let P be a very ample lattice polytope withα = [DP] ∈ Cl(XP).
Then:

(a)
⊕∞

k=0 Skα is normal.

(b) There is a natural inclusionC[XP]⊆⊕∞k=0 Skα such that
⊕∞

k=0 Skα is the nor-
malization ofC[XP].

(c) The following are equivalent:

(1) XP⊆ Ps−1 is projectively normal.

(2) P is normal.

(3)
⊕∞

k=0 Skα = C[XP].

(4)
⊕∞

k=0 Skα is generated as aC-algebra by its elements of degree1.

Proof. Consider the cone

C(P) = Cone(P×{1})⊆MR×R.

This cone is pictured in Figure 4 of §2.2. Recall thatkP is the “slice” ofC(P)
at heightk. Since the divisorDkP associated tokP is kDP, homogenization with
respect tokP induces an isomorphism

Skα ≃ Γ(XP,OXP(kDP))≃
⊕

m∈(kP)∩M

C ·χm.

Now consider the dual coneσP = C(P)∨ ⊆ NR×R. The semigroup algebra
C[C(P)∩ (M×Z)] is the coordinate ring of the affine toric varietyUσP. Given
(m,k) ∈C(P)∩ (M×Z), we write the corresponding character asχmtk.
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The algebraC[C(P)∩(M×Z)] is graded using the last coordinate, the “height.”
Since(m,k) ∈C(P)∩ (M×Z) if and only if m∈ kP (this is the “slice” observation
made above), we have

C[C(P)∩ (M×Z)]k =
⊕

m∈(kP)∩M

C ·χmtk.

Using (5.4.3), we obtain a gradedC-algebra isomorphism
∞⊕

k=0

Skα ≃ C[C(P)∩ (M×Z)].

This proves that
⊕∞

k=0 Skα is normal.

We next claim thatUσP is the normalization of the affine conêXP. For this,
we letA = (P∩M)×{1} ⊆M×Z. As noted in the proof of Theorem 2.4.1, the
affine cone ofXP = XP∩M is X̂P = YA . SinceP is very ample, one easily checks
thatA generatesM×Z, i.e.,ZA = M×Z (Exercise 5.4.5). It is also clear thatA

generates the coneC(P) = σ∨P . HenceUσP is the normalization of̂XP by Proposi-
tion 1.3.8. This immediately implies part (b).

For part (c), we observe that (1)⇔ (2) follows from Theorem 2.4.1, and (1)
⇔ (3) follows from parts (a) and (b) since the projective normality of XP ⊆ Ps−1

is equivalent to the normality ofC[XP]. Also (3)⇒ (4) is obvious sinceC[XP] is
generated by the images ofy1, . . . ,ys, which have degree 1. Finally, you will show
in Exercise 5.4.6 that (4)⇒ (2), completing the proof. �

Further Examples. We begin with an example of that illustrates how there can be
many different polytopes that give the same toric variety.

Example 5.4.9.The toric surface in Example 5.4.5 was defined using the polygon
shown in Figure 2. In Figure 3 we see four polygonsA,A∪B,A∪C,A∪D, all

@
@

@

@
@

@
@

@
@ A

B

C

D

Figure 3. Four polygonsA,A∪B,A∪C,A∪D with the same normal fan

of which have the same normal fan and hence give the same toricvariety. Since
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we are in dimension 2, these polygons are very ample (in fact,normal), so that
Theorem 5.4.8 applies.

These four polygons give four different projective embeddings, each of which
its own coordinate ring as a projective variety. By Theorem 5.4.8, these coordi-
nate rings all live in the total coordinate ringS. This explains the “total” in “total
coordinate ring.” ♦

Our next example involves torsion in the grading of the totalcoordinate ring.

Example 5.4.10.The fanΣ for P4 has ray generatorsu0 = −∑4
i=1 ei andui = ei

for i = 1, . . . ,4 in N = Z4 and is the normal fan of the standard simplex∆4 ⊆ R4.
Another polytope with the same normal fan is

P = 5∆4− (1,1,1,1) ⊆MR = R4,

so thatXP = P4. We saw thatP is reflexive in Example 2.4.5. One checks that
DP = D0 + · · ·+ D4 has degree 5∈ Z ≃ Cl(P4). SinceP is a translate of 5∆4,
(5.4.2) implies that theP-monomials form∈ P∩Z4 coincide with the homoge-
nizations coming from 5∆4, which are homogeneous polynomials of degree 5 in
S= C[x0, . . . ,x4].

SinceP is reflexive, its dualP◦ is also a lattice polytope. Furthermore ,

P◦ = Conv(u0, . . . ,u4)⊆ NR = R4

since the ray generators of the normal fan ofP◦ are theverticesof P by duality for
reflexive polytopes (be sure you understand this—Exercise 5.4.7). The vertices of
P are

(5.4.8)
v0 = (−1,−1,−1,−1), v1 = (4,−1,−1,−1), v2 = (−1,4,−1,−1)

v3 = (−1,−1,4,−1), v4 = (−1,−1,−1,4).

Thevi generate a sublatticeM1⊆M = Z4. In Exercise 5.4.7 you will show that the
mapM→ Z5 defined by

m∈M 7−→ (〈m,u0〉, . . . ,〈m,u4〉) ∈ Z5

induces an isomorphism

(5.4.9) M/M1≃
{
(a0,a1,a2,a3,a4) ∈ (Z/5Z)5 :

∑4
i=0 ai = 0

}
/(Z/5Z)

whereZ/5Z ⊆ (Z/55Z)5 is the diagonal subgroup. ThenM/M1 ≃ (Z/5Z)3, so
thatM1 is a lattice of index 125 inM.

The dual toric varietyXP◦ is determined by the normal fanΣ◦ of P◦. The
ray generators ofΣ◦ are the vectorsv0, . . . ,v4 from (5.4.8). The only possible
complete fan inR4 with these ray generators is the fan whose cones are generated
by all proper subsets of{v0, . . . ,v4}. Sincev0+ · · ·+v4 = 0 and thevi generateM1,
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the toric variety ofΣ◦ relative toM1 is P4, i.e.,XΣ◦,M1 = P4. (Remember thatΣ◦

is a fan in(M1)R = MR.) SinceM1⊆M has index 125, Proposition 3.3.7 implies

XP◦ = XP◦,M ≃ XP◦,M1/(M/M1) = P4/(M/M1).

Hence the dual toric varietyXP◦ is the quotient ofP4 by a group of order 125.

The total coordinate ringS◦ is the polynomial ringC[y0, . . . ,y4], graded by
Cl(XP◦). The notation is challenging, since by dualityN is the character lattice of
the torus ofXP◦. Thus (5.1.1) becomes the short exact sequence

0−→ N−→ Z5−→ Cl(XP◦)−→ 0,

whereN → Z5 is u 7→ (〈v0,u〉, . . . ,〈v4,u〉). If we let N1 = HomZ(M1,Z), then
M1⊆M dualizes toN⊆ N1 of index 125. Now consider the diagram

0

��

0 // N

��

// Z5

��

// Cl(XP◦)

��

// 0

0 // N1

��

// Z5 // Z // 0

N1/N

��

0

with exact rows and columns. In the middle row, we use Cl(XΣ◦,M1) = Cl(P4) = Z.
By the snake lemma, we obtain the exact sequence

0−→ N1/N −→ Cl(XP◦)−→ Z−→ 0,

so Cl(XP◦)≃ Z⊕N/N1. Thus the class group has torsion.

The polytopeP◦ has only six lattice points inN: the verticesu0, . . . ,u4 and the
origin (Exercise 5.4.7). When we homogenize these, we get six P◦-monomials

y〈0,D〉 =
4∏

j=0

y
〈vj ,0〉+1
j = y0 · · ·y4

y〈ui ,D〉 =
4∏

j=0

y
〈vj ,ui〉+1
j = y5

i , i = 0, . . . ,4

since〈v j ,ui〉= 5δi j −1 (Exercise 5.4.7). ♦

The equation

c0y5
0 + · · ·+c4y5

4 +c5y0 · · ·y4 = 0
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defines a hypersurfaceY ⊆ XP◦ since it is built fromP◦-monomials. If we want an
irreducible hypersurface, we must havec0, . . . ,c4 6= 0, in which caseY is isomor-
phic (via the torus action) to a hypersurface of the form

y5
0 + · · ·+y5

4 +λy0 · · ·y4 = 0.

This is thequintic mirror family, which played a crucial role in the development of
mirror symmetry. See [34] for an introduction to this astonishing subject.

Exercises for §5.4.

5.4.1. Let D,E be linearly equivalent torus-invariant divisors withD = div(χm)+E.

(a) If m′ ∈ PD∩M, then prove thatx〈m
′
,D〉 = x〈m

′
+m,E〉.

(b) Prove (5.4.2).

5.4.2. Fix a torus-invariant divisorD =
∑

ρ aρ Dρ and consider its associated polyhedron
PD = {m∈MR | 〈m,uρ〉 ≥ −aρ for all ρ}. Define

φD : MR −→RΣ(1)

byφD(m) = (〈m,uρ〉+aρ) ∈RΣ(1).

(a) Prove thatφD embedsMR as an affine subspace ofRΣ(1). Hint: Remember thatXΣ

has no torus factors.

(b) Prove thatφD induces a bijection

φD|PD
: PD ≃ φD(MR)∩RΣ(1)

≥0 .

This realizesPD as the polyhedron obtained by intersecting the positive orthantRΣ(1)
≥0

of RΣ(1) with an affine subspace.

(c) Let D = div(χm)+ E. Prove thatφD(PD) = φE(PE). Thus the polyhedron inRΣ(1)

constructed in part (b) depends only on the divisor class ofD. This is the “canonical
model” ofPD.

5.4.3. Prove that the diagram (5.4.3) is commutative.

5.4.4. The proof of Proposition 5.4.7 claimed that the image ofφ : XP→ Ps−1 was Zariski
closed. This follows from the general fact that ifφ : X→Y is a morphism of varieties and
X is complete, thenφ(X) is Zariski closed inY. You will prove this two ways.

(a) Give a topological proof that uses constructible sets and compactness. Hint: Remem-
ber that projective space is compact.

(b) Give an algebraic proof that uses completeness and properness from §3.4. Hint: Show
thatX×Y→Y is proper and use the graph ofφ.

5.4.5. Let P⊆MR be a very ample lattice polytope and letA = (P∩M)×{1} ⊆M×Z.
Prove thatZA = M×Z. Hint: First show thatZ′A = M×{0}, whereZ′A is defined in
the discussion preceding Proposition 2.1.6.

5.4.6. Prove of (4)⇒ (2) in part (c) of Theorem 5.4.8. Hint: (4) implies that the map
Sα⊗C Skα→ S(k+1)α is onto for allk≥ 0.

5.4.7. This exercise is concerned with Example 5.4.10.
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(a) Prove that ifP⊆ Rn is reflexive, then the vertices ofP are the ray generators of the
normal fan ofP◦.

(b) Prove (5.4.9).

(c) Prove〈v j ,ui〉= 5δi j −1, wherev j ,ui are defined in Example 5.4.10.

(d) LetG = HomZ(Cl(XP◦),C∗)⊆ (C∗)5. Use Proposition 1.3.18 to prove

G = {(λζ0, . . . ,λζ4) | λ ∈ C∗, ζi ∈ µ5, ζ0 · · ·ζ4 = 1} ≃ C∗⊕M/M1.

(e) Use part (e) and the quotient construction ofXP◦ to give another proof thatXP◦ =
P4/(M/M1). Also give an explicit description of the action ofM/M1 onP4.

5.4.8. This exercise will give another way to think about homogenization. Lete1, . . . ,en

be a basis ofM, so thatti = χei , i = 1, . . . ,n, are coordinates for the torusTN.

(a) Adapt the proof of (5.4.7) to show thatti =
∏

ρ x〈ei ,uρ〉
ρ when we think of thexρ as

characters on(C∗)Σ(1).

(b) Givenm∈ PD∩M, part (a) tells us that the Laurent monomialtm can be regarded as a
Laurent monomial in thexρ. Show that we can “clear denominators” by multiplying
by
∏

ρ xaρ
ρ to obtain a monomial in the polynomial ringS= C[xρ | ρ ∈ Σ(1)].

(c) Show that this monomial obtained in part (b) is the homogenizationx〈m,D〉.

5.4.9. Consider the toric varietyXP of Example 5.4.5.

(a) Compute Cl(XP) and find the classes of the four polygons appearing in Figure 3.

(b) Show thatXP is the blowup ofP1×P1 at one point.

5.4.10. Consider the reflexive polytopeP = 4∆3− (1,1,1)⊆ R3. Work out the analog of
Example 5.4.10 forP.

5.4.11. Fix an integera≥ 1 and consider the 3-simplexP = Conv(0,ae1,ae2,e3) ⊆ R3.
In Exercise 2.2.13, we claimed that the toric variety ofP is the weighted projective space
P(1,1,1,a). Prove this.



Chapter 6

Line Bundles on Toric
Varieties

§6.0. Background: Sheaves and Line Bundles

Sheaves ofOX-modules on a varietyX were introduced in §4.0. Recall that for
an affine varietyV = Spec(R), an R-moduleM gives a sheafM̃ on V such that
M̃(Vf ) = M f for all f 6= 0 in R. Globalizing this leads to quasicoherent sheaves
onX. These include coherent sheaves, which locally come from finitely generated
modules. In this section we develop the language of sheaf theory and discuss vector
bundles and line bundles.

The Stalk of a Sheaf at a Point. Since sheaves are local in nature, we need a
method for inspecting a sheaf at a pointp∈ X. This is provided by the notion of
direct limit over adirected set.

Definition 6.0.1. A partially ordered set(I ,�) is adirected setif

for all i, j ∈ I , there existsk∈ I such thati � k and j � k.

If {Ri} is a family of rings indexed by a directed set(I ,�) such that wheneveri � j
there is a homomorphism

µ ji : Ri −→ Rj

satisfyingµii = 1Ri andµi j ◦µ jk = µik, then theRi form adirected system. Let S
be the submodule of

⊕
i∈I Ri generated by the relationsr i −µ ji (r i), for r i ∈ Ri and

i � j. Then thedirect limit is defined as

lim
−→
i∈I

Ri =
(⊕

i∈I Ri
)
/S.

243
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For simplicity, we often write the direct limit as lim
−→

Ri. Note also that references

such as [3] write µi j instead ofµ ji .

For everyi ∈ I , there is a natural mapRi → lim
−→

Ri such that wheneveri � j,

the elementsr ∈Ri andµ ji (r) ∈Rj have the same image in lim
−→

Ri. More generally,

two elementsr i ∈ Ri andr j ∈ Rj are identified in lim
−→

Ri if there is a diagram

Ri µki

((QQQQQQ

Rk

Rj
µk j

66mmmmmm

such thatµki(r i) = µk j(r j).

Example 6.0.2.Given p∈ X, the definition of sheaf shows that the ringsOX(U),
indexed by neighborhoodsU of p, form a directed system under inclusion, and in
this case, the direct limit is the local ringOX,p. For a quasicoherent sheaf ofOX-
modules, take an affine open subsetV = Spec(R) containingp so thatF (V) = M,
whereM is anR-module. Ifmp = I(p) ⊆ R is the corresponding maximal ideal,
thenOX,p is the localizationRmp and

lim
−→
p∈U

F (U) = Mmp,

whereMmp is the localization ofM at the maximal idealmp. ♦

The termsheafhas agrarian origins: farmers harvesting their wheat tied arope
around a big bundle, and left it standing to dry. Think of the footprint of the bundle
as an open set, so that increasingly smaller neighborhoods around a point on the
ground pick out smaller and smaller bits of the bundle, narrowing to a single stalk.

Definition 6.0.3. Thestalk of a sheafF at a pointp∈ X is Fp = lim
−→

p∈U

F (U).

Injective and Surjective. A homomorphismφ : F → G of OX-modules was de-
fined in §4.0. We can also define what it means forφ to be injective or surjective.
The definition is a bit unexpected, since we need to take into account the fact that
sheaves are built to convey local data.

Definition 6.0.4. A sheaf homomorphism

φ : F −→ G

is injective if for any point p∈ X and open subsetU ⊆ X containingp, there exists
an open subsetV ⊆U containingp, with φV injective. Also,φ is surjectiveif for
any pointp and open subsetU containingp and anyg ∈ G (U), there is an open
subsetV ⊆U containingp and f ∈F (V) such thatφV( f ) = ρU ,V(g).
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In Exercise 6.0.1 you will prove that for a sheaf homomorphism φ : F → G ,

U 7−→ ker(φU : F (U)→ G (U))

defines a sheaf denoted ker(φ). You will also show thatφ is injective exactly when
the “naive” idea works, i.e., ker(φ) = 0. On the other hand, surjectivity of a sheaf
homomorphism need not mean that the mapsφU are surjective for allU . Here is
an example.

Example 6.0.5.On P1 = C∪{∞}, consider the Weil divisorD = {0} ⊆ C ⊆ P1.
If we write of P1 = U0∪U1 with U0 = Spec(C[t]) andU1 = Spec(C[t−1]), then
C(P1) = C(t). Since

Γ(P1,OP1(D)) = { f ∈ C(t)∗ | div( f )+D≥ 0}∪{0},

it follows easily that we have global sections

1, t−1 ∈ Γ(P1,OP1(D)).

For any f ∈ Γ(P1,OP1(D)), multiplication by f gives a sheaf homomorphism
OP1(−D)→OP1. Doing this for 1, t−1 ∈ Γ(P1,OP1(D)) gives

OP1(−D)⊕OP1(−D)−→OP1.

(Direct sums of sheaves will be defined below.) In Exercise 6.0.2 you will check
that this sheaf homomorpism is surjective. However, takingglobal sections gives

0⊕0 = Γ(P1,OP1(−D))⊕Γ(P1,OP1(−D))−→ Γ(P1,OP1) = C,

which is clearly not surjective. ♦

There is an additional point to make here. Givenφ : F → G , the presheaf

U 7−→ im(φU : F (U)→ G (U))

need not be a sheaf. Fortunately, this can be rectified. Givena presheafF , there is
an associated sheafF+, thesheafificationof F , which is defined by

F
+(U) = { f : U →∏p∈UFp | for all p∈U , f (p) ∈Fp and there is

p∈Vp⊆U andt ∈F (Vp) with f (x) = tp for all x∈Vp}.

See [77, II.1] for a proof thatF+ is a sheaf with the same stalks asFp. Hence

U 7−→ im(φU )

has a natural sheaf associated to it, denoted im(φ).
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Exactness. We define exact sequences of sheaves as follows.

Definition 6.0.6. A sequence of sheaves

F
i−1 di−1

−→F
i di

−→F
i+1

is exactatF i if there is an equality of sheaves

ker(di) = im(di−1).

The local nature of sheaves is again highlighted by the following result, whose
proof may be found in [77, II.1].

Proposition 6.0.7. The sequence in Definition 6.0.6 is exact if and only if

F
i−1
p

di−1
p−→F

i
p

di
p−→F

i+1
p

is exact for all p∈ X. �

It follows from Example 6.0.5 that if

(6.0.1) 0−→F
1 d1

−→F
2 d2

−→F
3 −→ 0

is a short exact sequence of sheaves, the corresponding sequence of global sections
may fail to be exact. However, we always have the following partial exactness,
which you will prove in Exercise 6.0.3.

Proposition 6.0.8. Given a short exact sequence of sheaves(6.0.1), taking global
sections gives the exact sequence

0−→ Γ(X,F 1)
d1

−→ Γ(X,F 2)
d2

−→ Γ(X,F 3).

In Chapter 9 we will usesheaf cohomologyto extend this exact sequence.

Example 6.0.9.For an affine varietyV = Spec(R), anR-moduleM gives a quasi-
coherent sheaf̃M onV. This operation preserves exactness, i.e., an exact sequence
of R-modules

0−→M1−→M2−→M3−→ 0

gives an exact sequence of sheaves

0−→ M̃1−→ M̃2−→ M̃3−→ 0

(see [77, Prop. II.5.2]). ♦

Here is a toric generalization of this example.

Example 6.0.10.Let S= C[xρ | ρ ∈ Σ(1)] is the total coordinate ring of a toric
varietyXΣ without torus factors. We saw in §5.3 that a gradedS-moduleM gives
the quasicoherent sheafM̃ on X.
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Then an exact sequence 0→M1→M2→M3→ 0 of gradedS-modules gives
an exact sequence

0−→ M̃1−→ M̃2−→ M̃3−→ 0

on XΣ. To see why, note that forσ ∈ Σ, the restriction ofM̃i to Uσ ⊆ XΣ is the
sheaf associated to((Mi)xσ̂)0, the elements of degree 0 in the localization ofMi at
xσ̂ ∈ S. Localization preserves exactness, as does taking elements of degree 0. The
desired exactness then follows from Example 6.0.9. ♦

Another example is the following exact sequence of sheaves from §3.0.

Example 6.0.11.A closed subvarietyi : Y →֒ X gives two sheaves:

• The sheafIY, defined byIY(U) = { f ∈ OX(U) | f (p) = 0 for p∈Y∩U}.
• The direct image sheafi∗OY, defined byi∗OY(U) = OY(Y∩U).

These are coherent sheaves onX and are related by the exact sequence

0−→IY −→OX −→ i∗OY −→ 0. ♦

Operations on Quasicoherent Sheaves ofOX. Operations on modules over a ring
have natural analogs for quasicoherent sheaves. In particular, given quasicoherent
sheavesF ,G , it is easy to show thatU 7→F (U)⊕G (U) defines the quasicoherent
sheafF ⊕G . We can also defineHomOX(F ,G ) via

U 7−→ HomOX(U)(F (U),G (U)).

In Exercise 6.0.4 you will show thatHomOX(F ,G ) is a quasicoherent sheaf.

On the other hand,U 7→F (U)⊗OX(U) G (U) is only a presheaf, so the tensor
productF ⊗OX G is defined to be the sheaf associated to this presheaf. This sheaf
is again quasicoherent and satisfies

Γ(U ,F ⊗OX G ) = F (U)⊗OX(U) G (U)

wheneverU ⊆ X is an affine open set (see [77, Prop. II.5.2]).

Global Generation. For a moduleM over a ring, there is always a surjection from
a free module ontoM. This is true for a sheafF of OX-modules whenΓ(X,F ) is,
in a certain sense, large enough.

Definition 6.0.12. A sheafF of OX-modules isgenerated by global sectionsif
there exists a set{si} ⊆ Γ(X,F ) such that at any pointp∈ X, the images of thesi

generate the stalkFp.

Any global sections∈ Γ(X,F ) gives a sheaf homomorphismOX → F . It
follows that ifF is generated by{si}i∈I , there is a surjection of sheaves

⊕

i∈I

OX −→F .

In the next section we will see that whenX is toric, there is a particularly nice way
of determining when the sheavesOX(D) are generated by global sections.
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Locally Free Sheaves and Vector Bundles. We begin with locally free sheaves.

Definition 6.0.13. A sheafF of OX-modules islocally free of rank r if there
exists an open cover{Uα} of X such that for allα, F |Uα

≃O r
Uα

.

Locally free sheaves are closely related to vector bundles.

Definition 6.0.14. A varietyV is avector bundle of rankr over a varietyX if there
is a morphism

π : V −→ X

and an open cover{Ui} of X such that:

(a) For everyi, there is an isomorphism

φi : π−1(Ui)
∼−→Ui×Cr

such thatφi followed by projection ontoUi is π|π−1(Ui)
.

(b) For every pairi, j, there isgi j ∈GLr(Γ(Ui ∩U j ,OX)) such that the diagram

Ui ∩U j ×Cr

π−1(Ui ∩U j)

φi|π−1(Ui∩U j ) 55kkkkkkkkk

φ j |π−1(Ui∩U j )
))SSSSSSSSS

Ui ∩U j ×Cr

1×gi j

OO

commutes.

Data{(Ui ,φi)} satisfying properties (a) and (b) is called atrivialization. The
mapφi : π−1(Ui)≃Ui ×Cr gives achart, whereπ−1(p)≃ Cr for p∈Ui. We call
π−1(p) thefiber over p. See Figure 1 on the next page.

For p∈Ui ∩U j , the isomorphisms

Cr ≃ {p}×Cr ∼←− π−1(p)
∼−→ {p}×Cr ≃ Cr

given byφi andφ j are related by the linear mapgi j (p). Hence the fiberφ−1(p)
has a well-defined vector space structure. This shows that a vector bundle really is
a “bundle” of vector spaces.

On a vector bundle, thegi j are calledtransition functionsand can be regarded
as afamily of transition matrices that vary asp∈Ui varies. Just as there is no pre-
ferred basis for a vector space, there is no canonical choiceof basis for a particular
fiber. Note also that the transition functions satisfy the compatibility conditions

(6.0.2)
gik = gi j ◦g jk onUi ∩U j ∩Uk

gi j = g−1
ji onUi ∩U j .
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gij(p)

p
↑

Ui Uj

X

Ui ×Cr Uj ×Cr

φi : π−1(p) −∼ { p}× Cr φj : π−1(p) −∼ { p}× Cr

Figure 1. Visualizing a vector bundle

Definition 6.0.15. A sectionof a vector bundleV overU ⊆ X open is a morphism

s : U −→V

such thatπ ◦s(p) = p for all p∈U . A sections : X→V is aglobal section.

A sectionspicks out a points(p) in each fiberπ−1(p), as shown in Figure 2.

p

 ( )s x

X

 π ( )

 ( )

p

s p

−1

Figure 2. For a sections, s(p) ∈ π−1(p)
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We can describe a vector bundle and its global sections purely in terms of the
transition functionsgi j as follows.

Proposition 6.0.16.Let X be a variety with an affine open cover{Ui}, and assume
that for every i, j, we have gi j ∈ GLr(Γ(Ui ∩U j ,OX)) satisfying the compatibility
conditions(6.0.2). Then:

(a) There is a vector bundleπ :V→X of rank r, unique up to isomorphism, whose
transition functions are the gi j .

(b) A global section s: X→V is uniquely determined by a collection of r-tuples
si ∈ O r

X such that for all i, j,

si |Ui∩U j
= gi j sj |Ui∩U j

.

Proof. One easily checks that theg−1
i j satisfy the gluing conditions from §3.0. It

follows that the affine varietiesUi ×Cr glue together to give a varietyV. Fur-
thermore, the projection mapsUi ×Cr → Ui glue together to give a morphism
π : V → X. It follows easily that the open set ofV corresponding toUi ×Cr is
π−1(Ui), which gives an isomorphismφi : π−1(Ui)≃Ui×Cr . HenceV is a vector
bundle with transition functionsgi j .

Given a sections : X→V, φi ◦s|Ui
is a section ofUi×Cr →Ui. Thus

φi ◦s|Ui
(p) = (p,si(p)) ∈Ui ×Cr ,

wheresi ∈ OX(Ui)
r . By Definition 6.0.14, thesi satisfy the desired compatibility

condition, and since every global section arises this way, we are done. �

Let F (U) denote the set of all sections ofV overU . One easily sees thatF is
a sheaf onX and in fact is a sheaf ofOX-modules since the fibers are vector spaces.
In fact,F is an especially nice sheaf.

Proposition 6.0.17.The sheaf of sections of a vector bundle is locally free.

Proof. For a trivial vector bundleU ×Cr → U , the proof of Proposition 6.0.16
shows that a section is determined by a morphismU → Cr , i.e., an element of
OU(U)r . Thus the sheaf associated to a trivial vector bundle overU is O r

U .

For a general vector bundleπ : V → X with trivialization {(Ui ,φi)}, eachUi

gives an isomorphism of vector bundles

π−1(Ui)
φi

//

π|π−1(Ui) ��
99

99
99

9
Ui×Cr

����
��

��
�

Ui.

Since isomorphic vector bundles have isomorphic sheaves ofsections, it follows
that if F is the sheaf of sections ofπ : V → X, thenF |Ui

≃O r
Ui

. �
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Line Bundles and Cartier Divisors. Since a vector space of dimension one is a
line, a vector bundle of rank 1 is called aline bundle. Despite the new terminology,
line bundles are actually familiar objects whenX is normal.

Theorem 6.0.18.The sheafL = OX(D) of a Cartier divisor D on a normal variety
X is the sheaf of sections of a line bundle VL → X.

Proof. Recall from Chapter 4 that a Cartier divisor is locally principal, so that
X has an affine open cover{Ui}i∈I with D|Ui

= div( fi)|Ui
, fi ∈ C(X)∗. Thus

{(Ui , fi)}i∈I is local data forD. Note also that

div( fi)|Ui∩U j
= div( f j)|Ui∩U j

,

which implies fi/ f j ∈ OX(Ui ∩U j)
∗ by Proposition 4.0.16.

We use this data to construct a line bundle as follows. Since

GL1(OX(Ui ∩U j)) = OX(Ui ∩U j)
∗,

the quotientsgi j = fi/ f j may be regarded as transition functions. These satisfy the
hypotheses of Proposition 6.0.16 and hence give a line bundleπ : VL → X.

A global sectionf ∈ Γ(X,OX(D)) satisfies div( f )+D≥ 0, so that onUi ,

div( f fi)|Ui
= div( f )|Ui

+div( fi)|Ui
= (div( f )+D)|Ui

≥ 0.

This shows thatsi = fi f ∈ OX(D)(Ui). Then

gi j sj = fi/ f j · f j f = fi f = si ,

which by part (b) of Proposition 6.0.16 gives a global section of π : VL → X.
Conversely, the proposition shows that a global section ofVL → X gives functions
si ∈OX(D)(Ui) such thatgi j sj = si . It follows that f = si/ fi ∈C(X) is independent
of i. One easily checks thatf ∈ Γ(X,OX(D)). The same argument works when we
restrict to any open subset ofX. It follows thatL = OX(D) is the sheaf of sections
of π : VL → X. �

We will see shortly that this process is reversible, i.e., there is a one-to-one
correspondence between line bundles and sheaves coming from Cartier divisors.
First, we give an important example.

Example 6.0.19.When we regardPn as the set of lines through the origin inCn+1,
each pointp∈ Pn corresponds to a lineℓp ⊆ Cn+1. We assemble these lines into
a line bundle as follows. Letx0, . . . ,xn be homogeneous coordinates onPn and
y0, . . . ,yn be coordinates onCn+1. Define

V ⊆ Pn×Cn+1

as the locus where the matrix (
x0 · · · xn

y0 · · · yn

)
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has rank one. ThusV is defined by the vanishing ofxiy j − x jyi . Then define the
mapπ : V → Pn to be projection on the first factor ofPn×Cn+1. To see thatV
is a line bundle, consider the open subsetCn ≃Ui ⊆ Pn wherexi is invertible. On
π−1(Ui) the equations definingV become

x j

xi
yi = y j , for all j 6= i.

Thus(x0, . . . ,xn,y0, . . . ,yn) 7→ (x0, . . . , ,xn,yi) defines an isomorphism

φi : π−1(Ui)
∼−→Ui×C.

In other words,yi is a local coordinate for the lineC overUi. Switching to the
coordinate system overU j , we have the local coordinatey j , which overUi ∩U j is
related toyi via

xi

x j
y j = yi .

Hence the the transition function fromUi ∩U j×C toUi ∩U j×C is given by

gi j =
xi

x j
∈ OPn(Ui ∩U j)

∗.

This bundle is called thetautological bundleon Pn. In Example 6.0.21 below, we
will describe the sheaf of sections of this bundle. ♦

Projective spaces are the simplest type of Grassmannian, and just as in this
example, the construction of the Grassmannian shows that itcomes equipped with
a tautological vector bundle. In Exercise 6.0.5 you will determine the transition
functions for the GrassmannianG(1,3).

Invertible Sheaves and the Picard Group. Propositions 6.0.17 and 6.0.18 imply
that the sheafOX(D) of a Cartier divisor is locally free of rank 1. In general, a
locally free sheaf of rank 1 is called aninvertible sheaf.

The relation between Cartier divisors, line bundles and invertible sheaves is
described in the following theorem.

Theorem 6.0.20.LetL be an invertible sheaf on a normal variety X. Then:

(a) There is a Cartier divisor D on X such thatL ≃ OX(D).

(b) There is a line bundle VL → X whose sheaf of sections is isomorphic toL .

Proof. The part (b) of the theorem follows from part (a) and Proposition 6.0.18. It
remains to prove part (a).

SinceX is irreducible, any nonempty openU ⊆ X gives a domainOX(U) with
field of fractionsC(U). By Exercise 3.0.4,C(U) = C(X), so thatU 7→ C(U)
defines a constant sheaf onX, denotedKX. This sheaf is relevant sinceOX(D) is
defined as a subsheaf ofKX.
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First assume thatL is a subsheaf ofKX. Pick an open cover{Ui} of X such
thatL |Ui

≃ OX|Ui
for everyi. OverUi , this gives homomorphisms

OX(Ui)≃L (Ui) →֒ C(X).

Let f−1
i ∈C(X) be the image of 1∈ OX(Ui). One can show without difficulty that

fi/ f j ∈ OX(Ui ∩U j)
∗. Then{(Ui , fi)} is local data for a Cartier divisorD on X

satisfyingL = OX(D).

For the general case, observe that on an irreducible variety, every locally con-
stant sheaf is globally constant (Exercise 6.0.6). Now letL be any invertible sheaf
onX. On a small enough open setU , L (U)≃ OX(U), so that

L (U)⊗OX(U) KX(U)≃OX(U)⊗OX(U) KX(U)≃KX(U) = C(X).

ThusL ⊗OX KX is locally constant and hence constant. This easily impliesthat
L ⊗OX KX ≃KX, and composing this with the inclusion

L −→L ⊗OX KX

expressesL as a subsheaf ofKX. �

We note without proof that the line bundle corresponding to an invertible sheaf
is unique up to isomorphism. Because of this result, algebraic geometers tend to
use the termsline bundleandinvertible sheafinterchangeably, even though strictly
speaking the latter is the sheaf of sections of the former.

We next discuss some properties of invertible sheaves coming from Cartier
divisors. A first result is that ifD andE are Cartier divisors onX, then

(6.0.3) OX(D)⊗OX OX(E)≃OX(D+E).

This follows becausef ⊗g 7→ f g induces a sheaf homomorpism

OX(D)⊗OX OX(E)−→OX(D+E)

which is clearly an isomorphism on any open set whereOX(D) is trivial.

By standard properties of tensor product, the isomorphism (6.0.3) induces an
isomorphism

OX(E)≃HomOX(OX(D),OX(D+E)).

In particular, whenE =−D, we obtain

OX(D)⊗OX OX(−D)≃ OX and OX(−D)≃ OX(D)∨,

whereOX(D)∨ =HomOX(OX(D),OX) is thedual of OX(D).

More generally, the tensor product of invertible sheaves isagain invertible, and
if L is invertible, thenL ∨ =HomOX(L ,OX) is invertible and

L ⊗OX L
∨ ≃ OX.

This explains why locally free sheaves of rank 1 are called invertible.
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Example 6.0.21.There is a nice relation between the tautological bundle onPn

and the invertible sheafOPn(1) introduced in Example 4.3.1. Recall that theTN-
invariant divisorsD0, . . . ,Dn on Pn are all linearly equivalent, and so define iso-
morphic sheaves, usually denotedOPn(1). The local data for the Cartier divisorD0

is easily seen to be{(Ui ,
x0
xi

)}, whereUi ⊆ Pn is the open set wherexi 6= 0. Thus
the transition functions forOX(D0) are given by

gi j =

x0
xi
x0
xj

=
x j

xi
.

These are the inverses of the transition functions for the tautological bundle from
Example 6.0.19. It follows that the sheaf of sections of the tautological bundle is
OPn(1)∨ = OPn(−1). ♦

We can also explain when Cartier divisors give isomorphic invertible sheaves.

Proposition 6.0.22.Two Cartier divisors D,E give isomorphic invertible sheaves
OX(D)≃ OX(E) if and only if D∼ E.

Proof. By Proposition 4.0.29, linearly equivalent Cartier divisors give isomorphic
sheaves. For the converse, we first prove thatOX(D) = OX impliesD = 0.

AssumeOX(D) = OX. Then 1∈ Γ(X,OX) = Γ(X,OX(D)), soD≥ 0. If D 6= 0,
then we can pick an irreducible divisorD0 that appears inD with positive coeffi-
cient. The local ringOX,D0 is a DVR, so we can findh∈ OX,D0 with νD0(h) = 1.
SetU = X \W, whereW is the union of all irreducible divisorsD′ 6= Z0 with
νD′(h) 6= 0. There are only finitely many such divisors, so thatU is a nonempty
open subset ofX with U ∩D0 6= ∅. Thenh∈ Γ(U ,OX), andh−1 /∈ Γ(U ,OX) since
h vanishes onU ∩D0. However,

(D+div(h−1))|U = (D−div(h))|U = (D−D0)|U ≥ 0,

so thath−1 ∈ Γ(U ,OX(D)) = Γ(U ,OX). This contradiction provesD = 0.

Now suppose that Cartier divisorsD,E satisfy OX(D) ≃ OX(E). Tensoring
each side withOX(−E) and applying (6.0.3), we see thatOX(D−E) ≃ OX. If
1∈ Γ(X,OX) maps tog∈ Γ(X,OX(D−E)) via this isomorphism, then

gOX = OX(D−E)

as subsheaves ofKX. Thus

OX = g−1
OX(D−E) = O(D−E+div(g)),

where the last equality follows from the proof of Proposition 4.0.29. By the previ-
ous paragraph, we haveD−E+div(g) = 0, which implies thatD∼ E. �

In Chapter 4, the Picard group was defined as the quotient

Pic(X) = CDiv(X)/Div0(X).
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We can interpret this in terms of invertible sheaves as follows. GivenL invertible,
Theorem 6.0.20 tells us thatL ≃ OX(D) for some Cartier divisorD, which is
unique up to linear equivalence by Proposition 6.0.22. Hence we have a bijection

Pic(X)≃ {isomorphism classes of invertible sheaves onX}.

The right-hand side has a group structure coming from tensorproduct of invertible
sheaves. By (6.0.3), the above bijection is a group isomorphism.

In more sophisticated treatments of algebraic geometry, the Picard group of an
arbitrary variety is defined using invertible sheaves. Also, Cartier divisors can be
defined on an irreducible variety in terms of local data, without assuming normality
(see [77, II.6]), though one loses the connection with Weil divisors. Since most
of our applications involve toric varieties coming from fans, we will continue to
assume normality when discussing Cartier divisors.

Stalks, Fibers, and Sections. From here on, we will think of a line bundleL on
X as the sheaf of sections of a rank 1 vector bundleπ : VL → X. Given a section
s∈L (U) andp∈U , we get the following:

• SinceVL is a vector bundle of rank 1, we have thefiber π−1(p) ≃ C. Then
s : U →VL givess(p) ∈ π−1(p).

• SinceL is a locally free sheaf of rank 1, we have thestalkLp ≃ OX,p. Then
s∈L (U) givessp ∈Lp.

In Exercise 6.0.7 you will show that these are related via theequivalences

(6.0.4)
s(p) 6= 0 in π−1(p) ⇐⇒ sp /∈mpLp

⇐⇒ sp generatesLp as anOX,p-module

A sections vanishesat p∈ X if s(p) = 0 in π−1(p), i.e., if sp ∈mpLp.

Basepoints. It can happen that a collection of sections of a line bundle vanish at a
point p. This leads to the following definition.

Definition 6.0.23. A subspaceW ⊆ Γ(X,L ) has no basepointsor is basepoint
free if for every p∈ X, there iss∈W with s(p) 6= 0.

As noted earlier, a global sections∈ Γ(X,L ) gives a sheaf homomorphism
OX→L . Thus a subspaceW ⊆ Γ(X,L ) gives

W⊗C OX −→L

defined bys⊗h 7→ hs. Then (6.0.4) and Proposition 6.0.7 imply the following.

Proposition 6.0.24. A subspace W⊆ Γ(X,L ) has no basepoints if and only if
W⊗C OX→L is surjective. �
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For a line bundleL = OX(D) of a Cartier divisorD on a normal variety, the
vanishing locus of a global section has an especially nice interpretation. The local
data{(Ui , fi)} of D gives the rank 1 vector bundleπ : VL → X with transition
functionsgi j = fi/ f j . Hence we can think of a nonzero global section ofOX(D) in
two ways:

• A rational function f ∈ C(X)∗ satisfyingD+div( f )≥ 0.

• A morphisms : X→VL whose composition withπ is the identity onX.

The relation betweens and f is given in the proof of Theorem 6.0.18: overUi , the
sections looks like (p,si(p)) for si = fi f ∈ OX(Ui). It follows thats= 0 exactly
whensi = 0. SinceD|Ui

= div( fi)|Ui
, the divisor ofsi onUi is given by

div( fi f )|Ui
= (D+div( f ))|Ui

.

These patch together in the obvious way, so that thedivisor of zerosof s is

div0(s) = D+div( f ).

Thus the divisor of zeros of a global section is an effective divisor that is linearly
equivalent toD. It is also easy to see thatanyeffective divisor linearly equivalent
to D is the divisor of zeros of a global section ofOX(D) (Exercise 6.0.8).

In terms of Cartier divisors, Proposition 6.0.24 has the following corollary.

Corollary 6.0.25. The following are equivalent for a Cartier divisor D:

(a) OX(D) is generated by global sections in the sense of Definition 6.0.12.

(b) D is basepoint free, meaning thatΓ(X,OX(D)) is basepoint free.

(c) For every p∈ X there is s∈ Γ(X,OX(D)) with p /∈ Supp(div0(s)). �

The Pullback of a Line Bundle. Let L be a line bundle onX andVL → X the
associated rank 1 vector bundle. A morphismf : Z→ X gives the fibered product
f ∗VL = VL ×X Z from §3.0 that fits into the commutative diagram

f ∗VL
//

��

VL

π

��

Z
f

// X.

It is easy to see thatf ∗VL is a rank 1 vector bundle overZ.

Definition 6.0.26. The pullback f ∗L of the sheafL is the sheaf of sections of
the rank 1 vector bundlef ∗VL defined above.

Thus the pullback of a line bundle is again a line bundle. Furthermore, there is
a natural map on global sections

f ∗ : Γ(X,L )−→ Γ(Z, f ∗L )
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defined as follows. A global sections : X→VL gives the commutative diagram:

Z
f

//

1Z

$$

f∗(s)
""

X

s
��

f ∗VL
//

��

VL

π

��

Z
f

// X

The universal property of fibered products guarantees the existence and uniqueness
of the dotted arrowf ∗(s) : Z→ f ∗VL that makes the diagram commute. It follows
that f ∗(s) ∈ Γ(Z, f ∗L ).

Example 6.0.27.Let X ⊆ Pn be a projective variety. If we write the inclusion as
i : X →֒ Pn, then the line bundleOPn(1) gives the line bundlei∗OPn(1) onX. When
the projective embedding ofX is fixed, this line bundle is often denotedOX(1).

Thus a projective variety always comes equipped with a line bundle. However,
it is not unique, since the same variety may have many projective embeddings. You
will work out an example of this in Exercise 6.0.9. ♦

In general, given a sheafF of OX-modules onX and a morphismf : Z→ X,
one gets a sheaff ∗F of OZ-modules onZ. The definition is more complicated, so
we refer the reader to [77, II.5] for the details.

Line Bundles and Maps to Projective Space. We now reverse Example 6.0.27 by
using a line bundleL on X to create a map to projective space.

Fix a finite-dimensional subspaceW ⊆ Γ(X,L ) with no basepoints and let
W∨ = HomC(W,C) be its dual. The projective space ofW∨ is

P(W∨) = (W∨ \{0})/C∗.

We define a mapφL ,W : X→ P(W∨) as follows. Fixp∈ X and pick a nonzero
elementvp∈ π−1(p)≃C, whereπ :VL →X is the rank 1 vector bundle associated
to L . For eachs∈W, there isλs∈C such thats(p) = λsvp. Then the map defined
by ℓp(s) = λs is linear and nonzero sinceW has no base points. Thusℓp∈W∨, and
sincevp is unique up to an element ofC∗, the same is true forℓp. Then

φL ,W(p) = ℓp

defines the desired mapφL ,W : X→ P(W∨).

Lemma 6.0.28.The mapφL ,W : X→ P(W∨) is a morphism.

Proof. Let s0, . . . ,sm be a basis ofW and letUi = {p∈ X | si(p) 6= 0}. These open
sets coverX sinceW has no basepoints. Furthermore, the natural map

Ui×C−→ π−1(Ui), (p,λ) 7−→ λsi(p)
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is easily seen to be an isomorphism. Since all sections ofUi ×C→ C are of the
form p 7→ (p,h(p)) for h∈ OX(Ui), it follows that for all 0≤ j ≤m, we can write
sj |Ui

= hi j si |Ui
, hi j ∈ OX(Ui).

The definition ofφL ,W uses a nonzero vectorvp ∈ π−1(p). OverUi , we can
usesi(p) ∈ π−1(p). Thensj(p) = hi j (p)si(p) implies ℓp(sj(p)) = hi j (p). Since
ℓ 7→ (ℓ(s0), . . . , ℓ(sm)) gives an isomorphismP(W∨)≃ Pm, φL ,W|Ui

can be written

(6.0.5) Ui −→ Pm, p 7−→ (hi0(p), . . . ,him(p)),

which is a morphism sincehii = 1. �

WhenW has no basepoints ands0, . . . ,sm spanW, φL ,W is often written

(6.0.6) X −→ Pm, p−→ (s0(p), . . . ,sm(p)) ∈ Pm

with the understanding that this means (6.0.5) onUi = {p∈ X | si(p) 6= 0}.
Furthermore, whenL = OX(D), we can think of the global sectionssi as

rational functionsgi such thatD+div(gi)≥ 0. ThenφL ,W can be written

(6.0.7) X −→ Pm, p−→ (g0(p), . . . ,gm(p)) ∈ Pm.

Sincegi(p) may be undefined, this needs explanation. The local data{(U j , f j)} of
D implies that f jg0, . . . , f jgm∈OX(U j). Then (6.0.7) means thatφL ,W|U j

is

U j −→ Pm, p−→ ( f jg0(p), . . . , f jgm(p)) ∈ Pm.

This is a morphism onU j since the global sections corresponding tog0, . . . ,gm have
no base points.

Exercises for §6.0.

6.0.1. For a sheaf homomorphismφ : F → G , show that

U 7−→ ker(φU )

defines a sheaf. Also prove that the following are equivalent:

(a) The kernel sheaf is identically zero.

(b) φU is injective for every open subsetU .

(c) φ is injective as defined in Definition 6.0.4.

6.0.2. In Example 6.0.5, prove thatOP1(−D)⊕OP1(−D)→OP1 is surjective.

6.0.3. Prove Proposition 6.0.8.

6.0.4. Let F ,G be quasicoherent sheaves onX. Prove thatU 7→HomOX(U)(F (U),G (U))
defines a quasicoherent sheafHomOX(F ,G ).

6.0.5. The GrassmannianG(1,3) is defined as the space of lines inP3, or equivalently, of
2-dimensional subspaces ofV = C4. This exercise will construct thetautological bundle
on G(1,3), which assembles these 2-dimensional subspaces into a rank2 vector bundle
overG(1,3). A point of G(1,3) corresponds to a full rank matrix

p =

(
α
β

)
=

(
α0 α1 α2 α3

β0 β1 β2 β3

)
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up to left multiplication by elements of GL2(C). Then define

V ⊆G(1,3)×C4

to consist of all pairs((α
β ),v) such thatv∈ Span(α,β).

(a) A pair((α
β ),v) gives the 3×4 matrix

A =




v
α
β



=




v0 v1 v2 v3

α0 α1 α2 α3

β0 β1 β2 β3



 .

Prove that((α
β ),v) is a point ofV if and only if the maximal minors ofA vanish. This

shows thatV ⊆G(1,3)×C4 is a closed subvariety.

(b) Projection onto the first factor gives a morphismπ : V → G(1,3). Explain why the
fiber overp∈G(1,3) is the 2-dimensional subspace ofC4 corresponding top.

(c) Given 0≤ i < j ≤ 3, define

Ui j = {(α
β ) ∈G(1,3) | αiβ j −α jβi 6= 0}.

Prove thatUi j ≃ C4 and that theUi j give an affine open cover ofG(1,3).

(d) Given 0≤ i < j ≤ 3, pickk< l such that{i, j,k, l} = {0,1,2,3}. Prove that the map
(p,v) 7→ (p,vk,vl ) gives an isomorphism

π−1(Ui j )
∼−→Ui j ×C2.

(e) By part (d),V is a vector bundle overG(1,3). Determine its transition functions.

6.0.6. Prove that a locally constant sheaf on an irreducible variety is constant.

6.0.7. Prove (6.0.4).

6.0.8. Prove that an effective divisor linearly equivalent to a Cartier divisorD is the divisor
of zeros of a global section ofOX(D).

6.0.9. Let νd : P1→ Pd be the Veronese mapping defined in Example 2.3.14. Prove that
ν∗dOPd(1) = OP1(d).

6.0.10. Let f : Z→ X be a morphism and letL be a line bundle onX that is generated by
global sections. Prove that the pullback line bundlef ∗L is generated by global sections.

6.0.11. Let D be a Cartier divisor on a complete normal varietyX.

(a) f ,g ∈ Γ(X,OX(D)) \ {0} give effective divisorsD + div( f ),D + div(g) on X. Prove
that these divisors are equal if and only iff = λg, λ ∈ C∗.

(b) Thecomplete linear systemof D is defined to be

|D|= {E ∈ CDiv(X) | E ∼ D, E ≥ 0}.
Thus the complete linear system ofD consists of all effective Cartier divisors onX
linearly equivalent toD. Use part (a) to show that|D| can be identified with the
projective space ofΓ(X,OX(D)), i.e., there is a natural bijection

|D|= P(Γ(X,OX(D))) = (Γ(X,OX(D))\ {0})/C∗.
(c) Assume thatD has no basepoints and setW = Γ(X,OX(D)). ThenP(W∨) can be

identified with the set hyperplanes inP(W) = |D|. Prove that the morphismφOX(D),W :
X→ P(W∨) is given by

φOX(D),W = {E ∈ |D| | p∈ Supp(E)} ⊆ |D|.
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§6.1. Ample Divisors on Complete Toric Varieties

Our aim in this section is to determine when a Cartier divisoron a complete toric
variety gives a projective embedding. We will use the key concept ofampleness.

Definition 6.1.1. Let D be a Cartier divisor on a complete normal varietyX. As
we noted in §4.3,W = Γ(X,OX(D)) is finite-dimensional.

(a) The divisorD and the line bundleOX(D) arevery amplewhenD has no base-
points andφD = φOX(D),W : X→ P(W∨) is a closed embedding.

(b) D andOX(D) areamplewhenkD is very ample for some integerk> 0.

Our discussion will tie together concepts from earlier sections, including:

• The very ample polytopes from Definition 2.2.16.

• The polyhedraPD from Proposition 4.3.3.

• The support functions of Cartier divisors from Theorem 4.2.12.

We will see that support functions give a simple, elegant characterization of when
D is ample, as well as whenD is basepoint free.

Basepoint Free Divisors. Consider the toric varietyXΣ of a complete fanΣ in
NR ≃ Rn and letD =

∑
ρaρDρ be a torus-invariant Cartier divisor onXΣ. By

Propositions 4.3.3 and 4.3.8, we have the global sections

Γ(XΣ,OXΣ
(D)) =

⊕

m∈PD∩M

C ·χm,

wherePD ⊆MR is the polytope defined by

PD = {m∈MR | 〈m,uρ〉 ≥ −aρ for all ρ ∈ Σ(1)}.

We first study whenD =
∑

ρaρDρ is basepoint free. Recall from §4.2 that
being Cartier means that for everyσ ∈ Σ, there ismσ ∈M with

(6.1.1) 〈mσ,uρ〉=−aρ, ρ ∈ σ(1).

Furthermore,D is uniquely determined by the Cartier data{mσ}σ∈Σ(n) sinceΣ is
complete. Then we have the following preliminary result.

Proposition 6.1.2. The following are equivalent:

(a) D has no basepoints, i.e.,OXΣ
(D) is generated by global sections.

(b) mσ ∈ PD for all σ ∈ Σ(n).

Proof. First suppose thatD is generated by global sections and takeσ ∈ Σ(n).
The TN-orbit corresponding toσ is a fixed pointp of the TN-action, and by the
Orbit-Cone Correspondence,

{p} =
⋂

ρ∈σ(1)

Dρ.
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By Corollary 6.0.25, there is a global sections such thatp is not in the support
of the divisor of zeros div0(s) of s. SinceΓ(XΣ,OXΣ

(D)) is spanned byχm for
m∈ PD ∩M, we can assume thats is given byχm for somem∈ PD ∩M. The
discussion preceding Corollary 6.0.25 shows that the divisor of zeros ofs is

div0(s) = D+div(χm) =
∑

ρ

(aρ+ 〈m,uρ〉)Dρ.

The pointp is not in the support of div0(s) yet lies inDρ for everyρ ∈ σ(1). This
forcesaρ+ 〈m,uρ〉= 0 for ρ ∈ σ(1). Sinceσ is n-dimensional, we conclude that

For the converse, takeσ ∈ Σ(n). Sincemσ ∈ PD, the characterχmσ gives a
global sections whose divisor of zeros is div0(s) = D + div(χmσ). Using (6.1.1),
one sees that the support of div0(s) missesUσ, so thats is nonvanishing onUσ.
Then we are done since theUσ coverXΣ. �

Later in the section we will improve this result by showing that (b) is equivalent
to the stronger condition that themσ, σ ∈ Σ(n), are the vertices ofPD. This will
imply in particular thatPD is a lattice polytope whenD is basepoint free. We will
also relate Proposition 6.1.2 to the convexity of the corresponding support function.

If D is generated by global sections, we can write the corresponding map to
projective space as follows. Suppose that

PD∩M = {m1, . . . ,ms}.
The charactersχmi spanΓ(XΣ,OXΣ

(D)), so that we can writeφD as

(6.1.2) φD(p) = (χm1(p), . . . ,χms(p)).

See (6.0.7) for a careful description of what this means. When we restrict to the
torusTN, φD is the map (2.1.2). Hence our general theory relates nicely with the
more concrete approach used in Chapter 2.

Example 6.1.3.The fan for the Hirzebruch surfaceH2 is shown in Figure 3. Let

u2

u4

u3

u1 = (−1,2)

σ1

σ2

σ3

σ4

Figure 3. A fan Σ2 with XΣ2 = H2
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Di be the divisor corresponding toui . We will study the divisors

D = D4 and D′ = D2+D4.

Write the Cartier data forD andD′ with respect toσ1, . . . ,σ4 as{mi} and{m′i}
respectively. Figure 4 showsPD and mi (left) and PD′ and m′i (right) (see also

PD

m2

m1 = m4

m3

2

1
PD′

m′2 m′3

m′1m′4

2

1

Figure 4. PD andmi (left) andPD′ andm′i (right)

Exercise 4.3.5). This figure and Proposition 6.1.2 make it clear thatD is basepoint
free whileD′ is not. ♦

Very Ample Polytopes. Let P⊆MR ≃ Rn a full dimensional lattice polytope with
facet presentation

P = {m∈MR | 〈m,uF〉 ≥ −aF for all facetsF}.

This gives the complete normal fanΣP and the toric varietyXP. Write

P∩M = {m1, . . . ,ms}.

A vertexmi ∈ P corresponds to a maximal cone

(6.1.3) σi = Cone(P∩M−mi)
∨ ∈ ΣP(n).

Proposition 4.2.10 implies thatDP =
∑

F aFDF is Cartier since〈mi ,uF〉 = −aF

whenmi ∈ F .

Recall from Definition 2.2.16 thatP is very ampleif for every vertexmi ∈ P,
the semigroupN(P∩M−mi) is saturated inM. The definition ofXP given in
Chapter 2 used very ample polytopes. This is no accident.

Proposition 6.1.4. Let XP and DP be as above. Then:

(a) DP is ample and basepoint free.

(b) If n≥ 2, then kDP is very ample for every k≥ n−1.

(c) DP is very ample if and only if P is a very ample polytope.
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Proof. First observe that the polytope of the divisorDP is the polytopeP we be-
gan with. ThusDP is basepoint free by Proposition 6.1.2, which proves the final
assertion of part (a). Furthemore, by (6.1.2), the mapφDP : XP→ Ps−1 factors

XP→ XP∩M ⊆ Ps−1,

whereXP∩M is the projective toric variety ofP∩M ⊆ M from §2.3. We need to
understand whenXP→ XP∩M is an isomorphism.

Fix coordinatesx1, . . . ,xs of Ps−1 and letI ⊆ {1, . . . ,s} be the set of indices
such thatmi is a vertex ofP. Hence eachi ∈ I gives a vertexmi and a corresponding
maximal coneσi in the normal fan ofP.

If i ∈ I , then〈mi ,uF〉 = −aF for every facetF containingmi. For all other
facetsF, 〈mi,uF〉 > −aF . Hence, ifsi is the global section corresponding toχmi ,
then the support of div(si)0 = D + div(χmi ) consists of those divisors missing the
affine open toric varietyUσi ⊆ XP of σi . It follows thatUσi is the nonvanishing
locus ofsi .

Under the mapφD, this nonvanishing locus maps to the affine open subset
Ui ⊆ Ps−1 wherexi 6= 0. SinceXP =

⋃
i∈I Uσi andXP∩M ⊆

⋃
i∈I Ui , it suffices to

study the maps
Uσi −→ XP∩M ∩Ui

of affine toric varieties. By Proposition 2.1.8,

XP∩M ∩Ui = Spec(C[N(P∩M−mi)]).

Sinceσ∨i = Cone(P∩M−mi) by (6.1.3), we have an inclusion of semigroups

N(P∩M−mi)⊆ σ∨i ∩M.

This is an equality precisely whenN(P∩M−mi) is saturated inM. SinceUσi =
Spec(C[σ∨i ∩M]), we obtain the equivalences:

DP is very ample⇐⇒ XP→ XP∩M is an isomorphism

⇐⇒ Uσi → XP∩M∩Ui is an isomorphism for alli ∈ I

⇐⇒ C[N(P∩M−mi)]→ C[σ∨∩M] is an

isomorphism for alli ∈ I

⇐⇒ N(P∩M−mi) is saturated for alli ∈ I

⇐⇒ P is very ample.

This proves part (c) of the proposition. For part (b), recallthat if n≥ 2 andP
is arbitrary, thenkP is very ample whenk ≥ n− 1 by Corollary 2.2.18. Hence
kDP = DkP is very ample. This implies thatDP is ample (the casen = 1 is trivial),
which completes the proof of part (a). �

Example 6.1.5. In Example 2.2.10, we showed that

P = Conv(0,e1,e2,e1 +e2+3e3)⊆ R3
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is not normal. We show thatP is not very ample as follows. From Chapter 2
we know that the only lattice points ofP are its vertices, so thatφDP : XP→ P3.
SinceXP is singular (Exercise 6.1.1) of dimension 3, it follows thatφDP cannot be
a closed embedding. HenceP andDP are not very ample. However, 2P and 2DP

are very ample by Proposition 6.1.4. ♦

Support Functions and Convexity. Let D =
∑

ρaρDρ be a Cartier divisor on a
complete toric varietyXΣ. As in Chapter 4, itssupport functionϕD : NR→ R is
determined by the following properties:

• ϕD is linear on each coneσ ∈ Σ.

• ϕD(uρ) =−aρ for all ρ ∈ Σ(1).

This is where the{mσ}σ∈Σ from (6.1.1) appear naturally, since the explicit formula
for ϕD|σ is given byϕD(u) = 〈mσ,u〉 for all u∈ σ.

WhenM = Z2, it is easy to visualize the graph ofϕD in MR×R = R3: imagine
a tent, with centerpole extending from(0,0,0) down thez-axis, and tent stakes
placed at positions(uρ,−aρ). Here is an example.

Example 6.1.6. TakeP1×P1 and consider the divisorD = D1 + D2 + D3 + D4.
This gives the support function whereϕD(ui) = −1 for the four ray generators
u1,u2,u3,u4 of the fan ofP1×P1. The graph ofϕD is shown in Figure 5. This

u1 u3

u4

u2

Figure 5. The graph ofϕD

should be visualized as an infinite Egyptian pyramid, with apex at the origin and
edges going through(ui ,−1) for 1≤ i ≤ 4. ♦

The first key concept of this section was ampleness. The second is convexity.
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Definition 6.1.7. Let S⊆NR be convex. A functionϕ : S→ R is convexif

ϕ(tu+(1− t)v) ≥ tϕ(u)+ (1− t)ϕ(v),

for all u,v∈ Sandt ∈ [0,1].

Continuing with the tent analogy, a support functionϕD is convex exactly if
there are unimpeded lines of sight inside the tent. It is clear that for Example 6.1.6,
the support function is convex.

The following lemma will help us understand what it means fora support func-
tion to be convex. Given a fanΣ in NR ≃ Rn, a coneτ ∈ Σ(n− 1) is called a
wall when it is the intersection of twon-dimensional conesσ,σ′ ∈Σ(n), i.e, when
τ = σ∩σ′ forms the wall separatingσ andσ′.

Lemma 6.1.8. For the support functionϕD, the following are equivalent:

(a) ϕD is convex.

(b) ϕD(u)≤ 〈mσ,u〉 for all u ∈ NR andσ ∈ Σ(n).

(c) ϕD(u) = minσ∈Σ(n)〈mσ,u〉 for all u ∈NR.

(d) For every wallτ = σ∩σ′, there is u0 ∈ σ′ \σ with ϕD(u0)≤ 〈mσ,u0〉.

Proof. First assume (a) and fixv in the interior ofσ ∈Σ(n). Givenu∈NR, we can
find t ∈ (0,1) such thattu+(1− t)v∈ σ. By convexity, we have

〈mσ, tu+(1− t)v〉= ϕD(tu+(1− t)v)

≥ tϕD(u)+ (1− t)ϕD(v) = tϕD(u)+ (1− t)〈mσ,v〉.

This easily implies〈mσ,u〉 ≥ ϕD(u), proving (b). The implication (b)⇒ (c) is
immediate sinceϕD(u) = 〈mσ,u〉 for u ∈ σ, and (c)⇒ (a) follows because the
minimum of a finite set of linear functions is always convex (Exercise 6.1.2).

Since (b)⇒ (d) is obvious, it remains to prove the converse. Assume (d) and
fix a wall τ = σ∩σ′. Thenσ′ lies on one side of the wall. We claim that

(6.1.4) 〈mσ′ ,u〉 ≤ 〈mσ,u〉, whenu,σ′ are on the same side ofτ.

This is easy. The wall is defined by〈mσ−mσ′ ,u〉 = 0. Then (d) implies that the
halfspace containingσ′ is defined by〈mσ−mσ′ ,u〉 ≥ 0, and (6.1.4) follows.

Now takeu∈ NR andσ ∈ Σ(n). We can pickv in the interior ofσ so that the
line segmentuv intersects every wall ofΣ in a single point, as shown in Figure 6
on the next page. Using (6.1.4) repeatedly, we obtain

〈mσ,u〉 ≥ 〈mσ′ ,u〉 ≥ 〈mσ′′ ,u〉 ≥ · · · .

When we arrive at the cone containingu, the pairing becomesϕD(u), so that
〈mσ,u〉 ≥ ϕD(u). This proves (b). �
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s ss s
u

︸ ︷︷ ︸
σ

︸ ︷︷ ︸
σ′

v↓
wall

↓
wall

︸ ︷︷ ︸
σ′′

s

↓
wall

Figure 6. Crossing walls fromu to v alonguv

In terms of the tent analogy, part (b) of the lemma means that if we have a
convex support function and extend one side of the tent in alldirections, the rest of
the tent lies below the resulting hyperplane. Then part (d) means that it suffices to
check this locally where two sides of the tent meet.

The proof of our main result about convexity will use the following lemma that
describes the polyhedron of a Cartier divisor in terms of itssupport function.

Lemma 6.1.9. LetΣ be a fan and D=
∑

ρaρDρ be a Cartier divisor on XΣ. Then

PD = {m∈MR | ϕD(u)≤ 〈m,u〉 for all u∈ |Σ|}.

Proof. AssumeϕD(u) ≤ 〈m,u〉 for all u∈ |Σ|. Applying this withu = uρ gives

−aρ = ϕD(uρ)≤ 〈m,uρ〉,
so thatm∈ PD by the definition ofPD. For the opposite inclusion, takem∈ PD and
u∈ |Σ|. Thusu∈ σ ∈Σ, so thatu =

∑
ρ∈σ(1)λρuρ, λρ ≥ 0. Then

〈m,u〉=∑ρ∈σ(1)λρ〈m,uρ〉 ≥
∑

ρ∈σ(1)λρ(−aρ)

=
∑

ρ∈σ(1)λρϕD(uρ) = ϕD(u),

where the inequality follows fromm∈ PD, and the last two equalities follow from
the defining properties ofϕD. �

We now expand Proposition 6.1.2 to give a more complete characterization of
when a divisor is basepoint free.

Theorem 6.1.10.AssumeΣ is complete and letϕD be the support function of a
Cartier divisor D=

∑
ρaρDρ on XΣ. Then the following are equivalent:

(a) D is basepoint free.

(b) mσ ∈ PD for all σ ∈ Σ(n).

(c) PD = Conv(mσ | σ ∈ Σ(n)).

(d) {mσ | σ ∈ Σ(n)} is the set of vertices of PD.

(e) ϕD(u) = minm∈PD〈m,u〉 for all u ∈ NR.

(f) ϕD(u) = minσ∈Σ(n)〈mσ,u〉 for all u ∈ NR.

(g) ϕD : NR→ R is convex.
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Proof. The equivalences (a)⇔ (b) and (f)⇔ (g) were proved in Proposition 6.1.2
and Lemma 6.1.8. Furthermore, Lemmas 6.1.8 and 6.1.9 imply that

ϕD is convex⇐⇒ ϕD(u)≤ 〈mσ,u〉 for all σ ∈Σ(n), u∈ NR

⇐⇒ mσ ∈ PD for all σ ∈ Σ(n).

This proves (g)⇔ (b), so that (a), (b), (f) and (g) are equivalent.

Assume (b). Thenmσ ∈ PD andϕD(u) = minσ∈Σ(n)〈mσ,u〉. Combining these
with Lemma 6.1.9, we obtain

ϕD(u)≤ min
m∈PD
〈m,u〉 ≤ min

σ∈Σ(n)
〈mσ,u〉 = ϕD(u),

proving (e). The implication (e)⇒ (g) follows since the minimum of a compact
set of linear functions is convex (Exercise 6.1.2). So (a)⇔ (b)⇔ (e)⇔ (f) ⇔ (g).

Consider (d). The implications (d)⇒ (c)⇒ (b) are clear. For (b)⇒ (d), take
σ ∈ Σ(n). Let u be in the interior ofσ and seta = ϕD(u). By Exercise 6.1.3,
Hu,a = {m∈MR | 〈m,u〉= a} is a supporting hyperplane ofPD and

(6.1.5) Hu,a∩PD = {mσ}.
This implies thatmσ is a vertex ofPD. Conversely, letHu,a be a supporting hy-
perplane of a vertexv ∈ PD. This means〈m,u〉 ≥ a for all m∈ PD, with equal-
ity if and only if m = v. Since (b) holds, we also have (e) and (f). By (e),
ϕD(u) = minm∈PD〈m,u〉 = 〈m,v〉= a. Combining this with (f), we obtain

ϕD(u) = min
σ∈Σ(n)

〈mσ,u〉= a.

Hence〈mσ,u〉 = a must occur for someσ ∈ Σ(n), which forcesv = mσ. �

Example 6.1.11.In Example 6.1.3 we showed that on the Hirzebruch surfaceH2,
D = D4 is basepoint free whileD′ = D2 + D4 is not. Theorem 6.1.10 gives a
different proof using support functions. Figure 7 shows thegraph of the support

u2 u4

u1

u3

Figure 7. The graph ofϕD = ϕD4
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functionϕD. Notice that the portion of the “roof” containing the pointsu1,u2,u3

and the origin lies in the planez= 0, and it is clear that forϕD, there are unimpeded
lines of sight within the tent. In other words,ϕD is convex.

u2 u4

u1

u3

Figure 8. The graph ofϕD′ = ϕD2+D4

The support functionϕD′ is shown in Figure 8. Here, the line of sight from
u1 to u3 lies in the planez= 0, yet the ridgeline going from the origin to the point
(u2,−1) on the tent lies below the planez= 0. Hence this line of sight does not lie
inside the tent, so thatϕD′ is not convex. ♦

WhenD is basepoint free, Theorem 6.1.10 implies that the verticesof PD are
the lattice pointsmσ, σ ∈ Σ(n). One caution is that in general, themσ need not
be distinct, i.e.,σ 6= σ′ can havemσ = mσ′ . An example is given by the divisor
D = D4 considered in Example 6.1.3—see Figure 4. As we will see later, this
behavior illustrates the difference between basepoint free and ample.

It can also happen thatPD has strictly smaller dimension than the dimension of
XΣ. You will work out a simple example of this in Exercise 6.1.4.

Ampleness and Strict Convexity. We next determine when a Cartier divisorD =∑
ρaρDρ on XΣ is ample. The Cartier data{mσ}σ∈Σ(n) of D satisfies

〈mσ,u〉= φD(u), for all u∈ σ.

Definition 6.1.12. The support functionϕD of a Cartier divisor onXΣ is strictly
convexif it is convex and for everyσ ∈ Σ(n) satisfies

〈mσ,u〉= ϕD(u) ⇐⇒ u∈ σ.

There are many ways to think about strict convexity.
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Lemma 6.1.13.For the support functionϕD, the following are equivalent:

(a) ϕD is strictly convex.

(b) ϕD(u)< 〈mσ,u〉 for all u /∈ σ andσ ∈ Σ(n).

(c) For every wallτ = σ∩σ′, there is u0 ∈ σ′ \σ withϕD(u0)< 〈mσ,u0〉.
(d) ϕD is convex and mσ 6= mσ′ whenσ 6= σ′ in Σ(n) andσ∩σ′ is a wall.

(e) ϕD is convex and mσ 6= mσ′ whenσ 6= σ′ in Σ(n).

(f) 〈mσ,uρ〉>−aρ for all ρ ∈ Σ(1)\σ(1) andσ ∈ Σ(n).

(g) ϕD(u+v)> ϕD(u)+ϕD(v) for all u,v∈NR not in the same cone ofΣ.

Proof. You will prove this in Exercise 6.1.5. �

We now relate strict convexity to ampleness.

Theorem 6.1.14.Assume thatϕD is the support function of a Cartier divisor D=∑
ρaρDρ on a complete toric variety XΣ. Then

D is ample⇐⇒ ϕD is strictly convex.

Furthermore, if n≥ 2 and D is ample, then kD is very ample for all k≥ n−1.

Proof. First suppose thatD is very ample. Very ample divisors have no basepoints,
soϕD is convex by Theorem 6.1.10. If strict convexity fails, thenLemma 6.1.13
implies thatΣ has a wallτ = σ∩σ′ with mσ = mσ′ . LetV(τ) = O(τ)⊆ XΣ.

Let PD∩M = {m1, . . . ,ms}, so thatφD : XΣ→ Ps−1 can be written

φD(p) = (χm1(p), . . . ,χms(p))

as in (6.1.2). In this enumeration,mσ = mσ′ = mi0 for somei0. We will studyφD

on the open subsetUσ ∪Uσ′ ⊆ XΣ.

First considerUσ. Theorem 6.1.10 implies thatmσ ∈ PD, so that the section
corresponding toχmσ is nonvanishing onUσ by the proof of Proposition 6.1.2. It
follows that onUσ, φD is given by

φD(p) = (χm1−mσ(p), . . . ,χms−mσ(p)) ∈Ui0 ≃ Cs−1,

whereUi0 ⊆ Ps−1 is the open subset wherexi0 6= 0.

Sincemσ = mσ′ , the same argument works onUσ′ . This gives a morphism

φD|Uσ∪Uσ′
: Uσ ∪Uσ′ −→Ui0 ≃ Cs−1.

The onlyn-dimensional cones ofΣ containingτ areσ,σ′ sinceτ is a wall. Hence

V(τ)⊂Uσ ∪Uσ′

by the Orbit-Cone Correspondence. Note alsoV(τ) ≃ P1 sinceτ is a wall. Since
P1 is complete, Proposition 4.3.8 implies that all morphisms fromP1 to affine space
are constant. ThusφD mapsV(τ) to a point, which is impossible sinceD is very
ample. HenceϕD is strictly convex whenD is very ample.
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If D is ample, thenkD is very ample fork≫ 0. ThusϕkD = kϕD must be
strictly convex, which implies thatϕD is strictly convex.

For the converse, assumeϕD is strictly convex. We first show thatPD ⊂MR is
a full dimensional lattice polytope. Let{mσ}σ∈Σ(n) be the Cartier data ofD. Since
ϕ is convex, Theorem 6.1.10 shows that themσ are the vertices ofPD. HencePD is
a lattice polytope.

If PD is not full dimensional, then there areu 6= 0 in NR andk ∈ R such that
〈mσ,u〉 = k for all σ ∈ Σ(n). Then Theorem 6.1.10 implies

ϕD(u) = 〈mσ,u〉= k

for all σ ∈ Σ(n). Using strict convexity and Definition 6.1.12, we conclude that
u∈ σ for all σ ∈ Σ(n). Henceu = 0 sinceΣ is complete. This contradictsu 6= 0
and proves thatPD is full dimensional.

HencePD gives the toric varietyXPD with normal fanΣPD. Furthermore,XPD

has the ample divisorDPD from Proposition 6.1.4. We studied the support function
of this divisor in Proposition 4.2.14, where we showed that it is the function

ϕPD(u) = min
m∈PD
〈m,u〉.

However, this is preciselyϕD by Theorem 6.1.10. HenceϕPD = ϕD is strictly
convex with respect toΣ (by hypothesis) andΣPD (by the first part of the proof).

Definition 6.1.13 implies that the maximal cones of the fan are the maximal
subsets ofNR on which a strictly convex support function is linear. This observa-
tion, combined with the previous paragraph, implies thatΣ = ΣPD . ThusDPD is
an ample divisor onXΣ = XPD. We also haveD = DPD since the divisors have the
same support function. It follows thatD is ample.

The final assertion of the theorem also follows from Proposition 6.1.4. �

Here is a corollary of the proof of Theorem 6.1.14.

Corollary 6.1.15. Let D be an ample divisor on a complete toric variety XΣ. Then
PD is a full dimensional lattice polytope,Σ is the normal fan of PD, and D is the
Cartier divisor associated to PD. �

We have the following nice result in the smooth case.

Theorem 6.1.16.On a smooth complete toric variety XΣ, a divisor D is ample if
and only if it is very ample.

Proof. If D is ample, then Corollary 6.1.15 shows thatΣ is the normal fan ofPD

andD is the divisor ofPD. SinceXΣ is smooth,PD is very ample by Theorem 2.4.3
and Proposition 2.4.4. Then we are done by Proposition 6.1.4. �
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Computing Ample Divisors. Given a wallτ ∈Σ(n−1), write τ = σ∩σ′ and pick
ρ′ ∈ σ′(1)\σ(1). Then a Cartier divisorD =

∑
ρaρDρ gives thewall inequality

(6.1.6) 〈mσ,uρ′〉>−aρ′ .

Lemma 6.1.13 and Theorem 6.1.14 impy thatD is ample if and only if it satisfies
the wall inequality (6.1.6) for every wall ofΣ.

In terms of divisor classes, recall the map CDivT(XΣ)→Pic(XΣ) whose kernel
consists of divisors of characters. If we fixσ0 ∈ Σ(n), then we have an isomor-
phism

(6.1.7)
{

D =
∑

ρaρDρ ∈ CDivT(XΣ) | aρ = 0 for all ρ ∈ σ0(1)
}
≃ Pic(XΣ)

(Exercise 6.1.6). Then (6.1.6) gives inequalities for determining when a divisor
class is ample. Here is a classic example.

Example 6.1.17.Let us determine the ample divisors on the Hirzebruch surface
Hr . The fan forH2 is shown in Figure 3 of Example 6.1.3, and this becomes
the fan forHr by redefiningu1 to beu1 = (−1, r). Hence we have ray generators
u1,u2,u3,u4 and maximal conesσ1,σ2,σ3,σ4.

In Examples 4.3.5 and 4.1.8, we usedD1 andD2 to give a basis of Pic(Hr) =
Cl(Hr). Here, it is more convenient to useD3 andD4. More precisely, applying
(6.1.7) for the coneσ4, we obtain

Pic(Hr)≃ {aD3 +bD4 | a,b∈ Z}.
To determine whenaD3 +bD4 is ample, we computemi = mσi to be

m1 = (−a,0), m2 = (−a,b), m3 = (rb,b), m4 = (0,0).

Then (6.1.6) gives four wall inequalities which reduce toa,b> 0. Thus

(6.1.8) aD3 +bD4 is ample⇐⇒ a,b> 0.

For an arbitrary divisorD =
∑4

i=1 aiDi, the relations

0∼ div(χe1) =−D1+D3

0∼ div(χe2) = rD1 +D2−D4

show thatD∼ (a1− ra2+a3)D3 +(a2 +a4)D4. Hence
∑4

i=1aiDi is ample⇐⇒ a1 +a3 > ra2, a2 +a4 > 0.

Sometimes ampleness is easier to check if we think geometrically in terms of
support functions. ForD = aD3 +bD4, look back at Figure 6 and imagine moving
the vertex atu3 downwards. This gives the graph ofϕD, which is strictly convex
whena,b> 0. ♦

Here is an example of how to determine ampleness using support functions.
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Example 6.1.18.The fan forP1×P1×P1 has the eight orthants ofR3 as its maxi-
mal cones, and the ray generators are±e1,±e2,±e3. Take the positive orthantR3

≥0
and subdivide further by adding the new ray generators

a = (2,1,1), b = (1,2,1), c = (1,1,2), d = (1,1,1).

We obtain a complete fanΣ by filling the first orthant with the cones in Figure 9,
which shows the intersection ofR3

≥0 with the planex+y+z= 1. You will check
thatΣ is smooth in Exercise 6.1.7.

e1 e2

e3

a b

c

d

Figure 9. Cones ofΣ lying in R3
≥0

Let D =
∑

ρaρDρ be a Cartier divisor onXΣ. ReplacingD with D + div(χm)

for m= (−ae1,−ae2,−ae3), we can assume thatϕD satisfies

ϕD(e1) = ϕD(e2) = ϕD(e3) = 0.

Now observe thate1 +b = (2,2,1) = e2 +a. Sincee1 andb do not lie in a cone of
Σ , part (g) of Lemma 6.1.13 implies that

ϕD(e1 +b)> ϕD(e1)+ϕD(b) = ϕD(b).

However,e2 anda generate a cone ofΣ, so that

ϕD(a) = ϕD(e2)+ϕD(a) = ϕD(e2 +a) = ϕD(e1 +b).

Together, these implyϕD(a) > ϕD(b). By symmetry, we obtain

ϕD(a) > ϕD(b) >ϕD(c)> ϕD(a),

an impossibility. Hence there are no strictly convex support functions. This proves
thatXΣ is a smooth complete nonprojective variety. ♦

The Toric Chow Lemma. Recall from Chapter 3 that ifΣ′ is a refinement ofΣ,
then there is a proper birational toric morphismXΣ′ → XΣ. We will now use the
methods of this section to prove theToric Chow Lemma, which asserts that fans
such as the one described in Example 6.1.18 always have refinements that give
projective toric varieties. Here is the precise result.
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Theorem 6.1.19.A complete fanΣ has a refinementΣ′ such that XΣ′ is projective.

Proof. SupposeΣ is a fan inNR ≃ Rn. Let Σ′ be obtained fromΣ by considering
the complete fan obtained from

⋃

τ∈Σ(n−1)

Span(τ).

So for each wallτ , we take the entire hyperplane spanned by the wall. This yields
a subdivisonΣ′ with the property that

⋃

τ ′∈Σ′(n−1)

τ ′ =
⋃

τ∈Σ(n−1)

Span(τ),

i.e., each hyperplane Span(τ) is a union of walls ofΣ′, and all walls ofΣ′ arise
this way.

Choosingmτ ∈M so that

{u∈ NR | 〈mτ ,u〉= 0}= Span(τ),

define the mapϕ : NR→ R by

ϕ(u) =−
∑

τ∈Σ(n−1)

|〈mτ ,u〉|.

Note thatϕ takes integer values onN and is convex by the triangle inequality (this
explains the minus sign).

Let us show thatϕ is piecewise linear with respect toΣ′. Fix τ ∈Σ(n−1) and
note that each cone ofΣ′ is contained in one of the closed half-spaces bounded by
Span(τ). This implies thatu 7→ |〈mτ ,u〉| is linear on each cone ofΣ′. Hence the
same is true forϕ.

Finally, we prove thatϕ is strictly convex. Suppose thatτ ′ = σ′1∩σ′2 is a wall
of Σ′. Thenτ ′ ⊆ Span(τ0), τ0 ∈ Σ(n−1). We labelσ′1 andσ′2 so that

ϕ|σ′
1
(u) =−〈mτ0,u〉−

∑
τ 6=τ0 in Σ(n−1)|〈mτ ,u〉|, u∈ σ′1

ϕ|σ′
2
(u) = 〈mτ0,u〉−

∑
τ 6=τ0 in Σ(n−1)|〈mτ ,u〉|, u∈ σ′2.

The sum
∑

τ 6=τ0 in Σ(n−1) |〈mτ ,u〉| is linear onσ′1∪σ′2, soϕ is represented by dif-
ferent linear functions on each side of the wallτ ′. Sinceϕ is convex, it is strictly
convex by Lemma 6.1.13. ThenXΣ′ is projective sinceD′ = −∑ρ′ ϕ(uρ′)Dρ′ is
ample by Theorem 6.1.14. �

In Chapter 11 we will improve this result by showing thatXΣ′ can be chosen
to be smooth and projective.
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Pulling Back by Toric Morphisms. The final topic of this section is a study of
basepoint free divisors that are not ample. Our results willneed the following
description of pullbacks of torus-invariant Cartier divisors by toric morphisms.

Proposition 6.1.20.Assume thatφ : XΣ1→ XΣ2 is the toric morphism induced by
φ : N1→ N2, and let D2 be a torus-invariant Cartier divisor with support function
ϕD2 : |Σ2| → R. Then there is a unique torus-invariant Cartier divisor D1 on XΣ1

with the following properties:

(a) OXΣ1
(D1)≃ φ∗OXΣ2

(D2).

(b) The support functionϕD1 is the composition

|Σ1| φ−→ |Σ2|
ϕD2−→ R.

Proof. Let the local data ofD2 be {(Uσ,χ
−mσ)}σ∈Σ2, whereσ now refers to an

arbitrary cone ofΣ2. Recall that the minus sign comes from〈mσ,uρ〉=−aρ when
ρ ∈ σ(1). Then the proof of Theorem 6.0.18 shows thatOXΣ2

(D2) is the sheaf of
sections of a rank 1 vector bundleV → XΣ2 with transition functions

gστ = χmτ−mσ .

Now takeσ′ ∈ Σ1 and letσ ∈ Σ2 be the smallest cone satisfyingφR(σ′) ⊆ σ.
Using the dual mapφ

∗
: M2→M1, we set

mσ′ = φ
∗
(mσ).

Sinceφ(Uσ′)⊆Uσ, one can show without difficulty that

gσ′τ ′ = χmτ ′−mσ′ ∈ OXΣ1
(Uσ′ ∩Uτ ′)∗.

Then{(Uσ′ ,χ−mσ′ )}σ′∈Σ1 is the local data for a Cartier divisorD1 on XΣ1. It is
straightforward to verify thatD1 has the required properties (Exercise 6.1.8).�

In the situation of Proposition 6.1.20, we callD1 is thepullback of D2 via φ
sinceOXΣ1

(D1) is the pullback ofOXΣ2
(D2) via φ.

The Toric Variety of a Basepoint Free Divisor. If D =
∑

ρaρDρ has no basepoints,
thenPD is a lattice polytope with themσ, σ ∈ Σ(n), as vertices. In the ample case,
we know from Corollary 6.1.15 thatXΣ is the toric variety ofPD. WhenD is merely
basepoint free, the situation is more complicated but nevertheless quite lovely.

We begin with the normal fan ofPD. SincePD ⊆MR may fail to be full dimen-
sional, we need to explain what “normal fan” means in this context. Consider

MD = Span(m−m′ |m,m′ ∈ PD∩M)∩M ⊆M,

with dualND = HomZ(MD,Z). The inclusionMD ⊆M induces a surjective homo-
morphismφ : N→ ND sinceMD is saturated inM.

TranslatingPD by a lattice point ofPD ∩M, we get a full dimensional lattice
polytopePD ⊆ (MD)R. Hence we have:
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• The normal fan ofPD in (ND)R, which we write asΣD = ΣPD .

• The toric variety ofPD, which we write asXD = XPD.

The construction ofΣD andXD are independent of how we translatePD.

We can relateΣD to the given fanΣ as follows.

Proposition 6.1.21.Let D=
∑

ρaρDρ be a basepoint free Cartier divisor on XΣ

with polytope PD. If m∈ PD is a vertex andσm is the corresponding cone in the
normal fanΣD, then

φ
−1
R (σm) =

⋃

σ∈Σ(n)
mσ=m

σ.

Proof. We first give an alternate description ofφ
−1
R (σm). In the discussion of

normal fans in §2.3, we saw that the vertexm∈ PD ⊆ (MD)R gives the cone

Cm = Cone(PD∩MD−m)⊆ (MD)R

whose dual in(ND)R is σm. SinceMD ⊆M andPD∩MD = PD∩M, we also have

Cm = Cone(PD∩M−m)⊆MR

whose dual inNR is

(6.1.9) C∨m = Cone(PD∩M−m)∨ = φ
−1
R (σm).

This has some nice consequences. First, sinceCm is strongly convex, (6.1.9)

implies thatφ
−1
R (σm) is a closed convex cone of dimensionn in NR. It follows that

the proposition is equivalent to the assertion

(6.1.10) for allσ ∈ Σ(n), Int(σ)∩ Int(φ
−1
R (σm)) 6= ∅ impliesmσ = m,

where “Int” denotes the interior (Exercise 6.1.9).

A second consequence of (6.1.9) is that anyu∈ φ−1
R (σm) satisfies

〈m′−m,u〉 ≥ 0, for all m′ ∈ PD∩M.

In particular, basepoint free impliesmσ ∈ PD for σ ∈Σ(n), so that

(6.1.11) 〈mσ,u〉 ≥ 〈m,u〉, for all σ ∈ Σ(n).

We now prove (6.1.10). Assume Int(σ)∩ Int(φ
−1
R (σm)) 6= ∅ and letu be an

element of the intersection. Sincem= mσ′ for someσ′ ∈ Σ(n), we have

〈m,u〉 ≥ ϕD(u) = 〈mσ,u〉
by convexity and part (b) of Lemma 6.1.8. Combining this with(6.1.11), we see
that

〈mσ,u〉= 〈m,u〉, for all u∈ Int(σ)∩ Int(φ
−1
R (σm)).

Since Int(σ)∩ Int(φ
−1
R (σm)) is open, this forcesm= mσ, proving (6.1.10). �
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This proposition gives a nice way to think about the fanΣD. One begins with
the Cartier data{mσ}σ∈Σ(n) of D and then combines all conesσ ∈Σ(n) whosemσ ’s
give the same vertex ofPD. As we range over the vertices ofPD, these combined
cones and their faces satisfy the conditions for being a fan,except that they may
fail to be strongly convex. But they all contain the same maximal subspace, namely
the kernel ofφR : NR→ (ND)R. This is an example of what is called adegenerate
fan. Once we mod out by the kernel, we get the genuine fanΣD in (ND)R.

Proposition 6.1.21 makes it clear thatφ : N→ ND is compatible with the fans
Σ andΣD. This gives a toric morphismXΣ → XD. We now prove thatD is the
pullback an ample divisor onXD.

Theorem 6.1.22.Let D be a basepoint free Cartier divisor on a complete toric
variety, and let XD be the toric variety of the polytope PD ⊆ MR. Then the above
toric morphismφ : XΣ→ XD is proper and D is linearly equivalent to the pullback
of the ample divisor on XD coming from PD.

Proof. First note thatφ is proper sinceXΣ andXD are complete. Also recall that
the sublatticeMD ⊆M is dual toφ : N→ND and that we translatePD so that it lies
in (MD)R. This changes our original divisorD by a linear equivalence.

The polytopePD gives the ample divisorD = DPD onXD. SinceD is basepoint
free, Theorem 6.1.10 implies that

ϕD(u) = min
m∈PD
〈m,u〉.

UsingPD ⊆ (MD)R, one sees thatϕD factors throughφ : N→ ND, and in fact,

ϕD = ϕD ◦φR

(Exercise 6.1.10). By Proposition 6.1.20,D is the pullback ofD = DPD. �

This theorem implies that any Cartier divisor without basepoints on a complete
toric variety is linearly equivalent to the pullback (via a toric morphism) of an
ample divisor on a projective toric variety of possibly smaller dimension.

Here are two examples to illustrate what can happen in Theorem 6.1.22.

Example 6.1.23.While the toric varietyXΣ of Example 6.1.18 has no ample divi-
sors, it does have basepoint free divisors. The ray generators ofΣ are

±e1,±e2,±e3,a,b,c,d,

with corresponding toric divisors

D±1 ,D
±
2 ,D

±
3 ,Da,Db,Dc,Dd.

Then one can show that

D = 2D−1 +2D−2 +2D−3 −Da−Db−Dc−Dd

is basepoint free (Exercise 6.1.7). Thus the support functionϕD is convex.
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Figure 9 in Example 6.1.18 shows that Cone(e1,e2,d) is a union of three cones
of Σ. UsingϕD(e1) = ϕD(e2) = 0 andϕD(a) = ϕD(b) = ϕD(d) = 1, one sees that
these three cones all havemσ = e3 (Exercise 6.1.7). Hence we should combine
these three cones. The same thing happens in Cone(e1,e3,d) and Cone(e2,e3,d).

e1 e2

e3

d

Figure 10. Combined cones ofΣ lying in R3
≥0

Thus, in the first orthant, the fan ofXD looks like Figure 10 when intersected
with x+y+z= 1. HenceXD is the blowup of(P1)3 at the point corresponding to
the first orthant (Exercise 6.1.7). Note also thatφ : XΣ→ XD is a proper birational
toric morphism sinceΣ refines the fan ofXD. ♦

Example 6.1.24. Consider the divisorD = D1 on the Hirzebruch surfaceH2,
where we are using the notation of Example 6.1.3. For this divisor, the four cones
σ1,σ2,σ3,σ4 of this fan give

mσ1 = mσ2 = 0, mσ3 = mσ4 = e1,

so thatPD is a line segment. When we combineσ1,σ2 andσ3,σ4, Figure 3 from
Example 6.1.3 shows that we get a degenerate fan. To get a genuine fan, we col-
lapse the vertical axis and obtain the fan forXD = P1. Here,φ : XΣ→ XD is the
toric morphism from Example 3.3.5. ♦

Exercises for §6.1.

6.1.1. Show that the toric varietyXP of the polytopeP in Example 6.1.5 is singular.

6.1.2. Let S⊆ MR be a compact set and defineφ : NR → R by φ(u) = minm∈S〈m,u〉.
Explain carefully why the minimum exists and prove thatφ is convex.

6.1.3. Let Hu,a be as in the proof of (b)⇒ (d). Prove thatHu,a is a supporting hyperplane
of PD that satisfies (6.1.5). Hint: Writeu =

∑
ρ∈σ(1) λρuρ, λρ > 0. Then showm∈ PD

implies〈m,u〉=∑ρ∈σ(1)λρ〈m,uρ〉 ≥ ϕD(u).

6.1.4.As noted in the text, the polytopePD of a basepoint free Cartier divisor on a complete
toric varietyXΣ can have dimension strictly less than dimXΣ. Here are some examples.
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(a) LetD be one of the four torus-invariant prime divisors onP1×P1. Show thatPD is a
line segment.

(b) Consider(P1)n and fix an integerd with 0< d< n. Find a basepoint free divisorD on
(P1)n such that dimPD = d. Hint: See Exercise 6.1.12 below.

6.1.5. This exercise is devoted to proving that the statements (a)–(g) of Lemma 6.1.13 are
equivalent. Many of the implications use Lemma 6.1.8.

(a) Prove (a)⇔ (b) and (c)⇔ (d).

(b) Prove (b)⇒ (e) and (b)⇒ (f) ⇒ (c).

(c) Prove (c)⇒ (b) by adapting the proof of (d)⇒ (b) from Lemma 6.1.8.

(d) Prove (b)⇔ (g) and use the obvious implication (e)⇒ (d) to complete the proof of
the lemma.

6.1.6. Let XΣ be the toric variety of a fanΣ in NR ≃ Rn and fixσ0 ∈ Σ(n). Prove that the
natural map CDivT(XΣ)→ Pic(XΣ) induces an isomorphism

{
D =

∑
ρaρDρ ∈ CDivT(XΣ) | aρ = 0 for all ρ ∈ σ0(1)

}
≃ Pic(XΣ).

6.1.7. This exercise deals with Examples 6.1.18 and 6.1.23.

(a) Prove that the toric varietyXΣ of Example 6.1.18 is smooth.

(b) Let D = 2D−1 + 2D−2 + 2D−3 −Da−Db−Dc−Dd be the divisor defined in Exam-
ple 6.1.23. Prove thatPD is the polytope with 10 vertices

e1,e2,e3,2e1,2e2,2e3,2e1 +2e2,2e1 +2e3,2e2 +2e3,2e1 +2e2+2e3

and conclude thatD is basepoint free.

(c) In Example 6.1.23, we asserted that certain maximal cones ofΣ must be combined to
get the maximal cones ofΣD. Prove that this is correct.

(d) Show thatXD is the blowup of(P1)3 at the point corresponding to the first orthant.

6.1.8. Complete the proof of Proposition 6.1.20.

6.1.9. Prove (6.1.10).

6.1.10. Complete the proof of Proposition 6.1.22.

6.1.11. For the following toric varietiesXΣ, compute Pic(XΣ) and describe which torus-
invariant divisors are ample and which are basepoint free.

(a) XΣ is the toric variety of the smooth complete fanΣ in R2 with

Σ(1) = {±e1,±e2,e1 +e2}.
(b) XΣ is the blowup Blp(Pn) of Pn at a fixed pointp of the torus action.

(c) XΣ is the toric variety of the fanΣ from Exercise 3.3.10. See Figure 12 from Chapter 3.

(d) XΣ is the toric variety of the fan obtained from the fan of Figure12 from Chapter 3 by
combining the two upward pointing cones.

6.1.12. The toric variety(P1)n has ray generators±e1, . . . ,±en. Let D±1 , . . . ,D
±
n denote

the corresponding torus-invariant divisors. ConsiderD =
∑n

i=1(a
+
i D+

i +a−i D−i ).

(a) Show thatD is basepoint free if and only ifa+
i +a−i ≥ 0 for all i.

(b) Show thatD is ample if and only ifa+
i +a−i > 0 for all i.
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6.1.13. Let D =
∑

ρ aρDρ be an ample divisor on a complete toric varietyXΣ. Define

σ = Cone((uρ,−aρ) | ρ ∈ Σ(1))⊆ NR×R.

(a) Prove thatσ is strongly convex.

(b) Prove that the boundary ofσ is the graph of the support functionϕD.

(c) Prove thatΣ is the set of cones obtained by projecting proper faces ofσ ontoMR.

6.1.14. Let Σ be the fan from Example 4.2.13. Prove theXΣ is not projective.

6.1.15.Let P⊆MR be a full dimensional lattice polytope. A faceQ�P determines a cone
σQ in the normal fan ofP. This gives the orbit closureV(σQ) ⊆ XP, andV(σQ) ≃ XQ by
Proposition 3.2.9. This gives an inclusioni : XQ→ XP which is not a toric morphism when
Q≺ P. Prove thati∗OXP(DP)≃ OXQ(DQ).

§6.2. The Nef and Mori Cones

In the last section, we saw that there are simple criteria which determine when
a Cartier divisorD is basepoint free or ample. We now study the structure of
the set of basepoint free divisors and the set of ample divisors inside Pic(XΣ)R =
Pic(XΣ)⊗Z R.

The main concept of this section is that ofnumerical effectivity. Roughly
speaking, the goal is to define a pairing between divisors andcurves, such that
for a divisorD and curveC on a varietyX, the numberD ·C counts the number of
points ofD∩C, with appropriate multiplicity.

Example 6.2.1. SupposeX = P2 with homogeneous coordinatesx,y,z, and let
D = V(y) andC = V(zy−x2). ThenD andC meet at the single pointp = (0,0,1),
where they share a common tangent. If we replaceD with the linearly equivalent
divisor E = V(y− z), then clearlyE andC meet in two points. This suggests that
the point{p} = D∩C should be counted twice, since it is a tangent point. Hence
we should haveD ·C = 2. ♦

Despite this encouraging example, there are several technical hurdles to over-
come in order to make this precise in a general setting. Note that inC2, two lines
may or may not meet, so to get a reasonable theory, we will workwith complete
curves Con a normal varietyX. We also need to restrict toCartier divisors DonX.
With these assumptions, the intersection productD ·C should possess the following
properties:

• (D+E) ·C = D ·C+E ·C.

• D ·C = E ·C whenD∼ E.

• Let D be a prime divisor onX such thatD∩C is finite. Assume eachp∈D∩C
is smooth inC, D, X and that the tangent spacesTp(C) ⊆ Tp(X) andTp(D) ⊆
Tp(X) meet transversely. ThenD ·C = |D∩C|.

Note that these properties give a rigorous proof of the computationD ·C = 2 from
Example 6.2.1.
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The Degree of a Line Bundle. The key tool we will use is the notion of thedegree
of a divisor on an irreducible smooth complete curveC. Such a divisor can be
written as a finite sumD =

∑
i ai pi whereai ∈ Z andpi ∈C.

Definition 6.2.2. Let D =
∑

i ai pi be a divisor on an irreducible smooth complete
curveC. Then thedegreeof D is the integer

deg(D) =
∑

i

ai ∈ Z.

Note the obvious property deg(D+E) = deg(D)+deg(E). The following key
result is proved in [77, Cor. II.6.10].

Theorem 6.2.3.Every principal divisor on an irreducible smooth complete curve
has degree zero. �

In other words, deg(div( f )) = 0 for all nonzero rational functionsf on an
irreducible smooth complete curveC. Thus

deg(D) = deg(E) whenD∼ E onC,

and the degree map induces a surjective homomorphism

deg: Pic(C)−→ Z.

Note that all Weil divisors are Cartier sinceC is smooth.

In §6.0 we showed that Pic(C) is the set of isomorphism classes of line bundles
onC. Hence we can define the degree deg(L ) of a line bundleL onC. This leads
immediately to the following result.

Proposition 6.2.4. Let C be an irreducible smooth complete curve. Then a line
bundleL has adegreedeg(L ) such thatL 7→ deg(L ) has the following prop-
erties:

(a) deg(L ⊗L
′) = deg(L )+deg(L ′).

(b) deg(L ) = deg(L ′) whenL ≃L
′.

(c) deg(L ) = deg(D) whenL ≃ OC(D). �

The Normalization of a Curve. We defined the normalization of an affine variety
in §1.0, and by gluing together the normalizations of affine pieces, one can define
the normalization of any variety (see [77, Ex. II.3.8]). In particular, an irreducible
curveC has a normalization map

φ : C−→C,

whereC is an normal variety. Here are the key propeties ofC.

Proposition 6.2.5. LetC be the normalization of an irreducible curve C. Then:

(a) C is smooth.

(b) C is complete whenever C is complete.
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Proof. SinceC is a curve, Proposition 4.0.17 implies thatC is smooth. Part (b) is
covered by [77, Ex. II.5.8]. �

One can prove that every irreducible smooth complete curve is projective. See
[77, Ex. II.5.8].

The Intersection Product. We now have the tools needed to define the intersec-
tion product. LetX be a normal variety. Given a Cartier divisorD on X and an
irreducible complete curveC⊆ X, we have

• The line bundleOX(D) onX.

• The normalizationφ : C−→C.

Thenφ∗OX(D) is a line bundle on the irreducible smooth complete curveC.

Definition 6.2.6. The intersection productof D andC is D ·C = deg(φ∗OX(D)).

Here are some properties of the intersection product.

Proposition 6.2.7. Let C be an irreducible complete curve and D,E Cartier divi-
sors on a normal variety X. Then:

(a) (D+E) ·C = D ·C+E ·C.

(b) D ·C = E ·C when D∼ E.

Proof. The pullback of line bundles is compatible with tensor product, so that
part (a) follows from (6.0.3) and Proposition 6.2.4. Part (b) is an easy consequence
of Propositions 6.0.22 and 6.2.4. �

In Chapter 4, we defined a Weil divisorD to beQ-Cartier if ℓD is Cartier for
some integerℓ > 0. Given an irreducible complete curveC⊆ X, let

(6.2.1) D ·C =
1
ℓ
(ℓD) ·C.

In Exercise 6.2.1 you will show that this intersection product is well-defined and
satisfies Propostion 6.2.7.

Intersection Products on Toric Varieties. In the toric case,D ·C is easy to compute
whenD andC are torus-invariant inXΣ. In order forC to be torus-invariant and
complete, we must haveC =V(τ) = O(τ), whereτ = σ∩σ′ ∈Σ(n−1) is the wall
separating conesσ,σ′ ∈ Σ(n), n = dimXΣ. We do not assumeΣ is complete.

In this situation, we have the sublatticeNτ = Span(τ)∩N⊆N and the quotient
N(τ) = N/Nτ . Letσ andσ′ be the images ofσ andσ′ in N(τ)R. Sinceτ is a wall,
N(τ)≃ Z andσ, σ′ are rays that correspond to the rays in the usual fan forP1. In
particular,V(τ) ≃ P1 is smooth, so no normalization is needed when computing
the intersection product.
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Proposition 6.2.8. Let C = V(τ) be the complete torus-invariant curve in XΣ

coming from the wallτ = σ ∩ σ′. Let D be a Cartier divisor with Cartier data
mσ,mσ′ ∈M corresponding toσ,σ′ ∈ Σ(n). Also pick u∈ σ′∩N that maps to the
minimal generator ofσ′ ⊆ N(τ)R. Then

D ·C = 〈mσ−mσ′ ,u〉 ∈ Z.

Proof. SinceV(τ) ⊆Uσ ∪Uσ′ , we can assumeXΣ = Uσ ∪Uσ′ andΣ is the fan
consisting ofσ,σ′ and their faces. We also have

D|Uσ
= div(χ−mσ)|Uσ

, D|Uσ′
= div(χ−mσ′ )|Uσ′

.

The proof of Proposition 6.1.20 shows that the line bundleOXΣ
(D) is determined

by the transition functiongσ′σ = χmσ−mσ′ . Thus

D ·C = deg(i∗OXΣ
(D)),

wherei : V(τ) →֒ XΣ is the inclusion map. The pullback bundle is determined by
the restriction ofgσ′σ to

V(τ)∩Uσ ∩Uσ′ = V(τ)∩Uτ = O(τ),

whereO(τ) is theTN-orbit corresponding toτ . This is also the torus of the toric
varietyV(τ) = O(τ). In Lemma 3.2.5, we showed thatτ⊥∩M is the dual ofN(τ)
and that

O(τ)≃ HomZ(M∩ τ⊥,C∗)≃ TN(τ).

Now comes the key observation: since the linear functions given bymσ,mσ′ agree
on τ , we havemσ −mσ′ ∈ τ⊥ ∩M. Thus i∗OXΣ

(D) is the line bundle onV(τ)
whose transition function isgσ′σ = χmσ−mσ′ for mσ−mσ′ ∈ τ⊥∩M.

It follows that i∗OXΣ
(D)≃OV(τ)(D), whereD is the divisor onV(τ) given by

the Cartier data
mσ = 0, mσ′ = mσ′−mσ.

Let pσ, pσ′ be the torus fixed points corresponding toσ,σ′. Sinceu∈ σ′∩N maps
to the minimal generatoru∈ σ′∩N(τ), we have

D = 〈−mσ,−u〉 pσ + 〈−mσ′ ,u〉 pσ′ = 〈mσ−mσ′ ,u〉 pσ′ ,

where the second equality follows frommσ′ = mσ′−mσ ∈ τ⊥∩M. Hence

D ·C = deg(i∗OXΣ
(D)) = deg(D) = 〈mσ−mσ′ ,u〉. �

Example 6.2.9.Consider the toric surface whose fanΣ in R2 has ray generators

u1 = e1, u2 = e2, u0 = 2e1 +3e2

and maximal cones

σ = Cone(u1,u0), σ
′ = Cone(u2,u0).

The support ofΣ is the first quadrant andτ = σ∩σ′= Cone(u0) gives the complete
torus-invariant curveC = V(τ)⊆ XΣ.
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If D1,D2,D0 are the divisors corresponding tou1,u2,u0, then

D = aD1 +bD2 +cD0 is Cartier⇐⇒ 2a+3b≡ c mod 6.

When this condition is satisfied, we have

mσ =−ae1 +
2a−c

3
e2, mσ′ =

3b−c
2

e1−be2.

Also,u= e1+2e2∈ σ′ maps to the minimal generator ofσ′ sinceu,u0 form a basis
of Z2. (You will check these assertions in Exercise 6.2.2.) Thus

D ·C = 〈mσ−mσ′ ,u〉 = 2a+3b−c
6

by Proposition 6.2.8. SinceD is Q-Cartier (Σ is simplicial), (6.2.1) shows that the
formula forD ·C holds for arbitrary integersa,b,c. In particular,

D1 ·C =
1
3
, D2 ·C =

1
2
, D0 ·C =−1

6
.

In the next section we will see that these intersection products follow directly from
the relation−u0 +2u1 +3u2 = 0 and the fact thatZu0 = Span(τ)∩Z2. ♦

Nef Divisors. We now define an important class of Cartier divisors.

Definition 6.2.10. Let X be a normal variety. Then a Cartier divisorD onX is nef
(short fornumerically effective) if

D ·C≥ 0

for every irreducible complete curveC⊆ X.

A divisor linearly equivalent to a nef divisor is nef. Here isanother result.

Proposition 6.2.11.Every basepoint free divisor is nef.

Proof. The pullback of a line bundle generated by global sections isgenerated by
global sections (Exercise 6.0.10). Thus, givenφ : C −→C andD basepoint free,
the line bundleL = φ∗(OX(D)) is generated by global sections. This allows us to
write L = OC(D′) for a basepoint free divisorD′ onC. A nonzero global section
of OC(D′) gives an effective divisorE′ linearly equivalent toD′. Then

D ·C = deg(φ∗(OX(D))) = deg(OC(D′)) = deg(D′) = deg(E′)≥ 0,

where the last inequality follows sinceE′ is effective. �

In the toric case, nef divisors are especially easy to understand.

Theorem 6.2.12.Let D be a Cartier divisor on a complete toric variety XΣ. The
following are equivalent:

(a) D is basepoint free, i.e.,OX(D) is generated by global sections.

(b) D is nef.

(c) D ·C≥ 0 for all torus-invariant irreducible curves C⊆ X.
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Proof. The first item implies the second by Proposition 6.2.11, and the second
item implies the third by the definition of nef. So suppose that D ·C ≥ 0 for all
torus-invariant irreducible curvesC. We can replaceD with a linearly equivalent
torus-invariant divisor. Then, by Theorem 6.1.10, it suffices to show thatφD is
convex.

Take a wallτ = σ∩ σ′ of Σ and setC = V(τ). If we pick u ∈ σ′ ∩N as in
Proposition 6.2.8, then

〈mσ−mσ′ ,u〉= D ·C≥ 0,

so that
〈mσ,u〉 ≥ 〈mσ′ ,u〉= ϕD(u).

Note thatu /∈ σ since the image ofu is nonzero inN(τ) = N/(Span(τ)∩N). Then
Lemma 6.1.8 implies thatϕD is convex. �

A variant of the above proof leads to the following amplenesscriterion, which
you will prove in Exercise 6.2.3.

Theorem 6.2.13(Toric Kleiman Criterion). Let D be a Cartier divisor on a com-
plete toric variety XΣ. Then D is ample if and only if D·C> 0 for all torus-invariant
irreducible curves C⊆ XΣ. �

Note that one direction of the proof follows from the generalfact that on any
complete normal variety, an ample divisorD satisfiesD ·C> 0 for all irreducible
curvesC⊆ X (Exercise 6.2.4).

Theorems 6.2.12 and 6.2.13 were well-known in the smooth case and proved
more recently (and independently) in [112, 120, 130] in the complete case.

Numerical Equivalence of Divisors. The intersection product leads to an impor-
tant equivalence relation on Cartier divisors.

Definition 6.2.14. Let X be a normal variety.

(a) A Cartier divisorD on X is numerically equivalent to zeroif D ·C = 0 for all
irreducible complete curvesC⊆ X.

(b) Cartier divisorsD andE arenumerically equivalent, writtenD ≡ E, if D−E
is numerically equivalent to zero.

What does this say in the toric case?

Proposition 6.2.15. Let D be a Cartier divisor on a complete toric variety XΣ.
Then D∼ 0 if and only if D≡ 0.

Proof. Clearly if D is principal thenD is numerically equivalent to zero. For the
converse, assumeD ≡ 0 and letτ = σ∩σ′ be a wall ofΣ. If we pick u∈ σ′ as in
Proposition 6.2.8, then

0 = D ·C = 〈mσ−mσ′ ,u〉
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for C = V(τ). This forcesmσ = mσ′ sincemσ−mσ′ ∈ τ⊥ andu /∈ σ. From here,
one sees thatmσ = mσ′ for all σ,σ′ ∈ Σ(n), and it follows thatD is principal. �

Numerical Equivalence of Curves. We also get an interesting equivalence relation
on curves. LetZ1(X) be the free abelian group generated by irreducible complete
curvesC⊆ X. An element ofZ1(X) is called aproper1-cycle.

Definition 6.2.16. Let X be a normal variety.

(a) A proper 1-cycleC on X is numerically equivalent to zeroif D ·C = 0 for all
Cartier divisorsD on X.

(b) Proper 1-cyclesC andC′ arenumerically equivalent, writtenC≡C′, if C−C′

is numerically equivalent to zero.

The intersection product(D,C) 7→ D ·C extends naturally to a pairing

CDiv(X)×Z1(X)−→ Z.

between Cartier divisors and 1-cycles. In order to get a nondegenerate pairing, we
work overR and mod out by numerical equivalence.

Definition 6.2.17. For a normal varietyX, define

N1(X) = (CDiv(X)/≡)⊗Z R and N1(X) = (Z1(X)/≡)⊗Z R.

It follows easily that we get a well-defined nondegenerate bilinear pairing

N1(X)×N1(X)−→ R.

A deeper fact is thatN1(X) andN1(X) have finite dimension overR. ThusN1(X)
andN1(X) are dual vector spaces via intersection product.

The Nef and Mori Cones. The vector spacesN1(X) andN1(X) contain some in-
teresting cones.

Definition 6.2.18. Let X be a normal variety.

(a) Nef(X) is the cone inN1(X) generated by classes of nef Cartier divisors. We
call Nef(X) thenef cone.

(b) NE(X) is the cone inN1(X) generated by classes of irreducible complete
curves.

(c) NE(X) is the closure ofNE(X) in N1(X). We callNE(X) theMori cone.

Here are some easy observations about the nef and Mori cones.

Lemma 6.2.19.

(a) Nef(X) andNE(X) are closed convex cones and are dual to each other, i.e.,

Nef(X) = NE(X)∨ and NE(X) = Nef(X)∨.

(b) NE(X) has maximal dimension in N1(X).

(c) Nef(X) is strongly convex in N1(X).
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Proof. It is obvious thatNef(X), NE(X) andNE(X) are convex cones, andNef(X)
is closed since it is defined by inequalities of the formD ·C≥ 0. In fact,

Nef(X) = NE(X)∨

by the definition of nef. ThenNef(X) = NE(X)∨ follows easily. In general,NE(X)
need not be closed. However, since the closure of a convex cone is its double dual,
we have

NE(X) = NE(X)∨∨ = Nef(X)∨.

Note thatNE(X) has maximal dimension sinceN1(X) is spanned by the classes of
irreducible complete curves. Hence the same is true for its closureNE(X). Then
Nef(X) is strongly convex since its the dual has maximal dimension. �

The toric case is especially nice. If we set Pic(XΣ)R = Pic(XΣ)⊗Z R, then

Pic(XΣ)R = N1(XΣ)

since numerical and linear equivalence coincide by Proposition 6.2.15. Thus, in
the toric setting, we will write Pic(XΣ)R instead ofN1(XΣ). WhenΣ is complete,
the inclusion

Pic(XΣ)⊆ Pic(XΣ)R

makes Pic(XΣ) a lattice in the vector space Pic(XΣ)R.

Theorem 6.2.20.Let XΣ be a complete toric variety.

(a) Nef(XΣ) is a rational polyhedral cone inPic(XΣ)R.

(b) NE(XΣ) = NE(XΣ) is a rational polyhedral cone in N1(XΣ). Furthermore,

NE(XΣ) =
∑

τ∈Σ(n−1)

R≥0[V(τ)],

where[V(τ)] ∈N1(XΣ) is the class of V(τ).

Proof. Part (a) is an immediate consequence of part (b). For part (b), let Γ =∑
τ∈Σ(n−1) R≥0[V(τ)] and note thatΓ is a rational polyhedral cone contained in

NE(XΣ). Furthermore, Theorem 6.2.12 easily implies

Nef(XΣ) = Γ∨.

Then
NE(XΣ) = Nef(XΣ)∨ = Γ∨∨ = Γ⊆ NE(XΣ)⊆ NE(XΣ),

where the third equality follows sinceΓ is polyhedral. �

The formula from part (b) of Theorem 6.2.20

NE(XΣ) =
∑

τ∈Σ(n−1)

R≥0[V(τ)],

is called theToric Cone Theorem. Although the Mori cone equalsNE(XΣ) in this
case, we will continue to writeNE(XΣ) for consistency with the literature. Since
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every irreducible curveC ⊆ XΣ gives a class inNE(XΣ), we get the following
corollary of the Toric Cone Theorem.

Corollary 6.2.21. An irreducible curve in a complete toric variety XΣ is numeri-
cally equivalent to a non-negative combination of torus-invariant curves. �

WhenXΣ is projective we can say more about the nef and Mori cones.

Theorem 6.2.22.Let XΣ be a projective toric variety. Then:

(a) Nef(XΣ) and NE(XΣ) are dual strongly convex rational polyhedral cones of
maximal dimension.

(b) A Cartier divisor D is ample if and only if its class inPic(XΣ)R lies in the
interior of Nef(XΣ).

Proof. By hypothesis,XΣ has an ample divisorD. ThenD ·C > 0 for every ir-
reducible curve inXΣ. This easily implies that the class ofD lies in the interior
of Nef(XΣ). ThusNef(XΣ) has maximal dimension and hence its dualNE(XΣ) is
strongly convex. When combined with Lemma 6.2.19, part (a) follows easily.

The strict inequalityD ·C> 0 also shows that every irreducible curve gives a
nonzero class inN1(XΣ). Now suppose that the class ofD is in the interior of the
nef cone. Then[D] defines a supporting hyperplane of the origin of the dual cone
NE(XΣ). Since 06= [C] ∈ NE(XΣ) for every irreducible curveC ⊆ XΣ, we have
D ·C> 0 for all suchC. HenceD is ample by Theorem 6.2.13. �

It follows that NE(XΣ) is strongly convex in the projective case. The rays of
NE(XΣ) are calledextremal rays, which by the Toric Cone Theorem are of the form
R≥0[V(τ)]. The corresponding wallsτ are calledextremal walls.

Here is an example of the conesNef(XΣ) andNE(XΣ).

Example 6.2.23.For the Hirzebruch surfacecHr , we showed in Example 6.1.17
that Pic(Hr) = {a[D3]+b[D4] | a,b∈Z}. Figure 11 showsNef(Hr) andNE(Hr).

[D4]

[D3]

(1,0)

(0,1)

nef cone

[V(τ4)]

[V(τ3)] = [V(τ1)]

[V(τ2)]

Mori cone

(−r,1)

(1,0)

Figure 11. The nef and Mori cones ofHr
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Here,τi = Cone(ui), so thatDi = V(τi). Using both notations helps distinguish
betweenNef(Hr) (built from divisors) andNE(Hr) (built from curves).

The description of the nef cone follows from the characterization of ample
divisors onHr given in Example 6.1.17. The Mori cone is generated by the class
of theV(τi) by the Toric Cone Theorem. Using the the basis given byD3 = V(τ3),
D4 = V(τ4) and the linear equivalences

D1∼ D3, D2∼−rD3+D4

from Example 6.1.17, we get the picture ofNE(Hr) shown in Figure 11. It follows
that [V(τ2)] and[V(τ3)] = [V(τ1)] generate extremal rays, while[V(τ4)] does not.
Thusτ1,τ2,τ3 are extremal walls.

The explicit duality between the conesNef(XΣ) andNE(XΣ) in Figure 11 will
be described in the next section.

Theorem 6.2.22 tells us that ample divisors correspond to lattice points in the
interior of Nef(Hr). Thus lattice points on the boundary correspond to divisors
that are basepoint free but not ample. We can see this vividlyby looking at the
polytopesPD associated to divisorsD whose classes lie inNef(Hr).

PD = 

PD = 

nef cone

PD = 

Figure 12. PolytopesPD associated to divisorsD in nef cone ofHr

Figure 12 shows that whenD is in the interior of the nef cone,PD is a polygon
whose normal fan is the fan ofHr . On the boundary of the nef cone, however.
things are differnt—PD is a triangle on the vertical ray and and a line segment on
the horizontal ray. You will verify these claims in Exercise6.2.5. ♦

WhenXΣ is not a projective variety, the ampleness criterion given in part (b)
of Theorem 6.2.22 can fail. Here is an example due to Fujino [55].

Example 6.2.24.Consider the complete fan inR3 with six minimal generators

u1 = (1,0,1), u2 = (0,1,1), u3 = (−1,−1,1)

u4 = (1,0,−1), u5 = (0,1,−1), u6 = (−1,−1,−1)
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and six maximal cones

Cone(u1,u2,u3), Cone(u1,u2,u4), Cone(u2,u4,u5)

Cone(u1,u3,u4,u6), Cone(u2,u3,u5,u6), Cone(u4,u5,u6).

You will draw a picture of this fan in Exercise 6.2.6 and show that the resulting
complete toric variety satisfies

Pic(XΣ)≃ {a(D1 +D4) | a∈ 3Z} ≃ Z.

The maximal conesσ = Cone(u1,u2,u4) andσ′ = Cone(u2,u4,u5) meet along
the wall

τ = σ∩σ′ = Cone(u2,u4).

However, any Cartier divisorD =
∑6

i=1 aiDi satisfiesmσ = mσ′ (Exercise 6.2.6),
so that the irreducible complete curveC = V(τ) satisfies

D ·C = 0

by Proposition 6.2.8. This holds for all Cartier divisors onXΣ, soC≡ 0. ThenXΣ

has no ample divisors by the Toric Kleiman Criterion, so thatXΣ is nonprojective.

The nef cone ofXΣ is the half-line

Nef(XΣ) = {a[D1 +D4] | a≥ 0}
(Exercise 6.2.6). It follows that the Cartier divisorD = 3(D1 +D4) gives a class in
the interior of the nef cone, yetD is not ample. Hence part (b) of Theorem 6.2.22 is
false forXΣ. The failure is due to the existence of irreducible curves inXΣ that are
numerically equivalent to zero. This shows that numerical equivalence of curves
can be badly behaved in the nonprojective case. ♦

Exercises for §6.2.

6.2.1. Let X be a normal variety. Prove that (6.2.1) gives a well-defined pairing between
Q-Cartier divisors and irreducible complete curves. Also show that this pairing satisfies
Propostion 6.2.7.

6.2.2. Derive the formulas formσ andmσ′ given in Example 6.2.9.

6.2.3. Prove Theorem 6.2.13.

6.2.4. Prove that on a complete normal variety, an ample divisorD satisfiesD ·C> 0 for
all irreducible curvesC⊆ X.

6.2.5. Verify the claims made in Example 6.2.5. Hint: See Examples 6.1.3 and 6.1.24.

6.2.6. Consider the fanΣ from Example 6.2.24.

(a) Draw a picture of this fan inR3.

(b) Prove that Pic(XΣ)≃ {a(D1 +D4) | a∈ 3Z}.
(c) Prove that 3(D1 +D4) is nef.
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§6.3. The Simplicial Case

Here we assume thatΣ is a simplicial fan inNR ≃ Rn. Then Proposition 4.2.7
implies that every Weil divisor isQ-Cartier. Since we will be working in Pic(XΣ)R,
it follows that we can drop the adjective “Cartier” when discussing divisors.

Relations Among Minimal Generators. We begin our discussion of the simplicial
case with another way to think of elements ofN1(XΣ). Recall from Theorem 4.1.3
that we have an exact sequence

(6.3.1) M
α−→ ZΣ(1) β−→ Cl(XΣ)−→ 0

whereα(m) = (〈m,uρ〉)ρ∈Σ(1) andβ sends the standard basis elementeρ ∈ ZΣ(1)

to [Dρ] ∈Cl(XΣ).

Proposition 6.3.1.LetΣ be a simplicial fan in NR≃Rn. Then there are dual exact
sequences

MR
α−→ RΣ(1) β−→ Pic(XΣ)R −→ 0

and

0−→ N1(XΣ)
β∗

−→ RΣ(1) α∗

−→ NR

where

α∗(eρ) = uρ, eρ a standard basis vector ofRΣ(1)

β∗([C]) = (Dρ ·C)ρ∈Σ(1), C⊆ XΣ an irreducible complete curve.

In particular, we may interpret N1(XΣ) as the space of linear relations among the
minimal generators ofΣ.

Proof. SinceΣ is simplicial, all Weil divisors areQ-Cartier. Hence

Pic(XΣ)R = Pic(XΣ)⊗Z R = Cl(XΣ)⊗Z R.

Tensoring withR preserves exactness, so exactness of the first sequence follows
from (6.3.1).

The dual of an exact sequence of finite-dimensional vector spaces is still exact.
Then the perfect pairings

MR×NR→ R : (m,u) 7→ 〈m,u〉
Pic(XΣ)R×N1(XΣ)→ R : ([D], [C]) 7→ D ·C

easily imply that form∈MR and[C] ∈ N1(XΣ), we have

α(m) = (〈m,uρ〉)ρ∈Σ(1) =⇒ α∗(eρ) = uρ

and

β(eρ) = [Dρ] =⇒ β∗([C]) = (Dρ ·C)ρ∈Σ(1). �
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The mapβ∗ : N1(XΣ)→ RΣ(1) in Proposition 6.3.1 implies that an irreducible
complete curveC⊆ XΣ gives the relation

(6.3.2)
∑

ρ(Dρ ·C)uρ = 0 in NR.

This can be derived directly as follows. First observe thatm∈M gives
∑

ρ〈m,uρ〉Dρ = div(χm)∼ 0.

Taking the intersection product withC, we see that
∑

ρ〈m,uρ〉(Dρ ·C) = 0

holds for allm∈MR. Writing this as
〈
m,
∑

ρ(Dρ ·C)uρ
〉

= 0, we obtain
∑

ρ(Dρ ·C)uρ = 0 in NR.

Intersection Products. Our next task is to computeDρ ·C when C is a torus-
invariant complete curve inXΣ. This meansC = V(τ), whereτ ∈ Σ(n− 1) is a
wall, meaning thatτ is the intersection of two cones inΣ(n). Since we are not
assuming thatΣ is complete, not every element ofΣ(n−1) need be a wall.

We begin with a case whereDρ ·V(τ) is easy to compute. Fix a wall

τ = σ∩σ′.
SinceΣ is simplicial, we can label the minimal generators ofσ so that

σ = Cone(uρ1,uρ2, . . . ,uρn)

τ = Cone(uρ2, . . . ,uρn).

Thusτ is the facet ofσ “opposite” toρ1. We will compute the intersection prod-
uct Dρ1 ·V(τ) in terms of themultiplicity (also called theindex) of a simplicial
cone. This is defined as follows. Ifγ is a simplicial cone with minimal generators
u1, . . . ,uk, then mult(γ) is the index of the sublattice

Zu1 + · · ·+Zuk ⊆ Nγ = Span(γ)∩N = (Ru1 + · · ·+Ruk)∩N.

Lemma 6.3.2. If τ , σ andρ1 are as above, then

Dρ1 ·V(τ) =
mult(τ)
mult(σ)

.

Proof. Since{uρ1, . . . ,uρn} is a basis ofNQ, we can findm∈MQ such that

〈m,uρi 〉=
{
−1 i = 1

0 i = 2, . . . ,n.

Pick a positive integerℓ such thatℓm∈M. OnUσ∪Uσ′ , ℓDρ1 is the Cartier divisor
determined bymσ = ℓmandmσ′ = 0. By (6.2.1) and Proposition 6.2.8,

Dρ1 ·V(τ) =
1
ℓ
(ℓDρ1) ·V(τ) =

1
ℓ
〈ℓm,u〉 = 〈m,u〉,

whereu∈ σ′ maps to a generator ofσ′∩N(τ). Recall thatN(τ) = N/Nτ .
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When we combineu with a basis ofNτ , we get a basis ofN. Thus there is a
positive integerβ such thatρ1 =−βu+v, v∈Nτ . The minus sign is becauseu and
ρ1 lie on opposite sides ofτ . By considering the sublattices

Zuρ1 +Zuρ2 + · · ·+Zuρn ⊆ Zuρ1 +Nτ ⊆ Zu+Nτ = N,

one sees thatβ = mult(σ)/mult(τ). Thus

u =− 1
β

(
uρ1−v

)
=−mult(τ)

mult(σ)

(
uρ1−v

)
.

Sincem∈ τ⊥, it follows that

Dρ1 ·V(τ) = 〈m,u〉 =−mult(τ)
mult(σ)

〈m,uρ1〉=
mult(τ)
mult(σ)

. �

Corollary 6.3.3. LetΣ be a smooth fan in NR ≃Rn andτ ∈Σ(n−1) be a wall. If
ρ ∈ Σ(1) andτ generate a cone ofΣ(n), then

Dρ ·V(τ) = 1 �

Given a wallτ ∈ Σ(n−1), our next task is to computeDρ ·V(τ) for the other
raysρ ∈ Σ(1). Let τ = σ∩σ′ and write

(6.3.3)

σ = Cone(uρ1, . . . ,uρn)

σ′ = Cone(uρ2, . . . ,uρn+1)

τ = Cone(uρ2, . . . ,uρn).

This situation is pictured in Figure 13.

uρn

uρn+1

uρ1

uρ2

←  σ

←  σ′

τ

Figure 13. τ = σ∩σ′
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Applying Lemma 6.3.2 toσ andσ′, we obtain

(6.3.4) Dρ1 ·V(τ) =
mult(τ)
mult(σ)

, Dρn+1 ·V(τ) =
mult(τ)
mult(σ′)

.

To computeDρ ·V(τ) whenρ 6= ρ1,ρn+1, note that then+ 1 minimal generators
uρ1, . . . ,uρn+1 are linearly dependent. Hence they satisfy a linear relation, which we
write as

(6.3.5) αuρ1 +

n∑

i=2

biuρi +βuρn+1 = 0.

We may assumeα,β > 0 sinceuρ1 anduρn+1 lie on opposite sides of the wallτ .
Then (6.3.5) is unique up to multiplication by a positive constant sinceuρ1, . . . ,uρn

are linearly independent. We call (6.3.5) awall relation.

On the other hand, settingC = V(τ) in (6.3.2) gives the linear relation

(6.3.6)
∑

ρ

(Dρ ·V(τ))uρ = 0

As we now prove, the two relations are the same up to a positiveconstant.

Lemma 6.3.4. The relations given by(6.3.5)and (6.3.6)are equal after multipli-
cation by a positive constant. In particular,

Dρ ·V(τ) = 0, for all ρ /∈ {ρ1, . . . ,ρn+1}
and

Dρi ·V(τ) =
bi mult(τ)
αmult(σ)

=
bi mult(τ)
βmult(σ′)

for i = 2, . . . ,n.

Proof. First observe that ifρ /∈ {ρ1, . . . ,ρn+1}, thenρ andτ never lie in the same
cone ofΣ, so thatDρ∩V(τ) = ∅ by the Orbit-Cone Correspondence. This easily
implies Dρ ·V(τ) = 0 (Exercise 6.3.1), which in turn implies that (6.3.6) reduces
to the equation

(Dρ1 ·V(τ))uρ1 +
n∑

i=2

(Dρi ·V(τ))uρi + (Dρn+1 ·V(τ))uρn+1 = 0.

The coefficients ofuρ1 anduρn+1 are positive by (6.3.4), so up to a positive constant,
this must be the wall relation (6.3.5). The first assertion ofthe lemma follows.

Since the above relation equals (6.3.5) up to a nonzero constant, we obtain

bi(Dρ1 ·V(τ)) = α(Dρi ·V(τ)), bi(Dρn+1 ·V(τ)) = β(Dρi ·V(τ)),

for i = 2, . . . ,n. Then the desired formulas forDρi ·V(τ) follow from (6.3.4). �

For a simplicial toric variety, Lemmas 6.3.2 and 6.3.4 provide everything we
need to computeD ·V(τ) whenτ is a wall ofΣ.
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Example 6.3.5.Consider the fanΣ in R2 from Example 6.2.9. We have the wall

τ = Cone(u0) = σ∩σ′ = Cone(u1,u0)∩Cone(u2,u0),

whereu1 = e1, u2 = e2 andu0 = 2e1 +3e2. Computing multiplicities gives

mult(τ) = 1, mult(σ) = 3, mult(σ′) = 2.

Then Lemma 6.3.2 implies

D1 ·V(τ) =
1
3
, D2 ·V(τ) =

1
2
,

and the relation
2·u1 +(−1) ·u0 +3·u2 = 0

implies

D0 ·V(τ) =
−1·1
2·3 =

−1·1
3·2 =−1

6
by Lemma 6.3.4. Hence we recover the calculations of Example6.2.9. ♦

WhenXΣ is smooth, all multiplicities are 1. Hence the wall relation(6.3.5) can
be written uniquely as

(6.3.7) uρ1 +
n∑

i=2

biuρi +uρn+1 = 0,

and then the intersection formula of Lemma 6.3.4 reduces to

Dρi ·V(τ) = bi

for i = 2, . . . ,n.

Example 6.3.6.For the Hirzebruch surfaceHr , the four curves coming from walls
are also divisors. Recall that the minimal generators are

u1 =−e1 + re2, u2 = e2, u3 = e1,u4 =−e2,

arranged clockwise around the origin (see Figure 3 from Example 6.1.3 for the case
r = 2). Hence the wall generated byu1 gives the relation

u2−0·u3 +u4 = 0,

which implies
D1 ·D1 = 0

by Lemma 6.3.4. On the other hand, the wall generated byu2 gives the relation

u1− r ·u2 +u3 = 0.

Then the lemma implies
D2 ·D2 =−r.

Similarly, one can check that

D3 ·D3 = 0, D4 ·D4 = r,
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and by Corollary 6.3.3 we also have

D1 ·D2 = D2 ·D3 = D3 ·D4 = D4 ·D1 = 1.

These computations give an explicit description of the duality between the nef and
Mori cones shown in Figure 11 of Example 6.2.23 (Exercise 6.3.2). ♦

In general, a divisorD on a complete surface hasself-intersection D·D = D2.
Self-intersections will play a prominent role in Chapter 10when we study toric
surfaces.

Primitive Collections. In the projective case, there is a beautiful criterion for a
Cartier divisor to be nef or ample in terms of theprimitive collectionsintroduced
in Definition 5.1.5. Recall that

P = {ρ1, . . . ,ρk} ⊆ Σ(1)

is a primitive collection ifP is not contained inσ(1) for someσ ∈Σ but any proper
subset is. SinceΣ is simplicial, primitive means thatP does not generate a cone of
Σ but every proper subset does. This is the definition given by Batyrev in [6].

Example 6.3.7.Consider the complete fanΣ in R3 shown in Figure 14.

z

y

x

ρ0

ρ1 ρ3

ρ4

ρ2

Figure 14. A fan in R3

One can check that
{ρ1,ρ3}, {ρ0,ρ2,ρ4}

are the only primitive collections ofΣ. ♦

Here is the promised characterization, due to Batyrev [6] in the smooth case.
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Theorem 6.3.8.Let XΣ be a projective simplicial toric variety.

(a) A Cartier divisor D is nef if and only if its support functionϕD satisfies

ϕD(uρ1 + · · ·+uρk)≥ ϕD(uρ1)+ · · ·+ϕD(uρk)

for all primitive collections P= {ρ1, . . . ,ρk} of Σ.

(b) A Cartier divisor D is ample if and only if its support function ϕD satisfies

ϕD(uρ1 + · · ·+uρk)>ϕD(uρ1)+ · · ·+ϕD(uρk)

for all primitive collections P= {ρ1, . . . ,ρk} of Σ.

Before we discuss the proof of Theorem 6.3.8, we need to studythe relations
that come from primitive collections.

Definition 6.3.9. Let P = {ρ1, . . . ,ρk} ⊆ Σ(1) be a primitive collection for the
complete simplicial fanΣ. Hence

∑k
i=1 uρi lies in the relative interior of a cone

γ ∈ Σ. Thus there is a unique expression

uρ1 + · · ·+uρk =
∑

ρ∈γ(1)cρuρ, cρ ∈Q>0.

Thenuρ1 + · · ·+uρk−
∑

ρ∈γ(1) cρuρ = 0 is theprimitive relation of P.

The coefficient vector of this relation isr(P) = (bρ)ρ∈Σ(1) ∈ RΣ(1), where

(6.3.8) bρ =





1 ρ ∈ P, ρ /∈ γ(1)

1−cρ ρ ∈ P∩γ(1)

−cρ ρ ∈ γ(1), ρ /∈ P

0 otherwise.

Then
∑

ρbρuρ = 0, so thatr(P) gives an element ofN1(XΣ) by Proposition 6.3.1.
In Exercise 6.3.3, you will prove thatcρ < 1 whenρ ∈ P∩γ(1). This means thatP
is determined by the positive entries in the coefficient vector r(P).

The Mori cone forXΣ has a nice description in terms of primitive relations.

Theorem 6.3.10.For a projective simplicial toric variety XΣ,

NE(XΣ) =
∑

P

R≥0r(P),

where the sum is over all primitive collections P ofΣ.

Proof. Given a Cartier divisorD =
∑

ρaρDρ and a relation
∑

ρbρuρ = 0, the in-
tersection pairing of[D] ∈ Pic(XΣ)R andR= (bρ)ρ∈Σ(1) ∈ N1(XΣ) is

(6.3.9) [D] ·R=
∑

ρ

aρ[Dρ] ·R=
∑

ρ

aρbρ
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(Exercise 6.3.4). In particular, whenR= r(P), we can rearrange terms to obtain

[D] · r(P) =

k∑

i=1

aρi −
∑

ρ∈γ(1)

aρcρ.

Since the support function ofD satisfiesϕD(uρ) = −aρ and is linear onγ, we can
rewrite this as

(6.3.10) [D] · r(P) =−ϕD(uρ1)−·· ·−ϕD(uρk)+ϕD(uρ1 + · · ·+uρk).

If D is nef, then it is basepoint free (Theorem 6.2.12), so thatϕD is convex. It
follows that [D] · r(P) ≥ 0, which provesr(P) ∈ NE(XΣ). Note also thatr(P) is
nonzero.

To finish the proof, we need to show thatNE(XΣ) is generated by ther(P).
In the discussion following the proof of Theorem 6.2.22, we noted thatNE(XΣ)
is generated by its extremal rays, each of which is of the formR≥0[V(τ)] for an
extremal wallτ . It suffices to show that[V(τ)] is a positive multiple ofr(P) for
some primitive collectionP.

We first make a useful observation about nef divisors. Given aconeσ ∈Σ, we
claim that any nef divisor is linearly equivalent to a divisor of the form

(6.3.11) D =
∑

ρ

aρDρ, aρ = 0, ρ ∈ σ(1) and aρ ≥ 0, ρ /∈ σ(1).

To prove this, first recall that any nef divisor is linearly equivalent to a torus-
invariant nef divisorD =

∑
ρaρDρ. Then we havemσ ∈ M with 〈mσ,uρ〉 = −aρ

for ρ ∈ σ(1). SinceD is nef, it is also basepoint free, so that

〈mσ,uρ〉 ≥ ϕD(uρ) =−aρ, ρ ∈ Σ(1),

by Theorem 6.1.10. ReplacingD with D+div(χmσ), we obtain (6.3.11).

Now assume we have an extremal wallτ and letC = V(τ). Consider the set

P = {ρ | Dρ ·C> 0}.
We will prove thatP is a primitive collection whose primitive relation is the class
of C, up to a positive constant. Our argument is taken from [37], which is based on
ideas of Kresch [109].

We first prove by contradiction thatP 6⊆ σ(1) for all σ ∈Σ. SupposeP⊆ σ(1)
and take an ample divisorD (remember thatXΣ is projective). Then in particularD
is nef, so we may assume thatD is of the form (6.3.11). Sinceaρ = 0 for ρ ∈Σ(1),
we have

D ·C =
∑

ρ/∈σ(1)

aρDρ ·C.

However,aρ ≥ 0 by (6.3.11), andP⊆ σ(1) implies Dρ ·C ≤ 0 for ρ /∈ σ(1). It
follows thatD ·C ≤ 0, which is impossible sinceD is ample. Thus no cone ofΣ
contains all rays inP.
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It follows that some subsetQ ⊆ P is a primitive collection. This gives the
primitive relation with coefficient vectorr(Q) ∈ N1(XΣ), and we also have the
class[C] ∈ N1(XΣ). Let

β = [C]−λr(Q) ∈ N1(XΣ),

whereλ > 0. We claim that ifλ is sufficiently small, then

(6.3.12) {ρ | [Dρ] ·β < 0} ⊆ {ρ | Dρ ·C< 0}.
To prove this, first observe that the definition ofβ implies

Dρ ·C = λ[Dρ] · r(Q)+ [Dρ] ·β.
Suppose that[Dρ] ·β < 0 andDρ ·C≥ 0. This forces[Dρ] · r(Q) > 0. By (6.3.9),
[Dρ] · r(Q) is the coefficent ofuρ in the primitive relation ofQ, which by (6.3.8) is
positive only whenρ ∈ Q. ThenQ⊆ P impliesDρ ·C> 0 by the definition ofP.
But we can clearly chooseλ sufficiently small so that

Dρ ·C> λ[Dρ] · r(Q) wheneverDρ ·C> 0.

This inequality and the above equation imply[Dρ] ·β > 0, which is a contradiction.

We next claim thatβ ∈ NE(XΣ). By (6.3.12), we have

{ρ | [Dρ] ·β < 0} ⊆ {ρ | Dρ ·C< 0} ⊆ τ(1),

where the second inclusion follows fromC = V(τ), (6.3.4), and Lemma 6.3.4.
Now letD be nef, and by (6.3.11) withσ = τ , we may assume that

D =
∑

ρ

aρDρ, aρ = 0, ρ ∈ τ(1) and aρ ≥ 0, ρ /∈ τ(1).

Then

[D] ·β =
∑

ρ/∈τ(1)

aρ[Dρ] ·β ≥ 0,

where the final inequality follows sinceaρ ≥ 0 and[Dρ] ·β < 0 can happen only
whenρ ∈ τ(1). This proves thatβ ∈NE(XΣ).

We showed earlier thatr(Q) ∈ NE(XΣ). Thus the equation

[C] = λr(Q)+β

expresses[C] as a sum of elements ofNE(XΣ). But [C] is extremal, i.e., it lies in
a 1-dimensional face ofNE(XΣ). By Lemma 1.2.7, this forcesr(Q) andβ to lie
in the face. Sincer(Q) is nonzero, it generates the face, so that[C] is a positive
multiple of r(Q).

The relation corresponding toC has coefficients(Dρ ·C)ρ∈Σ(1), andP is the
set ofρ’s whereDρ ·C> 0. But this relation is a positive multiple ofr(Q), whose
positive entries correspond toQ. ThusP = Q and the proof is complete. �
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It is now straightforward to prove Theorem 6.3.8 using Theorem 6.3.10 and
(6.3.10) (Exercise 6.3.5). We should also mention that these results hold more
generally for any projective toric variety (see [37]).

Example 6.3.11.Let Σ be the fan shown in Figure 14 of Example 6.3.7. The
minimal generators ofρ0, . . . ,ρ4 are

u0 = (0,0,−1),u1 = (0,−1,1),u2 = (1,0,1),u3 = (0,1,1),u4 = (−1,0,1).

The computations you did for part (c) of Exercise 6.1.11 imply thatXΣ is pro-
jective. Since the only primitive collections are{ρ1,ρ3} and{ρ0,ρ2,ρ4}, Theo-
rem 6.3.8 implies that a Cartier divisorD is nef if and only if

ϕD(u1 +u3)≥ ϕD(u1)+ϕD(u3)

ϕD(u0 +u2 +u4)≥ ϕD(u0)+ϕD(u2)+ϕD(u4)

and ample if and only if these inequalities are strict. One can also check that

Pic(XΣ)≃ {a[D1]+b[D2] | a,b∈ 2Z}
and aD1 + bD2 is nef (resp. ample) if and only ifa≥ b ≥ 0 (resp.a> b> 0).
Exercise 6.3.6 will relate this example to the proof of Theorem 6.3.10.

BesidesΣ, the minimal generatorsu0, . . . ,u4 support two other complete fans
in R3: first, the fanΣ′ obtained by replacing Cone(u2,u3) with Cone(u1,u3) in
Figure 14, and second, the fanΣ0 obtained by removing this wall to create the cone
Cone(u1,u2,u3,u4). SinceΣ(1) = Σ′(1) = Σ0(1), the toric varietiesXΣ,XΣ′ ,XΣ0

have the same class group, thoughXΣ0 has strictly smaller Picard group since it is
not simplicial. Thus

Pic(XΣ0)R ⊆ Pic(XΣ)R = Pic(XΣ′)R ≃ R2.

This allows us to draw all three nef cones in the same copy ofR2. In Exercise 6.3.6
you show that we get the cones shown in Figure 15. The ideas behind this figure

Nef(XΣ)

Nef(XΣ0)

Nef(XΣ′)

Figure 15. The nef cones ofXΣ,XΣ′ ,XΣ0

will be developed in Chapters 14 and 15 when we study geometric invariant theory
and the minimal model program for toric varieties. ♦
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Exercises for §6.3.

6.3.1. This exercise will describe a situation whereD ·C is guaranteed to be zero.

(a) LetX be normal and assume thatC is a complete irreducible curve disjoint from the
support of a Cartier divisorD. Prove thatD ·C = 0. Hint: UseU = X \Supp(D).

(b) Let τ be a wall of a fanΣ and pickρ ∈ Σ(1) such thatρ andτ never lie in the same
cone ofΣ. Use the Cone-Orbit Correspondence to prove thatDρ ∩V(τ) = ∅, and
conclude thatDρ ·V(τ) = 0.

6.3.2. As in Example 6.3.2, the classes[D3], [D4] give a basis of Pic(Hr)R. SinceHr is a
smooth complete surface, the intersection productDi ·V(τ j) is writtenDi ·D j .

(a) Give an explicit formula for(a[D3]+ b[D4]) · (a[D3]+ b[D4]) using the computations
of Example 6.3.2.

(b) Use part (a) to show that the cones shown in Figure 11 in Example 6.2.23 are dual to
each other.

6.3.3. In the primitive relation defined in Definition 6.3.9, provecρ < 1 whenρ∈P∩γ(1).
Hint: If ρ1 ∈ γ(1) andcρ1 ≥ 1, then canceluρ1 and show thatuρ2, . . . ,uρk ∈ γ.

6.3.4. Let XΣ be a simplicial toric variety and fix a Cartier divisorD =
∑

ρ aρDρ and
a relation

∑
ρ bρuρ = 0. Prove that the intersection pairing of[D] ∈ Pic(XΣ)R andR =

(bρ)ρ∈Σ(1) ∈ N1(XΣ) is [D] ·R=
∑

ρ aρbρ.

6.3.5. Prove Theorem 6.3.8 using Theorem 6.3.10 and (6.3.10).

6.3.6. Consider the fanΣ from Examples 6.3.7 and 6.3.11. Every wall ofΣ is of the
form τi j = Cone(ui ,u j) for suitablei < j. Let r(τi j ) ∈ R5 denote the wall relation ofτi j .
Normalize by a positive constant so that the entries ofr(τi j ) are integers with gcd= 1.

(a) Show the nine walls give the three distinct wall relations r(τ02), r(τ03), r(τ24).

(b) Show thatr(τ03)+ r(τ24) = r(τ02) and conclude thatτ03 andτ24 are extremal walls
whose classes generate the Mori cone ofXΣ.

(c) For each extremal wall of part (b), determine the corresponding primitive collection.
You should be able to read the primitive collection directlyfrom the wall relation.

(d) Show that the nef cones ofXΣ,XΣ′ ,XΣ0 give the cones shown in Figure 15.

6.3.7. Let XΣ be the blowup ofPn at a fixed point of the torus action. Thus Pic(XΣ)≃ Z2.

(a) Compute the nef and Mori cones ofXΣ and draw pictures similar to Figure 11 in
Example 6.2.23.

(b) Determine the primitive relations and extremal walls ofXΣ.

6.3.8. LetPr be the toric surface obtained by changing the rayu1 in the fan of the Hirze-
bruch surfaceHr from (−1, r) to (−r,1). Assumer > 1.

(a) Prove thatPr is singular. How many singular points are there?

(b) Determine which divisorsa1D1+a2D2+a3D3+a4D4 are Cartier and computeDi ·D j

for all i, j.

(c) Determine the primitive relations and extremal walls ofPr .



Appendix: Quasicoherent Sheaves on Toric Varieties 301

Appendix: Quasicoherent Sheaves on Toric Varieties

Now that we know more about sheaves (specifically, tensor products and exactness), we
can complete the discussion of quasicoherent sheaves on toric varieties begun in §5.3. In
this appendix,XΣ will denote a toric variety with no torus factors. The total coordinate
ring of XΣ is S= C[xρ | ρ ∈ Σ(1)], which is graded by Cl(XΣ).

Recall from §5.3 that forα ∈ Cl(XΣ), the shiftedS-moduleS(α) gives the sheaf
OXΣ

(α) satisfyingOXΣ
(α) ≃ OXΣ

(D) for any Weil divisor withα = [D]. In §6.0 we con-
structed a sheaf homomorphismOX(D)⊗OX OX(E)→ OX(D + E). In a similar way, one
can define

(6.A.1) OXΣ
(α)⊗OXΣ

OXΣ
(β) −→ OXΣ

(α+β).

for α,β ∈Cl(XΣ) such that ifα= [D] andβ = [E], then the diagram

OXΣ
(D))⊗OXΣ

OXΣ
(E))

��

// OXΣ
(D+E))

��

OXΣ
(α)⊗OXΣ

OXΣ
(β) // OXΣ

(α+β)

commutes, where the vertical maps are isomorphisms.

From Sheaves to Modules. The main construction of §5.3 takes a gradedS-moduleM and
produces a quasicoherent sheafM̃ onXΣ. We now go in the reverse direction and show that
everyquasicoherent sheaf onXΣ arises in this way. We will use the following construction.

Definition 6.A.1. For a sheafF of OXΣ
-modules onXΣ andα ∈ Cl(XΣ), define

F (α) = F ⊗OXΣ
OXΣ

(α)

and then set
Γ∗(F ) =

⊕

α∈Cl(XΣ)

Γ(XΣ,F (α)).

For example,Γ∗(OXΣ
) = S sinceΓ(XΣ,OXΣ

(α)) ≃ Sα by Proposition 5.3.7. Using
this and (6.A.1), we see thatΓ∗(F ) is a gradedS-module.

We want to show thatF is isomorphic to the sheaf associated toΓ∗(F ) whenF is
quasicoherent. We will need the following lemma due to Mustaţǎ [130]. Recall that for
σ ∈ Σ, we have the monomialxσ̂ =

∏
ρ/∈σ(1) xρ ∈ S. Letασ = deg(xσ̂) ∈ Cl(XΣ).

Lemma 6.A.2. LetF be a quasicoherent sheaf on XΣ.

(a) If v ∈ Γ(Uσ,F ), then there areℓ≥ 0 and u∈ Γ(XΣ,F (ℓασ)) such that u restricts to
(xσ̂)ℓv∈ Γ(Uσ,F (ℓασ)).

(b) If u ∈ Γ(XΣ,F ) restricts to0 in Γ(Uσ,F ), then there isℓ≥ 0 such that(xσ̂)ℓu = 0 in
Γ(XΣ,F (ℓασ)).

Proof. For part (a), fixσ ∈Σ and takev∈ Γ(Uσ,F ). Givenτ ∈Σ, letvτ be the restriction
of v toUσ∩Uτ . By (3.1.3), we can findm∈ (−σ∨)∩τ∨∩M such thatUσ∩Uτ = (Uτ )χm =
Spec(C[τ∨ ∩M]χm). In terms of the total coordinate ringS, we haveC[τ∨ ∩M] ≃ (Sxτ̂ )0

by (5.3.1). Hence the coordinate ring ofUσ ∩Uτ is the localization
(
(Sxτ̂ )0

)
x〈m〉 ,
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wherex〈m〉 =
∏

ρ x〈m,uρ〉
ρ ∈ (Sxτ̂ )0 sincem∈ τ∨ ∩M. This enables us to write

Uσ ∩Uτ = (Uτ )x〈m〉 .

SinceF is quasicoherent,F |Uτ
is determined by its sectionsG = Γ(Uτ ,F ), and then

Γ(Uσ ∩Uτ ,F ) is the localizationGx〈m〉 .

It follows that vτ ∈ Γ(Uσ,F ) equalsũτ/(x〈m〉)k, wherek ≥ 0 andũτ ∈ Γ(Uτ ,F ).
Henceũτ restricts to(x〈m〉)kv∈ Γ(Uσ,F ). Sincem∈ (−σ∨), we see that

(6.A.2) xa = (xσ̂)ℓ(x〈m〉)−k ∈ S

for ℓ≫ 0. This monomial has degreeℓασ. Thenuτ = xaũτ ∈ Γ(Uτ ,F (ℓασ)) restricts
to (xσ̂)ℓvτ ∈ Γ(Uσ ∩Uτ ,F (ℓασ)). By makingℓ sufficiently large, we can find oneℓ that
works for allτ ∈ Σ.

To study whether theuτ patch to give a global section ofF (ℓασ), takeτ1, τ2 ∈Σ and
setγ = τ1∩ τ2. ThusUγ = Uτ1 ∩Uτ2, and

(6.A.3) w = uτ1|Uγ
−uτ2|Uγ

∈ Γ(Uγ ,F (ℓασ))

restricts to 0∈ Γ(Uσ ∩Uγ ,F (ℓασ)). Arguing as above, this group of sections is the lo-
calizationΓ(Uγ ,F (ℓασ))x〈m〉 , wherem∈ γ∨ ∩ (−σ∨)∩M such thatUσ ∩Uγ = (Uγ)χm.
Sincew gives the zero element in this localization, there isk ≥ 0 with (x〈m〉)kw = 0 in
Γ(Uγ ,F (ℓασ)). If we multiply by xb = (xσ̂)ℓ

′

(x〈m〉)−k for ℓ′≫ 0, we obtain(xσ̂)ℓ
′

w = 0
in Γ(Uγ ,F ((ℓ′+ ℓ)ασ)). Another way to think of this is that if we madeℓ in (6.A.2) big
enough to begin with, then in factw = 0 in Γ(Uγ ,F (ℓασ)) for all τ,τ ′. Given the defini-
tion (6.A.3) ofw, it follows that theuτ patch to give a global sectionu∈ Γ(XΣ,F (ℓασ))
with the desired properties.

The proof of part (b) is similar and is left to the reader. �

Proposition 6.A.3. Let F be a quasicoherent sheaf on XΣ. ThenF is isomorphic to the
sheaf associated to the graded S-moduleΓ∗(F ).

Proof. Let M = Γ∗(F ) and recall from §5.3 that for everyσ ∈ Σ, the restriction ofM̃ to
Uσ is the sheaf associated to the(Sxσ̂)0-module(Mxσ̂)0.

We first construct a sheaf homomorphism̃M→F . Elements of(Mxσ̂)0 areu/(xσ̂)ℓ

for u∈ Γ(XΣ,F (ℓασ)). Since(xσ̂)−ℓ is a section ofOXΣ
(−ℓασ) overUσ, the map

Γ(Uσ,OXΣ
(−ℓασ))⊗C Γ(Uσ,F (ασ))−→ Γ(Uσ,F )

induces a homomorphism of(Sxσ̂)0-modules

(6.A.4) (Mxσ̂)0 −→ Γ(Uσ,F ).

This gives compatible sheaf homomorphismsM̃|Uσ
→F |Uσ

that patch to givẽM→F .

SinceF is quasicoherent, it suffices to show that (6.A.4) is an isomorphism for every
σ ∈ Σ. First suppose thatu/(xσ̂)k ∈ (Mxσ̂)0 maps to 0∈ Γ(Uσ,F ). It follows easily that
u restricts to zero inΓ(Uσ,F (kασ)). By Lemma 6.A.2 applied toF (kασ), there isℓ≥ 0
such that(xσ̂)ℓu = 0 in Γ(XΣ,F ((ℓ+k)ασ)). Then

u
(xσ̂)k

=
(xσ̂)ℓu
(xσ̂)ℓ+k

= 0 in (Mxσ̂)0,
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which shows that (6.A.4) is injective. To prove surjectivity, takev∈ Γ(Uσ,F ) and apply
Lemma 6.A.2 to findℓ ≥ 0 andu ∈ Γ(XΣ,F (ℓασ)) such thatu restricts to(xσ̂)ℓv. It
follows immediately thatu/(xσ̂)ℓ ∈ (Mxσ̂)0 maps tov. �

This result proves part (a) of Proposition 5.3.9. We now turnour attention to part (b)
of the proposition, which applies to coherent sheaves.

Proposition 6.A.4. Every coherent sheafF on XΣ is isomorphic to the sheaf associated
to a finitely generated graded S-module.

Proof. On the affine open subsetUσ, we can find finitely many sectionsfi,σ ∈ Γ(Uσ,F )
which generateF overUσ. By Lemma 6.A.2, we can findℓ≥ 0 such that(xσ̂)ℓ fi,σ comes
from a global sectiongi,σ of F (ℓασ). Now consider the gradedS-moduleM ⊆ Γ∗(F )
generated by thegi,σ. Proposition 6.A.3 gives an isomorphism

Γ̃∗(F )≃F .

HenceM⊆ Γ∗(F ) gives a sheaf homomorphism̃M→F which is injective by the exact-
ness proved in Example 6.0.10. OverUσ, we havefi,σ = gi,σ/(xσ̂)ℓ ∈ (Mxσ̂)0, and since
these sections generateF overUσ, it follows thatM̃≃F . Then we are done sinceM is
clearly finitely generated. �

The proof of Proposition 6.A.4 used a submodule ofΓ∗(F ) because the full module
need not be finitely generated whenF is coherent. Here is an easy example.

Example 6.A.5. A point p∈ Pn gives a subvarietyi : {p} →֒ Pn. The sheafF = i∗O{p}

can be thought of as a copy ofC sitting over the pointp. The line bundleOPn(a) is free in
a neighborhood ofp, so thatF (a)≃F for all a∈ Z. Thus

Γ∗(F ) =
⊕

a∈Z

Γ(Pn,F (a)) =
⊕

a∈Z

C.

This module is not finitely generated overSsince it is nonzero in all negative degrees.♦

Subschemes and Homogeneous Ideals. For readers who know about schemes, we can
apply the above results to describe subschemes of a toric variety XΣ with no torus factors.

Let I ⊆ Sbe a homogeneous ideal. By Proposition 6.0.10, this gives a sheaf of ideals
I ⊆ OXΣ

whose quotient is the structure sheaf of closed subscheme ofY ⊆ XΣ. This
differs from the subvarieties considered in the rest of the book since the structure sheafOY

may have nilpotents.

Proposition 6.A.6. Every subscheme Y⊆ XΣ is defined by a homogeneous ideal I⊆ S.

Proof. Given an ideal sheafI ⊆ OXΣ
, we get a homomorphism ofS-modules

Γ∗(I )−→ Γ∗(OXΣ
) = S.

If I ⊆ S is the image of this map, then the map factorsΓ∗(I ) ։ I →֒ S, where the first
arrow is surjective and the second injective. By Example 6.0.10 and Proposition 6.A.3, the
inclusionI ⊆ OXΣ

factors asI ։ Ĩ →֒OXΣ
. It follows immediately thatI = Ĩ . �

In the case ofPn, it is well-known that different graded ideals can give the same ideal
sheaf. The same happens in the toric situation, and as in §5.3, we get the best answer in
the smooth case. Not surprisingly, the irrelevant idealB(Σ)⊆ Splays a key role.
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Proposition 6.A.7. Homogeneous ideals I,J⊆ S in the total coordinate of a smooth toric
variety XΣ give the same ideal sheaf ofOXΣ

if and only if I:B(Σ)∞ = J :B(Σ)∞.

Proof. SinceI is homogeneous, the same is true forI :B(Σ)∞, and in the exact sequence

0−→ I −→ I :B(Σ)∞ −→ I :B(Σ)∞/I −→ 0,

the quotientI :B(Σ)∞/I is annihilated by a power ofB(Σ) sinceI is finitely generated.
The sheaf associated to this quotient is trivial by Proposition 5.3.10. ThenI andI : B(Σ)∞

give the same ideal sheaf by Example 6.0.10. This proves one direction of the proposition.

For the converse, suppose thatI andJ give the same ideal sheaf. This means that

(Ixσ̂)0 = (Jxσ̂)0

for all σ ∈ Σ. Take f ∈ Iα for α ∈ Cl(XΣ) and fix σ ∈ Σ. Arguing as in the proof of
Proposition 5.3.10, we can find a monomialxb involving only xρ for ρ /∈ σ(1) such that
xb f/(xσ̂)k ∈ (Ixσ̂)0. This impliesxb f/(xσ̂)k ∈ (Jxσ̂)0, which in turn easily implies that
(xσ̂)ℓ f ∈ J for ℓ≫ 0. ThusI ⊆ J :B(Σ)∞, and from here the rest of the proof is straight-
forward. �

There is a less elegant version of this result that applies tosimplicial toric varieties. See
[33] for a proof and more details about the relation between graded modules and sheaves.
See also [123] for more on multigraded commutative algebra.



Chapter 7

Projective Toric
Morphisms

§7.0. Background: Quasiprojective Varieties and Projective
Morphisms

Many results of Chapter 6 can be generalized, but in order to do so, we need to
learn aboutquasiprojective varietiesandprojective morphisms.

Quasiprojective Varieties. Besides affine and projective varieties, we also have the
following important class of varieties.

Definition 7.0.1. A variety isquasiprojectiveif it is isomorphic to an open subset
of a projective variety.

Here are some easy properties of quasiprojective varieties.

Proposition 7.0.2.

(a) Affine varieties and projective varieties are quasiprojective.

(b) Every closed subvariety of a quasiprojective variety is quasiprojective.

(c) A product of quasiprojective varieties is quasiprojective.

Proof. You will prove this in Exercise 7.0.1. �

Projective Morphisms. In algebraic geometry, concepts that apply to varieties
sometimes have relative versions that apply to morphisms between varieties. For
example, in §3.4, we definedcompletenessandproperness, where the former ap-
plies to varieties and the latter applies to morphisms. Sometimes we say that the

305
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relative versionof a complete variety is a proper morphism. In the same way, the
relative version of aprojective varietyis aprojective morphism.

We begin with a special case. Letf : X → Y be a morphism andL a line
bundle onX with a basepoint free finite-dimensional subspaceW⊆Γ(X,L ). Then
combining f : X → Y with the morphismφL ,W : X → P(W∨) from §6.0 gives a
morphismX→Y×P(W∨) that fits into a commutative diagram

(7.0.1)
X

f×φL ,W
//

f
''OOOOOOOOOOOOOOO Y×P(W∨)

p1

��

Y

If f × φL ,W is a closed embedding(meaning that its imageZ ⊆ Y×P(W∨) is
closed and the induced mapX → Z is an isomorphism), then you will show in
Exercise 7.0.2 thatf has the following nice properties:

• f is proper.

• For every p ∈ Y, the fiber f−1(p) is isomorphic to a closed subvariety of
P(W∨) and hence is projective.

The general definition of projective morphism must include this special case.
In fact, going from the special case to the general case is notthat hard.

Definition 7.0.3. A morphism f : X→Y is projectiveif there is a line bundleL
on X and an affine open cover{Ui} of Y with the property that for eachi, there is
a basepoint free finite-dimensional subspaceWi ⊆ Γ( f−1(Ui),L ) such that

f−1(Ui)
fi×φLi ,Wi−−−−−−→Ui×P(W∨i )

is a closed embedding, wherefi = f | f−1(Ui)
and Li = L | f−1(Ui)

. We say that
f : X→Y is projective with respect toL .

The general case has the properties noted above in the special case.

Proposition 7.0.4. Let f : X→Y be projective. Then:

(a) f is proper.

(b) For every p∈Y, the fiber f−1(p) is a projective variety. �

Here are some further properties.

Proposition 7.0.5.

(a) The composition of projective morphisms is projective.

(b) A closed embedding is a projective morphism.

(c) A variety X is projective if and only if X→{pt} is a projective morphism.
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Proof. Parts (a) and (b) are proved in [73, (5.5.5)]. For part (c), one direction
follows immediately from the previous proposition. Conversely, leti : X →֒ Pn be
projective, and assume thatX is nondegenerate, meaning thatX is not contained in
any hyperplane ofPn. Now letL = OX(1) = i∗OPn(1). Then

i∗ : Γ(Pn,OPn(1)) −→ Γ(X,L )

is injective sinceX is nondegenerate. In Exercise 7.0.3 you will show that

Γ(Pn,OPn(1)) = Span(x0, . . . ,xn)

and that ifW⊆ Γ(X,L ) is the image ofi∗, thenφL ,W is the embedding we began
with. Hence Definition 7.0.3 is satisfied forX→{pt} andL . �

When the domain is quasiprojective, the relation between proper and projective
is especially easy to understand.

Proposition 7.0.6.Let f : X→Y be a morphism where X is quasiprojective. Then:

f is proper⇐⇒ f is projective.

Proof. One direction is obvious since projective implies proper. For the opposite
direction,X is quasiprojective, which implies that there is a morphism

g : X −→ Z

such thatZ is projective,g(X) ⊆ Z is open, andX ≃ g(X) via g. Then one can
prove without difficulty that the product map

(7.0.2) f ×g : X −→Y×Z

induces an isomorphismX ≃ ( f ×g)(X).

Since f : X→Y is proper, f ×g : X→Y×Z is also proper (Exercise 7.0.4).
Hence the image off ×g is closed inX×Z since proper morphisms are universally
closed. ThusX ≃ ( f ×g)(X) and( f ×g)(X) is closed inY×Z. This proves that
(7.0.2) is a closed embedding.

Now take a closed embeddingZ →֒ Ps. Arguing as above, we get a closed
embedding ofX into Y×Ps. From here, it is straightforward to show thatf is
projective (Exercise 7.0.4). �

To complicate matters, there are two definitions of projective morphism used
in the literature. In [77, II.4], a projective morphism is defined as the special case
considered in (7.0.1), while [73, (5.5.2)] and [171, 5.3] give a much more general
definition. Theorem 7.A.5 of the appendix to this chapter shows that the more
general definition is equivalent to Definition 7.0.3.

Projective Bundles. Vector bundles give rise to an interesting class of projective
morphisms.
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Let π : V → X be a vector bundle of rankn≥ 1. Recall from §6.0 thatV has
a trivialization{(Ui ,φi)} with φi : π−1(Ui) ≃Ui ×Cn. Furthermore, the transition
functionsgi j ∈GLn(Γ(Ui ∩U j ,OX)) that make the diagram

Ui ∩U j ×Cn

π−1(Ui ∩U j)

φi|π−1(Ui∩U j ) 55kkkkkkkkk

φ j |π−1(Ui∩U j)
))SSSSSSSSS

Ui ∩U j ×Cn

1×gi j

OO

commute. Note that 1×gi j induces an isomorphism

1×gi j : Ui ∩U j ×Pn−1≃Ui ∩U j ×Pn−1.

This gives gluing data for a varietyP(V). It is clear thatπ induces a morphism
π : P(V)→ X and thatφi induces the trivialization

φi : π−1(Ui)≃Ui×Pn−1.

The discussion following Theorem 7.A.5 in the appendix to this chapter shows that
π : P(V)→ X is a projective morphism. We callP(V) theprojective bundleof V.

Example 7.0.7. Let W be a finite-dimensional vector space overC of positive
dimension. Then, for any varietyX, the trivial bundleX×W→ X gives the trivial
projective bundleX×P(W)→ X. ♦

There is also a version of this construction for locally freesheaves. IfE is
locally free of rankn, thenE is the sheaf of sections of a vector bundleVE → X of
rankn. Whenn = 1, we proved this in Theorem 6.0.20. Then define

(7.0.3) P(E ) = P(V∨E ),

whereV∨
E

is the dual vector bundle ofVE . Here are some properties ofP(E ).

Lemma 7.0.8.

(a) P(L ) = X whenL is locally free of rank1.

(b) P(E ⊗OX L ) = P(E ) whenE is locally free andL is a line bundle.

(c) If a homomorphismE →F of locally free sheaves is surjective, then the in-
duced mapP(F )→ P(E ) of projective bundles is injective.

Proof. You will prove this in Exercise 7.0.5. The dual in (7.0.3) explains why
E →F givesP(F )→ P(E ). �

The appearance of the dual in (7.0.3) can be explained as follows. LetL be a
line bundle withW⊆ Γ(X,L ) basepoint free of finite dimension. As in §6.0, this
gives a morphism

φL ,W : X −→ P(W∨).
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Let E = W⊗C OX. The corresponding vector bundle isVE = X×W, so

(7.0.4) P(E ) = P(V∨E ) = X×P(W∨).

By Proposition 6.0.24, the natural mapE →L is surjective sinceW has no base-
points. By Lemma 7.0.8, we get an injection of projective bundles

P(L )−→ P(E ).

The lemma also impliesP(L ) = X. Using this and (7.0.4), we get an injection

X −→ X×P(W∨).

Projection onto the second factor gives a morphismX → P(W∨), which is the
morphismφL ,W from §6.0 (Exercise 7.0.6).

We should mention that one can define the “projective bundle”P(E ) for any
coherent sheafE onX. See [77, II.7].

Exercises for §7.0.

7.0.1. Prove Proposition 7.0.2.

7.0.2. Prove Proposition 7.0.4. Hint: First prove the special casegiven by (7.0.1). Recall
from §3.4 thatPn is complete, so thatPn→ {pt} is proper.

7.0.3. Complete the proof of Proposition 7.0.5.

7.0.4. Letα : X→Y andβ : Y→ Z be morphisms such thatβ ◦α : X→ Z is proper. Prove
thatα : X→Y is also proper. Hint: As noted in the comments following Corollary 3.4.8,
being proper is equivalent to being topologically proper (Definition 3.4.2). Also,T ⊆ Y
impliesα−1(T)⊆ (β ◦α)−1(β(T)).

7.0.5. Prove Lemma 7.0.8. Hint: Work on an open cover ofX where all of the bundles
involved are trivial.

7.0.6. In the discussion following (7.0.4), we constructed a morphismX→ P(W∨) using
the surjectionE = W⊗C OX →L . Prove that this coincides with the morphismφL ,W.

7.0.7. Show thatC2 \ {0,0} is quasiprojective but neither affine nor projective.

§7.1. Polyhedra and Toric Varieties

This section and the next will study quasiprojective toric varieties and projective
toric morphisms. Our starting point is the observation thatjust as polytopes give
projective toric varieties, polyhedra give projective toric morphisms.

Polyhedra. Recall that a polyhedronP⊆ MR is the intersection of finitely many
closed half-spaces

P = {m∈MR | 〈m,ui〉 ≥ −ai, i = 1, . . . ,s}.
A basic structure theorem tells us thatP is a Minkowski sum

P = Q+C,
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whereQ is a polytope andC is a polyhedral cone (see [175, Thm. 1.2]). If P is
presented as above, then the cone part ofP is

(7.1.1) C = {m∈MR | 〈m,ui〉 ≥ 0, i = 1, . . . ,s}.
(Exercise 7.1.1). Following [175], we callC therecession coneof P.

Similar to polytopes, polyhedra have supporting hyperplanes, faces, facets,
vertices, edges, etc. One difference is that some polyhedrahave no vertices.

Lemma 7.1.1. Let P⊆MR be a polyhedron with recession cone C.

(a) The set V= {v∈ P | v is a vertex} is finite and is nonempty if and only if C is
strongly convex.

(b) If C is strongly convex, then P= Conv(V)+C.

Proof. You will prove this in Exercises 7.1.2–7.1.5. �

Example 7.1.2.The polyhedronP = {(a1, . . . ,an) ∈Rn | ai ≥ 0,
∑n

i=1ai ≥ 1} has
verticese1, . . . ,en and recession coneC = Cone(e1, . . . ,en). ♦

Lattice Polyhedra. We now generalize the notion of lattice polytope.

Definition 7.1.3. A polyhedronP⊆MR is a lattice polyhedronwith respect to the
latticeM ⊆MR if

(a) The recession cone ofP is a strongly convex rational polyhedral cone.

(b) The vertices ofP lie in the latticeM.

A full dimensional lattice polyhedron has a unique facet presentation

(7.1.2) P = {m∈MR | 〈m,uF〉 ≥ −aF for all facetsF},
whereuF ∈ N is a primitive inward pointing facet normal. This was definedin
Chapter 2 for full dimensional lattice polytopes but applies equally well to full
dimensional lattice polyhedra. Then defineC(P)⊆MR×R by

C(P) = {(m,λ) ∈MR×R | 〈m,uF〉 ≥ −λaF for all F, λ≥ 0}.
WhenP is a polytope, this reduces to the coneC(P) = Cone(P×{1}) considered
in §2.2.

Example 7.1.4.The blowup ofC2 at the origin is given by the fanΣ in R2 with
minimal generatorsu0 = e1+e2,u1 = e1,u2 = e2 and maximal cones Cone(u0,u1),
Cone(u0,u2). For the divisorD = D0 + D1 + D2, we computed in Figure 5 from
Example 4.3.4 that the polyhedronPD is a 2-dimensional lattice polyhedron whose
recession coneC is the first quadrant.

Figure 1 on the next page shows the 3-dimensional coneC(PD) with PD at
height 1. Notice how the coneC of PD appears naturally at height 0 in Figure 1.♦

Some of the properties suggested by Figure 1 hold in general.
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z

x

y

1

C

PD

Figure 1. The coneC(PD)

Lemma 7.1.5.Let P be a full dimensional lattice polyhedron in MR with recession
cone C. Then C(P) is a strongly convex cone in MR×R and

C(P)∩ (MR×{0}) = C.

Proof. The final assertion of the lemma follows from (7.1.1) and the definition of
C(P). For strong convexity, note thatC(P)⊆MR×R≥0 implies

C(P)∩ (−C(P))⊆MR×{0}.
Then we are done sinceC is strongly convex. �

We say that a point(m,λ) ∈C(P) hasheightλ. Furthermore, whenλ > 0, the
“slice” of C(P) at heightλ is λP. If we write P = Q+C, whereQ is a polytope,
then forλ > 0,

λP = λQ+C

sinceC is a cone. It follows that asλ→ 0, the polytope shrinks to a point so that at
height 0, only the coneC remains, as in Lemma 7.1.5. You can see how this works
in Figure 1.

The Toric Variety of a Polyhedron. In Chapter 2, we constructed the normal fan
of a full dimensional lattice polytope. We now do the same fora full dimensional
lattice polyhedronP. Given a vertexv∈ P, we get the cone

Cv = Cone(P∩M−v)⊆MR.
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Note thatv∈M sinceP is a lattice polyhedron. It follows easily thatCv is a strongly
convex rational polyhedral cone of maximal dimension, so that the same is true for
its dual

σv = C∨v = Cone(P∩M−v)∨ ⊆ NR.

These cones fit together nicely.

Theorem 7.1.6.Let P⊆MR be a full dimensional lattice polyhedron with reces-
sion cone C. Then the conesσv, v a vertex of P, and their faces form a fan in NR

whose support is C∨.

Proof. The proof that we get a fan is similar to the proof for the polytope case (see
§2.3) and hence is omitted. To complete the proof, we need to show

⋃

v∈V

σv = C∨,

whereV is the set of vertices ofP. Now takev ∈ V andm∈C∩M. Thenm =
(v+m)−v∈ P∩M−v, which easily impliesC⊆Cone(P∩M−v). Taking duals,
we obtainσv ⊆C∨. For the opposite inclusion, takeu∈C∨ and pickv∈ V such
that〈v,u〉 ≤ 〈w,u〉 for all w∈V. We showu∈ σv as follows. Anym∈ P∩M can
be writtenm=

∑
w∈V λww+m′ whereλw≥ 0,

∑
w∈V λw = 1 andm′ ∈C. Then

〈m,u〉 =∑w∈Vλw〈w,u〉+ 〈m′,u〉 ≥
∑

w∈Vλw〈v,u〉 = 〈v,u〉.
Thus〈m−v,u〉 ≥ 0 for all m−v∈ P∩M−v, which provesu∈ σv. �

The fan of Theorem 7.1.6 is thenormal fanof P, denotedΣP. We defineXP to
be the toric varietyXΣP of the normal fanΣP. Here is an example.

Example 7.1.7.The polyhedronP = {(a1, . . . ,an) ∈ Rn | ai ≥ 0,
∑n

i=1ai ≥ 1} of
Example 7.1.2 has verticese1, . . . ,en. The facet ofP defined by

∑n
i=1 ai = 1 has

e1 + · · ·+en as inward normal. Then the vertexei gives the cone

σei = Cone(e1 + · · ·+en,e1, . . . , êi , . . . ,en).

These cones form the fan of the blowup ofCn at the origin, soXP = Bl0(Cn). ♦

Note thatXP is not complete in this example. In general, the normal fan has
support|ΣP|= C∨. We measure the deviation from completeness as follows.

The support|ΣP| is a rational polyhedral cone but need not be strongly convex.
Recall thatW = |ΣP| ∩ (−|ΣP|) is the largest subspace contained in|ΣP|. Hence
|ΣP| gives the following:

• The sublatticeW∩N⊆ N and the quotient latticeNP = N/(W∩N).

• The strongly convex coneσP = |ΣP|/W ⊆ NR/W = (NP)R.

• The affine toric varietyUP of σP.



§7.1. Polyhedra and Toric Varieties 313

The projection mapφ : N→ NP is compatible with the fans ofXP andUP since
φR(|ΣP|) = σP. Hence we get a toric morphism

φ : XP−→UP.

Since|ΣP|= φ
−1
R (σP) (Exercise 7.1.6), Theorem 3.4.7 implies thatφ is proper.

The key result of this section is thatφ : XP→ UP is a projective morphism.
From a sophisticated point of view, this is easy to see. The coneC(P) gives the
semigroup algebra

(7.1.3) SP = C[C(P)∩ (M×Z)],

where the character associated to(m,k) ∈C(P)∩ (M×Z) is writtenχmtk. This
algebra is graded by height, i.e, deg(χmtk) = k. The Proj construction in algebraic
geometry associates a variety Proj(SP) to the graded ringSP. In the appendix to
this chapter, we will discuss Proj and show that

XP = Proj(SP).

Then standard properties of Proj easily imply thatφ : XP→UP is projective (see
Proposition 7.A.1 in the appendix). A more elementary proofthatφ is projective
will be given in Theorem 7.1.10.

The Divisor of a Polyhedron. LetP be a full dimensional lattice polyhedron. As in
the polytope case, facets ofP correspond to rays in the normal fanΣP, so that each
facetF gives a prime torus-invariant divisorDF ⊆ XP. Thus the facet presentation
(7.1.2) ofP gives the divisor

DP =
∑

F

aFDF ,

where the sum is over all facets ofP. Results from Chapter 4 (Proposition 4.2.10
and Example 4.3.7) easily adapt to the polyhedral case to show thatDP is Cartier
(with mσv = v for every vertex) and the polyhedron ofDP is P, i.e.,P = PDP. Then
Proposition 4.3.3 implies that

(7.1.4) Γ(XP,OXP(DP)) =
⊕

m∈P∩M

C ·χm.

The definition of projective morphism given in §7.0 involvesa line bundleL
and a finite-dimensional subspaceW of global sections. The line bundle will be
OXP(DP) (actually a multiplekP) andW will be determined by certain carefully
chosen lattice points ofkP. The reason we need a multiple is thatP might not have
enough lattice points.

Normal and Very Ample Polyhedra. In Chapter 2, we defined normal and very
ample polytopes, which are different ways of saying that there are enough lattice
points. For a lattice polyhedronP, the definitions are the same.
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Definition 7.1.8. Let P⊆MR be a lattice polyhedron. Then:

(a) P is normal if for all integersk≥ 1, every lattice point ofkP is a sum ofk
lattice points ofP.

(b) P isvery ampleif for every vertexv∈P, the semigroupN(P∩M−v) generated
by P∩M−v is saturated inM.

We have the following result about normal and very ample polyhedra.

Proposition 7.1.9. Let P⊆MR be a lattice polyhedron. Then:

(a) If P is normal, then P is very ample.

(b) If dimP = n≥ 2, then kP is normal and hence very ample for all k≥ n−1.

Proof. Part (a) follows from the proof of Proposition 2.2.17. For part (b), letQ be
the convex hull of the vertices ofP, so thatP = Q+C, whereC is the recession
cone ofP. It is easy to see thatP is normal wheneverQ is (Exercise 7.1.7). Note
also that

kP= kQ+C.

Now supposek ≥ n− 1. If dimQ = 1, thenkQ and hencekP are normal. If
dimQ≥ 2, thenkQ is normal by Theorem 2.2.11, so thatkP is normal. ThenkP is
very ample by part (a). �

The Projective Morphism. Let P be a full dimensional lattice polyhedron inMR,
and assume thatP is very ample. Then pick a finite setA ⊆ P∩M with the
following properties:

• A contains the vertices ofP.

• For every vertexv∈ P, A −v generates Cone(P∩M−v)∩M = σ∨v ∩M.

We can always satsify the first condition, and the second is possible sinceP is very
ample. Using (7.1.4), we get the subspace

W = Span(χm |m∈A )⊆ Γ(XP,OXP(DP)).

We claim thatW has no basepoints sinceA contains the vertices ofP. To prove
this, letv be a vertex. Recall thatDP +div(χv) is the divisor of zeros of the global
section given byχv. One computes that

DP +div(χv) =
∑

F(aF + 〈v,uF〉)DF .

Since〈v,uF 〉 = −aF for all facets containingv and 〈v,uF 〉 > −aF for all other
facets, the support ofDP + div(χv) is the complement of the affine open subset
Uσv ⊆ XP, i.e., the nonvanishing set of the section is preciselyUσv. Then we are
done since theUσv coverXP.

It follows that we get a morphism

φL ,W : XP−→ P(W∨)

for L = OXP(DP). Here is our result.
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Theorem 7.1.10.Let P be a full dimensional lattice polyhedron. Then:

(a) The toric variety XP is quasiprojective.

(b) φ : XP→UP is a projective morphism.

Proof. First suppose thatP is very ample. The proof of part (a) is similar to
the proof of Proposition 6.1.4. LetL , W and A be as above and writeA =
{m1, . . . ,ms}. Consider the projective toric variety

XA ⊆ Ps−1 = P(W∨).

Let I ⊆{1, . . . ,s} be the set of indices corresponding to vertices ofP. Soi ∈ I gives
a vertexmi and a corresponding coneσi = σmi in ΣP. Also letUi ⊆ Ps−1 be the
affine open subset where theith coordinate is nonzero. By our choice ofA , the
proof of Proposition 6.1.4 shows thatφL ,W induces an isomorphism

Uσi ≃ XA ∩Ui.

SinceXP is the union of theUσi for i ∈ I , it follows that

(7.1.5) φL ,W : XP
∼−→ XA ∩

⋃
i∈IUi.

SinceXA is projective, this shows thatXP is quasiprojective. Part (b) now follows
immediately from Proposition 7.0.6 sinceφ : XP→UP is proper.

WhenP is not very ample, we know that a positive multiplekP is. SinceP
andkP have the same normal fan and same recession cone, the mapsXP→ UP

andXkP→UkP are identical. Hence the general case follows immediately from the
very ample case. �

Example 7.1.11.The polytopeP from Example 7.1.7 is very ample (in fact, it
is normal), and the setA used in the proof of Theorem 7.1.10 can be chosen to
beA = {e1, . . . ,en,2e1, . . . ,2en} (Exercise 7.1.8). This givesXA ⊆ P2n−1, where
P2n−1 has variablesx1, . . . ,xn,w1, . . . ,wn corresponding to the elementse1, . . . ,en,
2e1, . . . ,2en of A . ThenXA ⊆ P2n−1 is defined by the equationsx2

i w j = x2
j wi

for 1 ≤ i < j ≤ n (Exercise 7.1.8). SinceXP = Bl0(Cn) by Example 7.1.7, the
isomorphism (7.1.5) implies

Bl0(Cn)≃ {(x1, . . . ,xn,w1, . . . ,wn) ∈ P2n−1 | (x1, . . . ,xn) 6= (0, . . . ,0)

andx2
i w j = x2

j wi for 1≤ i < j ≤ n}.
We get a better description of Bl0(Cn) using the verticesB = {e1, . . . ,en} of P.
This gives a mapXP−→ Pn−1 which, when combined withXP→UP = Cn, gives
a morphism

Φ : XP−→ Pn−1×Cn.

Let Pn−1 andCn have variablesx1, . . . ,xn andy1, . . . ,yn respectively. ThenΦ is an
embedding onto the subvariety ofPn−1×Cn defined byxiy j = x jyi for 1≤ i< j ≤ n
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(Exercise 7.1.8). Hence

Bl0(Cn)≃ {(x1, . . . ,xn,y1, . . . ,yn) ∈ Pn−1×Cn | xiy j = x jyi ,1≤ i < j ≤ n}.
This description of the blowup Bl0(Cn) can be found in many books on algebraic
geometry and appeared earlier in this book as Exercise 3.0.8. Note also that the
projective morphism of Theorem 7.1.10 is the blowdown map Bl0(Cn)→ Cn. ♦

Here is an example to illustrate the ideas of this section.

Example 7.1.12.Consider the full dimensional lattice polyhedronP⊆R2 defined
by the inequalities

x≤ 2, 0≤ y≤ 2,y≥ x+1.

This polyhedron has verticesv1 = (1,0),v2 = (2,1),v3 = (2,2) shown in Figure 2.
The left side of the figure also shows the recession coneC and the decompostion
P = Q+C, whereQ is the convex hull of the vertices.

P

v1

v2

v3

(0,0)

σ3

σ2

σ1

ΣP

QC

P = Q + C

v1

v2

v3

(0,0)

↓
σP

Figure 2. The polyhedronP = Q+C, the normal fanΣP, and the coneσP

The normal vectors at each vertexvi are reassembled on the right to give the
maximal conesσi of normal fanΣP. Note also that|ΣP| is not strictly convex,
so we mod out by its maximal subspace to get the strictly convex coneσP. The
projection map on the right of Figure 2 gives the projective morphismXP→UP,
whereUP≃ C is the toric variety ofσP. ♦
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Exercises for §7.1.

7.1.1. Prove (7.1.1). Hint: Fixm0 ∈ P and take anym∈C. Show thatm0 +λm∈ P for
λ > 0, so〈m0 +λm,ui〉 ≥ −ai. Then divide byλ and letλ→∞.

7.1.2. Let P = Q+C be a polyhedron inMR whereQ is a polytope andC is a polyhedral
cone. DefineϕP(u) = minm∈P〈m,u〉 for u∈C∨.

(a) Show thatϕP(u) = minm∈Q〈m,u〉 for u∈ C∨ and conclude thatϕP : C∨→ R is well-
defined.

(b) Show thatϕP(u) = minv∈VQ〈v,u〉 for u∈ C∨, whereVQ be the set of vertices ofQ.

(c) Show thatP = {m∈MR | ϕP(u) ≤ 〈m,u〉 for all u∈C∨}. Hint: For the non-obvious
direction, representP as the intersection of closed half-spaces coming from supporting
hyperplanes.

7.1.3. Let P be a polyhedron inMR with recession coneC and letW = C∩ (−C) be the
largest subspace contained inC. Prove that every face ofP contains a translate ofW and
conclude thatP has no vertices whenC is not strongly convex.

7.1.4. Let P = Q+C be a polyhedron inMR whereQ is a polytope andC be a strongly
convex polyhedral cone. LetVQ be the set of vertices ofQ. Assume that there isv∈ VQ

andu in the interior ofC∨ such that〈v,u〉 < 〈w,u〉 for all w 6= v in VQ. Prove thatv is a
vertex ofP. Hint: Show thatHu,a, a = 〈v,u〉, is a supporting hyperplane ofP such that
Hu,a∩P = v. Also show ifv andu satisfy the hypothesis of the problem, then so dov and
u′ for anyu′ sufficiently close tou. Finally, Exercise 7.1.2 will be useful.

7.1.5. Let P = Q+C be a polyhedron inMR whereQ is a polytope andC be a strongly
convex polyhedral cone. LetVQ be the set of vertices ofQ and let

U0 = {u∈ Int(C∨) | 〈v,u〉 6= 〈w,u〉 wheneverv 6= w in VQ}.
(a) Show thatU0 is open and dense inC∨. Hint: dimC∨ = dimNR.

(b) Use Exercise 7.1.4 to show that for everyu ∈ U0, there is a vertexv of P such that
ϕP(u) = 〈v,u〉. Conclude that the setVP of vertices ofP is nonempty and finite.

(c) Show thatϕP(u) = minv∈VP〈v,u〉 for u∈C∨.

(d) Conclude thatP = Conv(VP)+C. Hint: The first step is to show thatϕP = ϕP′ , where
P′ = Conv(VP)+C. Then use part (c) of Exercise 7.1.2.

7.1.6. Let C⊆ NR be a polyhedral cone with maximal subspaceW = C∩ (−C) and let
σ ⊂ NR/W be the image ofC under the projection mapγ : NR → NR/W. Prove thatσ is
strongly convex and thatC = γ−1(σ).

7.1.7. Let P be a lattice polytope and letQ be the convex hull of the vertices ofP. Prove
that if Q is normal thenP is normal.

7.1.8. Prove the claims made in Example 7.1.11.

7.1.9. In this exercise, you will prove a stronger version of part (b) of Theorem 7.1.10. Let
XA andW be as in the proof of the theorem. Prove that there is a commutative diagram

(7.1.6)

XP
φ×φL ,W

//

φ
''PPPPPPPPPPPPPPP UP×P(W∨)

p1

��

UP
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such thatφ×φL ,W : XP→ UP×P(W∨) is a closed embedding. Hint: See the proof of
Proposition 7.0.6.

7.1.10. Let σ ⊆ NR be a strongly convex rational polyhedral cone. This gives the semi-
group algebraC[Sσ] = C[σ∨ ∩M]. Given a monomial ideala = 〈χm1, . . . ,χms〉 ⊆ C[Sσ],
we get the polyhedron

P = Conv(m∈M | χm∈ a),

Prove thatP = Conv(m1, . . . ,ms)+σ∨.

§7.2. Projective Morphisms and Toric Varieties

We now study when a toric morphismXΣ→ XΣ′ is projective.

Full Dimensional Convex Support. We first consider fansΣ in NR ≃ Rn that sat-
isfy the following conditions:

• |Σ| ⊆ NR is convex.

• dim|Σ|= n = dimNR.

We say thatΣ hasconvex support of full dimension. Such fans satisfy

(7.2.1) |Σ|= Cone(uρ | ρ ∈ Σ(1)) =
⋃

σ∈Σ(n)

σ

(Exercise 7.2.1). In particular, the maximal cones ofΣ have dimensionn, so we
can focus onσ ∈ Σ(n), just as in the complete case considered in §6.1.

The rational polyhedral cone|Σ| may fail to be strongly convex. The largest
subspace contained in|Σ| isW = |Σ|∩ (−|Σ|). Hence we get the following:

• The sublatticeW∩N⊆ N and the quotient latticeNΣ = N/(W∩N).

• The strongly convex coneσΣ = |Σ|/W ⊆ NR/W = (NΣ)R.

• The affine toric varietyUΣ = UσΣ
.

The projection mapφ : N→ NΣ is compatible with the fans ofXΣ andUΣ since
φR(|Σ|) = σΣ. This gives a toric morphism

(7.2.2) φ : XΣ −→UΣ.

which as in §7.1 is easily seen to be proper. The difference between here and §7.1
is thatφ : XΣ→UΣ may fail to be projective. Our first goal is to understand when
φ is projective. As you might suspect, the answer involves support functions and
convexity.

The Polyhedron of a Divisor. A Weil divisor D =
∑

ρaρDρ onXΣ gives the poly-
hedron

PD = {m∈MR | 〈m,uρ〉 ≥ −aρ for all ρ}.
WhenΣ is complete, this is a polytope, but as we learned in §7.1, in general we
have

PD = Q+C,
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whereQ is a polytope andC is the recession cone ofPD.

Lemma 7.2.1. Assume|Σ| is convex of full dimension and let D=
∑

ρaρDρ be a
Weil divisor on XΣ. If PD 6= ∅, then:

(a) The recession cone of PD is |Σ|∨.

(b) The set V= {v∈ PD | v is a vertex} is nonempty and finite.

(c) PD = Conv(V)+ |Σ|∨.

Proof. Combining (7.1.1) with the definition ofPD, we see that the recession cone
of PD is

{m∈MR | 〈m,uρ〉 ≥ 0 for all ρ}= |Σ|∨

since|Σ| = Cone(uρ | ρ ∈ Σ(1)) by (7.2.1). This proves part (a). The recession
cone is strongly convex since|Σ| has full dimension, so that parts (b) and (c) follow
from Lemma 7.1.1. �

Divisors and Convexity. The definition of convex function given in §6.1 applies
to any convex domain inNR. Thus, when|Σ| is convex, we know what it means
for the support function of a Cartier divisor to be convex. The convexity results of
§6.1 adapt nicely to fans with full dimensional convex support.

Theorem 7.2.2.Assume|Σ| is convex of full dimension n and letϕD be the support
function of a Cartier divisor D on XΣ. Then the following are equivalent:

(a) D is basepoint free.

(b) mσ ∈ PD for all σ ∈ Σ(n).

(c) PD = Conv(mσ | σ ∈ Σ(n))+ |Σ|∨.

(d) {mσ | σ ∈ Σ(n)} is the set of vertices of PD.

(e) ϕD(u) = minm∈PD〈m,u〉 for all u ∈ |Σ|.
(f) ϕD(u) = minσ∈Σ(n)〈mσ,u〉 for all u ∈ |Σ|.
(g) ϕD : |Σ| → R is convex.

Proof. This theorem generalizes Theorem 6.1.10. We begin by notingthat Propo-
sition 6.1.2 and Lemma 6.1.8 remain valid when|Σ| is convex of full dimension.
Since Lemma 6.1.9 applies to arbitrary fans, the equivalences (a)⇔ (b)⇔ (e)⇔
(f) ⇔ (g) follow as in the proof of Theorem 6.1.10. The implication(d) ⇒ (c)
follows from Lemma 7.2.1, and (c)⇒ (b) is obvious. Finally, (b)⇒ (d) follows by
the argument given the proof of Theorem 6.1.10. �

As a corollary, we see thatPD is a lattice polyhedron whenD is a basepoint
free Cartier divisor.
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Strict Convexity. Our next task is to show thatφ : XΣ→UΣ is projective if and only
if XΣ has a Cartier divisor with strictly convex support function. We continue to
assume thatΣ has full dimensional convex support. As in §7.1, a support function
ϕD is strictly convex if it is convex and for eachσ ∈ Σ(n), the equationϕD(u) =
〈mσ,u〉 holds only onσ. One can check that Lemma 6.1.13 remains valid in this
situation.

Suppose thatD =
∑

ρaρDρ has a strictly convex support function. Then The-
orem 7.2.2 and Lemma 6.1.13 imply that themσ, σ ∈ Σ(n), are distinct and give
the vertices of the polyhedronPD. This polyhedron has an especially nice relation
to the fanΣ.

Proposition 7.2.3. Assume that|Σ| is convex of full dimension and D=
∑

ρaρDρ

has a strictly convex support function. Then:

(a) PD is a full dimensional lattice polyhedron.

(b) Σ is the normal fan of PD.

Proof. As in §7.1, a vertexmσ ∈ PD gives the coneCmσ = Cone(PD ∩M−mσ).
We claim that

σ = C∨mσ
.

This easily implies thatPD has full dimension and thatΣ is the normal fan ofPD.

Fix σ ∈ Σ(n) and letρ ∈ σ(1). Thenm∈ PD∩M implies

(7.2.3) 〈m,uρ〉 ≥ ϕD(uρ) = 〈mσ,uρ〉,
where the inequality holds by Lemma 6.1.9 and the equality holds sinceuρ ∈ σ.
Thus〈m−mσ,uρ〉 ≥ 0 for all m∈ PD∩M, so thatuρ ∈C∨mσ

for all ρ ∈ σ(1). Hence

σ ⊆C∨mσ
.

Since|Σ|∨ is the recession cone ofPD, the proof of Theorem 7.1.6 implies

C∨mσ
⊆ |Σ|=

⋃

σ∈Σ(n)

σ.

Now takeu ∈ Int(C∨mσ
). Henceu ∈ σ′ for someσ′ ∈ Σ(n). Thenu ∈ C∨mσ

and
mσ′−mσ ∈Cmσ imply

〈mσ′ −mσ,u〉 ≥ 0, so 〈mσ′ ,u〉 ≥ 〈mσ,u〉.
On the other hand, if we apply (7.2.3) to the coneσ′ and m = mσ, we obtain
〈mσ,uρ〉 ≥ 〈mσ′ ,uρ〉. We conclude that

〈mσ,u〉 = 〈mσ′ ,u〉,
and the same equality holds for all elements of Int(C∨mσ

)∩σ′. This easily implies
thatmσ = mσ′ . Thenσ = σ′ by strict convexity, so thatu∈ σ. �

Here is the first major result of this section.
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Theorem 7.2.4.Letφ : XΣ→Uσ be the proper toric morphism where Uσ is affine.
Then|Σ| is convex. Furthermore, the following are equivalent:

(a) XΣ is quasiprojective.

(b) φ is a projective morphism.

(c) XΣ has a torus-invariant Cartier divisor with strictly convexsupport function.

Proof. Sinceφ is proper, Theorem 3.4.7 implies that|Σ| = φ
−1
R (σ). Thus|Σ| is

convex. To prove (a)⇔ (b)⇔ (c), first assume that|Σ| has full dimension.

If (c) is true, thenΣ is the normal fan of the full dimensional lattice polyhedron
PD by Proposition 7.2.3. It follows thatXΣ = XPD, which is quasiprojective by
Theorem 7.1.10, proving (a). Furthermore, (a)⇒ (b) by Proposition 7.0.6.

If (b) is true, we will use the theory of ampleness developed in [73]. The
essential facts we need are summarized in the appendix to this chapter. Sinceφ
is projective, there is a line bundleL on XΣ that satisfies Definition 7.0.3. Then,
sinceUσ is affine, Theorem 7.A.5 and Proposition 7.A.7 imply that

• L ⊗k = L ⊗OXΣ
· · · ⊗OXΣ

L (k times) is generated by global sections for some
integerk> 0.

• The nonvanishing set of a global section ofL is an affine open subset ofXΣ.

We know from §7.0 thatL ≃ OXΣ
(D) for some Cartier divisor onX, and

since linearly equivalent Cartier divisors give isomorphic line bundles, we may
assume thatD is torus-invariant (this follows from Theorem 4.2.1). ThenOXΣ

(kD)
is generated by global sections for somek > 0. This implies thatϕkD = kϕD is
convex by Theorem 7.2.2, so thatϕD is convex as well. We will show thatϕD is
strictly convex by contradiction.

If strict convexity fails, then Lemma 6.1.13 implies that there is a wallτ =
σ∩σ′ in Σ with mσ = m′σ. Thenm = mσ = m′σ corresponds to a global section
s, which by the proof of Proposition 6.1.2 is nonvanishing onUσ (sincem= mσ)
and onUσ′ (sincem= mσ′). Thus the nonvanishing set containsUσ ∪Uσ′ , which
contains the complete curveV(τ) ⊆Uσ ∪Uσ′ . But being affine, the nonvanishing
set cannot contain a complete curve (Exercise 7.2.2). This completes the proof of
the theorem when|Σ| has full dimension.

It remains to consider what happens when|Σ| fails to have full dimension. Let
N1 = Span(|Σ|)∩N and pickN0⊆N such thatN = N0⊕N1. The cones ofΣ lie in
(N1)R and hence give a fanΣ1 in (N1)R. If N0 has rankr, then Proposition 3.3.11
implies that

(7.2.4) XΣ ≃ (C∗)r ×XΣ1.

It follows thatϕD : |Σ| = |Σ1| → R is the support function of a Cartier divisorD1

on XΣ1. Note also that|Σ1| is convex of full dimension in(N1)R. Since(C∗)r is
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quasiprojective, this allows us to reduce to the case of fulldimensional support.
You will supply the omitted details in Exercise 7.2.3. �

f -Ample and f -Very Ample Divisors. The definitions of ample and very ample
from §6.1 generalize to the relative setting as follows. Recall from Definition 7.0.3
that a morphismf : X→Y is projective with respect to the line bundleL when for
a suitable open cover{Ui} of Y, we can find global sectionss0, . . . ,ski of L over
f−1(Ui) that give a closed embedding

f−1(Ui)−→Ui×Pki .

Then we have the following definition.

Definition 7.2.5. Suppose thatD is a Cartier divisor on a normal varietyX and
f : X→Y is a proper morphism.

(a) The divisorD and the line bundleOX(D) are f -very ampleif f is projective
with respect to the line bundleL = OX(D).

(b) D andOX(D) are f -amplewhenkD is f -very ample for some integerk> 0.

Hencef : X→Y is projective if and only ifX has anf -ample line bundle.

Theorem 7.2.6.Letφ : XΣ→Uσ be a proper toric morphism where Uσ is affine,
and let D=

∑
ρaρDρ be a Cartier divisor on XΣ. Then:

(a) D is φ-ample if and only ifϕD is stricly convex.

(b) If dimXΣ = n≥ 2 and D isφ-ample, then kD isφ-very ample for all k≥ n−1.

Proof. This follows from Proposition 7.1.9 and Theorem 7.2.4. �

Here is an example to illustrate

Example 7.2.7.Consider the blowdown morphismφ : Bl0(Cn)→Cn. The fan for
Bl0(Cn) has minimal generatorsu0 = e1 + · · ·+ en andui = ei for 1≤ i ≤ n. Let
D0 be the divisor corresponding tou0. The support functionϕ−D0 of −D0 is easily
seen to be strictly convex (Exercise 7.2.4). Thus:

• −D0 is φ-ample by Theorem 7.2.6.

• φ is projective by Theorem 7.2.4.

Note also that the polyhedronP−D0 is the polyhedronP from Example 7.1.7. ♦

Projective Toric Morphisms. Suppose we have fansΣ in NR andΣ′ in N′R. Recall
from §3.3 that a toric morphism

φ : XΣ→ XΣ′

is induced from a map of lattices

φ : N→ N′

compatible withΣ andΣ′, i.e., for eachσ ∈ Σ there isσ′ ∈ Σ′ with φR(σ)⊆ σ′.
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We first determine when a torus-invariant Cartier divisor onXΣ is φ-ample.
Since projective morphisms are proper, we can assume thatφ is proper, which by
Theorem 3.4.7 is equivalent to

(7.2.5) |Σ|= φ
−1
R (|Σ′|).

Here is our result.

Theorem 7.2.8.Letφ : XΣ→XΣ′ be a proper toric morphism and let D=
∑

ρaρDρ

be a Cartier divisor on XΣ.

(a) D is φ-ample if and only if for everyσ′ ∈ Σ′, ϕD is stricly convex onφ
−1
R (σ′).

(b) If dimXΣ = n≥ 2 and D isφ-ample, then kD isφ-very ample for all k≥ n−1.

Proof. The idea is to study what happens over the affine open subsetsUσ′ ⊆ XΣ′

for σ′ ∈ Σ′. Observe thatφ−1(Uσ′) is the toric variety corresponding to the fan

Σσ′ = {σ ∈ Σ | φR(σ)⊆ σ′}.
Thusφ−1(Uσ′) = XΣσ′ . Letφσ′ = φ|φ−1(Uσ′) and consider the diagram

XΣ
φ

// XΣ′

φ−1(Uσ′)

?�

OO

φσ′
// Uσ′

?�

OO

XΣσ′

φσ′
// Uσ′ .

Also let Dσ′ be the restriction ofD to φ−1(Uσ′) = XΣσ′ .

By Proposition 7.A.6,D is φ-ample if and only if the restrictionD|φ−1(Uσ′) is
φ|φ−1(Uσ′ )-ample for allσ′ ∈ Σ′. Using the above notation, this becomes

D is φ-ample⇐⇒ Dσ′ is φσ′ -ample for allσ′ ∈ Σ′.

However, Theorem 7.2.6 implies that

Dσ′ is φσ′-ample⇐⇒ ϕDσ′ is strictly convex.

This completes the proof of the theorem. �

It is now easy to characterize when a toric morphism is projective.

Theorem 7.2.9. Let φ : XΣ → XΣ′ be a toric morphism. Then the following are
equivalent:

(a) φ is projective.

(b) φ is proper and XΣ has a torus-invariant Cartier divisor D whose support

functionϕD is strictly convex onφ
−1
R (σ′) for all σ′ ∈ Σ′. �
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You will prove Theorem 7.2.9 in Exercise 7.2.5. The first proof of this theorem
was given in [103, Thm. 13 of Ch. I]. In Chapter 11 we will use this result to
construct interesting examples of projective toric morphisms.

Exercises for §7.2.

7.2.1. Prove (7.2.1).

7.2.2. Prove that an affine variety cannot contain a complete variety of positive dimension.
Hint: If X is complete and irreducible, thenΓ(X,OX) = C.

7.2.3. This exercise will complete the proof of Theorem 7.2.4. Letφ : XΣ →Uσ satisfy
the hypothesis of the theorem and writeXΣ as in (7.2.4). We also have the Cartier divisors
D onXΣ andD1 onXΣ1 as in the proof of the theorem.

(a) Assume thatφ is projective. Prove thatXΣ is quasiprojective and conclude thatXΣ1 is
quasiprojective. Now use the first part of the proof to show thatϕD is strictly convex.
Hint: See Exercise 7.0.1.

(b) Assume thatϕD is strictly convex. Prove thatXΣ1 is quasiprojective and conclude that
XΣ is quasiprojective. Then use Proposition 7.0.6.

7.2.4. Prove that the support functionϕ−D0 in Example 7.2.7 is strictly convex. We will
generalize this result considerably in Chapter 11.

7.2.5. Prove Theorem 7.2.9.

§7.3. Projective Bundles and Toric Varieties

Given a vector bundle or projective bundle over a toric variety, the nicest case is
when the bundle is also a toric variety. This will lead to somelovely examples of
toric varieties.

Toric Vector Bundles and Cartier Divisors. A Cartier divisorD =
∑

ρaρDρ on a
toric varietyXΣ gives the line bundleL = OXΣ

(D), which is the sheaf of sections
of the rank 1 vector bundleπ : VL → XΣ.

We will show thatVL is a toric variety andπ is a toric morphism by construct-
ing the fan ofVL in terms ofΣ andD. To motivate our construction, recall that for
m∈M, we have

χm∈ Γ(XΣ,OXΣ
(D)) ⇐⇒ m∈ PD

⇐⇒ 〈m,u〉 ≥ ϕD(u) for all u∈ |Σ|
⇐⇒ the graph ofu 7→ 〈m,u〉 lies

abovethe graph ofϕD.

The first equivalence follows from Proposition 4.3.3 and thesecond from Propos-
tion 6.1.9. The key word is “above”: it tells us to focus on thepart ofNR×R that
lies above the graph ofϕD.
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We define the fanΣ×D in NR×R as follows. Givenσ ∈ Σ, set

σ̃ = {(u,λ) | u∈ σ, λ≥ ϕD(u)}
= Cone((0,1),(uρ ,−aρ) | ρ ∈ σ(1)),

where the second equality follows sinceϕD(uρ) =−aρ andϕD is linear onσ. Note
that σ̃ is a strongly convex rational polyhedral cone inNR×R. Then letΣ×D be
the set consisting of the conesσ̃ for σ ∈Σ and their faces. This is a fan inNR×R,
and the projectionπ : N×Z→ N is clearly compatible withΣ×D andΣ. Hence
we get a toric morphism

π : XΣ×D −→ XΣ.

Proposition 7.3.1. π : XΣ×D→ XΣ is a rank1 vector bundle whose sheaf of sec-
tions isOXΣ

(D).

Proof. We first show thatπ is a toric fibration as in Theorem 3.3.19. The kernel
of π : N×Z→ N is N0 = {0}×Z, and the fanΣ0 = {σ ∈ Σ×D | σ ⊆ (N0)R} has
σ0 = Cone((0,1)) as its unique maximal cone. Also, forσ ∈ Σ let

σ̂ = Cone((uρ,−aρ) | ρ ∈ σ(1)).

This is the face of̃σ consisting of points(u,λ) whereϕD(u) = λ. Thusσ̂ ∈ Σ×D
and in factΣ̂ = {σ̂ | σ ∈ Σ} is a subfan ofΣ×D. Sinceσ̃ = σ̂+ σ0 andπR

mapsσ̂ bijectively toσ, we see thatΣ×D is split by Σ andΣ0 in the sense of
Definition 3.3.18. SinceXΣ0,N0 = C, Theorem 3.3.19 implies that

π−1(Uσ)≃Uσ×C.

To see that this gives the desired vector bundle, we study thetransition func-
tions. First note thatπ−1(Uσ) = Ueσ, so that the above isomorphism is

Ueσ ≃Uσ×C,

which by projection induces a mapUeσ → C. It is easy to check that this map is
χ(−mσ,1), whereϕD(u) = 〈mσ,u〉 for u∈ σ (Exercise 7.3.1). Note that

(−mσ,1) ∈ σ̃∨∩ (M×Z),

follows directly from the definition of̃σ. Then, given another coneτ ∈ Σ, the
transition map fromUσ∩τ ×C⊆Uτ ×C toUσ∩τ ×C⊆Uσ×C is given by(u, t) 7→
(u,gστ (u)t), wheregστ = χmτ−mσ (Exercise 7.3.1).

We are now done, since the proof of Proposition 6.1.20 shows thatOXΣ
(D) is

the sheaf of sections of a rank 1 vector bundle overXΣ whose transition functions
aregστ = χmτ−mσ . �

This construction is easy but leads to some surprising rich examples.
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Example 7.3.2.ConsiderPn with its usual fan and letD0 correspond to the min-
imal generatoru0 = −e1− ·· · − en. Recall thatOPn(−D0) is denotedOPn(−1).
This gives the rank 1 vector bundleV → Pn described in Proposition 7.3.1 whose
fanΣ in Rn×R = Rn+1 has minimal generators

e1, . . . ,en+1,−e1−·· ·−en +en+1.

You will check this in Exercise 7.3.2.

We can also describe this vector bundle geometrically as follows. Consider the
lattice polyhedron inRn+1 given by

P = Conv(0,e1, . . . ,en)+Cone(en+1,e1 +en+1, . . . ,en +en+1).

The normal fan ofP is the fanΣ (Exercise 7.3.2), so thatXP is the above vector
bundleV. Note also that|Σ| is dual to the recession cone ofP.

It is easy to see that|Σ| is a smooth cone of dimensionn+ 1, so that the pro-
jective toric morphismXP→UP constructed in §7.1 becomesXP→ Cn+1. When
combined with the vector bundle mapXP = V → Pn, we get a morphism

XP−→ Pn×Cn+1.

When the coordinates ofPn andCn+1 are ordered correctly, the image is precisely
the variety defined byxiy j = x jyi (Exercise 7.3.2). In this way, we recover the
description ofV → Pn given in Example 6.0.19. ♦

Proposition 7.3.1 extends easily to decomposable toric vector bundles. Sup-
pose we haver Cartier divisorsDi =

∑
ρaiρDρ, i = 1, . . . , r. This gives the locally

free sheaf

(7.3.1) OXΣ
(D1)⊕·· ·⊕OXΣ

(Dr)

of rank r. To construct the fan of the corresponding vector bundle, wework in
NR×Rr . Let e1, . . . ,er be the standard basis ofRr and write elements ofNR×Rr

asu+λ1e1 + · · ·+λrer . Then, givenσ ∈Σ, we get the cone

σ̃ = {u+λ1e1 + · · ·+λrer | u∈ σ, λi ≥ ϕDi (u) for i = 1, . . . , r}
= Cone(uρ−a1ρe1−·· ·−arρer | ρ ∈ σ(1))+Cone(e1, . . . ,er).

One can show without difficulty that the set consisting of theconesσ̃ for σ ∈ Σ
and their faces is a fan inNR×Rr such that the toric variety of this fan is the vector
bundle overXΣ whose sheaf of sections is (7.3.1) (Exercise 7.3.3).

Besides decomposable vector bundles, one can also define atoric vector bundle
π :V→XΣ. Here, rather than assume thatV is a toric variety, one makes the weaker
assumption the torus ofXΣ acts onV such that the action is linear on the fibers and
π is equivariant. Toric vector bundles have been classified byKlyachko [106] and
others—see [138] for the historical background. Oda noted in [135, p. 41] that if a
toric vector bundle is a toric variety in its own right, then the bundle is a direct sum
of line bundles, as above. This can be proved using Klyachko’s results.
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Toric Projective Bundles. The decomposable toric vector bundles have associated
toric projective bundles. Cartier divisorsD0, . . . ,Dr give the locally free sheaf

E = OXΣ
(D0)⊕·· ·⊕OXΣ

(Dr),

of rankr +1. ThenP(E )→ XΣ is a projective bundle whose fibers look likePr .

To describe the fan ofP(E ), we first give a new description of the fan ofPr . In
Rr+1, we use the standard basise0, . . . ,er . The “first orthant” Cone(e0, . . . ,er) has
r +1 facets

Fi = Cone(e0, . . . , êi , . . . ,er), i = 0, . . . , r.

Now setN = Zr+1/Z(e0 + · · ·+er). Then the imagesei of ei sum to zero inN and
the imagesF i of Fi give the fan forPr in NR.

The construction ofP(E ) given in §7.0 involves taking the dual vector bundle.
ThusP(E ) = P(VE ), whereVE is the vector bundle whose sheaf of sections is

OXΣ
(−D0)⊕·· ·⊕OXΣ

(−Dr).

The fan ofVE is built from cones

Cone(uρ+a0ρe0 + · · ·+arρer | ρ ∈ σ(1))+Cone(e0, . . . ,er )

and their faces, asσ ranges over the conesσ ∈Σ. To get the fan forP(E ) = P(VE ),
takeσ ∈ Σ and letFi be a facet of Cone(e0, . . . ,er). This gives the cone

Cone(uρ+a0ρe0 + · · ·+arρer | ρ ∈ σ(1))+Fi ⊆ NR×Rr+1,

and one sees thatσi ⊆ NR×NR is the image of this cone under the projection map
NR×Rr+1→ NR×NR.

Proposition 7.3.3. The cones{σi | σ ∈ Σ, i = 0, . . . , r} and their faces form a fan
ΣE in NR×NR whose toric variety XE is the projective bundleP(E ).

Proof. Consider the fanΣ0 in NR given by theF i and their faces. Also, forσ ∈Σ,
let σ̂ be the image of Cone(uρ+a0ρe0 + · · ·+arρer | ρ ∈ σ(1)) in NR×NR. Then
one easily adapts the proof of Proposition 7.3.1 to show thatthe toric varietyXE

of ΣE is a fibration overXΣ with fiber Pr . Furthermore, working over an affine
open subset ofXΣ, one sees thatXE is obtained fromVE by the process described
in §7.0. We leave the details as Exercise 7.3.4. �

In practice, one usually replacesN = Zr+1/Z(e0 + · · ·+ er) with Zr and the
basise1, . . . ,er . Then sete0 =−e1−·· ·−er and we redefineFi as

(7.3.2) Fi = Cone(e0, . . . , êi , . . . ,er)⊆Rr

and for a coneσ ∈ Σ, redefineσi as

(7.3.3) σi = Cone(uρ+(a1ρ−a0ρ)e1 + · · ·+(arρ−a0ρ)er |ρ ∈ σ(1))+Fi

in NR×Rr . This way,ΣE is a fan inNR×Rr . Here is a classic example.



328 Chapter 7. Projective Toric Morphisms

Example 7.3.4.The fan forP1 has minimal generatorsu1 andu0 = −u1. Also let
OP1(1) = OP1(D0), whereD0 be the divisor corresponding tou0. Fix an integer
a≥ 0 and consider

E = OP1⊕OP1(a).

As above, we get a fanΣE in R×R = R2. The minimal generatorsu0,u1 live in the
first factor. In the second factor, the vectorse0 = −∑r

i=1ei ,e1, . . . ,er in the above
construction reduce toe0 = −e1,e1. ThusF0 = Cone(e1) andF1 = Cone(e0). We
will use u1,e1 as the basis ofR2.

The maximal cones for the fan ofP1 areσ = Cone(u1) andσ′ = Cone(u0).
ThenΣE has four cones:

σ̃0 = Cone(u1 +(0−0)e1)+F0 = Cone(u1,e1)

σ̃1 = Cone(u1 +(0−0)e1)+F1 = Cone(u1,−e1)

σ̃′0 = Cone(u0 +(a−0)e1)+F0 = Cone(−u1 +ae1,e1)

σ̃′1 = Cone(u0 +(a−0)e1)+F1 = Cone(−u1 +ae1,−e1).

This is the fan for the Hirzebruch surfaceHa. Thus

Ha = P(OP1⊕OP1(a)).

Note also that the toric morphismHa→ P1 constructed earlier is the projection
map for the projective bundle. ♦

This example generalizes as follows.

Example 7.3.5.Given integerss, r ≥ 1 and 0≤ a1≤ ·· · ≤ ar , consider the projec-
tive bundle

P(E ) = P(OPs⊕OPs(a1)⊕·· ·⊕OPs(ar)).

The fanΣE of P(E ) has a nice description. We will work inRs×Rr , whereRs

has basisu1, . . . ,us andRr has basise1, . . . ,er . Also setu0 = −∑s
j=1u j ande0 =

−∑s
i=1 ei . As usual,u0 corresponds to the divisorD0 of Ps such thatOPs(ai) =

OPs(aiD0).

The description (7.3.3) of the cones inΣ uses generators of the form

(7.3.4) uρ+(a1ρ−a0ρ)e1 + · · ·+(arρ−a0ρ)er ,

where theuρ are minimal generators of the fan of the base of the projective bundle.
Here, theuρ’s areu0, . . . ,us. Since we are using the divisors 0,a1D0, . . . ,arD0, the
formula (7.3.4) simplifies dramatically, giving minimal generators

uρ = u0 : v0 = u0 +a1e1 + · · ·+arer

uρ = u j : v j = u j , j = 1, . . . ,s.

Since the maximal cones ofPs are Cone(u0, . . . , û j , . . . ,us), (7.3.2) and (7.3.3) im-
ply that the maximal cones ofΣ are

Cone(v0, . . . , v̂ j , . . . ,vs)+Cone(e0, . . . , êi , . . . ,er)
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for all j = 0, . . . ,sandi = 0, . . . , r. It is also easy to see that the minimal generators
v0, . . . ,vs,e0, . . . ,er have the following properties:

• v1, . . . ,vs,e1, . . . ,er form a basis ofZs×Zr .

• e0 + · · ·+er = 0.

• v0 + · · ·+vs = a1e1 + · · ·+arer .

The first two bullets are clear, and the third follows from
∑s

j=0 u j = 0 and the
definition of thev j .

One also sees thatXΣE
= P(E ) is smooth of dimensions+ r. SinceΣE has

(s+1)+(r +1) = s+ r +2 minimal generators, the description of the Picard group
given in §4.2 implies that

Pic(P(E ))≃ Z2.

(Exercise 7.3.5). Also observe that{v0, . . . ,vs} and{e0, . . . ,er} give primitive col-
lections ofΣE . We will see below that these are the only primitive collections
of ΣE . Furthermore, they are extremal in the sense of §6.3 and their primitive
relations generate the Mori cone ofP(E ).

This is a very rich example! ♦

A Classification Theorem. Kleinschmidt [105] classified all smooth projective
toric varieties with Picard number 2, i.e., with Pic(XΣ) ≃ Z2. The rough idea is
that they are the toric projective bundles described in Example 7.3.5. Following
ideas of Batyrev [6], we will use primitive collections to obtain the classification.

We begin with some results from [6] about primitive collections. Recall from
§6.3 that a primitive collectionP= {ρ1, . . . ,ρk}⊆Σ(1) gives the primitive relation

(7.3.5) uρ1 + · · ·+uρk−
∑

ρ∈γ(1)cρuρ = 0, cρ ∈Q>0,

whereγ ∈ Σ is the minimal cone containinguρ1 + · · ·+ uρk. WhenXΣ is smooth
and projective, these primitive relations have some nice properties.

Proposition 7.3.6. Let XΣ be a smooth projective toric variety. Then:

(a) In the primitive relation(7.3.5), P∩γ(1) = ∅ and cρ ∈ Z>0 for all ρ ∈ σ(1).

(b) There is a primitive collection P with primitive relation uρ1 + · · ·+uρk = 0.

Proof. Thecρ are integral sinceΣ is smooth. Let the minimal generators ofγ be
u1, . . . ,uℓ, so the primitive relation becomes

uρ1 + · · ·+uρk = c1u1 + · · ·+cℓuℓ.

To prove part (a), suppose for example thatuρ1 = u1. Then

uρ2 + · · ·+uρk = (c1−1)u1 +c2u2 · · ·+cℓuℓ.

Note thatuρ2, . . . ,uρk generate a cone ofΣ sinceP is a primitive collection. So the
above equation expresses an element of a cone ofΣ in terms of minimal generators
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in two different ways. SinceΣ is smooth, these must coincide. To see what this
means, we consider two cases:

• c1 > 1. Then{uρ2, . . . ,uρk}= {u1,u2, . . . ,uℓ}, so thatuρi = u1 for somei > 1.
This is impossible sinceuρ1 = u1.

• c1 = 1. Then{uρ2, . . . ,uρk}= {u2, . . . ,uℓ}. Sinceuρ1 = u1, we obtainP⊆ γ(1),
which is impossible sinceP is a primitive collection.

Sincec1 must be positive, we conclude thatuρ1 = u1 leads to a contradiction. From
here, it is easy to see thatP∩γ(1) = ∅.

Turning to part (b), letϕ be the support function of an ample divisor onXΣ.
Thusϕ is strictly convex. SinceΣ is complete, we can find an expression

(7.3.6) b1uρ1 + · · ·+bsuρs = 0

such thatb1, . . . ,bs are positive integers. Note thatuρ1, . . . ,uρs cannot lie in a cone
of Σ. By strict convexity and Lemma 6.1.13, it follows that

(7.3.7) 0= ϕ(0) = ϕ(b1uρ1 + · · ·+bsuρs)> b1ϕ(uρ1)+ · · ·+bsϕ(uρs).

Pick a relation (7.3.6) so that the right-hand side is as big as possible.

The set{uρ1, . . . ,uρs} is not contained in a cone ofΣ and hence has a subset
that is a primitive collection. By relabeling, we may assumethat {uρ1, . . . ,uρk},
k≤ s, is a primitive collection. Using (7.3.6) and the primitiverelation (7.3.5), we
obtain the nonnegative relation

∑

ρ∈γ(1)

cρuρ+

k∑

i=1

(bi −1)uρi +

s∑

i=k+1

biuρi = 0.

Sinceϕ is linear onγ and strictly convex,

∑

ρ∈γ(1)

cρϕ(uρ) = ϕ
( ∑

ρ∈γ(1)

cρuρ
)

= ϕ
( k∑

i=1

uρi

)
>

k∑

i=1

ϕ(uρi ),

which implies that

∑

ρ∈γ(1)

cρϕ(uρ)+
k∑

i=1

(bi −1)ϕ(uρi )+
s∑

i=k+1

biϕ(uρi )

>

k∑

i=1

ϕ(uρi ) +

k∑

i=1

(bi −1)ϕ(uρi )+

s∑

i=k+1

biϕ(uρi )

=

s∑

i=1

biϕ(uρi ).

This contradicts the maximality of the right-hand side of (7.3.7), unlessk = s and
b1 = · · ·= bk = 1, in which case we get the desired primitive collection. �
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We now prove Kleinschmidt’s classification theorem.

Theorem 7.3.7. Let XΣ be a smooth projective toric variety withPic(XΣ) ≃ Z2.
Then there are integers s, r ≥ 1, s+ r = dimXΣ and0≤ a1≤ ·· · ≤ ar with

XΣ ≃ P
(
OPs⊕OPs(a1)⊕·· ·⊕OPs(ar)

)
.

Proof. Let n = dimXΣ. Then Pic(XΣ) ≃ Z2 and Theorem 4.2.1 imply thatΣ(1)
hasn+2 elements. We recall two facts about divisorsD onXΣ:

• If D is nef andσ ∈ Σ(n), thenD ∼∑ρaρDρ whereaρ = 0 for ρ ∈ σ(1) and
aρ ≥ 0 for ρ /∈ σ(1).

• If D≥ 0 andD∼ 0, thenD = 0 sinceXΣ is complete.

The first bullet was proved in (6.3.11), and the second is an easy consequence of
Propositions 4.0.16 and 4.3.8.

By assumption,XΣ has an ample divisorD which lies in the interior of the
nef cone Nef(XΣ). ChangingD if necessary, we can assume thatD is effective
and [D] ∈ Pic(XΣ)R is not a scalar multiple of any[Dρ] for ρ ∈ Σ(1). The line
determined by[D] divides Pic(XΣ)R ≃ R2 gives closed half-planesH+ andH−.
Then define the sets

P = {ρ ∈ Σ(1) | [Dρ] ∈ H+}
Q = {ρ ∈ Σ(1) | [Dρ] ∈ H−}.

Note thatP∪Q = Σ(1), andP∩Q = ∅ by our choice ofD. We claim that

(7.3.8)
Σ(n) = {σρ,ρ′ | ρ ∈ P,ρ′ ∈Q}, where

σρ,ρ′ = Cone(uρ̂ | ρ̂ ∈ Σ(1)\{ρ,ρ′}).
To prove this, first takeσ ∈ Σ(n). Since|σ(1)| = n and|Σ(1)| = n+2, we have

(7.3.9) Σ(1) = σ(1)∪{ρ,ρ′}.
Applying the first bullet above toD andσ, we get [D] = a[Dρ] + b[Dρ′ ] where
a,b> 0 since[D] is a multiple of neither[Dρ] nor [Dρ′ ]. It follows that [Dρ] and
[Dρ′ ] lie on opposite sides of the line determined by[D]. We can relabel so that
ρ ∈ P andρ′ ∈Q, and thenσ has the desired form by (7.3.9).

For the converse, takeρ ∈ P andρ′ ∈ Q. Since Pic(XΣ)R ≃ R2, we can find a
linear dependence

a0[Dρ]+b0[Dρ′ ]+c0[D] = 0, a0,b0,c0 ∈ Z not all 0.

We can assume thata0,b0 ≥ 0 since[Dρ] and [Dρ′ ] lie on opposite sides of the
line determined by[D]. Note also thatc0 < 0 by the second bullet above, and then
a0,b0 > 0 by our choice ofD. It follows that D′ = a0Dρ + b0Dρ′ is ample. In
Exercise 7.3.6 you will show that

XΣ \Supp(D′) = XΣ \ (Dρ∪Dρ′)
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is the nonvanishing set of a global section ofOXΣ
(D′) and hence is affine. This set

is also torus-invariant and hence is an affine toric variety.Thus it must beUσ for
someσ ∈Σ. In other words,

XΣ = Uσ ∪Dρ∪Dρ′ .

SinceUσ ∩ (Dρ ∪Dρ′) = ∅, the Orbit-Cone correspondence (Theorem 3.2.6) im-
plies thatσ satsisfies (7.3.9) and hence gives an element ofΣ(n). This completes
the proof of (7.3.8).

An immediate consequence of this description ofΣ(n) is that P and Q are
primitive collections. Be sure you understand why. It is also true thatP andQ
are theonly primitive collections ofΣ. To prove this, suppose that we had a third
primitive collectionR. ThenP 6⊆ R, so there isρ ∈ P\R, and similarly there is
ρ′ ∈ Q\R sinceQ 6⊆ P. By (7.3.8), the rays ofR all lie in σρ,ρ′ ∈ Σ(n), which
contradicts the definition of primitive collection.

SinceXΣ is projective and smooth, Proposition 7.3.6 guarantees that Σ has a
primitive collection whose elements sum to zero. We may assume thatP is this
primitive collection. Let|P| = r + 1 and|Q| = s+ 1, sor,s≥ 1 since primitive
collections have at least two elements, andr +s= n since|P|+ |Q|= n+2.

Now rename the minimal generators of the rays inP ase0, . . . ,er . Thus

e0 + · · ·+er = 0.

The next step is to rename the minimal generators of the rays in P asv0, . . . ,vs.
Proposition 7.3.6 implies that

∑s
j=0v j lies in a coneγ ∈ Σ whose rays lie in the

complement ofQ, which is P. SinceP is a primitive collection,γ must omit at
least one element ofP, which we may assume to be the ray generated bye0. Then
the primitive relation ofQ can be written

v0 + · · ·+vs = a1e1 + · · ·+arer ,

and by further relabeling, we may assume 0≤ a1 ≤ ·· · ≤ ar . Finally, observe that
v1, . . . ,vs,e1, . . . ,er generate a maximal cone ofΣ by (7.3.8). SinceΣ is smooth,
it follows that theser + s vectors form a basis ofN. Comparing all of this to
Example 7.3.5, we conclude that the toric variety ofΣ is the projective bundle
P
(
OPs⊕OPs(a1)⊕·· ·⊕OPs(ar )

)
. �

The classification result proved in [105] is more general than the one given in
Theorem 7.3.7. By using a result from [115] on sphere triangulations with few
vertices, Kleinschmidt does not need assume thatXΣ is projective. Another proof
of Theorem 7.3.7 that does not assume projective can be foundin [6, Thm. 4.3].
We should also mention that our proof of (7.3.8) can be redoneusing theGale
transformsdiscussed in [50, II.4–6] and [175, Ch. 6].
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Exercises for §7.3.

7.3.1. Here you will supply some details needed to prove Theorem 7.3.1.

(a) In the proof we constructed a mapUeσ → C. Show that this map isχ(−mσ,1), where
ϕD(u) = 〈mσ,u〉 for u∈ σ.

(b) Given conesσ,τ ∈ Σ, the transition map fromUσ∩τ ×C ⊆ Uτ ×C to Uσ∩τ ×C ⊆
Uσ×C is given by(u, t) 7→ (u,gστ (u)t). Prove thatgστ = χmτ−mσ .

7.3.2. In Example 7.3.2, we study the rank 1 vector bundleV→Pn whose sheaf of sections
is OPn(−1). Let Σ be the fan ofV in Rn+1.

(a) Prove thate1, . . . ,en+1,−e1−·· ·−en+en+1 are the minimal generators ofΣ.

(b) Prove thatΣ is the normal fan of

P = Conv(0,e1, . . . ,en)+Cone(en+1,e1 +en+1, . . . ,en +en+1).

(c) The example constructs a morphismV→ Pn×Cn+1. Prove that the image of this map
is defined byxiy j = x jyi and explain how this relates to Example 6.0.19.

7.3.3. Consider the locally free sheaf (7.3.1) and the conesσ̃ ⊆ NR×Rr defined in the
discussion following (7.3.1). Prove that these cones and their faces give a fan inNR×Rr

whose toric variety is the vector bundle with (7.3.1) as sheaf of sections.

7.3.4. Complete the proof of Proposition 7.3.3.

7.3.5. Let P(E )→ Ps be the toric projective bundle constructed in Example 7.3.5. Prove
that Pic(P(E ))≃ Z2.

7.3.6. Let D be an ample effective divisor on a complete normal varietyX. The goal of
this exercise is to prove thatX \Supp(D) is affine.

(a) Assume thatD is very ample. Lets∈ Γ(X,OX(D)) be nonzero and consider the
nonvanishing setof s defined byU = {s∈ X | s(x) 6= 0}. Prove thatU is affine.
Hint: SinceD is ample, a basiss= s0,s1, . . . ,sm of Γ(X,OX(D)) gives the morphism
X→ Pm described in (6.0.6), which is a closed embedding sinceD is very ample. Let
Pm have homogeneous coordinatesx0, . . . ,xm and regardX as a subset ofPm. Prove
thatU = X∩U0, whereU0 ⊆ Pm is wherex0 6= 0.

(b) Explain why part (a) remains true whenD is ample but not necessarily very ample.
Hint: sk ∈ Γ(X,OX(kD)).

(c) SinceD is effective, 1∈ Γ(X,OX(D)) is a global section. Prove that the nonvanish-
ing set of this global section isX \Supp(D). Hint: For s∈ Γ(X,OX(D)), recall the
definition of div0(s) given in §4.0.

Parts (b) and (c) imply thatX \Supp(D) is affine whenD is ample, as desired. Note also
that part (b) is a special case of Proposition 7.A.7.

7.3.7. In Example 2.3.15, we defined therational normal scroll Sa,b to be the toric variety
of the polygon

Pa,b = Conv(0,ae1,e2,be1 +e2)⊆ R2,

wherea,b ∈ N satisfy 1≤ a≤ b, and in Example 3.1.16, we showed thatSa,b ≃Hb−a,
i.e., every rational normal scroll is a Hirzebruch surface.This exercise will explore an
n-dimensional analog ofPa,b.
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Take integers 1≤ d0 ≤ d1 ≤ ·· · ≤ dn−1. ThenPd0,...,dn−1 is the lattice polytope inRn

having the 2n lattice points

0, d0e1, e2, e2 +d1e1, e3, e3 +d2e1, . . . ,en, en +dn−1e1

as vertices. The toric variety ofPd0,...,dn−1 is denotedSd0,...,dn−1.

(a) Explain whyPd0,...,dn−1 is a “truncated prism” whose base in{0}×Rn−1 is the standard
simplex∆n−1, and above the vertices of∆n−1 there are edges of lengthsd0, . . . ,dn−1.
Here, “above” means thee1 direction. Draw a picture whenn = 3.

(b) Prove thatSd0,...,dn−1 ≃ P(OP1(d0)⊕·· ·⊕OP1(dn−1)).

(c) Sd0,...,dn−1 is smooth by part (b), so thatPd0,...,dn−1 is very ample and hence gives a
projective embedding ofSd0,...,dn−1. Explain how this embedding consists ofn embed-
dings ofP1 such that for each pointp∈ P1, the resultingn points in projective space
are connected by an(n−1)-dimensional plane that lies inSd0,...,dn−1.

(d) Explain how part (c) relates to the scroll discussion in Example 2.3.15.

(e) Show that the(n−1)-dimensional plane associated top∈ P1 in part (c) is the fiber of
the projective bundleP(OP1(d0)⊕·· ·⊕OP1(dn−1))→ P1.

7.3.8. Consider the toric varietyP(E ) constructed in Example 7.3.5.

(a) Prove thatP(E ) is projective. Hint: Proposition 7.0.5.

(b) Show thatP(E ) ≃ P(OPs(1)⊕OPs(a1 + 1)⊕ ·· · ⊕OPs(ar + 1)). Hint: Part (b) of
Lemma 7.0.8.

(c) Find a lattice polytope inRs×Rr whose toric variety isP(E ). Hint: In the polytope
of Exercise 7.3.7, each vertex of{0}×∆n−1⊆R×Rn−1 is attached to a line segment
in the normal direction. Also observe that a line segment is amultiple of ∆1. Adapt
this by using{0}×∆r ⊆ Rs×Rr as “base” and then, at each vertex of∆r , attach a
positive mutliple of∆s in the normal direction.

7.3.9. Let XΣ be a projective toric variety and letD0, . . . ,Dr be torus-invariant ample divi-
sors onXΣ. EachDi gives a lattice polytopePi = DPi whose normal fan isΣ. Prove that
the projective bundle

P(OXΣ
(D0)⊕·· ·⊕OXΣ

(Dr))

is the toric variety of the polytope inNR×R

Conv(P0×{0}∪P1×{e1}∪ · · ·∪Pr ×{er}).

Hint: If you get stuck, see [31, Sec. 3]. Do you see how this relates to Exercise 7.3.8?

7.3.10.Use primitive collections to show thatPn is the only smooth projective toric variety
with Picard number 1.

Appendix: More on Projective Morphisms

In this appendix, we discuss some technical details relatedto projective morphisms.
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Proj of a Graded Ring. As described in [48, III.2] and [77, II.2], a graded ring

S=

∞⊕

d=0

Sd

gives the scheme Proj(S) such that for every non-nilpotentf ∈ Sd, we have the affine open
subsetD+( f ) ⊆ Proj(S) with

D+( f )≃ Spec(S( f )),

whereS( f ) is the homogenous localization ofSat f , i.e.,

S( f ) =
{ g

f d
| g∈ Sd, d ∈N

}
.

Furthermore, if homogeneous elementsf1, . . . , fs ∈ Ssatisfy
√
〈 f1, . . . , fs〉= S+ =

⊕

d>0

Sd,

then the affine open subsetsD+( f1), . . . ,D+( fs) cover Proj(S). Thus we can construct
Proj(S) by gluing together the affine varietiesD+( fi), just as we constructPn by gluing
together copies ofCn.

The scheme Proj(S) comes equipped with a projective morphism Proj(S)→ Spec(S0)
induced by the inclusionsS0 ⊆ S( f ) for all f . For example, ifU = Spec(R) is an affine
variety, then we get the graded ring

S= R[x0, . . . ,xn]

such that eachxi has degree 1. Then

Proj(S) = U×Pn,

where the map Proj(S)→ Spec(S0) = Spec(R) = U is projection onto the first factor.

Here is a toric example. LetP⊆MR be a full dimensional lattice polyhedron. As in
§7.1, this gives:

• The toric morphismφ : XP→UP.

• The coneC(P)⊆MR×R.

Recall from (7.1.3) thatC(P) gives the semigroup algebra

SP = C[C(P)∩ (M×Z)],

where the character associated to(m,k) ∈ C(P)∩ (M×Z) is writtenχmt k. We use the
height grading given by setting deg(χmt k) = k. Then

Theorem 7.A.1. XP≃ Proj(SP). Furthermore, if P is normal, then there is a commutative
diagram

XP
α //

φ
''OOOOOOOOOOOOOO UP×Ps−1

p1

��

UP

such thatα is a closed embedding.
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Proof. We will sketch the argument and leave the details as an exercise. The slice ofC(P)
at height 0 is the recession coneC of P. Recall thatNP = N/(W∩N), whereW ⊆C∨ is
the largest subspace contained inC∨ and thatUP is the affine toric variety ofσP, which is
the image ofC∨ in (NP)R. Then the inclusionMP ⊆M dual toN→NP gives

σ∨P = C⊆ (MP)R ⊆MR.

It follows that (SP)0, the degree 0 part of the graded ringSP = C[C(P)∩ (M×Z)], is
C[C∩M] = C[σ∨P ∩M]. This implies Spec((SP)0) = UP, so that we get a natural map
Proj(SP)→UP.

If P is normal, one sees easily thatC(P)∩ (M×Z) is generated by its elements of
height≤ 1. If H is a Hilbert basis ofC(P)∩(M×Z), thenH = H0∪H1, where elements
of Hi have heighti. If we write H1 = {(m1,1), . . . ,(ms,1)}, thenSP is generated as an
(SP)0-algebra byχm1t, . . . ,χmst. In other words, we have a surjective homomorphism of
graded rings

(SP)0[x1, . . . ,xs]−→ SP, xi 7−→ χmi t.

This surjection makes Proj(SP) a closed subvariety of Proj((SP)0[x1, . . . ,xs]) = UP×Ps−1

by [77, Ex. III.3.12]. This gives the commutative diagram in the statement of the theorem,
except thatXP is replaced with Proj(SP). Hence Proj(SP)→UP is projective.

It remains to proveXP≃ Proj(SP). For this, letV be the set of vertices ofP. Then one
can prove:

•
√
〈χvt | v∈V〉= (SP)+ =

⊕
d>0(SP)d.

• If v∈V, then(SP)(χvt) = C[σ∨v ∩M], whereσv = Cone(P∩M−v)∨.

The first bullet implies that Proj(SP) is covered by the affine open subsets Spec((SP)(χvt)),
and the second shows that Spec((SP)(χvt)) is the affine toric variety of the coneσv. These
patch together in the correct way to giveXP≃ Proj(SP). �

For an arbitrary full dimensional lattice polyhedron, somepositive multiple is normal.
Hence Theorem 7.A.1 gives a second proof of Theorem 7.1.10.

Ampleness. A comprehensive treatment of ampleness appears in Volume IIof Éléments
de ǵeoḿetrie alǵebrique(EGA) by Grothendieck and Dieudonné [73]. The results we
need from EGA are spread out over several sections. Here we collect the definitions and
theorems we will use in our discusion of ampleness.1

Definition 7.A.2. A line bundleL on a varietyX is absolutely ampleif for every coherent
sheafF onX, there is an integerk0 such thatF ⊗OX L⊗k is generated by global sections
for all k≥ k0.

By [73, (4.5.5)], this is equivalent to what EGA calls “ample” in [73, (4.5.3)]. We use
the name “absolutely ample” to prevent confusion with Definition 6.1.1, where “ample” is
defined for line bundles on complete normal varieties.

Here is another definition from EGA.

1The theory developed in EGA applies to very general schemes.The varieties and morphisms appearing in
this book are nicely behaved—the varieties are quasi-compact and noetherian, the morphisms are of finite type,
and coherent is equivalent to quasicoherent of finite type. Hence most of the special hypotheses needed for some
of the results in [73] are automatically true in our situation.



Appendix: More on Projective Morphisms 337

Definition 7.A.3. Let f : X→Y be a morphism. A line bundleL onX is relatively ample
with respect tof if Y has an affine open cover{Ui} such that for everyi, L | f−1(Ui) is

absolutely ample onf−1(Ui).

This is [73, (4.6.1)]. When mapping to an affine variety, relatively ample and abso-
lutely ample coincide. More precisely, we have the following result from [73, (4.6.6)].

Proposition 7.A.4. Let f : X→Y be a morphism, where Y is affine, and letL be a line
bundle on X. Then:

L is relatively ample with respect to f⇐⇒ L is absolutely ample.

The reader should be warned that in EGA, “relatively ample with respect tof ” and
“ f -ample” are synonyms. In this text, they are slightly different, since “relatively ample
with respect tof ” refers to Definition 7.A.3 while “f -ample” refers to Definition 7.2.5.
Fortunately, they coincide when the mapf is proper.

Theorem 7.A.5. Let f : X→ Y be a proper morphism andL a line bundle on X. Then
the following are equivalent:

(a) L is relatively ample with respect to f in the sense of Definition 7.A.3.

(b) L is f -ample in the sense of Definition 7.2.5.

(c) There is an integer k> 0 such that f is projective with respect toL⊗k in the sense of
Definition 7.0.3.

Proof. First observe that (b) and (c) are equivalent by Definition 7.2.5. Now suppose that
f is projective with respect toL ⊗k. Then there is an affine open covering{Ui} of Y such
that for eachi, there is a finite-dimensional subspaceW ⊆ Γ(Ui ,L

⊗k) that gives a closed
embedding off−1(Ui) into Ui×P(W∨) for eachi.

The locally free sheafE = W∨⊗C OUi is the sheaf of sections of the trivial vector
bundleUi ×W∨ →Ui . This gives the projective bundleP(E ) = Ui ×P(W∨), so that we
have a closed embedding

f−1(Ui)−→ P(E ).

By definition [73, (4.4.2)],L ⊗k| f−1(Ui)
is very ample forf | f−1(Ui)

. Then [73, (4.6.9)]
implies thatL | f−1(Ui)

is relatively ample with respect tof | f−1(Ui)
, and hence absolutely

ample by Proposition 7.A.4. ThenL is relatively ample with respect tof by Defini-
tion 7.A.3.

Finally, suppose thatL is relatively ample with respect tof and let{Ui} be an affine
open covering ofY. Then [73, (4.6.4)] implies thatL | f−1(Ui)

is relatively ample with

respect tof | f−1(Ui)
. Using [73, (4.6.9)] again, we see thatL⊗k| f−1(Ui)

is very ample for

f | f−1(Ui)
, which by definition [73, (4.4.2)] means thatf−1(Ui) can be embedded inP(E )

for a coherent sheafE on Ui . Then the proof of [171, Thm. 5.44] shows how to find
finitely many sections ofL ⊗k over f−1(Ui) give a suitable embedding off−1(Ui) into
Ui×P(W∨). �

In EGA [73, (5.5.2)], the definition of when a morphismf : X→ Y is projective in-
volves two equivalent conditions stated in [73, (5.5.1)]. The first condition uses the pro-
jective bundleP(E ) of a coherent sheafE on Y, and the second uses Proj(S ), where
S is a quasicoherent gradedOY-algebra such thatS1 is coherent and generatesS . By
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[73, (5.5.3)], projective is equivalent to proper and quasiprojective, and by the defintion
of quasiprojective [73, (5.5.1)], this means thatX has a line bundle relatively ample with
respect tof . Hence Theorem 7.A.5 shows that the definition of projectivemorphism given
in EGA is equivalent to Definition 7.0.3.

We close with two further results about projective morphisms.

Proposition 7.A.6. Let f : X→Y be a proper morphism andL a line bundle on X. Given
an affine open cover{Ui} of Y, the following are equivalent:

(a) L is f -ample.

(b) For every i,L | f−1(Ui)
is f | f−1(Ui)

-ample.

Proof. Sincef is proper, so isf | f−1(Ui)
: f−1(Ui)→Ui by the universal property of proper-

ness. But for a proper morphismg, beingg-ample is equivalent to being relatively ample
with respect tog. Then we are done by [73, (4.6.4)]. �

Proposition 7.A.7. Let f : X→Y be a projective morphism with Y affine and letL be an
f -ample line bundle on X. Then:

(a) Given a global section s∈ Γ(X,L ), let Xs⊆ X be the open subset where s is nonvan-
ishing. Then Xs is an affine open subset of X.

(b) There is an integer k0 such thatL⊗k is generated by global sections for all k≥ k0.

Proof. This is proved in [73, (5.5.7)]. �
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varieties, (L. Bonavero and M. Brion, eds.), Sémin. Congr.6, Soc. Math. France, Paris, 2002,
43–127.

[27] W. Bruns and B. Ichim,NORMALIZ: Computing normalizations of affine semigroups, with
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[64] P. González Pérez and B. Teissier,Embedded resolutions of non necessarily normal affine
toric varieties, C. R. Math. Acad. Sci. Paris334(2002), 379–382.

[65] M. Goresky, R. Kottwitz and R. MacPherson,Equivariant cohomology, Koszul duality, and
the localization theorem, Invent. Math.131(1998), 25–83.

[66] M. Goresky and R. MacPherson,Intersection homology theory, Topology19(1980), 135–162.

[67] M. Goresky and R. MacPherson,Intersection homology theory II, Invent. Math.72 (1983),
77–129.

[68] R. Goward,A simple algorithm for principalization of monomial ideals, Trans. Amer. Math.
Soc.357(2005), 4805–4812.

[69] H. Grauert and R. Remmert,Coherent Analytic Sheaves, Grundlehren der mathematischen
Wissenschaften265, Springer, Berlin, 1984.

[70] M. Greenberg and J. Harper,Algebraic Topology: A First Course, Benjamin/Cummings, Read-
ing, MA, 1981. Reprinted by Westview Press, Boulder, CO.

[71] P. Griffiths and J. Harris,Principles of Algebraic Geometry, Wiley, New York, 1978

[72] A. Grothendieck,Revêtements étales et groupe fondamental(SGA 1), Séminaire de géométrie
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absolutely ample, 336
abstract variety, 97, 99
affine

piece of a variety, 51, 52
scheme, 4, 104
toric variety, 12, 18

of a cone, 30
variety, 3

affine cone
of a projective toric variety, 56
of a projective variety, 50

affine hyperplane, 63
affine semigroup, 16
algebraic action, 12, 106
ample,seeCartier divisor, ample

absolutely, 336
relatively with respect tof , 337

basepoint free,see alsosheaf, generated by global
sections

Cartier divisor,seeCartier divisor, basepoint
free

subspace of global sections, 255
basic simplex, 68
binomial, 16
Birkhoff polytope, 64
blowup, 98, 105, 111, 130, 131, 172, 174, 186,

188, 278, 310

cancellative semigroup, 22
Carathéodory’s theorem, 69
Cartier data, 179, 191
Cartier divisor, 158

ample, 260, 262, 269, 296
basepoint free, 256, 260, 262, 266, 283, 319
f -ample, 322

f -very ample, 322
local data of, 158
nef, 283, 296
numerical equivalence of, 284
numerically equivalent to zero, 284
of a polyhedron, 313
of a polytope, 180
on an irreducible variety, 255
torus-invariant,seetorus-invariant, Cartier

divisor
very ample, 260, 262

character, 11
Chevalley’s Theorem, 143
class group, 159
classical topology, 4, 50, 102, 113, 139, 146
closed half-space, 25, 63
codimension of a prime ideal, 155
coherent sheaf, 164
combinatorially equivalent polytopes, 65
compact, 113, 139, 146
compatibility conditions, 97, 250
compatible map of lattices, 125
complete fan, 113, 139, 146, 191
complete linear system, 259
complete variety, 141, 146
cone

convex polyhedral,seepolyhedral cone
of a polyhedron, 335
of a polyhedron, 310
of a polytope, 24, 69, 86
polyhedral,seepolyhedral cone
rational polyhedral,seerational polyhedral cone
simplicial, seesimplicial cone
smooth,seesmooth cone
strongly convex,seestrongly convex cone

constructible set, 123
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convex
function, 265
hull, 24
polyhedral cone,seepolyhedral cone

convex function, 319
convex support of full dimension, 318
coordinate ring, 3, 4

degenerate fan, 276
degree

of a divisor on a curve, 280
of a line bundle on a curve, 280

determinantal variety, 13
diagonal map, 102
dimension at a point, 6, 101
dimension of a cone, 24
dimension of a polytope, 63
dimension of a ring, 154
direct image, 164
direct limit, 100, 243
directed set, 180, 243
directed system, 243
discrete valuation, 153
discrete valuation ring (DVR), 153
distinguished point, 116, 118, 130, 135
divisor

Cartier,seeCartier divisor
linear equivalence of, 158
locally principal,seelocally principal divisor
nef,seeCartier divisor, nef
numerically effective,seeCartier divisor, nef
of a character, 169
of a rational function, 157
of poles, 158
of zeros, 158
principal, 157
Weil, seeWeil divisor

doubly-stochastic matrix, 64
dual cone, 24
dual face, 26
dual polytope, 65
dual sheaf, 253

edge, 25, 63
effective divisor, 157
equivariant map, 41, 126
exact sequence of sheaves, 246
extremal wall,seewall, extremal
extremal ray, 287, 297
extremal walls, 287

f -ample,seeCartier divisor,f -ample
f -very ample,seeCartier divisor,f -very ample
4ti2, 72
face, 25, 63
facet, 25, 63

normal, 26, 64

presentation, 66
fan, 77, 106

complete,seecomplete fan
normal,seenormal fan
refinement of,seerefinement of a fan
simplicial, seesimplicial fan
smooth,seesmooth fan

fiber bundle, 133
fiber product of varieties, 102
Fibonacci number, 22
finite quotient singularities, 113
finitely generated semigroup, 16
formal power series, 10
fractional ideal, 168
full dimensional

polytope, 64
full dimesional

convex support, 318
polyhedron, 311

function field, 100

GAGA, 142, 143
generated by global sections,seesheaf, generated

by global sections
global sections, 187

of a sheaf, 164, 246
of a toric sheaf, 188, 191
of a vector bundle, 249

gluing data, 97, 250
Gordan’s Lemma, 30
graded module, 225, 246, 301

shift of, 225
Grassmannian, 252, 258

Homsheaf, 247, 253
Hausdorff topological space, 102
height of a prime ideal, 155
Hilbert basis, 32, 33
Hilbert Basis Theorem, 3
Hirzebruch surface, 112, 173, 189, 261, 267, 271,

294, 328
homogeneous coordinate ring, 49
homogeneous coordinates, 49
homogenization, 190
homomorphism of sheaves, 164, 244

injective, 244
sujective, 244

image sheaf, 245
index of a simplicial cone, 291
inner normal fan,seenormal fan
integral closure, 5
integrally closed ring, 5
intersection product, 281

on a toric variety, 282, 291
inverse limit, 180
inverse system, 180
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invertible sheaf, 166, 252, 253
inward-pointing facet normal,seefacet, normal
irreducible components, 97
irreducible variety, 97
irrelevant ideal, 205
isomorphism of varieties, 96

Jacobian matrix, 7

kernel sheaf, 245
Kleinschmidt’s classification theorem, 331
Krull Principal Ideal Theorem, 159, 167

lattice, 13
lattice ideal, 16
lattice polyhedron, 310
lattice polytope, 66
Laurent polynomial, 5
limit of one-parameter subgroup, 115, 116, 139,

142, 146
line bundle, 251, 253

ample, 260
f -ample, 322
f -very ample, 322
pullback of, 256
very ample, 260

linear equivalence,seedivisor, linear equivalence
of

linearly equivalent divisors, 254
local data, 158, 251, 255

toric, 179
local ring, 6, 154

at a point, 6, 9, 94, 99
at a prime divisor, 155

localization, 5, 9
homogeneous, 335

locally principal divisor, 158
locally trival fiber bundle, 134

maximal spectrum, 4
minimal generator, 30
Minkowski sum, 65, 190, 309
Mori cone, 285

of a toric variety, 286, 296
morphism of varieties, 3, 95

projective,seeprojective morphism
proper,seeproper morphism

multipliciative subset, 9
multiplicity of a simplicial cone, 291

Nakayama’s Lemma, 167
nef cone, 285

of a toric variety, 286
nef divisor,seeCartier divisor, nef
Newton polytope, 186
nilpotents, 4, 8, 9, 48, 103, 105
Noetherian, 154

nonnormal toric variety, 149
nonsingular point, 6
normal

affine toric variety, 37
polyhedron, 314
polytope, 67, 85
toric variety, 85, 107
variety, 5, 100

normal fan
of a polyhedron, 312
of a polytope, 75, 77, 108, 274

normal ring, 5, 154, 155
normalization, 5, 150

of a projective toric variety, 152
of an affine toric variety, 39, 151
of an irreducible curve, 280

Nullstellensatz, 3
numerically effective divisor,seeCartier divisor,

nef
numerically equivalent

divisors,seeCartier divisor, numerical
equivalence of

proper 1-cycles,seeproper 1-cycle, numerical
equivalence of

to zero,seeCartier divisor, numerically
equivalent to zeroandproper 1-cycle,
numerically equivalent to zero

one-parameter subgroup, 11
orbifold, 46, 113
orbit closure, 121, 135
Orbit-Cone Correspondence, 119

nonnormal case, 152
order of vanishing, 156

perfect field, 48
permutation matrix, 55
Picard group, 159, 254
pointed affine semigroup, 36
polar polytope, 65
pole, 157
polyhedral cone, 23
polyhedron, 188, 309

full dimensional,seefull dimensional,
polyhedron

lattice,seelattice polyhedron
normal,seenormal, polyhedron
of a torus-invariant divisor, 188, 266, 318
very ample,seevery ample, polyhedron

polytope, 24, 63
combinatorially equivalent,seecombinatorially

equivalent polytopes
full dimensional,seefull dimensional, polytope
lattice,seelattice polytope
normal,seenormal, polytope
simple,seesimple polytope
simplicial, seesimplicial polytope
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smooth,seesmooth polytope
very ample,seevery ample, polytope

pre-variety, 102
presheaf, 163, 245
primary decomposition, 159
prime divisor, 155
primitive collection, 295, 329
primitive relation, 296, 329
principal divisor,seedivisor, principal
principal ideal domain (PID), 154, 155
product variety, 7, 53, 101, 305

class group of, 173
toric, 47, 89, 111

Proj, 313, 335
projective bundle

of a coherent sheaf, 309
of a locally free sheaf, 308
of a vector bundle, 308
toric, 327

projective morphism, 306, 307, 337, 338
projective space, 49
projective toric variety, 55
projective variety, 49
projective with respect to a line bundle, 306, 337
projectively normal variety, 61, 85
proper 1-cycle

numerical equivalence of, 285
proper 1-cycle, 285

numerically equivalent to zero, 285
proper continuous map, 140, 142
proper face, 25
proper morphism, 141, 142, 307
Puiseux series, 186
pullback,seeline bundle, pullback of
pullback of a torus-invariant Cartier divisor, 274

Q-Cartier divisor, 178
Q-factorial, 46
quasicoherent sheaf, 164
quasicompact, 104
quasiprojective toric variety, 321
quasiprojective variety, 305, 307

rational normal cone, 50
rational function, 51, 100
rational normal cone, 13, 32, 38, 40, 46, 176
rational normal curve, 50, 57
rational normal scroll, 83, 112
rational polyhedral cone, 29
ray generator, 29
real projective plane, 71
recession cone, 310
refinement of a fan, 130
reflexive polytope, 80, 87
reflexive sheaf, 166
regular cone,seesmooth cone
regular fan, 113

regular local ring, 7, 155
regular map, 93, 98
relative interior, 27
relatively ample with respect tof , 337
restriction of a divisor, 158
ring of invariants, 44
ringed space, 95, 99

saturated affine semigroup, 37
section

of a sheaf, 163
of a vector bundle, 249

Segre embedding, 52
self-intersection, 295
semigroup, 16
semigroup algebra, 17

of a cone, 30
semigroup homomorphism, 35, 116
separated variety, 102
separating transcendence basis, 48
Separation Lemma, 28, 107
set-theoretic complete intersection, 22
sheaf, 95

constant, 253
generated by global sections, 247, 256, 338
locally constant, 253
locally free, 248
of OX-modules, 163, 243
of a torus-invariant divisor, 187
of a graded module, 226, 246, 301
of a torus-invariant divisor

global sections of, 187, 188, 191
of sections of a vector bundle, 250

sheafification, 245
simple polytope, 64
simplex, 64
simplicial cone, 30

multiplicity of, 291
simplicial fan, 113
simplicial polytope, 64
simplicial toric variety, 178
singular point, 6
singular locus, 161

of a normal variety, 161
Smith normal form, 171
smooth cone, 30, 40
smooth fan, 113
smooth point, 6, 101
smooth polytope, 86
smooth toric variety, 40, 86, 113, 177
smooth variety, 6, 101
span of a cone, 24
Spec, 4, 335
splitting fan, 133
stalk of a sheaf, 244, 255
standardn-simplex∆n, 66
star subdivision, 130, 132
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strictly convex,seesupport function, of a Cartier
divisor, strictly convex

strongly convex cone, 28
structure sheaf, 95, 99
sublattice of finite index, 44
subvariety, 97
Sumihiro’s Theorem, 108, 149
support function, 181

integral with respect to a lattice, 181
of a Cartier divisor, 182, 264

convex, 265, 266, 319
strictly convex, 268, 269, 320–323

of a polytope, 184
support of a divisor, 157
support of a fan, 106, 113
supporting affine hyperplane, 63
supporting half-space, 25
supporting hyperplane, 25
Sylvester sequence, 92

2-neighborly polytope, 72
tautological bundle, 252, 254, 258
tensor product, 8, 48

of sheaves, 247, 253
tent analogy, 264, 265, 268
Toric Cone Theorem, 286, 287
toric fibration, 134
toric ideal, 16
Toric Kleiman Criterion, 284
toric morphism, 41, 42, 125, 135

projective, 321, 323
proper, 142

toric set, 21
toric variety, 106

affine,seeaffine, toric variety
normal,seenormal, toric variety
of a fan, 107
of a polyhedron, 312
of a polytope, 82, 108
projective,seeprojective toric variety
quasiprojective,seequasiprojective toric variety

torsion-free semigroup, 22
torus, 5, 10

embedding, 108
of a projective toric variety, 58
of an affine toric variety, 13
orbit, 118

torus-invariant
Cartier divisor, 174
prime divisor, 168
Weil divisor, 170, 173

total coordinate ring, 246, 301
transportation polytope, 64
tropical polynomial, 186
tropical variety, 186
tropicalization, 186

unique factorization domain (UFD), 7
universally closed, 141

valuative criterion for properness, 147
variety

abstract,seeabstract variety
affine,seeaffine, variety
complete,seecomplete variety
irreducible,seeirreducible variety
normal,seenormal, variety
projective,seeprojective variety
projectively normal,seeprojectively normal

variety
quasiprojective,seequasiprojective variety
separated,seeseparated variety
toric, seetoric variety

vector bundle, 248
chart of, 248
decomposable, 326
fiber above a point, 248, 255
sheaf of sections of, 250
toric, 324, 326
transition functions of, 248, 250
trivialization of, 248

vertex, 63
very ample

divisor,seeCartier divisor, very ample
polyhedron, 314
polytope, 71, 75, 87, 262

wall, 265, 292
extremal, 297

wall relation, 293
weighted homogeneous polynomial, 53
weighted projective space, 53, 112, 174, 186
Weil divisor, 157

torus-invariant,seetorus-invariant, Weil divisor

Zariski closure, 4
Zariski tangent space, 101
Zariski tangent space, 6
Zariski topology, 4, 50, 97


