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Preface

The study of toric varieties is a wonderful part of algebigéometry that has deep
connections with polyhedral geometry. Our book is an inicdign to this rich
subject that assumes only a modest knowledge of algebraimefey. There are
elegant theorems, unexpected applications, and, as ngtédlton [58], “toric
varieties have provided a remarkably fertile testing gbfor general theories.”

The Current Version The January 2010 version consists of seven chapters:
e Chapter 1. Affine Toric Varieties
e Chapter 2: Projective Toric Varieties

Chapter 3: Normal Toric Varieties

Chapter 4: Divisors on Toric Varieties

Chapter 5: Homogeneous Coordinates

Chapter 6: Line Bundles on Toric Varieties

e Chapter 7: Projective Toric Morphisms

These are the chapters included in the version you downtbakiee book also has
a list of notation, a bibliography, and an index, all of whiehl appear in more
polished form in the published version of the book. Two \@1siare available
on-line. We recommend using postscript version since ishigerior quality.

Changes to the January 2009 VersiorThe new version fixes some typographical
errors and includes a few new examples, new exercises argl rewritten proofs.

The Rest of the Book Five chapters are in various stages of completion:
e Chapter 8: The Canonical Divisor of a Toric Variety
e Chapter 9: Sheaf Cohomology of Toric Varieties
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e Chapter 10: Toric Surfaces
e Chapter 11: Resolutions and Singularities
e Chapter 12: The Topology of Toric Varieties
When the book is completed in August 2010, there will be tliresd chapters:
e Chapter 13: The Riemann-Roch Theorem
e Chapter 14. Geometric Invariant Theory
e Chapter 15: The Toric Minimal Model Program

Prerequisites The text assumes the material covered in basic graduatsesoinr
algebra, topology, and complex analysis. In addition, wsae that the reader
has had some previous experience with algebraic geometiye devel of any of
the following texts:

e |deals, Varieties and Algorithmsy Cox, Little and O’Shea3p]
¢ Introduction to Algebraic Geomettyy HassettT9]
Elementary Algebraic Geometby Hulek [91]
Undergraduate Algebraic Geometby Reid [L46]
Computational Algebraic Geometby Schenck 153

An Invitation to Algebraic Geometrly Smith, Kahanpaa, Kekalainen and
Traves [L5§

Readers who have studied more sophisticated texts suchras 8], Hartshorne
[77] or Shafarevich 152 certainly have the background needed to read our book.

We should also mention that Chapter 9 uses some basic faotsdigebraic
topology. The books by Hatche8(] and Munkres 128 are useful references.

Background Sections Since we do not assume a complete knowledge of algebraic
geometry, Chapters 1-9 each begin with a background sdti@nntroduces the
definitions and theorems from algebraic geometry that aededto understand the
chapter. The remaining chapters do not have backgrounisgctor some of the
chapters, no further background is necessary, while fagrettthe material more
sophisticated and the requisite background will be praviolg careful references

to the literature.

The Structure of the Text We number theorems, propositions and equations based
on the chapter and the section. Thus 83.2 refers to sectidnChapter 3, and
Theorem 3.2.6 and equation (3.2.6) appear in this sectiba.efid (or absence) of

a proof is indicated by, and the end of an example is indicated<hy

For the Instructor. We do not yet have a clear idea of how many chapters can
be covered in a given course. This will depend on both thettenfthe course
and the level of the students. One reason for posting thigrpnary version on
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the internet is our hope that you will teach from the book aive gs feedback
about what worked, what didn’t, how much you covered, and haweh algebraic
geometry your students knew at the beginning of the coursso &t us know if
the book works for students who know very little algebraiometry. We look
forward to hearing from you!

For the Student The book assumes that you will be an active reader. This means
in particular that you should do tons of exercises—this & ltest way to learn
about toric varieties. For students with a more modest backgl in algebraic
geometry, reading the book requires a commitment to Ibatitoric varietiesand
algebraic geometry. It will be a lot of work, but it's wortheleffort. This is a great
subject.

What's Missing Right now, we do not discuss the history of toric varietiesr n
do we give detailed notes about how results in the text rétatbe literature. We

would be interesting in hearing from readers about whetinesd items should be
included.

Please Give Us FeedbackMNe urge all readers to let us know about:
e Typographical and mathematical errors.

Unclear proofs.

Omitted references.

Topics not in the book that should be covered.
Places where we do not give proper credit.

As we said above, we look forward to hearing from you!

January 2010 David Cox
John Little
Hal Schenck
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Notation

Basic Notions

Z,Q, R, C integers, rational numbers, real numbers, complex numbers
N semigroup of nonnegative integei@ 1,2, ... }

im, ker image and kernel

Im direct limit

[im inverse limit

Rings and Varieties

ClX1, -, %) polynomial ring inn variables

C[[X1,-..,x])]  formal power series ring in variables
Cxt,...,xFY  ring of Laurent polynomials

V() affine or projective variety of an ideal

(V) ideal of an affine or projective variety

C[V] coordinate ring of an affine or projective variety
CMVl]4 graded piece in degreewhenV is projective
C(V) field of rational functions wheW is irreducible
Spe¢R) affine variety of coordinate ring

Proj(S) projective variety of graded rin§

V¢ subset of an affine variety wheref # 0

Rt, Rs, Ry localization ofR at f, a multiplicative sef, a prime ideab
R integral closure of the integral domaih

Xl



Cones and Fans

Con€S)

Spar{o)
dimo

O.\/

Relint(o)
Int(o)

ot

TR0, T<0

7_*

Hm
Heh

Xii Notation
R completion of local ringR
Oy p, My p local ring of a variety at a point and its maximal ideal
To(V) Zariski tangent space of a variety at a point
dimV, dimpV  dimension of a variety and dimension at a point
S Zariski closure ofSin a variety
XxY product of varieties
R®c S tensor product of rings over
X xsY fiber product of varieties
Y affine cone of a projective variety
A diagonal maX — X x X
Sing(X) singular locus of a variety
Semigroups
I lattice ideal of lattice. C ZS
A4 lattice generated by
7' elementsy > ;am € Z&/ with > a8 =0
\§=%4 affine semigroup generated by
S affine semigroup
Se = SoN affine semigroup’¥ NM
CIS] semigroup algebra &f
I Hilbert basis ofS, whene is strongly convex

convex cone generated Iy

rational convex polyhedral cone Mg

subspace spanned by

dimension ofr

dual cone otr

relative interior ofo

interior of o when Spafr) = Ny

set ofm e Mg with (m,o) =0

T is a face or proper face of

face of¢" dual tor C o, equal tos¥ N7+
hyperplane ifNg defined by(m,—) = 0,me Mg \ {0}
half-space ifNg defined by(m,—) >0, me Mg \ {0}
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Xiii

M(o)
Star(o)
3% (o)
ind(o)

Polyhedra

ConvS)

Nr, No
(m,u)
Yory Xy

fan in Ny

r-dimensional cones dt

minimal generator opN N, p € 3(1)
maximal cones oE

sublatticeZ (o NN) = Sparfoc) "N
quotient latticeN /N,

dual lattice ofN(¢), equal too- N M
star ofs, a fan inN(o)

star subdivision ok alongo

index of a simplicial cone

convex hull ofS

polytope or polyhedron

dimension ofP

hyperplane irMg defined by(—,u) = b, ue Ng \ {0}
half-space ilMg defined by(—,u) > b, u e Ny \ {0}
Qis a face or proper face &f

dual or polar of a polytope

standarch-simplex

Minkowski sum

multiple of a polytope or polyhedron

cone over a polytope or polyhedron

cone of a fac&®) < P

normal fan of a polytope or polyhedron

support function of a polytope or polyhedron

character lattice of a torus and charactenof M

lattice of one-parameter subgroups of a torus and
one-parameter subgroup 0t N

torusN ®z C* = Homy, (M, C*) associated tdl andM
vector spaceM @7z R, M ®7z Q built from M

vector spaceBl ®z R, N®yz Q built from N

pairing ofm e M or Mg with u € N or Ng

affine and projective toric variety o/ C M
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Us =UsN affine toric variety of a cone C Ny
Xy =Xs N toric variety of a fan
Xp projective toric variety of a lattice polytope or polyhedro
Xp toric variety of a basepoint free divisor
@, b lattice homomorphism of a toric morphisg: Xy, — Xs,
and its real extension
Yo distinguished point ofl,
O(o) orbitofc € ¥
V(o) =0(c) closure of orbit ofr € ¥, toric variety of Stafo)
D, = O(p) torus-invariant prime divisor oKy, of p € 3(1)
De torus-invariant prime divisor oKp of facetF C P
Up affine toric variety of recession cone of a polyhedron
Ux, affine toric variety of a fan with convex support

Specific Varieties

cn, pn
P(dp,---,0n)
C*

(c)"

Cq, Cq
Blo(CM)
Bly (r)(Xs)
I

Sib

Divisors

Ox p

D

div(f)
D~E
D>0
DiVo(X)
Div(X)
DiVTN (XE)
CDiv(X)

affine and projective-dimensional space

weighted projective space

multiplicative group of nonzero complex numbé:g {0}
standardh-dimensional torus

rational normal cone and curve

blowup of C" at the origin

blowup of X5, alongV (1), toric variety of¥* (1)
Hirzebruch surface

rational normal scroll

local ring of a variety at a prime divisor
discrete valuation of a prime divis@r
principal divisor of a rational function
linear equivalence of divisors

effective divisor

group of principal divisors oX

group of Weil divisors orK

group of torus-invariant Weil divisors oXy;
group of Cartier divisors oX
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XV

C[NVm(XE)
CI(X)
Pic(X)
SuppD)
D,
{(Ui, fi)}
{mG}JEE
Po

b

Dp

¥D
SHX,N)

group of torus-invariant Cartier divisors &
divisor class group of a normal variexy
Picard group of a normal variety

support of a divisor

restriction of a divisor to an open set

local data of a Cartier divisor 0K

Cartier data of a torus-invariant Cartier divisor X5
polyhedron of a torus-invariant divisor

fan associated to a basepoint free divisor
Catrtier divisor of a polytope or polyhedron
support function of a Cartier divisor
support functions integral with respectio

Intersection Products

degD)
D-C

D=D,C=C
N*(X), Na(X)

Nef(X)
NE(X)
NE(X)
Pk:X)R
r(P)

degree of a divisor on a curve

intersection product of Cartier divisor and complete curve
numerically equivalent Cartier divisors and complete esrv
(CDiv(X)/=)®zR and(Z1(X)/=)®zR

cone inN%(X) generated by nef divisors

cone inNp(X) generated by complete curves

Mori cone, equal to the closure BIE(X)

Pic(X) @z R

primitive relation of a primitive collection

Sheaves and Bundles

Ox

Ox
Ox(D)
Jx

Zy
T(U,.7)
Sy

M

M
ﬁkz(a)

structure sheaf of a variety

sheaf of invertible elements @fy

sheaf of a Weil divisoD on X

constant sheaf of rational functions whris irreducible
restriction of a sheaf to an open set

sections of a sheaf over an open set

ideal sheaf of a subvariety C X

sheaf on Spd®) of anR-moduleM

sheaf onXy, of a gradedS-moduleM

sheaf onXy, of the gradedS-moduleS(«)
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Fp stalk of a sheaf at a point

F Q0649 tensor product of sheaves 6k-modules

oM, (F,%9) sheaf of homomorphisms

FV dual sheaf of#, equal ta#omg, (7, Ox)
m:V—X vector bundle

m: Vg — X rank 1 vector bundle of a line bundl#

f*¥ pullback of a line bundle

berw map to projective space determinedWyC I'(X,.%)
|D| complete linear system &

Y xD fan that gived/» for £ = Ox,, (D)

P(V), P(&) projective bundle of vector bundle or locally free sheaf

Quotients and Homogeneous Coordinates

RC ring of invariants ofG acting onR

V/G good geometric quotient

V//G good categorical quotient

S total coordinate ring oKy,

X, variable inScorresponding t@ € (1)

Ss graded piece o8in degrees € Cl(Xsx)

degx®) degree in QlXyx) of a monomial inS

N monomial generator d corresponding to- € X
B(X) irrelevant ideal of5, generated by the”

Z(%) exceptional set, equal ¥(B(X))

G group Hom,(Cl(Xs),C*) used in the quotient construction
x(m Laurent monomia[ ], XM me M

x(mD) homogenization o™, me PbNM

Xp facet variable of a facdt C P

x{mP) P-monomial associated e PN M

x{vP) vertex monomial associated to vertex PNM
M gradedS-module

M () shift of M by a € Cl(Xyx)



Part I. Basic Theory of
Toric Varieties

Chapters 1 to 9 introduce the theory of toric varieties. Tgast of the
book assumes only a minimal amount of algebraic geometrheatevel
of Ideals, Varieties and Algorithn{85]. Each chapter begins with a back-
ground section that develops the necessary algebraic ggome






Chapter 1

Affine Toric Varieties

§1.0. Background: Affine Varieties

We begin with the algebraic geometry needed for our studyfioieetoric varieties.
Our discussion assumes Chapters 1-5 and 95f |

Coordinate Rings Anideall C S=C[xy,...,Xy] gives an affine variety
V()={peC"| f(p)=0forall f €1}

and an affine variety C C" gives the ideal
I(V)={feS|f(p)=0forallpeV}.

By the Hilbert Basis Theorem, an affine variatyis defined by the vanishing of
finitely many polynomials ir§, and for any ideal, the Nullstellensatz tells us that
L(V(1) =1 ={f eS| ff < forsomel > 1} sinceC is algebraically closed.

The most important algebraic object associated s its coordinate ring

CV] =S/1(V).

Elements ofC[V] can be interpreted as tli&valued polynomial functions o¥.
Note thatC[V] is aC-algebra, meaning that its vector space structure is cabipat
with its ring structure. Here are some basic facts aboutdioate rings:

e C[V]is an integral domair= | (V) is a prime ideak= V is irreducible.

e Polynomial maps (also calledorphism¥ ¢ : V; — V, between affine varieties
correspond tdC-algebra homomorphismg* : C[V,| — C[Vy], where¢*(g) =
go ¢ for g € C|Vy).

e Two affine varieties are isomorphic if and only if their coimate rings are
isomorphicC-algebras.
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e A point p of an affine variety/ gives the maximal ideal
{f e C[V]| f(p) =0} S CV],
and all maximal ideals of [V] arise this way.
Coordinate rings of affine varieties can be characterizédllasvs (Exercise 1.0.1).

Lemma 1.0.1. A C-algebra R is isomorphic to the coordinate ring of an affine
variety if and only if R is a finitely generatéttalgebra with no nonzero nilpotents,
i.e., if f € R satisfies = 0 for somef > 1, then f= 0. O

To emphasize the close relation betw&eandC[V], we sometimes write
(1.0.2) V = Spe¢C|V]).

This can be made canonical by identifyifgwith the set of maximal ideals of
C|[V] via the fourth bullet above. More generally, one can take @mmutative
ring R and define thaffine schem&pecR). The general definition of Spec uses
all prime ideals ofR, not just the maximal ideals as we have done. Thus some
authors would write (1.0.1) &8 = SpecnfC|[V]), the maximal spectrum ¢E[V].
Readers wishing to learn about affine schemes should cdd§hlind [77].

The Zariski Topology An affine varietyV C C" has two topologies we will use.
The first is theclassical topologyinduced from the usual topology @&'. The
second is th&ariski topology where the Zariski closed sets are subvarietieg of
(meaning affine varieties @" contained i) and the Zariski open sets are their
complements. Since subvarieties are closed in the classpziogy (polynomials
are continuous), Zariski open subsets are open in the céds$spology.

Given a subseB C V, its closureS in the Zariski topology is the smallest
subvariety oV containingS. We call Sthe Zariski closureof S. It is easy to give
examples where this differs from the closure in the classiqslogy.

Affine Open Subsets and LocalizatiorSome Zariski open subsets of an affine
varietyV are themselves affine varieties. Giver CV]\ {0}, let

Vi={peV|f(p)#0}CV.
ThenVs is Zariski open iV and is also an affine variety, as we now explain.
LetV C C" havel (V) = (fy,..., fs) and pickg € C[xq, ..., Xy] representing .
ThenV; =V \ V(g) is Zariski open invV. Now consider a new variablgand let
W =V(fy,..., fs,1—gy) C C" x C. Since the projection ma@" x C — C" maps
W bijectively ontoV;, we can identify/s with the affine varietyv C C" x C.

WhenV is irreducible, the coordinate ring b% is easy to describe. L& (V)
be the field of fractions of the integral domaitlV]. Recall that elements @ (V)
give rational functions o. Then let

(1.0.2) CNV]f={g/f*eC(V)|geC|V], £>0}.
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In Exercise 1.0.3 you will prove that Sp€tV]+) is the affine variety.
Example 1.0.2. Then-dimensional torus is the affine open subset
(C)"=C"\V(x1:: %) CC",

with coordinate ring

e, Yolgoo = CDGEL, o X,

Elements of this ring are calldcaurent polynomials O

The ringC[V]s from (1.0.2) is an example dbcalization In Exercises 1.0.2
and 1.0.3 you will show how to construct this ring for all affimarieties, not just
irreducible ones. The general concept of localization ssused in standard texts
in commutative algebra such & [Ch. 3] and §7, Ch. 2].

Normal Affine Varieties Let R be an integral domain with field of fraction.
ThenRis normal orintegrally closedif every element oK which is integral over
R (meaning that it is a root of a monic polynomial Rix]) actually lies inR. For
example, any UFD is normal (Exercise 1.0.5).

Definition 1.0.3. An irreducible affine variety is normal if its coordinate ring
C[V] is normal.

For exampleC" is normal since its coordinate rir@[x, ..., X, is a UFD and
hence normal. Here is an example of a non-normal affine yariet

Example 1.0.4.LetC =V (x®—y?) C C2. This is an irreducible plane curve with a
cusp at the origin. Itis easy to see tlHE] = C[x,y]/(x3 —y?). Now letx andy be
the cosets ok andy in C[C] respectively. This giveg/x € C(C). A computation
shows thay/x ¢ C[C] and that(y/x)2 = X. Consequenth[C] and henc€ are not
normal.

We will see below tha€ is an affine toric variety. O
An irreducible affine variety has anormalizationdefined as follows. Let
CV]'={a € C(V) : ais integral overC[V]}.

We callCV]’ theintegral closureof C[V]. One can show th&E[V]" is normal and
(with more work) finitely generated as@algebra (see47, Cor. 13.13]). This
gives the normal affine variety

V' = SpecCV])

We callV’ the normalizationof V. The natural inclusiorC[V] C C|V])' = C[V']
corresponds to a may — V. This is thenormalization map
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Example 1.0.5.We saw in Example 1.0.4 that the cu®@e C? defined byx® = y?2
has elements,y € C[C] such thaty/x ¢ C[C] is integral overC[C]. In Exer-
cise 1.0.6 you will show that[y/x] C C(C) is the integral closure of[C] and
that the normalization map is the m@p— C defined byt — (t2,t3). O

At first glance, the definition of normal does not seem veryiiive. Once we
enter the world of toric varieties, however, we will see thatmality has a very
nice combinatorial interpretation and that the nicestctwdrieties are the normal
ones. We will also see that normality leads to a nice theodiva$ors.

In Exercise 1.0.7 you will prove some properties of normahdms that will
be used in §1.3 when we study normal affine toric varieties.

Smooth Points of Affine VarietiesIn order to define a smooth point of an affine
varietyV, we first need to definocal rings andZariski tangent spacesVhenV
is irreducible, thdocal ring of V atpis

Ovp={f/geC(V)|f,ge CV]andg(p) # 0}.

Thus &y p consists of all rational functions ovi that are defined ap. Inside of
Ov,p We have the maximal ideal

myp={¢p € Ov,|o(p) =0}

In fact, my p is the unique maximal ideal ofy ,, so thatdy p is alocal ring.
Exercises 1.0.2 and 1.0.4 explain how to defiRe, whenV is not irreducible.

The Zariski tangent spacefV at p is defined to be
Tp(V) = Homg (my, p/m§ ,,C).

In Exercise 1.0.8 you will verify that diff,(C") = n for everyp € C". According
to [77, p. 32], we can compute the Zariski tangent space of a poianiaffine
variety as follows.

Lemma 1.0.6. Let V C C" be an affine variety and let @ V. Also assume that
[(V) = (f1,..., fs) CC[xq,...,%]. Foreachi, let

of; of
dp(fi) = a—x'l(p)xl+---+a—x;(p)xn

Then the Zariski tangent,{V ) is isomorphic to the subspace ©f defined by the
equations ¢(f1) =--- =dp(fs) = 0. In particular, dimTy(V) < n. O

Definition 1.0.7. A point p of an affine varietyy is smoothor nonsingular if
dimT,(V) = dim,V, where dimyV is the maximum of the dimensions of the irre-
ducible components &f containingp. The pointp is singular if it is not smooth.
Finally, V is smoothif every point ofV is smooth.
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Points lying in the intersection of two or more irreducibtemponents o¥ are
always singular @5, Thm. 8 of Ch. 9, §6]).

Since dinTp(C") = n for every p € C", we see thaCC" is smooth. For an
irreducible affine varietyy C C" of dimensiond, fix p € V and writel (V) =
(f1,...,fs). Using Lemma 1.0.6, it is straightforward to show thais smooth
at p if and only if the Jacobian matrix

ofi

(1.0.3) (L, fs) = (Z?_XJ P >1§i§s,1§j§n

has rankn — d (Exercise 1.0.9). Here is a simple example.

Example 1.0.8.As noted in Example 1.0.4, the plane cu@elefined byx® = y?
hasl (C) = (x3—y?) C C[x,y]. A point p= (a,b) € C has Jacobian

Jp = (3a%,—2b),
so the origin is the only singular point 6f O

SinceTp(V) = Homg (my p/m§ ,,C), we see tha¥ is smooth ap when dinV
equals the dimension miv,p/m\%’p as a vector space over, p,/my . In terms of
commutative algebra, this means thme V is smooth if and only ifoy p is a
regular local ring See B, p. 123] or A7, 10.3].

We can relate smoothness and normality as follows.

Proposition 1.0.9. A smooth irreducible affine variety V is normal.

Proof. In §3.0 we will see thaC[V] =, Ov,p. By Exercise 1.0.7C[V] is
normal once we prove that, , is normal for allp € V. Hence it suffices to show
that Oy , is normal whenevep is smooth.

This follows from some powerful results in commutative &ge Oy |, is a
regular local ring wherp is a smooth point o¥/ (see above), and every regular
local ring is a UFD (seed7, Thm. 19.19]). Then we are done since every UFD is
normal. A direct proof that’y,  is normal at a smooth poigi € V is sketched in
Exercise 1.0.10. O

The converse of Propostion 1.0.9 can fail. We will see in 8t the affine
variety V (xy— zw) C C*is normal, yetV (xy— zw) is singular at the origin.

Products of Affine Varieties Given affine varietied/; andV,, there are several
ways to show that the cartesian prodici V5 is an affine variety. The most direct
way is to proceed as follows. L& C C™ = Sped¢C|xy,...,%n]) andV, C C" =
SpedClyi,...,Yn]). Takel (V1) = (f1,..., fs) andl (Vo) = (g1, ...,0). Since thef;
andg; depend on separate sets of variables, it follows that

VlXVZ:V(flv"'7vaglv"'>gt) ng+n

is an affine variety.
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A fancier method is to use the mapping properties of the mdiihis will
also give an intrinsic description of its coordinate ringveéd V, andV, as above,
V1 x V, should be an affine variety with projections: V; x Vo — V,; such that
whenever we have a diagram

w 1

V]_ X V2 7r—1> V]_
:
Vo

whereg; : W — V; are morphisms from an affine variaty, there should be a unique
morphismv (the dotted arrow) that makes the diagram commute,s,e.y = ¢;.
For the coordinate rings, this means that whenever we haiageath

CM] —25 CMy x V)

with C-algebra homomorphismg’ : C[Vi] — C|W|, there should be a unigue-
algebra homomorphiswi* (the dotted arrow) that makes the diagram commute. By
the universal mapping property of ttensor producbf C-algebrasC[Vi] @c C[V-]

has the mapping properties we want. Sifitfeh] ®c C[V-] is a finitely generated
C-algebra with no nilpotents (see the appendix to this cligptés the coordinate
ring C[V1 x V. For more on tensor products, s&ep. 24—27] or47, A2.2].

Example 1.0.10.LetV be an affine variety. Sinc€" = Spe¢Cly;,...,yn]), the
productV x C" has coordinate ring

CNV]®@cClyi,---,¥n) = CNV][y1,---,Ynl-
If V is contained irC™ with I (V) = (fy,..., fs) C C[xq,...,Xn], it follows that
[V xC") = (f1,...,fs) CC[X0,- -, Xm, Y1, - - - Yn)-
For later purposes, we also note that the coordinate rivyofC*)" is

CV]®cClyi,....yil = CV]lyit,....y2 . O

Given affine varietie¥; andV,, we note that the Zariski topology & x V>
is usuallynot the product of the Zariski topologies & andVs.
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Example 1.0.11.ConsiderC? = C x C. By definition, a basis for the product of
the Zariski topologies consists of sktsx U, whereU; are Zariski open it€. Such
a set is the complement of a union of collections of “horiadireind “vertical” lines
in C2. This makes it easy to see that Zariski closed se?such asv (y — x?)
cannot be closed in the product topology. O

Exercises for §1.0
1.0.1. Prove Lemma 1.0.1. Hint: You will need the Nullstellensatz.

1.0.2. Let Rbe a commutativ€-algebra. A subse® C R is amultipliciative subsepro-
vided 1€ S, 0¢ S, andSis closed under multiplication. THecalization R; consists of all
formal expressiong/s, g € R, s€ S, modulo the equivalence relation

g/s~h/t <= u(tg—sh)=0forsomeue S

(a) Show that the usual formulas for adding and multiplyiragfions induce well-defined
binary operations that mak®; into C-algebra.

(b) If Rhas no nonzero nilpotents, then prove that the same is tri®;fo
For more on localization, se8,[Ch. 3] or A7, Ch. 2].
1.0.3. Let R be a finitely generate@-algebra without nilpotents as in Lemma 1.0.1 and

let f € Rbe nonzero. TheB= {1, f,f2 ...} is a multiplicative set. The localizatidRs is
denotedR; and is called théocalization of R at f

(a) Show thaRs is a finitely generate@@-algebra without nilpotents.
(b) Show thaR; satisfies Spe®;) = Spec¢R);.
(c) Show thaRy is given by (1.0.2) wheRis an integral domain.

1.0.4. Let V be an affine variety with coordinate rifg[V]. Given a pointp € V, let
S={gcC\M]|g(p) #0}.

(a) Show thatSis a multiplicative set. The localizatioB[V|s is denoteddi, , and is
called thdlocal ring of V at p

(b) Show that every € &y , has a well-defined valug(p) and that
myp={¢ € p|d(p) =0}
is the uniqgue maximal ideal afy .
(c) WhenV is irreducible, show thay , agrees with the definition given in the text.

1.0.5. Prove that a UFD is normal.

1.0.6. In the setting of Example 1.0.5, show ttfally/x] C C(C) is the integral closure of
C[C] and that the normalizatiofl — C is defined byt — (t2,t3).
1.0.7. In this exercise, you will prove some properties of normahdins needed for §1.3.

(a) LetRbe a normal domain with field of fractions and letS C R be a multiplicative
subset. Prove that the localizatiBgis normal.

(b) LetR,, a € A, be normal domains with the same field of fractidhsProve that the
intersectior ), ., Ra is normal.

1.0.8. Prove that dinT,(C") = nfor all pe C".



10 Chapter 1. Affine Toric Varieties

1.0.9. Use Lemma 1.0.6 to prove the claim made in the text that smesthis determined
by the rank of the Jacobian matrix (1.0.3).

1.0.10. LetV be irreducible and suppose that V is smooth. The goal of this exercise
is to prove thaty , is normal using standard results from commutative algeBean =
dimV and consider the ring dérmal power serie€[[x, . ..,%]]. Thisis a local ring with
maximal idealm = (xq, ..., %,). We will use three facts:

e C[[Xq,...,%n]] isaUFD by [L74 p. 148] and hence normal by Exercise 1.0.5.
e SincepeV is smooth, 125 81C] proves the existence ofaalgebra homomorphism
Ov,p— C|[X4,...,%n]] that induces isomorphisms
ﬁv7p/mf,,p ~ C[[Xq,..- ,xn]]/mg
for all £ > 0. This implies that theompletion 3, Ch. 10]

~ H ¢
N p= “Ln v p/my p

is isomorphic to a formal power series ring, i.@vﬂp ~ C[[Xa,...,%n]]. Such an iso-
morphism captures the intuitive idea that at a smooth pdimigtions should have
power series expansions in “local coordinates”. . , X,.

o If I C &y pis anideal, then

I = mzil(l +m\€,p)'
This theorem of Krull holds for any ide&lin a Noetherian local ring\ and follows
from [3, Cor. 10.19] withM = A/I.
Now assume thagb € V is smooth.
(a) Use the third bullet to show that, , — C[[x4,...,%n]] is injective.

(b) Suppose that,b € Oy p satisfybla in C[[xa,...,X,|]. Prove thabjain &y ,. Hint:
Use the second bullet to shane bdy, , + m\‘},p and then use the third bullet.

(c) Provethaty pis normal. Hint: Use part (b) and the first bullet.
This argument can be continued to show that, is a UFD. See25 (1.28)]

1.0.11.LetV andW be affine varieties and I&C V be a subset. Prove thak W = Sx W.

1.0.12. LetV andW be irreducible affine varieties. Prove thak W is irreducible. Hint:
Suppos®&/ x W = Z; UZ,, whereZ;, Z, are closed. Leti = {veV | {v} xW C Z}. Prove
thatV =V, UV, and thay is closed inv. Exercise 1.0.11 will be useful.

81.1. Introduction to Affine Toric Varieties

We first discuss what we mean by “torus” and then explore uarimnstructions
of affine toric varieties.

The Torus The affine variety(C*)" is a group under component-wise multipli-
cation. Atorus T is an affine variety isomorphic t¢C*)", whereT inherits a
group structure from the isomorphism. Associated t@re itscharactersandone-
parameter subgroupsd/NVe discuss each of these briefly.
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A characterof a torusT is a morphismy : T — C* that is a group homo-
morphism. For examplen= (ay,...,a,) € Z" gives a charactey™: (C*)" — C*
defined by

(1.1.1) XMt .. ty) =t 130
One can show thatll characters of C*)" arise this way (see9p, §16]). Thus the
characters ofC*)" form a group isomorphic ta".

For an arbitrary torug, its characters form a free abelian groMpof rank
equal to the dimension df. It is customary to say thah € M gives the character
x™: T — C*.

We will need the following results concerning tori (s&2,[816] for proofs).

Proposition 1.1.1.

(@) Let Ty and T, be tori and let® : T; — T, be a morphism that is a group homo-
morphism. Then the image &fis a torus and is closed in,T

(b) Let T be a torus and let = T be an irreducible subvariety of T that is a
subgroup. Then H is a torus. a

Now assume that a toruk acts linearly on a finite dimensional vector space
W overC, where the action df € T onw € W is denoted - w. Givenme M, we
get theeigenspace

Wn={weW |t-w=x"(t)wforallte T}.
If Wi, # {0}, then everyw € Wi, \ {0} is a simultaneous eigenvector for 8t T,
with eigenvalue given by ™(t).
Proposition 1.1.2. In the above situation, we have W .\ W. O

This proposition is a sophisticated way of saying that a g commuting
diagonalizable linear maps can be simultaneously diagmthl

A one-parameter subgroupf a torusT is a morphism\ : C* — T that is a
group homomorphism. For example= (by,...,by) € Z" gives a one-parameter
subgroup\' : C* — (C*)" defined by

(1.1.2) AU(t) = (tP, . P,

All one-parameter subgroups 6€*)" arise this way (see9p, 816]). It follows
that the group of one-parameter subgroup§@f)" is naturally isomorphic t&".
For an arbitrary toru3, the one-parameter subgroups form a free abelian gxbup
of rank equal to the dimension ®f As with the character group, an elemerd N
gives the one-parameter subgroip: C* — T.

There is a natural bilinear pairing, ) : M x N — Z defined as follows.

e (Intrinsic) Given a charactey™ and a one-parameter subgro\ the compo-
sition ™o AU : C* — C* is character o*, which is given byt — t¢ for some
¢eZ. Then(mu) = ¢.
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e (Concrete) IfT = (C*)"withm= (ay,...,ay) € Z",u=(by,...,b,) € Z", then
one computes that
n

(1.1.3) (mu)y=>"ab,
i=1

i.e., the pairing is the usual dot product.

It follows that the characters and one-parameter subgrofipgorusT form
free abelian groupM andN of finite rank with a pairing , ) : M x N — Z that
identifiesN with Hom; (M, Z) andM with Homy, (N, Z). In terms of tensor prod-
ucts, one obtains a canonical isomorphismaz C* ~ T viau®t — AY(t). Hence
it is customary to write a torus ay.

From this point of view, picking an isomorphisify ~ (C*)" induces dual
bases oM andN, i.e., isomorphismd ~ Z" and N ~ Z" that turn characters
into Laurent monomials (1.1.1), one-parameter subgronofus monomial curves
(1.1.2), and the pairing into dot product (1.1.3).

The Definition of Affine Toric Variety We now define the main object of study of
this chapter.

Definition 1.1.3. An affine toric varietyis an irreducible affine variety contain-
ing a torusTy ~ (C*)" as a Zariski open subset such that the actiofyodn itself
extends to an algebraic actionif onV. (By algebraic action, we mean an action
Tn XV — V given by a morphism.)

Obvious examples of affine toric varieties df@*)" andC". Here are some
less trivial examples.

Example 1.1.4. The plane curv&€ = V(x3 —y?) C C? has a cusp at the origin.
This is an affine toric variety with torus

C—{0} =CN(C*)? = {(t2,3) [te C*} ~C*,

where the isomorphism ts— (t2,t3). Example 1.0.4 shows th@tis a non-normal
toric variety. O

Example 1.1.5. The varietyV =V (xy—zw) C C*is a toric variety with torus
VN (CH* = {(t1, b, 13, atats ) | € C*} =~ (C*)3,

where the isomorphism i$;,t,t3) — (tl,tz,tg,tltztgl). We will see later tha/ is
normal. O

Example 1.1.6.Consider the surface ii%"* parametrized by the map
P C? — it

defined by(s,t) — (s9,s91t,...,st9=1 t9). Thus® is defined using all degres
monomials ins,t.
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Let the coordinates of%! bexo,...,Xq and letl C Clxo,--.,X4] be the ideal
generated by the 2 2 minors of the matrix
X0 X1 -+ Xd—2 Xd-1
X1 X2 0 Xd-1 Xd )’
sol = (XXj+1—X+1Xj | 0<i < j<d—1). In Exercise 1.1.1 you will verify that
®(C?) = V(I), so thatCq = ®(C?) is an affine variety. You will also prove that

o~

[(Cq) =1, so that is the ideal of all polynomials vanishing @. It follows thatl
is prime sincé/ (1) is irreducible by Proposition 1.1.8 below. The affine suefag
is called therational normal cone of degreeahd is an example of@eterminantal
variety. We will see below that is a toric ideal.

It is straightforward to show tha&ly is a toric variety with torus
®((C*)?) =Cyn (C)* T~ (€)%
We will study this example from the projective point of viewChapter 2. O

We next explore three equivalent ways of constructing aftfonie varieties.

Lattice Points In this book, aattice is a free abelian group of finite rank. Thus
a lattice of rankn is isomorphic taZ". For example, a toru$y has latticesM (of
characters) antl (of one-parameter subgroups).

Given a torusTy with character latticéM, a seter = {my,...,ms} C M gives
characterg¢™ : Ty — C*. Then consider the map

(1.1.4) b, Ty — CS
defined by
D, (t) = (Xml(t),...,xms(t)) eCs.
Definition 1.1.7. Given a finite setez’ C M, the affine toric varietyr,, is defined
to be the Zariski closure of the image of the mip from (1.1.4).

This definition is justified by the following proposition.

Proposition 1.1.8. Givene” C M as above, leZ.o/ C M be the sublattice gener-
ated by.«/. Then Y, is an affine toric variety whose torus has character lattice
Z.</ . In particular, the dimension of Y is the rank ofZ.o7 .

Proof. The map (1.1.4) can be regarded as a map

Ty — (C)°
of tori. By Proposition 1.1.1, the image = &, (Ty) is a torus that is closed in
(C*). The latter implies tha¥,, N (C*)®> =T sinceY,, is the Zariski closure of

the image. It follows that the image is Zariski open¥i. Furthermore,T is
irreducible (it is a torus), so the same is true for its ZaridtisureY,, .
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We next consider the action @f. SinceT C (C*)S, an element € T acts on
C® and takes varieties to varieties. Then

T=tTCt.Y,

shows that - Y, is a variety containing . HenceY,, Ct-Y,, by the definition of
Zariski closure. Replacingwith t—1 leads toY,, =t-Y,,, so that the action of
induces an action ovi,,. We conclude that,, is an affine toric variety.

It remains to compute the character latticeTofwhich we will temporarily
denote byM’. SinceT = &, (Ty), the map®d,, gives the commutative diagram

Tn —2, (C*)3

\J

where— denotes a surjective map ard an injective map. This diagram of tori
induces a commutative diagram of character lattices

P
M<—dZS

N

M’

Since@{ : Z° — M takes the standard bass...,esto my,...,ms, the image of
®,, is Z«/. By the diagram, we obtaiM’ ~ Z.o. Then we are done since the
dimension of a torus equals the rank of its character lattice O

In concrete terms, fix a basis bf, so that we may assuni = Z". Then thes
vectors ineZ C Z" can be regarded as the columns ohans matrix A with integer
entries. In this case, the dimensionYgf is simply the rank of the matriR.

We will see below that every affine toric variety is isomopto Y., for some
finite subsetw of a lattice.

Toric Ideals LetY,, C C°= Spe¢C|x,...,xs]) be the affine toric variety com-
ing from a finite sete = {my,...,ms} C M. We can describe the idekY,,) C
C[xa,...,Xs| as follows. As in the proof of Proposition 1.18,, induces a map of
character lattices

75— M
that sends the standard basis...,esto my,...,ms. LetL be the kernel of this
map, so that we have an exact sequence

0—L—Z5— M.

In down to earth terms, elements= (¢4,...,/¢s) of L satisfyziszlﬁimi =0 and
hence record the linear relations amongrtte
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Givenl = (¢,...,ls) € L, set

(=Y g and (_=-) le.

4i>0 4i<0

Note that! = ¢, —¢_ and that/,,¢/_ € N®. It follows easily that the binomial

; o 0 )
X+ =X =[lps0% —[lg<0X

vanishes on the image @f,, and hence oY, sinceY,, is the Zariski closure of
the image.

Proposition 1.1.9. The ideal of the affine toric variety,YC C®is
1(Yo) = (x* —x‘= [ LeL) = (x*—x7 | o, eN®anda — B € L).

Proof. We leave it to the reader to prove equality of the two idealghenright
(Exercise 1.1.2). Let, denote this ideal and note that C I(Y,/). We prove
the opposite inclusion followinglp6, Lem. 4.1]. Pick a monomial ordes on
C[xa,...,X%s| and an isomorphisriy ~ (C*)". Thus we may assund = Z" and
the map® : (C*)" — C?® is given by Laurent monomial$™ in variablest, ..., t,.
If IL #1(Ys), then we can pickf € [(Y,) \ I with minimal leading monomial
x* =[]>_,x¥. Rescaling if necessary® becomes the leading term &f

Sincef (t™,...,t™) is identically zero as a polynomial tp, ..., t,, there must
be cancellation involving the term coming frotfi. In other words f must contain
a monomiak’ = [T>_, x* < x® such that

Teme —Tem».
=1 i=1

This implies that
S S
am
i=1 i=1

bim>

sothata — 8=  (a —bj)g € L. Thenx® — x? € I, by the second description
of I.. It follows that f —x® +x% also lies inl(Y,,)\ I and has strictly smaller
leading term. This contradiction completes the proof. O

Given a finite sete’ C M, there are several methods to compute the ideal
[(Y.) = I of Proposition 1.1.9. For simple examples, the rationallicitiza-
tion algorithm of B5, Ch. 3,83] can be used. It is also possible to computesing
a basis ol and ideal quotients (Exercise 1.1.3). Further commentoarpating
IL can be found in166, Ch. 12].

Inspired by Proposition 1.1.9, we make the following deimit
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Definition 1.1.10. Let L C Z® be a sublattice.
(@) Theideal, = (x*—x’ | a,3 € N®anda — 3 € L) is called aattice ideal
(b) A prime lattice ideal is called ®ric ideal.

Since toric varieties are irreducible, the ideals appeaimnProposition 1.1.9
are toric ideals. Examples of toric ideals include:

Example 1.1.4 (x3 —y?) C C[x,y]
Example 1.1.5 (xz—yw) C C[x,y,z,W]|
Example 1.1.6 (xiXj+1—Xi+1X; |0<i< j<d—1) CClxo,...,Xd].

(The latter is the ideal of the rational normal cabeC C%1) In each example,
we have a prime ideal generated by binomials. As we now shaeh &leals are
automatically toric.

Proposition 1.1.11.An ideal | C C[xy,...,Xd] is toric if and only if it is prime and
generated by binomials.

Proof. One direction is obvious. So suppose thatprime and generated by bino-
mialsx® —x%. Then observe that ()N (C*)%is nonempty (it containgl, ..., 1))
and is a subgroup dfC*)s (easy to check). Sincé(l) C C?®is irreducible, it fol-
lows thatV (1) N (C*)®is an irreducible subvariety ¢fC*)® that is also a subgroup.
By Proposition 1.1.1, we see that=V(l) N (C*)®is a torus.

Projecting on theth coordinate of C*)® gives a charactef — (C*)® — C*,
which by our usual convention we write 88" : T — C* for mj € M. It follows
easily thatv(l) =Y., for & = {m,...,ms}, and sincd is prime, we havd =
I (Y.,) by the Nullstellensatz. Thelnis toric by Proposition 1.1.9. O

We will later see that all affine toric varieties arise from¢adeals. For more
on toric ideals and lattice ideals, the reader should cofg8, Ch. 7].

Affine Semigroups A semigroupis a setS with an associative binary operation
and an identity element. To be affine semigroupwe further require that:

e The binary operation 06 is commutative. We will write the operation as
and the identity element as 0. Thus a finite.sét_ S gives

No = {3 cy@mm|am e N} CS.
e The semigroup is finitely generated, meaning that there isii@ ffetr C S
such thalN.e7 = S.
e The semigroup can be embedded in a lattite

The simplest example of an affine semigroupNi5C Z". More generally, given
a latticeM and a finite setz C M, we get the affine semigrouf.z C M. Up to
isomorphism, all affine semigroups are of this form.
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Given an affine semigroup C M, the semigroup algebreC[S] is the vector
space ovef® with S as basis and multiplication induced by the semigroup siract
of S. To make this precise, we think M as the character lattice of a torlig, so
thatm € M gives the charactey™. Then

C[S] = { Zcmxm | cm € C andcy, = 0 for all but finitely manym},
meS
with multiplication induced by

q

Xm_Xm’ _ Xm+m )
If S=Ngf for o7 = {my,...,ms}, thenC[S] = C[x™,...,x™].
Here are two basic examples.
Example 1.1.12.The affine semigroupi” C Z" gives the polynomial ring
CIN"] = C[xq, ..., X,
wherex; = x® andey, ..., €, is the standard basis @f". O

Example 1.1.13.1f e,...,&, iIs a basis of a latticeM, thenM is generated by
o = {tey,...,Lte,} as an affine semigroup. Settiig= x® gives the Laurent
polynomial ring

C[M] = C[t, ... tFh.
Using Example 1.0.2, one sees tlidM] is the coordinate ring of the tordg. ¢

Affine semigroup rings give rise to affine toric varieties akofwvs.
Proposition 1.1.14.LetS C M be an affine semigroup.
(@) C[S] is an integral domain and finitely generated a€aalgebra.
(b) Spe¢C|[S)) is an affine toric variety whose torus has character lat#s and
if S = N7 for a finite seteZ C M, thenSpe¢C[S]) =Y,,.

Proof. Asnoted aboveyZ = {my,...,ms} impliesC[S]=C[x™,...,x™], soC[S]
is finitely generated. Sincg€[S] C C[M] follows from S C M, we see tha€[S] is
an integral domain by Example 1.1.13.

Using« = {my,...,ms}, we get theC-algebra homomorphism
7: C[xq,...,X] — C[M]
wherex; — x™ € C[M]. This corresponds to the morphism
b, Ty — C3
from (1.1.4), i.e.;m = (P, )* in the notation of §1.0. One checks that the kernel

of 7 is the toric ideal (Y,,) (Exercise 1.1.4). The image afis C[x™,...,x™] =
C[S], and then the coordinate ring &f, is

ClYer] = ClXas- .., %] /1(Yer)

(1.1.5) =C[X, ..., %] /Ker(r) ~ Im(x) = C[S].
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This proves that Spé€[S]) = Y,,. SinceS = N7 impliesZS = Z.<7, the torus of
Y = Spe¢C[S]) has the desired character lattice by Proposition 1.1.8. [

Here is an example of this proposition.

Example 1.1.15.Consider the affine semigropC Z generated by 2 and 3, so
thatS = {0,2,3,... }. To study the semigroup algebfdS], we use (1.1.5). If we
seta = {2,3}, then® (1) = (t2,t%) and the toric ideal i$(Y,,) = (x3 —y?) by
Example 1.1.4. Hence

C[S] = C[t?,t}] = Cx,y] /(< —y?)
and the affine toric variety,, is the curvex® = y?. O

Equivalence of ConstructionsBefore stating our main result, we need to study
the action of the toru3y on the semigroup algebrd[M]. The action ofTy on
itself given by multiplication induces an action @iM] as follows: ift € Ty and

f € C[M], thent- f € C[M] is defined byp+ f(t=1- p) for p € V. The minus sign
will be explained in §5.0.

The following lemma will be used several times in the text.

Lemma 1.1.16.Let AC C[M] be a subspace stable under the action@f Then
A= EB C-x™
xMeA

Proof. Let A" = P, mca C - x™ and note tha®" C A. For the opposite inclusion,
pick f #0in A. SinceA C C[M], we can write

f = Z Cme7
me%A
whereZ C M is finite andcy, # O for allme #. Thenf € BN A, where

B=Spar{x™| me %) C C[M].

An easy computation shows thiaty™ = x™(t~1)x™. It follows thatB and
henceBN A are stable under the action &f. SinceBnN A is finite-dimensional,
Proposition 1.1.2 implies th&N Ais spanned by simultaneous eigenvectorgof
This is taking place irC[M], where simultaneous eigenvectors are characters. It
follows thatBNAis spanned by characters. Then the above expressidref@&n A
implies thaty™ € Afor me 4. Hencef € A, as desired. O

We can now state the main result of this section, which as#aat our various
approaches to affine toric varieties all give the same clagbjects.
Theorem 1.1.17.LetV be an affine variety. The following are equivalent:
(a) V is an affine toric variety according to Definition 1.1.3.
(b) V =Y, for afinite sete’ in a lattice.
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(c) V is an affine variety defined by a toric ideal.
(d) V = Spec¢C]S)) for an affine semigrouf.

Proof. The implications (b)= (c) « (d) = (a) follow from Propositions 1.1.8,

1.1.9 and 1.1.14. For (a3 (d), letV be an affine toric variety containing the
torusTy with character latticél. Since the coordinate ring @§; is the semigroup

algebraC[M], the inclusionTy C V induces a map of coordinate rings

CNV] — C[M].

This map is injective sinc&y is Zariski dense iV, so that we can regafd|V] as
a subalgebra of[M].

Since the action ofy onV is given by a morphisny xV — V, we see that
if t € Ty andf € C[V], thenp— f(t~1- p) is a morphism orV. It follows that
C[V] C C|M] is stable under the action @f. By Lemma 1.1.16, we obtain

cvl= & c-x™
xmeCV]
HenceC[V] C C[S] for the semigrous = {me M | x" e C|V]}.
Finally, sinceC[V] is finitely generated, we can finfi,..., fs € C[V] with
CV] =C[fy,...,fs]. Expressing eaclfi in terms of characters as above gives a
finite generating set @&. It follows thatS is an affine semigroup. O

Here is one way to think about the above proof. When an iribti@ffine
varietyV contains a toru3y as a Zariski open subset, we have the inclusion

CV] C CM].

ThusC[V] consists of those functions on the torfg that extend to polynomial
functions onV. Then the key insight is that is a toric varietyprecisely when the
functions that extend are determined by the charactersekiznd

Example 1.1.18.We have seen that = V(xy— zw) C C* is a toric variety with

toric ideal(xy—zw) C C[x,y,zw]. Also, the torus i§C*)3 via the mag(ty, tp, t3) —
(tl,tz,tg,tltztgl). The lattice points used in this map can be represented as the
columns of the matrix

100 1
(1.1.6) o010 1.
001 -1

The corresponding semigro$pC Z2 consists of théN-linear combinations of the
column vectors. Hence the elementsSoére lattice points lying in the polyhe-
dral region inR2 pictured in Figure 1 on the next page. In this figure, the four
vectors generatin§ are shown in bold, and the boundary of the polyhedral region
is partially shaded. In the terminology of §1.2, this polgtad region is aational



20 Chapter 1. Affine Toric Varieties

(0,0,1)

(0,1,0)

(1,0,0

(1,1,-1)
Figure 1. Cone containing the lattice points correspondiny te: V (xy— zw)

polyhedral coneln Exercise 1.1.5 you will show th&tconsists ofll lattice points
lying in the cone in Figure 1. We will use this in §1.3 to prokatV is normal. ¢

Exercises for §1.1
1.1.1. As in Example 1.1.6, let
I = (XXj+1—Xi+1Xj | 0<i< j <d—1) CC[Xo,...,Xd]
and letCy be the surface parametrized by
B(st) = (s7,97 4, ..., std7 L td) e CIFL
(a) Prove thaV/(l) = ®(C?) C C%*2. ThusCy = V(I).
(b) Prove that (éd) is homogeneous.

~

(c) Consider lex monomial order wity > x; > --- > xg. Let f € 1(Cy) be homogeneous
of degreel and letr be the remainder of on division by the generators of Prove
thatr can be written

r = ho(Xo,X1) + 1 (X1, %2) + - - - + hg—1(Xd—1,%a)

whereh; is homogeneous of degrée Also explain why we may assume that the
coefficient ofxf in h;is zero for 1<i<d-1.
(d) Use part (c) and(s?,s91t,...,std=% t9) = 0 to show that = 0.

~

(e) Use parts (b), (c) and (d) to prove that | (Cy). Also explain why the generators of
| are a Grobner basis for the above lex order.

1.1.2. LetL C Z® be a sublattice. Prove that
(X —xt= ey = (x*—x? |a,BEN° a—pel).

Note that wherf € L, the vectord, ,/_ € N* have disjoint support (i.e., no coordinate is
positive in both), while this may fail for arbitrary, 3 € N®>with oo — 3 € L.
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1.1.3. Letl_ be atoric ideal and letl, ..., ¢ be a basis of the sublattiteC Z3. Define
IL=x% —x [i=1,...1).

Prove thatl, =1 : (X1---Xs)®°. Hint: Givena, 3 € N° with a — 8 € L, write a — 8 =
Si_,ail', a € Z. This implies

i (Xgu>ai (Xli>ai

XTP 1= —_— —_— -1

II 7 II 7
a>0 \X "/ a<o\X"

Show that multiplying this byx; - - - xs)¥ gives an element df for k > 0. (By being more
careful, one can show that this result holds for lattice lele@ee 123 Lem. 7.6].)

1.1.4. Fix an affine variety/. Thenfy,..., fs € C[V] give a polynomial maj@® : V — C°,
which on coordinate rings is given by

o* : C[xq,...,X] — C[V], X — fi.
LetY C C® be the Zariski closure of the image ®f
(a) Provethat(Y) = Ker(®*).
(b) Explain how this applies to the proof of Proposition 14L.

1.1.5. Letmy = (1,0,0),m, = (0,1,0),mz = (0,0,1),my = (1,1,—1) be the columns of
the matrix in Example 1.1.18 and let

4
C= {Z/\im Bt ERZO} CR®
i=1

be the cone in Figure 1. Prove ti@an Z3 is a semigroup generated by, mp, mg, my.

1.1.6. An interesting observation is that different sets of l&foints can parametrize the
same affine toric variety, even though these parametrizatiehave slightly differently. In
this exercise you will consider the parametrizations

di(st) = (,st,st) and Py(st) = (S, st,t3).
(@) Prove that; and®; both give the affine toric variety = V (xz—y?) C cs.
(b) We can regard; and®, as maps
H:C2—Y and P,:C%>—Y.
Prove thatb, is surjective and thab; is not.

In general, a finite subse¥ C Z" gives a rational ma@,, : C" --» Y,,. The image of
&, in Cis called atoric setin the literature. Thu@l(Cz) and<1>2(<C2) are toric sets. The
papers 10]] and [147] study when a toric set equals the corresponding affine tariety.

1.1.7. In Example 1.1.6 and Exercise 1.1.1 we constructed thenatioormal conéd
using all monomials of degrekin s,t. If we drop some of the monomials, things become
more complicated. For example, consider the surface paraee by

d(s,t) = (s4,s%, st t4) e C.
This gives a toric variety C C*. Show that the toric ideal of is given by
I (Y) = <XW_ yzﬁy\N2 - ZS,XZZ - y2Wa Xzz_ y3> - C[Xv Y,Z, W]
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The toric ideal forC, has quadratic generators; by removing the monossta] we now
get cubic generators. In Chapter 2 we will use this examptetstruct a projective curve
that is normal but not projectively normal.

1.1.8. Instead of working ovefC, we will work over an algebraically closed fieldof
characteristic 2. Consider the affine toric varietZ k> parametrized by
®(s,t,u) = (s t4 u, Lu tr?u®) e k5.
(a) Find generators for the toric iddak= | (V) C K[x1, X2, X3, X4, Xs].
(b) Show that dinv = 3. You may assume that Proposition 1.1.8 holds &ver

(c) Show that = \/<xﬁ' + X8x3, X8 + X323,

It follows thatV C k® has codimension two and can be defined by two equationsyi.e.,
is aset-theoretic complete intersectiofhe paper4] shows that if we replack with an
algebrically closed field of characterisfic> 2, then the above parametrizatiomisvera
set-theoretic complete intersection.

1.1.9. Prove that a lattice idedl for L C Z® is a toric ideal if and only iZ%/L is torsion-
free. Hint: WherZ®/L is torsion-free, it can be regarded as the character laifiagorus.
The other direction of the proof is more challenging. If yai gtuck, seel23 Thm. 7.4].

1.1.10. Prove that = (x? — 1,xy— 1,yz— 1) is the lattice ideal for the lattice
L={(ab,c)eZ*|a+b+c=0mod 2 C Z3.
Also compute primary decomposition bfo show that is not prime.
1.1.11.Let Ty be a torus with character lattidé. Then every point € Ty gives an evalua-
tion mapg; : M — C* defined byg (m) = x™(t). Prove that) is a group homomorphism
and that the map— ¢; induces a group isomorphism
Tn ~ Homy, (M, C*).

1.1.12. Consider toriT; andT, with character lattices; andM,. By Example 1.1.13, the
coordinate rings o, andT, areC[M;] andC[M,]. Let® : T, — T, be a morphism that is
a group homomorphism. Tha@ninduces maps

d:M;—M; and & : C[Mz] — C[My]

by composition. Prove that* is the map of semigroup algebras induced by the Enm
affine semigroups.

1.1.13. A commutative semigrou$ is cancellativeif u+v = u+wimpliesv = w for all
u,v,w € S andtorsion-freeif nu= 0 impliesu=0 for alln € N\ {0} andu € S. Prove that
S is affine if and only if it is finitely generated, cancellatiaand torsion-free.

1.1.14. The requirement that an affine semigroup be finitely geneériatamportant since
lattices contain semigroups that are not finitely generefted example, let > 0 be irra-
tional and consider the semigroup

S={(ab)eN?|b>ra} C Z2

Prove that is not finitely generated. (Whensatisfies a quadratic equation with integer
coefficients, the generators 6fare related to continued fractions. For example, when
7 = (1++/5)/2 is the golden ratio, the minimal generatorsSadre(1,0) and (Fan_1, Fan)
forn=12, ..., whereF, is thenth Fibonacci number. Se&627 for further details.)
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1.1.15. Suppose thap : M — M is a group isomorphism. Fix a finite set C M and
let Z = ¢(<7). Prove that the toric varietied,, andYg are equivariantly isomorphic
(meaning that the isomorphism respects the torus action).

81.2. Cones and Affine Toric Varieties

We begin with a brief discussion of rational polyhedral coard then explain how
they relate to affine toric varieties.

Convex Polyhedral ConesFix a pair of dual vector spacédr andNg. Our dis-
cussion of cones will omit most proofs—we refer the readg€b8for more details
and [L34, App. A.1] for careful statements. See algd |74, 149.

Definition 1.2.1. A convex polyhedral conén Ny is a set of the form

o = CongS) = {quu | A > o} C Ng,

uesS

whereS C Ny is finite. We say that is generatedby S. Also set Cong))) = {0}.

A convex polyhedral cone is in fact convex meaning thak,y € o implies
X+ (L-=Ayeo forall 0< <1, and is acone meaning thak € o implies
Ax e o forall A > 0. Since we will only consider convex cones, the cones gaipf
Definition 1.2.1 will be called simply “polyhedral cones.”

Examples of polyhedral cones include the first quadrai?or first octant in

R3. For another example, the cone Comee,, e; + €3, + €3) C R is pictured
in Figure 2. Itis also possible to have cones that contaiimesliies. For example,

Figure 2. Cone inR® generated by, e, €1 + €3, + €
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Conder, —e1) C R? is thex-axis, while Conée;, —e1, &) is the closed upper half-
plane{(x,y) € R? | y > 0}. As we will see below, these last two examples are not
strongly convex

We can also create cones usipglytopeswhich are defined as follows.

Definition 1.2.2. A polytopein Ny is a set of the form
P = Conv(S) = {Z)\uu Au=0, > A= 1} C Ng,
ues UesS
whereS C Ny is finite. We say thaP is theconvex hullof S.

Polytopes include all polygons &% and bounded polyhedra R®. As we will
see in later chapters, polytopes play a prominent role ithibery of toric varieties.
Here, however, we simply observe that a polyt6p€ Ni gives a polyhedral cone
in Ng x R by taking the cone

o={A-(ul)eNgxR|ueP, A >0}.

If P=ConV(S), then we can also describe thisas- CondSx {1}). Figure 3
shows what this looks wheis a pentagon in the plane.

Figure 3. Cone over a pentagdh C R?

The dimensiondimo of a polyhedral cone is the dimension of the smallest
subspac&V = Spario) of Nr containingo. We call Spafr) the spanof o.

Dual Cones and FacesAs usual, the pairing betweévir andNg is denoted , ).
Definition 1.2.3. Given a polyhedral cone C Ng, its dual coneis defined by
o' ={meMg|(mu)>0foraluco}.
Duality has the following important properties.

Proposition 1.2.4.Leto C Ng be a polyhedral cone. TherY is a polyhedral cone
inMg and(¢V)¥ = 0. O
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Givenm # 0 in Mg, we get the hyperplane
Hn={ueNg | (mu) =0} C Ng
and the closed half-space
Hi = {ue Ng | (mu) >0} C Ng.
ThenHp, is a supporting hyperplanef a polyhedral coner C Ny if o C Hf,
andH; is asupporting half-space Note thatH, is a supporting hyperplane of
o if and only if me oV \ {0}. Furthermore, ifmy,...,ms generates", then it is
straightforward to check that
(1.2.1) o=Hf N---NHL
Thus every polyhedral cone is an intersection of finitely ynelosed half-spaces.
We can use supporting hyperplanes and half-spaces to dafiesof a cone.
Definition 1.2.5. A face of a coneof the polyhedral cone is 7 = HyN o for some

me oV, written 7 < 0. Usingm = 0 shows that is a face of itself, i.e.g < o.
Facesr # o are calledoroper faceswrittent < o.

The faces of a polyhedral cone have the following obviouperies.

Lemma 1.2.6. Leto = CongS) be a polyhedral cone. Then:

(a) Every face ot is a polyhedral cone.

(b) An intersection of two faces ofis again a face o&.

(c) A face of a face of is again a face of. O

You will prove the following useful property of faces in Exee 1.2.1.

Lemma 1.2.7. Let T be a face of a polyhedral cone If vwe o and v+w e 7,
thenvyw e 7. O

A facetof ¢ is a facer of codimension 1, i.e., dim= dimo — 1. Anedgeof o
is a face of dimension 1. In Figure 4 on the next page we itsta 3-dimensional
cone with shaded facets and a supporting hyperplane (a ipldinis case) that cuts
out the vertical edge of the cone.

Here are some properties of facets.
Proposition 1.2.8. Leto C Ng ~ R" be a polyhedral cone. Then:
@ Ifo= H;qlm---ﬂHansfor meo’,1<i<s, thens¥ = Congmy,...,ms).
(b) If dimo = n, then in(a) we can assume that the facetsyadre 7 = Hy No.
(c) Every proper face < o is the intersection of the facets@fcontainingr. [

Note how part (b) of the proposition refines (1.2.1) when diga dimNg.
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supporting
hyperplane

Figure 4. A coneo C R® with shaded facets and a hyperplane supporting an edge

When working inR", dot product allows us to identify the dual wiltl'. From
this point of view, the vectorsy,...,mg in part (a) of the proposition arfacet
normals i.e., perpendicular to the facets. This makes it easy tqcoenexamples.

Example 1.2.9.1t easy to see that the facet normals to the ecoeR? in Figure 2
aremy = ey, My = €,Mg = €3,My = €1 + €, — €3. Hence
o/ =Congey, e, 63,61+ —€3) CR®.

This is the cone of Figure 1 at the end of §1.1 whose latticatpalescribe the
semigroup of the affine toric variely(xy— zw) (see Example 1.1.18). As we will
see, this is part of how cones describe normal affine torietias.

Now consider", which is the cone in Figure 1. The reader can check that the
facet normals of this cone aeg, e, e; + €3, + e3. Using duality and part (b) of
Proposition 1.2.8, we obtain

o= (0")" = Congey,e,e1+€3,8+ €3).

Hence we recover our original descriptioncof %
In this example, facets of the cone correspond to edges dfidk More gen-

erally, given a face < o C Ng, we define

7t ={meMg | (mu)=0forallue 7}

™ ={meos’|{mu)=0foralluer}

=o'Nrt.

We call~* thedual faceof 7 because of the following proposition.

Proposition 1.2.10.If 7 is a face of a polyhedral coneandr* = ¢V N7+, then:
(@) 7* is aface ofs".
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(b) The mapr — 7* is a bijective inclusion-reversing correspondence betwbe
faces ofr and the faces of V.

(c) dim7 +dim7* =n. a

Here is an example of Proposition 1.2.10 when dir dimNg.
Example 1.2.11.Let ¢ = Condey, &) C R3. Figure 5 showsr andosV. You

o o

Figure 5. A 2-dimensional cone C R® and its duab¥ C R®
should check that the maximal face @f namelyo itself, gives the minimal face
o* of ¢V, namely thez-axis. Note also that
dimo +dimo* =3
even thouglyr has dimension 2. O
Relative Interiors As already noted, thepanof a cones C Ny is the smallest

subspace ofir containingo. Then therelative interior of o, denoted Relir), is
the interior ofo in its span. Exercise 1.2.2 will characterize Rélintas follows:

uc Relint(o) <= (mu)>0forallmes"\ot.
When the span equaldz, the relative interior is just the interior, denoted(hn}.

For an example of how relative interiors arise naturallypmse that- < o.
This gives the dual face* = ¢V N7+ of ¢¥. Furthermore, ifm € ¢V, then one
easily sees that

mer* < 7t CHnNo.
In Exercise 1.2.2, you will show thatific oV, then

me Relint(7*) <= 7 =HmNo.

Thus the relative interior Relift™) tells us exactly which supporting hyperplanes
of o cut out the face .
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Strong Convexity Of the cones shown in Figures 1-5, all butin Figure 5 have
the nice property that the origin is a face. Such cones atedcsttongly convex
This condition can be stated several ways.
Proposition 1.2.12.Leto C Ng ~ R" be a polyhedral cone. Then:
o is strongly convex—> {0} is a face ofr
<= ¢ contains no positive-dimensional subspace f N
< oN(—o)={0}
<= dimg" =n. O
You will prove Proposition 1.2.12 in Exercise 1.2.3. Onedflary is that if a

polyhedral coner is strongly convex of maximal dimension, then saris The
cones pictured in Figures 1—4 satisfy this condition.

In general, a polyhedral conealways has a minimal face that is the largest
subspac#V contained inr. Furthermore:

e W=0nN (—U).

e W =HpnNo whenevem € Relint(c").

e 7 =0/W C Ng/W is a strongly convex polyhedral cone.
See Exercise 1.2.4.

Separation When two cones intersect in a face of each, we can separatertbe
with the following result, often called th®&eparation Lemma

Lemma 1.2.13(Separation Lemma)Let 01,02 be polyhedral cones inNthat
meet along a common faee= o1 Noy. Then

7T=HmNo1 =HnNo>
for any me Relint(oy N (—o2)Y).
Proof. GivenA,B C Ng, we setA—B={a—b|ac A, be B}. A standard result
from cone theory tells us that
U}_/ N (—02)\/ = (0‘1 — 0'2)\/.

Now fix m € Relint(cy N (—o2)"). The above equation and Exercise 1.2.4 imply
thatH, cuts out the minimal face af; — oy, i.e.,

HnN (01— 02) = (01— 02) N (02— 01).
However, we also have
(c1—02)N(0g—01) =T —T.

One inclusion is obvious since = o1 Noo. For the other inclusion, write €
(c1—02)N(02—01) @S

U=a;—ax=Dbx—by, a,by €01, a,bpco.
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Thena; + by = ax + b, implies that this element lies n= o1 N o». Sinceay, by €
o1, we havea;,b; € 7 by Lemma 1.2.7, andy, b, € 7 follows similarly. Hence
u=a;—ap € 7T—r,as desired.
We conclude thatl,N (01 — 02) = 7 — 7. Intersecting withr, we obtain
HnNoi=(r—7)No1 =,

where the last equality again uses Lemma 1.2.7 (Exercis&)l1.¥ instead we
intersect with—o», we obtain

HnN(—02) = (1—7)N(—02) = —T,
andHyN oy = 7 follows. O

In the situation of Lemma 1.2.13 we céll,, a separating hyperplane

Rational Polyhedral ConesLet N andM be dual lattices with associated vector
spacedNg = N®z R andMi = M ®7R. ForR" we usually use the latticg".

Definition 1.2.14. A polyhedral coner C Ny is rational if c = CongS) for some
finite setSC N.

The cones appearing in Figures 1, 2 and 5 are rational. Wewithteut proof
that faces and duals of rational polyhedral cones are @tidturthermore, itr =
CongS) for SC N finite andNg = N ®z Q, then

(1.2.2) 7 MNg = {3 ueshull | Ay > 0inQ}.

One new feature is that a strongly convex rational polyedome o has a
canonical generating set, constructed as follows.plle¢ an edge of. Sinceo is
strongly convexy is aray, i.e., a half-line, and sincg is rational, the semigroup
pNN is generated by a unique elementc pNN. We callu, theray generatorof
p. Figure 6 shows the ray generator of a rational gag the plane. The dots are
the latticeN = Z2? and the white ones agen N.

Figure 6. A rational rayp C R? and its unique ray generatog

Lemma 1.2.15.A strongly convex rational polyhedral cone is generatedhgyray
generators of its edges. O
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It is customary to call the ray generators of the edgesrimémal generators
of a strongly convex rational polyhedral cone. Figures 12asbdow 3-dimensional
strongly convex rational polyhedral cones and their rayegators.

In a similar way, a rational polyhedral conef maximal dimension has unique
facet normalswhich are the ray generators of the duaal which is strongly con-
vex by Proposition 1.2.12.

Here are some especially important strongly convex cones.
Definition 1.2.16. Let o C Ny be a strongly convex rational polyhedral cone.
(a) o is smoothor regular if its minimal generators form part of/Aa-basis ofN,
(b) o is simplicial if its minimal generators are linearly independent dRer
The coner pictured in Figure 5 is smooth, while those in Figures 1 ande2 a
not even simplicial. Note also that the dual of a smooth (respplicial) cone

is again smooth (resp. simplicial). Later in the section vik give examples of
simplicial cones that are not smooth.

Semigroup Algebras and Affine Toric VarietiesGiven a rational polyhedral cone
o C Ng, the lattice points

Se=0'NMCM
form a semigroup. A key fact is that this semigroup is finitghnerated.

Proposition 1.2.17(Gordan’s Lemma)S, = ¢ NM s finitely generated and
hence is an affine semigroup.

Proof. Sinces" is rational polyhedraly¥ = CongT) for a finite seff C M. Then
K= {3 met dmM| 0 < 6y < 1} is @ bounded region d¥lr ~ R", so thatk "M is
finite sinceM ~ Z". Note thatT U(KNM) CS,.

We claimT U (KN M) generate$, as a semigroup. To prove this, takec S,
and writew = » -+ Amym where A\ > 0. ThenAm = | Am] 4 0m With [Ayy] € N

and 0< 6y, < 1, so that

meT meT
The second sum is K N M (remembemw € M). It follows thatw is a nonnegative
integer combination of elements ofU (KN M). O

Since affine semigroups give affine toric varieties, we getfdfiowing.

Theorem 1.2.18.Leto C Ng ~ R" be a rational polyhedral cone with semigroup
S, = oY NM. Then

U, = SpecC[S,]) = Spec¢ClsY NM])
is an affine toric variety. Furthermore,

dimU, =n <= the torus of Y is Ty = N®; C* <= o is strongly convex
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Proof. By Gordan’s Lemma and Proposition 1.1.14, is an affine toric variety
whose torus has character latti€s, C M. To studyZS,, note that

7Sy =Sy — Sy = {mM1—mp | M, mp €S, ).

Now suppose thdtme ZS,, for somek > 1 andm e M. Thenkm=m; — m, for
my,mp € S, = oV NM. Sincem, andny, lie in the convex set", we have

m+mp = im+52my e oV,
It follows thatm = (m+ my) —m, € ZS,,, so thatM /ZS,, is torsion-free. Hence
(1.2.3) the torus o), is Ty < ZS, =M <= rankZS, =n.

Sinceo is strongly convex if and only if dimx¥ = n (Proposition 1.2.12), it remains
to show that

dimU, =n <= rankZS, =n <= dimg¢" =n.

The first equivalence follows since the dimension of an affonie variety is the
dimension of its torus, which is the rank of its charactetidat We leave the proof
of the second equivalence to the reader (Exercise 1.2.6). a

Since we want our affine toric varieties to contain the tofyswe consider
only those affine toric varietidd,, for which o C N is strongly convex.

Our first example of Theorem 1.2.18 is an affine toric variegylawow well.

Example 1.2.19.Let 0 = Condey, e, €1 + €3,6 + €3) C Ng = R3 with N = Z3.
This is the cone pictured in Figure 2. By Example 1.2:9,is the cone pictured
in Figure 1, and by Example 1.1.18, the lattice points in tliae are generated
by columns of matrix (1.1.6). It follows from Example 1.1.t&tU,, is the affine
toric varietyV (xy — zw). O

Here are two further examples of Theorem 1.2.18.

Example 1.2.20.Fix 0 <r <nand set = Con€ey,...,e) CR". Then
o’ =Condey,...,6,+641,...,46n)
and the corresponding affine toric variety is
Uy = SpecC[xq, ..., %, x5, ... . x7]) = C" x (C)"'

(Exercise 1.2.7). This implies the general fact that if Nz ~ R" is a smooth cone
of dimensionr, thenU,, ~ C" x (C*)"". O

Figure 5 illustrates the cones in Example 1.2.20 when2 andn = 3.

Example 1.2.21.Fix a positive integed and letoc = Condde; — e,&) C R
This has dual cone" = Con€ey, e, +dey). Figure 7 on the next page show$
whend = 4. The affine semigroup, = ¢ NZ? is generated by the lattice points
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Figure 7. The conesr” whend = 4

(1,i) for 0 <i < d. Whend = 4, these are the white dots in Figure 7. (You will
prove these assertions in Exercise 1.2.8.)

By 81.1, the affine toric variety, is the Zariski closure of the image of the
map® : (C*)2 — C%1 defined by
B(s,t) = (s st,st?,...,st).
This map has the same image as the rfsap — (s%,s9-1t,...,std=1,t9) used in
Example 1.1.6. Thusl, is isomorphic to the rational normal cofg C C9*!
whose ideal is generated by thex2 minors of the matrix

X0 X1 -+ Xd—2 Xd-1
X1 X o Xde1 Xd )
Note that the cones ands" are simplicial but not smooth. O

We will return to this example often. One thing evident in Exde 1.1.6 is the
difference betweerone generators&ind semigroup generatorghe conesV has
two generators but the semigrofip = ¢¥ NZ? hasd + 1.

When o C Ng has maximal dimension, the semigrop = ¢¥ N M has a
unigue minimal generating set constructed as follows. Redimelemenin=£ 0 of
S, to beirreducibleif m=nf +m’ form',m’ € S, impliesm’ =0 orm’ = 0.

Proposition 1.2.22.Leto C Nk be strongly convex of maximal dimension and let
Sy, = oY NM. Then
2 ={me S, | misirreducible
has the following properties:
(@) 27 is finite and generateS, .
(b) 57 contains the ray generators of the edges 6f
(c) 7 is the minimal generating set 6f with respect to inclusion.
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Proof. Proposition 1.2.12 implies that is strongly convex, so we can find an
elementu € 0 NN\ {0} such thatm,u) € N for all me S, and(m,u) = 0 if and
only if m=0.

Now suppose than € S, is not irreducible. Them = ' +m” wherent and
m’ are nonzero elements 8§. It follows that

(myu) = (m’,u) + (M"’,u)
with (m',u), (m’,u) € N\ {0}, so that
(m,u) < (mu) and (M’ ,u) < (mu).

Using induction onlm,u), we conclude that every element®f is a sum of irre-
ducible elements, so tha#” generate$,. Furthermore, using a finite generating
set of S, one easily sees tha¥’ is finite. This proves part (a). The remaining
parts of the proof are covered in Exercise 1.2.9. a

The sets# C S, is called theHilbert basisof S, and its elements are the
minimal generator®f S,. More generally, Proposition 1.2.22 holds for any affine
semigroupS satisfyingS N (—S) = {0}. Algorithms for computing Hilbert bases
are discussed inp3 7.3] and [L66, Ch. 13], and Hilbert bases can be computed
using the computer program Normal27].

Exercises for §1.2
1.2.1. Prove Lemma 1.2.7. Hint; Write = HyNo forme V.

1.2.2. Here are some properties of relative interiors. £&& Ng be a cone.
(@) Show thatifu € ¢V, thenu € Relint(o) if and only if (m,u) >0 forallme oV \ 0.
(b) Letr <o and fixme ¢V. Prove that
mert* < 71 CHnNo
me Relint(7*) <= 7 =HmnNo.

1.2.3. Prove Proposition 1.2.12.

1.2.4. Leto C Ng be a polyhedral cone.

(a) Use Proposition 1.2.10 to show thahas a unique minimal face with respectto
LetW denote this minimal face.

(b) Prove thaw = (ov)+.

(c) Prove thaw is the largest subspace containedin

(d) Prove thaw =onN(—o0).

(e) Fixme ¢V. Prove tham e Relint(¢") if and only if W = HyNo.

(f) Prove that = o /W C Ng /W is a strongly convex polyhedral cone.

1.2.5. Let T < o C Ng and letr — 7 be defined as in the proof of Lemma 1.2.13. Prove

that = (7 —7) N 7. Also show thatr — 7 = Spar{r), i.e.,7 — 7 is the smallest subspace
of Ng containingr.
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1.2.6. Fix a latticeM and let Spa(f5) denote the span ov& of a subseS C M.
(a) LetSC M be finite. Prove that rarfkS = dim Spans).

(b) LetSC Mg be finite. Prove that dim Coii8) = dim Spans).

(c) Use parts (a) and (b) to complete the proof of Theorenmi®.2.

1.2.7. Prove the assertions made in Example 1.2.20.

1.2.8. Prove the assertions made in Example 1.2.21. Hint: Firstzshat when a cone is
smooth, the ray generators of the cone also generate thespording semigroup. Then
write the coner¥ of Example 1.2.21 as a union of such cones.

1.2.9. Complete the proof of Proposition 1.2.22. Hint for part (Bhow that the ray
generators of the edges @f are irreducible irb,. Given an edge of ¢V, it will help to
picku e o NN\ {0} such thap =H,No".

1.2.10. Let 0 C Ng be a cone generated by a set of linearly independent vectdg.i
Show thats is strongly convex and simplicial.

1.2.11. Explain the picture illustrated in Figure 8 in terms of Prejtion 1.2.8.

Figure 8. A coneo in the plane and its dual

1.2.12.LetP C Ng be a polytope lying in an affine hyperplane (= translate offzehnglane)

not containing the origin. Generalize Figure 3 by showiraj Ehgives a convex polyhedral

cone inNg. Draw a picture.

1.2.13. Consider the cone = Cone3e; — 26;,€;) C R?.

(a) Describer¥ and find generators of' N Z2. Draw a picture similar to Figure 7.

(b) Compute the toric ideal of the affine toric varigéfy and explain how this exercise
relates to Exercise 1.1.6.

1.2.14. Consider the simplicial cone = Conde;, e, e; + €, + 2e3) C R3,

(a) Describer¥ and find generators of* N Z3.

(b) Compute the toric ideal of the affine toric variéty.

1.2.15. Let o be a strongly convex polyhedral cone of maximal dimensioereHs an

example taken fromgg, p. 132] to show that andsV need not have the same number of
edges. Letr C R* be the cone generated by 2-¢; forall 1 <i,j <4,i # j.

(@) Show thatr has 12 edges.
(b) Show thatrV is generated bg and—e + 2} 46, 1<i<4andhas 8 edges.
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81.3. Properties of Affine Toric Varieties

The final task of this chapter is to explore the propertiesfifietoric varieties.
We will also study maps between affine toric varieties.

Points of Affine Toric Varieties We first consider various ways to describe the
points of an affine toric variety.

Proposition 1.3.1. Let V = Spe¢C|S]) be the affine toric variety of the affine
semigrouS. Then there are bijective correspondences between thanfiol:

(a) Points pe V.

(b) Maximal idealsm C C[S].

(c) Semigroup homomorphisnts— C, whereC is considered as a semigroup
under multiplication.

Proof. The correspondence between (a) and (b) is standard3SeEm. 5 of Ch.
5, 84]). The correspondence between (a) and (c) is spediaétimric case.

Given a pointp € V, defineS — C by sendingme S to x™(p) € C. This
makes sense singe" € C[S] = C[V]. One easily checks th&t— C is a semigroup
homomorphism.

Going the other way, let : S — C be a semigroup homomorphism. Since
{xM}mes is a basis ofC[S], v induces a surjective linear m&HS] — C which is
aC-algebra homomorphism. The kernel of the nigS] — C is a maximal ideal
and thus gives a poirg € V by the correspondence between (a) and (b).

We constructp concretely as follows. Lety = {my,...,ms} generateS, so
thatV =Y., C C° Letp= (y(m),...,7(ms)) € C®. Let us prove thap € V. By
Proposition 1.1.9, it suffices to show thett — x” vanishes ap for all exponent
vectorsa = (a,...,as) ands = (b, ..., bs) satisfying

S S
> am=> bim.
i=1 i=1

This is easy, since being a semigroup homomorphism implies that

[ =+ (2oam) = (30m) ~TTom®
=1 i=1 i=1 i—1

It is straightforward to show that this point ¥fagrees with the one constructed in
the previous paragraph (Exercise 1.3.1). O

As an application of this result, we describe the torus actinV. In terms
of the embedding/ =Y, C CS, the proof of Proposition 1.1.8 shows that the
action of Ty onY,, is induced by the usual action 6€*)S on C®. But how do we
see the action instrinsically, without embedding into &ffspace? This is where
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semigroup homomorphisms prove their value. Fx Ty and p €V, and letp
correspond to the semigroup homorphiem- ~v(m). In Exercise 1.3.1 you will
show thatt - p is given by the semigroup homomorphism— x™(t)~v(m). This
description will prove useful in Chapter 3 when we study sooubits.

From the point of view of group actions, the actionTaf onV is given by a
mapTy xV — V. Since both sides are affine varieties, this should be a rismph
meaning that it should come fromalgebra homomorphism

C[S]| =CV] — C[Ty x V] =C[Tn] ®c CV] = C[M] ®c C[S].
This homomorphism is given by™+— y™® x™for me S (Exercise 1.3.2).
We can also characterize those affine toric varieties fockthe torus action
has a fixed point. We say that an affine semigr6ug pointedif SN (—S) = {0},

i.e., if 0 is the only element d§ with an inverse. This is the semigroup analog of
being strongly convex.

Proposition 1.3.2. Let V be an affine toric variety. Then:

(a) If we write V= SpedCJS]), then the torus action has a fixed point if and only
if S is pointed, in which case the unique fixed point is given bysémigroup
homomorphisn$ — C defined by

(1.3.1) M {1 m=0
0 m#0.

(b) If we write V=Y,, C C®for & C S\ {0}, then the torus action has a fixed
point if and only if0 € Y, in which case the unique fixed pointdis

Proof. For part (a), letp € V be represented by the semigroup homomorphism
v:S — C. Thenp s fixed by the torus action if and only §™(t)~(m) = ~v(m)

for allme S andt € Ty. This equation is satisfied fon= 0 sincey(0) = 1, and if
m# 0, then pickingt with x™(t) # 0 shows thaty(m) = 0. Thus, if a fixed point
exists, then it is unique and is given by (1.3.1). Then we aredince (1.3.1) is a
semigroup homomorphism if and onlySfis pointed.

For part (b), first assume thet= Y, C C® has a fixed point, in which case
S = N« is pointed and the unique poiptis given by (1.3.1). Thers C S\ {0}
and the proof of Proposition 1.3.1 imply thais the origin inC®, so that 0= Y.
The converse follows since®C? is fixed by (C*)® hence byTy C (C*)S. O

Here is a useful corollary of Proposition 1.3.2 (Exercis&3J).

Corollary 1.3.3. Let U, be the affine toric variety of a strongly convex polyhedral
coneo C Ng. Then the torus action onJuhas a fixed point if and only dimo =
dimNg, in which case the fixed point is unique and is given by the mabideal

(x™|me S, \{0}) C C[S,],
where as usuab, = ¢V N M. a
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We will see in Chapter 3 that this corollary is part of the espondence be-
tween torus orbits dfl, and faces of.

Normality and Saturation We next study the question of when an affine toric
varietyV is normal. We need one definition before stating our normatiterion.

Definition 1.3.4. An affine semigrou® C M is saturatedif for all k € N\ {0} and
me M, kme S impliesme S.

For example, ifo C Ng is a strongly convex rational polyhedral cone, then
S, = oY NM is easily seen to be saturated (Exercise 1.3.4).

Theorem 1.3.5.LetV be an affine toric variety with torus, TThen the following
are equivalent:

(@) V is normal.
(b) V = SpecC]S]), whereS C M is a saturated affine semigroup.

(c) V =Spec¢C[S,]) (=U,), whereS, =" NM ando C Ny is a strongly convex
rational polyhedral cone.

Proof. By Theorem 1.1.1%/ = Spe¢C|[S]) for an affine semigroup contained in
a lattice, and by Proposition 1.1.14, the toru¥ dfas the character lattidd = ZS.
Also letn =dimV, so thatM ~ Z".

(@) = (b): If V is normal, therC[S] = C[V] is integrally closed in its field of
fractionsC(V). Suppose thatme S for somek € N\ {0} andme M. Theny™
is a polynomial function offy and hence a rational function dhsinceTy CV is
Zariski open. We also have™ e C[S] sincekme S. It follows thatx™ is a root
of the monic polynomiaXk — xX™ with coefficients inC[S]. By the definition of
normal, we obtainy™ € C[S], i.e.,me€ S. ThusS is saturated.

(b) = (c): Let«? C S be afinite generating set 6f ThenS lies in the rational
polyhedral cone Corfe7) C Mg, and rankZ.e/ = nimplies dim Conég/) = n by
Exercise 1.2.6. It follows that = Cond.</)" C Ny is a strongly convex ratio-
nal polyhedral cone such th&tC oY N M. In Exercise 1.3.4 you will prove that
equality holds whes is saturated. Hence=S,,.

(c) = (a): We need to show th&[S,] = C[s¥ NM] is normal wherr C Ny is
a strongly convex rational polyhedral cone. kgl..., pr be the rays ob. Sinceo
is generated by its rays (Lemma 1.2.15), we have

r
o/ = ﬂplv
i=1

Intersecting withM givesS, = {_; S,;, which easily implies

C[Ss] = m C[Spi]-
i=1
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By Exercise 1.0.7C[S,| is normal if eachC[S ] is normal, so it suffices to prove
that C[S,] is normal wheryp is a rational ray inNg. Letu, € pNN be the ray
generator ofp. Sinceu is primitive, i.e, %up ¢ N for all k > 1, we can find a
basisey, ..., €&, of N with u, = e; (Exercise 1.3.5). This allows us to assume that
p=Conge), so that

C[S,] = Clx1, %5, ..., XY
by Example 1.2.20. BUE[x, ..., X%y] is normal (it is a UFD), so its localization

(C[X17 P 7X|"|:|)(2...)(‘,.l = (C[X]_’X;:l, PP 7Xf;||:1:|
is also normal by Exercise 1.0.7. This completes the proof. O

Example 1.3.6. We saw in Example 1.2.19 thelt= V(xy— zw) is the affine toric
varietyU,, of the coner = Condey, e;,e; + €3,€ + €3) pictured in Figure 1. Then
Theorem 1.3.5 implies that is normal, as claimed in Example 1.1.5. O

Example 1.3.7. By Example 1.2.21, the rational normal coBg C C4t1 s the
affine toric variety of a strongly convex rational polyhddrane and hence is nor-
mal by Theorem 1.3.5.

It is instructive to view this example using the parametitra
®(st) = (9,897, ... stdL 1)

from Example 1.1.6. Plotting the lattice points.if for d = 2 gives the white
squares in Figure 9 (a) below. These generate the semigreuN.<Z, and the
proof of Theorem 1.3.5 gives the con& = Congey, &), which is the first quad-
rant in the figure. At first glance, something seems wrong. dffine varietyéz

is normal, yet in Figure 9 (a) the semigroup generated by thitevequares misses
some lattice points im¥. This semigroup does not look saturated. How can the
affine toric variety be normal?

(b)

Figure 9. Lattice points for the rational normal cofe

The problem is that we are using the wrong lattice! Propmsifi.1.8 tells us
to use the lattic&.«/, which gives the white dots and squares in Figure 9 (b). This
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figure shows that the white squares generate the semigrdatiio points ino".
HencesS is saturated and everything is fine. %

This example points out the importance of working with therect lattice.

The Normalization of an Affine Toric Variety The normalization of an affine toric
variety is easy to describe. L¥ét= Spe¢C|S]) for an affine semigroufs, so that
the torus ofV has character latticel = ZS. Let CongS) denote the cone of any
finite generating set & and setr = CongS)Y C Ng. In Exercise 1.3.6 you will
prove the following.

Proposition 1.3.8. The above cone is a strongly convex rational polyhedral cone
in Ng and the inclusiorC[S] C C[¢¥ N M] induces a morphismJ— V that is the
normalization map of V. d

The normalization of an affine toric variety of the fol¥yy is constructed by
applying Proposition 1.3.8 to the affine semigrddip/ and the latticeZ.o7 .

Example 1.3.9.Let &7 = {(4,0),(3,1),(1,3),(0,4)} C Z2. Then
q)@/(s»t) = (54,S3t,St3,t4)

parametrizes the surfacg, C C* considered in Exercise 1.1.7. This is almost
the rational normal con€,, except that we have omittes#t?. Using (2,2) =
((4,0)+(0,4)), we see thaN.¢Z is not saturated, so th¥, is not normal.

Applying Proposition 1.3.8, one sees that the normalinatity,, is Cq. This
is an affine variety inC®°, and the normalization map is induced by the obvious
projectionC® — C*. O

Proposition 1.3.8 can be interpreted as saying4ffat M is thesaturationof
the semigroufs. Saturations can be computed using Normalig.[

In Chapter 3 we will see that the normalization map— V constructed in
Proposition 1.3.8 is onto but not necessarily one-to-one.

Smooth Affine Toric Varieties Our next goal is to characterize when an affine toric
variety is smooth. Since smooth affine varieties are norfmebgosition 1.0.9),
we need only consider toric varietiés, coming from strongly convex rational
polyhedral cones C Ng.

We first studyJ, wheno has maximal dimension. TherY is strongly convex,
so thatS, = ¥ N M has a Hilbert basis?. Furthermore, Corollary 1.3.3 tells us
that the torus action dd,, has a unique fixed point, denoted herefyc U,. The
point p, and the Hilbert basis#’ are related as follows.

Lemma 1.3.10.Leto C N be a strongly convex rational polyhedral cone of max-
imal dimension and let [ (U,) be the Zariski tangent space to the affine toric
variety U, at the above point p ThendimT,,_ (U,) = |.77].
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Proof. By Corollary 1.3.3, the maximal ideal &f[S,;| corresponding t@, ism =
(x™| me S, \ {0}). Since{xM}mes, is a basis ofC[S,|, we obtain

n=@Pcx"= P "o P "= ( D me) O m2.
m£0 mirreducible mreducible mes?

It follows that dimm/m? = |#|. To relate this to the maximal idealy, p, in the
local ring Oy, p,,, We use the natural map

m/mz - mUmpo/mampa

which is always an isomorphism (Exercise 1.3.7). Sifig€U,,) is the dual space
of my, p, /mf, . We see that diffiy, (U,) = 7. O

The Hilbert basis’# of S, givesU, =Y, C C® wheres = |5#|. This affine
embedding is especially nice. Givemy affine embeddindJ, — C’, we have
dimT,_ (U,) < ¢ by Lemma 1.0.6. In other words, difg, (U,) is a lower bound
on the dimension of an affine embedding. Then Lemma 1.3.1@skiwat when
o has maximal dimension, the Hilbert basisS)f gives the most efficient affine
embedding otJ,.

Example 1.3.11.In Example 1.2.21, we saw that the rational normal cémg
C9*1 is the toric variety coming fromr = Condde; — &, &) C R? and thatS, =
oV NZ?is generated byl,i) for 0 <i < d. These generators form the Hilbert basis
of S, so that the Zariski tangent space af G4 has dimension + 1. HenceC%+!
in the smallest affine space in which we can emﬁ@d O

We now come to our main result about smoothness. Recall frhi2 that a
rational polyhedral cone ismoothif it can be generated by a subset of a basis of
the lattice.

Theorem 1.3.12.Leto C Ny be a strongly convex rational polyhedral cone. Then
U, is smooth if and only it is smooth. Furthermore, all smooth affine toric
varieties are of this form.

Proof. If an affine toric variety is smooth, then it is normal by Prsjton 1.0.9
and hence of the forr,. Also, Example 1.2.20 implies that i is smooth as

a cone, thetJ,, is smooth as a variety. It remains to prove the converse. So fix
o C Ng such that), is smooth. Leh = dimU, = dimNg.

First suppose that has dimensiom and letp, € U, be the point studied in
Lemma 1.3.10. Since, is smooth inU,, the Zariski tangent spacg, (U,) has
dimensionn by Definition 1.0.7. On the other hand, Lemma 1.3.10 implext t
dimT,, (U, ) is the cardinality of the Hilbert basig” of S, = ¢¥ N M. Thus

n=|| > [{edgesp Co"}| >,

where the first inequality holds by Proposition 1.2.22 (eadgep C ¢" con-
tributes an element o) and the second holds since dith= n. It follows thato
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hasn edges and# consists of the ray generators of these edges. 3iheeZS,
by (1.2.3), then edge generators of' generate the lattickl ~ Z" and hence form
a basis ofM. ThuscoV is smooth, and ther = (V)" is smooth since duality
preserves smoothness.

Next suppose dim =r < n. We reduce to the previous case as follows. Let
N1 C N be the smallest saturated sublattice containing the gemsraf o. Then
N/N; is torsion-free, which by Exercise 1.3.5 implies the existeof a sublattice
N> € N with N = N; @ N,. Note rankN; =r and rankN, = n—r.

The coneo lies in both(Np)r andNg. This gives affine toric varietied,, n,
andU, y of dimensions andn respectively. Furthermoréy = N; ® N, induces
M = M;® M, so thatr C (N;)r ando C N give the affine semigroug;, n, € M1
andS, n € M respectively. Itis straighforward to show that

SoN = SoN, D M2,
which in terms of semigroup algebras can be written
C[SoN] > C[Se N, ] ®c C[M2].
The right-hand side is the coordinate ringufy, x Tn,. Thus
(1.3.2) Usn 2= Usng X Ty,
which in turn implies that
UoNn = Ugpn X (C) T C UGN, x CM

Since we are assuming tHag  is smooth, it follows thatl, n, x C"™" is smooth
at any point(p,q) in U, n, x (C*)"". In Exercise 1.3.8 you will show that

(1.3.3) Uy, x C""is smooth atp,q) = U, is smooth afp.
Letting p = p, € U, n,, the previous case implies thatis smooth inN; since
dimo = dim(N;)r. Henceo is clearly smooth ifN = N3 & N. O

Equivariant Maps between Affine Toric VarietiesWe next study map¥; — Vs
between affine toric varieties that respect the torus astimv; andVs.

Definition 1.3.13. Let V; = Spe¢C|S;]) be the affine toric varieties coming from
the affine semigroupS;, i = 1,2. Then a morphism : V; — Vs, is toric if the cor-
responding map of coordinate ring$ : C[S,] — C[S1] is induced by a semigroup
homomorphism$: S, — S1.

Here is our first result concerning toric morphisms.

Proposition 1.3.14. Let Ty, be the torus of the affine toric variety, V=1, 2.
(@) A morphismyp : V; — V, is toric if and only if
A(Tny) € T,
and Ol Ty — T, is a group homomorphism.
1
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(b) A toric morphismy : V1 — V; is equivariant meaning that

o(t-p) = o(t)-4(p)
forallt € Ty, and pe V1.

Proof. LetV, = Spe¢C[Si]), so that the character lattice &, is M; = ZS;. If ¢
comes from a sAemigroup homomorphigm S, — S, then¢ extends to a group
homomorphismy : Mo — M7 and hence gives a commutative diagram

CSs] 25 Clsy
! !
C[My] — C[My].

Applying Spec, we see thai(Ty,) C Ty, and@|; : Ty, — Ty, is @ group homo-
1
morphism sincely, = Homy(M;,C*) by Exercise 1.1.11. Conversely, df sat-
isfies these conditions, the#j; : Ty, — Tn, induces a diagram as above where
1

the bottom map comes from a group homomorph&mwz — Mj. This, com-
bined with¢*(C[Sz]) C C[S4], implies thatp induces a semigroup homomorphism
5: S, — S3. This proves part (a) of the proposition.

For part (b), suppose that we have a toric map/; — V2. The action ofTy,
onV; is given by a morphisn®; : Ty, x Vi — Vi, and equivariance means that we
have a commutative diagram

TN1 X V1 i} Vl

o] |
Lii}

TN2 X V2 —2> V2.

If we replaceV; with Ty, in the diagram, then it certainly commutes sinquN
1

is a group homomorphism. Then the whole diagram commutes $j x Ty, is
Zariski dense iy, x Vi. O

We can also characterize toric morphisms between affinevarieties coming
from strongly convex rational polyhedral cones. First ribi a homomorphism
¢ : Np — Ny of lattices gives a group homomorphism Ty, — Ty, of tori. This
follows from'_l]\,i = N; ®7 C*, and one sees thatis a morphism. Also, tensoring
with R gives¢op : (N1)r — (N2)R.

Here is the result, whose proof we leave to the reader (EseicBB.9).
Proposition 1.3.15. Suppose we have strongly convex rational polyhedral cones

oi C (Nj)r and a homomorphisn : Ny — Np. Theng : Ty, — Ty, extends to a
map of affine toric varieties : U,, — U, if and only if ¢y (1) C 2. O
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In the remainder of the chapter we explore some interestisgses of toric
morphisms.

Faces and Affine Open Subsetdet o C Ng be a strongly convex rational poly-
hedral cone and let < ¢ be a face. Then we can find € ¢¥ N M such that
7=HmNo. This allows us to relate semigroup algebrag @nd as follows.

Proposition 1.3.16. Let 7 be a face o and as above write = Hy,N o, where
me oY NM. Then the semigroup algebf@[S.] = C[rY NM] is the localization of
C[S,] =C[oc¥ NM] at x™ e C[S,]. In other words,

C[S+] = C[Ss]ym.
Proof. The inclusionr C o impliesS, C S;, and sincédm,u) =0 forallu e r, we
have+me 7V. It follows that

S;+Z(—m) CS,.

This inclusion is actually an equality, as we now prove. Ffinde setSC N with
o = Con€S) and pickmf € S... Set

C = max{|(m,u)|} € N.

It is straightforward to show thatY + Cme S,.. This proves that
Se+Z(—m) =S,
from whichC[S;| = C[S,], follows immediately. O
This interprets nicely in terms of toric morphisms. By Prsition 1.3.15, the

identity mapN — N and the inclusion C ¢ give the toric morphisny, — U,, that
corresponds to the inclusidd[S,] C C[S;]. By Proposition 1.3.16,

(1.3.4) U, =Spe¢C[S;]) = Spe¢C[S,]|,m) = Spe¢C[S,])ym = (Uy)ym C U,.
In other wordslJ,, becomes an affine open subsetlgfwhenr < o. This will be

useful in Chapters 2 and 3 when we study the local structuneasé general toric
varieties.

Sublattices of Finite Index and Rings of InvariantsAnother interesting class of
toric morphisms arises when we keep the same cone but cHamtgtice. Here is
an example we have already seen.

Example 1.3.17.In Example 1.3.7 the dual of = Condey,e;) C R? interacts
with the lattices shown in Figure 10 on the next page. To mhiserecise, let us
name the lattices involved: the lattices

N'=7Z2CN={(a/2,b/2) |abc Z, a+b=0mod 2
haveo C Ni C Ng, and the dual lattices
M =7Z2D>M={(ab)|abecZ, a+b=0mod 2
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Figure 10. Lattice points ofr" relative to two lattices

havesV C Mg € Mg. Note that duality reverses inclusions and thiaandN are
indeed dual under dot product. In Figure 10 (a), the black dothe first quadrant
form the semigroufs, ' = oY NM’, and in Figure 10 (b), the white dots in the
first quadrant forns, n = ¥ NM.

This gives the affine toric varietigs, v andU, . ClearlyU, n» = C? sinceo
is smooth forN’, while Example 1.3.7 shows thif, \ is the rational normal cone
Co. TheinclusionN’ C N gives a toric morphism

C?2=U,n — Uyn =Co.

Our next task is to find a nice description of this map. O

In general, suppose we have lattiddsC N, whereN’ has finite index inN,
and letoc C Np = Ng be a strongly convex rational polyhedral cone. Then the
inclusionN’ C N gives the toric morphism

¢ :Usn — UgN.
The dual lattices satisfiyl’ O M, so thaty corresponds to the inclusion
Cle¥ NM’] 2 CleY NM]

of semigroup algebras. The idea is to realiZe ' N M] as a ring of invariants of a
group action orC[c¥ NM’].

Proposition 1.3.18.Let N have finite index in N with quotient & N/N’ and let
o C Ni = Ng be a strongly convex rational polyhedral cone. Then:

(a) There are natural isomorphisms
G ~ Homy(M'/M,C*) = ker(Ty: — Tn).
(b) G acts onC[s¥ N M’] with ring of invariants
CleVNM¢ =C[eY NM].
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(c) G acts on U/, and the morphisng : U, N — U, n is constant on G-orbits
and induces a bijection
U07N//G ~ UO’,N'
Proof. SinceTy = Homz(M,C*) by Exercise 1.1.11, applying Hort—,C*) to
0O—M-—M-—M/M—0
gives the sequence
1 — HO'T}Z(M//M,(C*) —)TN/ — TN e 1

This is exact since Hop(—,C") is left exact andC* is divisible. To bringG =
N /N’ into the picture, note that

NCNCNg and MCM CMg.
Since the pairing betwedvl andN induces a pairinglg x Ng — Q, the map
M'/MxN/N' — C*  ([m],[u]) — (MW
is well-defined and induces ~ Homy (M’ /M, C*) (Exercise 1.3.10).

The action ofTy: on U,/ induces an action o6 on U,y sinceG C Ty..
Using Exercise 1.3.1, one sees thag if G and~y € U, ', theng- v is defined by
the semigroup homomorphism — g([m'])~y(m') form' € ¥ NM’. It follows that
the corresponding action on the coordinate ring is given by

g x™ =g(m])x™, mes’nM.
(Exercise 5.0.1 explains why we need the inverse.) Sinice M’ lies inM if and
only if g([m']) = 1 for all g € G, the ring of invariants
CloYNM® ={f eC[¢VNM']|g-f = f forall ge G},

is preciselyC[cY N M], i.e.,

CleY NM'|¢ =C[¢¥ NM].
This proves part (b).

When a finite grougs acts algebraically of", [35, Thm. 10 of Ch. 7, 84]

shows that the ring of invarian@[xy, . .. ,X,|® C C[xg, ..., %,] gives a morphism of
affine varieties

C" = SpecC|xy, ..., X)) — Sped¢C[xq, ..., %]°)
that is constant ofs-orbits and induces a bijection
C"/G ~ SpedC[xy,...,x]®).

The proof extends without difficulty to the case wheracts algebraically oW =
SpecR). Here,R® C R gives a morphism of affine varieties

V = Spe¢R) — Spe¢R®)
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that is constant ofs-orbits and induces a bijection
V /G~ SpecR®).
From here, part (c) follows immediately from part (b). O
We will give a careful treatment of these ideas in 85.0, wiveeewill show

that the map SpéR) — Spe¢R®) is ageometric quotient
Here are some examples of Proposition 1.3.18.

Example 1.3.19.In the situation of Example 1.3.17, one computes (Bas$ the
group sz = {+1} acting onU, v = Spe¢C|[s,t]) ~ C? by —1-(s;t) = (—s,—t).
Thus the rational normal cor@ is the quotient
CZ/NZ = UJ,N’/NZ = UO’,N = C/:\2-
We can see this explicitly as follows. The invariant ringasiy seen to be
C[s.t]* = C[s%,st,t?] = C[Cy] ~ C[Xo, X1, %]/ (XoX2 — X8,

where the last isomorphism follows from Example 1.1.6. Ftbmpoint of view
of invariant theory, the generatas$ st, t? of the ring of invariants give a morphism

d:C%—C3 (st)— (% st,t?)
that is constant op,-orbits. This map also separates orbits, so it induces
C?/uz ~ 2(C?) = Cp,

where the last equality is by Example 1.1.6. But we can alsktabout this in
terms of semigroups, where the exponent vecto® at, t? give the Hilbert basis
of the semigrougb, n pictured in Figure 10 (b). Everything fits together very
nicely. O

In Exercise 1.3.11 you will generalize Example 1.3.19 todhse of the ratio-
nal normal con&y for arbitraryd.

Example 1.3.20.Let 0 C Ng ~ R" be a simplicial cone of dimensiamwith ray
generatordys,...,Uu,. ThenN’ = Zi”:lZui is a sublattice of finite index iMN.
Furthermore is smooth relative td\’, so thatU, n- = C". It follows thatG =
N/N’ acts onC" with quotient

C"/G =U,n /G ~Ugn.

Hence the affine toric variety of a simplicial cone is the ¢emtof affine space by
a finite abelian group. In the literature, varieties likgn are calledorbifolds and
are said to bé)-factorial. O
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Exercises for §1.3

1.3.1. Consider the affine toric variety,y = Spe¢C[S]), wheres/ = {my,...,ms} and
S=Ng/. Lety:S — C be a semigroup homomorphism. In the proof of Propositiori1.3
we showed thap = (v(my),...,v(ms)) lies in Y.

(a) Prove that the maximal ide@f € C[S] | f(p) = O} is the kernel of theC-algebra
homomorphisnC[S] — C induced byy.

(b) The torusTy of Y., has character latticl = Z« and fixt € Ty. As in the dis-
cussion following Proposition 1.3.1, this gives the semigr homomorphisnm —
x™(t)y(m). Prove that this corresponds to the point

(Xmlv cee aXmS) ' (V(ml)a s aV(rnS)) = (Xml'y(ml)v s aXmS'y(rnS))
coming from the action df € Ty C (C*)Sonp €Y, C C®.

1.3.2. Let V = Spe¢C|[S]) with Ty = Spe¢C[M]), M = ZS. The actionTy xV — V

comes from &-algebra homomorphisfii[S] — C[M] ®¢ C[S]. Prove that this homomor-

phism is given byy™ — x™® x™. Hint: Show that this formula determines tGealgebra
homomorphisnC[M] — C[M] ¢ C[M] that gives the group operatidi x Ty — Tn.

1.3.3. Prove Corollary 1.3.3.

1.3.4. Let.&# C M be afinite set.

(a) Prove that the semigrodype is saturated iM if and only if N7 = Cond <) N M.
Hint: Apply (1.2.2) to Coné«) C Mg.

(b) Complete the proof of (b} (c) from Theorem 1.3.5.

1.3.5. Let N be a lattice.

(a) LetN; C N be a sublattice such thhit/N; is torsion-free. Prove that there is a sublat-
tice N, C N such thalN = N; © N,.

(b) Letu e N be primitive as defined in the proof of Theorem 1.3.5. Prow hhas a
basisey, ..., e, such that; = u.

1.3.6. Prove Proposition 1.3.8.

1.3.7. Let p be a point of an irreducible affine varie¥y Thenp gives the maximal ideal
m = {f € C[V] | f(p) = 0} as well as the maximal ideaty , C &y , defined in §1.0.
Prove that the natural map/m? — 111\/4,/111\2,,p is an isomorphism o€-vector spaces.

1.3.8. Prove (1.3.3). Hint: Use Lemma 1.0.6 and Example 1.0.10.

1.3.9. Prove Proposition 1.3.15.

1.3.10.Prove the assertions made in the proof of Proposition 1&h8erning the pairing
M’/M x N/N’ — C* defined by([m'], [u]) — €M,

1.3.11.Let ug = {¢ € C* | ¢ = 1} be the group ofith roots of unity. Theny acts onC?
by ¢- (x,y) = ({x,Cy). Adapt Example 1.3.19 to show th@f /.4 ~ Cy. Hint: Use lattices
N =Z2CN={(a/d,b/d)|a,be Z,a+b= 0 modd}.

1.3.12. Prove that the normalization map in Proposition 1.3.8 igi& tnorphism.

1.3.13.Leto; C (N1)r ando, C (N2)g be strongly convex rational polyhedral cones. This
gives the coner; x o2 C (N1 ®Np)g. Prove that,, «,, ~ U,, x U,,. Also explain how
this result applies to (1.3.2).
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1.3.14. By Proposition 1.3.1, a poir of an affine toric variet}f = Spe¢C|[S]) is repre-
sented by a semigroup homomorphisnS — C. Prove thap lies in the torus o¥ if and
only if v never vanishes, i.ey(m) # 0 forallme S.

Appendix: Tensor Products of Coordinate Rings

In this appendix, we will prove the following result used ib.@ in our discussion of prod-
ucts of affine varieties.

Proposition 1.A.1. If R and S are finitely generateéd-algebras without nilpotents, then
the same is true for R¢ S.

Proof. Since the tensor product is obviously a finitely generélemigebra, we need only
prove thatR®c S has no nilpotents. If we writR ~ C[xq,...,X%]/I, thenl is radical and
hence has a primary decompositios ﬂleP., where eachr is prime (B5, Ch. 4, 87]).
This gives

S
R~C[xq, ..., %]/l — EDClx,....x] /R
i=1
where the map to the direct sum is injective. Each quoti#rt,...,x,]/R is an integral
domain and hence injects into its field of fractidqs This yields an injection

S
R— K.
i=1
and since tensoring over a field preserves exactness, wa ggeation

S
R®c S— @ Ki®c S
i=1
Hence it suffices to prove thit®c Shas no nilpotents whek is a finitely generated field
extension ofC. A similar argument usin&then reduces us to showing thé@t®c L has no
nilpotents wherkK andL are finitely generated field extensions@f

SinceC has characteristic 0, the extensiOrC L has a separating transcendence basis
([97, p. 519]). This means that we can figg ..., y; € L such thatys,...,y: are alge-
braically independent ovef andF = C(yi,...,¥%) C L is a finite separable extension.
Then

KocL~K®c (F®rlL) ~ (K®cF)®F L.
ButC=K®cF =K®&cC(y1,...,%t) = K(y1,...,¥) is a field, so that we are reduced to
considering
C®rlL
whereC andL are extensions df andF C L is finite and separable. The latter and the
theorem of the primitive element imply that~ F[X]/{f (X)), where f(X) has distinct
roots in some extension &f. Then

C®F L~ Car FIX]/{f(X)) = CX]/(f(X)).
Sincef (X) has distinct roots, this quotient ring has no nilpotentst @ault follows. O

A final remark is that we can repla¢ewith any perfect field since finitely generated
extensions of perfect fields have separating transcendieses @7, p. 519]).



Chapter 2

Projective Toric Varieties

§2.0. Background: Projective Varieties

Our discussion assumes that the reader is familiar with lem@entary theory of
projective varieties, at the level d8%, Ch. 8].

In Chapter 1, we introduced affine toric varieties. In geheraoric variety is
an irreducible variet) overC containing a toru3y ~ (C*)" as a Zariski open set
such that the action dfC*)" on itself extends to an action o We will learn in
Chapter 3 that the concept of “variety” is somewhat subtlen¢¢ we will defer
the formal definition of toric variety until then and insteadncentrate on toric
varieties that live in projective spa®, defined by

(2.0.1) P" = (C™h\ {0})/C",

whereC* acts via homotheties, i.€\, (ao,...,an) = (A\ap,...,Aay) for A€ C* and
(ag,...,a,) € C™1. Thus(ay,...,a,) arehomogeneous coordinates a point in
P" and are well-defined up to homothety.

The goal of this chapter is to use lattice points and polydajpecreate toric
varieties that lie inP". We will use the affine semigroups and polyhedral cones
introduced in Chapter 1 to describe the local structure ed¢hvarieties.

Homogeneous Coordinate RingsA projective varietyV C P" is defined by the
vanishing of finitely many homogeneous polynomials in thiypomial ring S=
C[xo,---,X%]. Thehomogeneous coordinate rir§ V is the quotient ring

CVI=$/1(v),

wherel (V) is generated by all homogeneous polynomials that vanidh.on
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The polynomial ringSis graded by setting dég ) = 1. This gives the decom-
positionS= Py , S, WwhereS; is the vector space of homogeneous polynomials
of degreed. Homogeneous ideals decompose similarly, and the aboveinate
ring C[V] inherits a grading where

CV]g =S/1(V)a-

The ideall (V) € S= C[xq,...,X,] also defines an affine variety C C™**, called
theaffine coneof V. The varietyV satisfies

(2.0.2) vV =(V\{op/cr,
and its coordinate ring is the homogeneous coordinate fivg be.,
CNV]=CV].

Example 2.0.1.In Example 1.1.6 we encountered the ideal
I = (XXj+1—X+1%) [0<i<j<d—1) CClxo,...,Xd]
generated by the 2 2 minors of the matrix

<XO X|g o Xd—2 xd_1>
X1 X2 -+ Xd—1 X4

Sincel is homogeneous, it defines a projective varigfyC P that is the image of
the map

o : Pt — pd
defined in homogeneous coordinates(by) — (s?,s971,... st t9) (see Ex-
ercise 1.1.1). This shows th@} is a curve, called theational normal curveof

degreed. Furthermore, the affine cone@f is the rational normal coréd C o+t
discussed in Example 1.1.6.

We know from Chapter 1 thafd is an affine toric surface; we will soon see
thatCy is a projective toric curve. O

Example 2.0.2. The affine toric variety/ (xy— zw) € C* studied in Chapter 1 is
the affine cone of the projective surfade= V(xy—zw) C P3. Recall that this
surface is isomorphic tB* x P! via the Segre embedding

Plxpl . p3

given by (s,t;u,v) — (sutv,svitu). We will see below thaV ~ P! x P! is the
projective toric variety coming from the unit square in thene. O

As in the affine case, a projective variafyC P" has theclassical topology
induced from the usual topology @, and theZariski topology where the Zariski
closed sets are subvarietiessofmeaning projective varieties &f' contained irV/)
and the Zariski open sets are their complements.
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Rational Functions on Irreducible Projective VarietiesA homogeneous polyno-
mial f € Sof degreed does not give a function di" since

FAX0, -+, M) = A%F (X, ., Xn).

However, the quotient of two such polynomidisg € & gives the well-defined
function :

g :P"\V(g) — C.
providedg # 0. We write this asf/g: P" --» C and say thaff /g is arational
functiononP".

More generally, suppose thétC P" is irreducible, and lef,g € C[V] = C[V]
be homogeneous of the same degree with0. Thenf andg give functions on
the affine coné/ and hence an elemerfif/g € (C(\7). By (2.0.2), this induces a
rational functionf /g:V --» C. Thus

~

C(V)={f/geC(V) | f,ge C|V] homogeneous of the same degrge; O}

is the field of rational functions oY. It is customary to write the set on the left as
C(V)o since it consists of the degree 0 element&€(f ).

Affine Pieces of Projective VarietiesA projective varietyV C P" is a union of
Zariski open sets that are affine. To see whyltet P"\ V(). ThenU; ~ C" via
the map

(2.0.3) (ao,...,an)»—>(%,...,%,%,...,%),
so that in the notation of Chapter 1, we have

Ui = SpedC[32,..., 52, 52, 2.

ThenV NU; is a Zariski open subset df that maps via (2.0.3) to the affine variety
in C" defined by the equations

(2.0.4) f3e,... B2, 5 %) =0

asf varies over all homogeneous polynomiald (k).

We callV NU; anaffine pieceof V. These affine pieces covérsince thel;
coverP". Using localization, we can describe the coordinate rirfgthe affine
pieces as follows. The variabkginduces an elememnt € C[V], so that we get the
localization
(2.0.5) ClV]x = {f/x| f eC|V], k> 0}

asin Exercises 1.0.2 and 1.0.3. Note t8at |z has a well-define@-grading given
by ded f /xX) = deg f) — k when f is homogeneous. Then

(2.0.6) (CV]x)o={f/xX e C|V]x | f is homogeneous of degrég

is the subring ofC[V]x, consisting of all elements of degree 0. This gives an affine
piece ofV as follows.
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Lemma 2.0.3. The affine piece YAU; of V has coordinate ring
CNVNUYi] =~ (CMV]x)o-

Proof. We have an exact sequence

0—1(V) — CIxo,..., %] — C|V] — 0.
If we localize atx;, we get the exact sequence
(2.0.7) 0—1(V)x — Clxo,...,Xn]x — CV]g — 0

since localization preserves exactness (Exercises 2@.2.8.2). These sequences
preserve degrees, so that taking elements of degree 0 besact sequence

0— (1V)x)o — (Clxo, -, Xnlx)o — (C[V]x)o — O.

Note that(C[xo,...,Xalx)Jo = C[32, ..., 52, 52,..., 2], If f €1(V) is homoge-
neous of degrek, then

f/x=f(30,... 52, 1,582 ) e (1(V)x)o-

By (2.0.4), we conclude thdt (V) )o maps tol (V NU;). To show that this map
is onto, letg(32,..., 52, 5, %) € L(V NU;). Fork>> 0, xfg = f(Xo,...,%n)
is homogeneous of degrée It then follows easily thak; f vanishes oV since
g=0o0nVNU; andx = 0 on the complement df;. Thusxf € I(V), and then

(x )/ (1) € (1(V)x )o maps tog. The lemma follows immediately. O

One can also explore what happens when we intersect affinegdenU; and
V NU;jfori# j. By Exercise 2.0.3y NU; NUj is affine with coordinate ring

(2.0.8) C[V NUiNU;j] = (CV]x )o-

We will apply this to projective toric varieties in §2.2. Wadllhalso see later in
the book that Lemma 2.0.3 is related to the “Proj” constarctiwhere Proj of a
graded ring gives a projective variety, just as Spec of amarg ring gives an
affine variety.

Products of Projective Space€ne can study the produt” x P™ of projective
spaces using the bigraded riigx, . . ., Xn, Yo, - - - , Ym|, Wherex; has bidegreél, 0)
andy; has bidegre¢0,1). Then a bihomogeneous polynomiabf bidegree(a, b)
gives a well-defined equatioh= 0 in P" x P™. This allows us to define varieties
in P" x P™ using bihomogeneous ideals. In particular, the idédl) of a variety
V CP"x PMis a hihomogeneous ideal.

Another way to study" x P™is via theSegre embedding
PI’] % ]P;m . [P;nm+n+m

defined by mappingay, ... ,an,bo, ..., by) to the point
(a0b07a0b17 ce 7a0bm7 alb07 ce »albm> ce 7anb07 ce aanbm)-
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This map is studied in35, Ex. 14 of Ch. 8, §4]. IfP"™ ™™ has homogeneous
coordinatesqj for 0<i <n,0 < j <m, thenP" x P™ C P"™ ™ Mis defined by the
vanishing of the Z 2 minors of the(n+ 1) x (m+ 1) matrix

Xo0 '+ Xom

X0 - Xnm
This follows since ann+ 1) x (m+ 1) matrix has rank 1 if and only if it is a
productA'B, whereA andB are nonzero row matrices of lengths- 1 andm+ 1.

These approaches give the same notion of what it means tolivargety of
P" x P™. A homogeneous polynomi&l(x;;) of degreed gives the bihomogeneous
polynomial F(xy;) of bidegree(d,d). Hence any subvariety "™ "™ lying
in P" x P™ can be defined by a bihomogeneous ideaCiRo, ..., %, Yo, - -, Ym|-
Going the other way takes more thought and is discussed irciEre2.0.5.

We also have the following useful result proved in Exercige®

Proposition 2.0.4. Given subvarieties \C P" and WC P™, the product Vx W is
a subvariety of?" x P™, O

Weighted Projective SpaceThe graded ring associated to projective spates
C[xo,---,X%n], Where each variabbe has degree 1. More generally, tgt ..., q, be
positive integers with gadyp, .. .,q,) = 1 and define
P(qO, cee 7qn) = (Cn+1 \ {O})/ ~
where~ is the equivalence relation
(ag,...,an) ~ (bo,...,bn) < a =\, i=0,...,nfor some\ € C*.
We callP(qp, ..., 0n) aweighted projective spac®lote thatP" =P(1,...,1).

The ring corresponding t8(qp, ..., qn) is the graded rin@[xo, . . ., Xn], Where
xi how has degreeg;. A polynomial f is weighted homogeneous degreed if
every monomiak® appearing inf satisfiesx- (go,...,gn) =d. Thef = 0is well-
defined orP(qp, ...,qn) when f is weighted homogeneous, so that one can define
varieties inP(dp, .. .,gn) using weighted homogeneous idealsXo, . . . , X,].

Example 2.0.5.We can embed the weighted projective pl&i#, 1,2) in P2 using
the monomialse, xoX1, X2, X, of weighted degree 2. In other words, the map

P(1,1,2) — P®
given by

(a07a17a2) — (agyaoalaaivaZ)
is well-defined and injective. One can check that this mapded

P(1,1,2) ~ V(yoy2 - ¥;) C P°,
whereyg, y1,Y»,y3 are homogeneous coordinatesih O
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Later in the book we will use toric methods to construct prye embeddings
of arbitrary weighted projective spaces.

Exercises for §2.0

2.0.1. Let R be a commutativ€-algebra. Givenf € R\ {0} and an exact sequence of
R-modules 0— M; — M, — M3z — 0, prove that

0 — M1®rRt — M2®rRi — M3 ®grRf — 0
is also exact, wherB; is the localization oR at f defined in Exercises 1.0.2 and 1.0.3.

2.0.2.LetV C P" be a projective variety. If we s&= C|xo, . ..,Xs], thenV has coordinate
ring C[V] = S/1(V). Letx; be the image o%; in C[V].

(a) Note theC[V]is anS-module. Prove thaf[V]y ~ C[V] ®sS;.

(b) Use part (a) and the previous exercise to prove thatqpi®exact.

2.0.3. Prove the claim made in (2.0.8).

2.0.4. LetV C P" be a projective variety. Tak®,..., fn € § such that the intersection
VNV(fo,..., fm) is empty. Prove that the map

(a077an) — (fo(a()vvan)avfm(a()avan))
induces a well-defined functioh : V — P™,

2.0.5. LetV C P" x P™ be defined byf,(x;,y;) = 0, wheref,(x,y;) is bihomogenous of
bidegree(ay,by), £ =1,...,s. The goal of this exercise is to show that when we embed

P"x PMin P"™MMyia the Segre embedding described in the #xtiecomes a subvariety
of pnm+n+m

(a) For eacl, pick an integed, > max{ay,b,} and consider the polynomialg ., s =
xy?fi(x,y;) where/ =0,...,sand|a| = d, — ay, |3| = d, — b,. Note thatf, . s is
bihomogenous of bidegréd,, d;). Prove that/ C P" x P™is defined by the vanishing
of the fgya_ﬂ.

(b) Use part (a) to show th&tis a subvariety oP"™ "M under the Segre embedding.
2.0.6. Prove Proposition 2.0.4

2.0.7. Consider the Segre embeddiRg§ x P — P3. Show that after relabeling coordi-
nates, the affine cone @ x P! in P® is the varietyV (xy—zw) C C* featured in many
examples in Chapter 1.

§2.1. Lattice Points and Projective Toric Varieties

We first observe thdk" is a toric variety with torus
Ten =P"\V(X0-- %) = {(a0,...,@) € P"| &---an # 0}
— {(1,t17 . ,tn) c ]P)n ’ tl, .o ,tn c C*} ~ (C*)n

The action ofTen on itself clearly extends to an action &%, makingP" a toric
variety. To describe the lattices associatedizg we use the exact sequence of tori

1—C— (CH DT — 1
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coming from the definition (2.0.1) &". Hence the character lattice ©f» is

(2.1.1) Mo ={(20,...,80) € Z" | YL ga =0},
and the lattice of one-parameter subgroufisis the quotient
M=72"7(1,... ).

Lattice Points and Projective Toric VarietiesLet Ty be a torus with lattice$/
and N as usual. In Chapter 1, we used a finite set of lattice points/of
{my,...,ms} C M to create the affine toric variety,, as the Zariski closure of
the image of the map

DTy — C% t— (x™(),...,x™()).

To get a projective toric variety, we regaf,, as a map tqC*)® and compose
with the homomorphisnr : (C*)® — Tps_1 to obtain
(2.1.2) T 22 €5 7 T s CPS L,

Definition 2.1.1. Given a finite setez C M, the projective toric varietyX,, is the
Zariski closure inPS~1 of the image of the map o &, from (2.1.2).

Proposition 2.1.2. X, is a toric variety of dimension equal to the dimension of the
smallest affine subspace ofyMontaining.«7.

Proof. The proof thatX,, C PS~ is a toric variety is similar to the proof given
in Propostion 1.1.8 of Chapter 1 thdt, C C® is a toric variety. The assertion
concerning the dimension o, will follow from Proposition 2.1.6 below. [

More concretelyX,, is the Zariski closure of the image of the map
TN — Pt (X™(1),... . x™(1))

given by the characters coming fromt = {my,...,ms} C M. In particular, if
M = Z", theny™ is the Laurent monomidl™ andX,, is the Zariski closure of the
image of

TN — P51 t— (™, t™).
In the literature,o C Z" is often given as an x s matrix A with integer entries, so
that the elements of7 are the columns oA.

Here is an example where the lattice points themselves dricam
Example 2.1.3.Let M = Z3<3 pe the lattice of 3 3 integer matrices and let
23 = {3 x 3 permutation matricésC Z>.
Write C[M] = C[ti*%,....,t3°!], where the variables give the generig 3 matrix

th b 13
t, t5 tg
t7 tg 19
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with nonzero entries. Also Iét® have homogeneous coordinateg indexed by

triples such that(} #2) is a permutation irSs. ThenXg, C P® is the Zariski

closure of the image of the mdp — P° given by the Laurent monomialg;ty for
(1 @) € Ss. The ideal ofX», is

[ (X,) = (X123%231%312 — X139%321%213) € C|XijK ],

where the relation comes from the fact that the sum of the p&tion matrices
corresponding t®23, X231, X312 €quals the sum of the other three (Exercise 2.1.1).
Ideals of the toric varieties arising from permutation ric&s have applications to
sampling problems in statistic&g6, p. 148]. O

The Affine Cone of a Projective Toric VarietyThe projective varietyX,, C PS—1
has an affine con¥,, C C°. How doesX,, relate to the affine toric variety,, C C°
constructed in Chapter 1?

Recall from Chapter 1 that whew = {my,...,ms} C M, the mapeg — m
induces an exact sequence
(2.1.3) 0—L—Z°—M
and that the ideal of, is the toric ideal
IL=(x*-x"|a,8 e N°anda— B €L)
(Proposition 1.1.9). Then we have the following result.

Proposition 2.1.4. Given Y/, X., and | as above, the following are equivalent:
(@) Y., C CSis the affine con&,, of X,, C PS~1.

(b) 1L =1(Xa).

(c) I is homogeneous.

(d) Thereis ue N and k> 0in N such that{m,u) =k fori=1,...,s.

Proof. The equivalence (a} (b) follows from the equalitie$(X,,) = | ()A(W) and
IL =1(Y.), and the implication (b} (c) is obvious.

For (c) = (d), assume thai is a homogeneous ideal and take— x® € I,
for a — 3 € L. If x* andx” had different degrees, theft,x’ € I = 1(Y,,) would
vanish onY,,. This is impossible sincél,...,1) € Y., by (2.1.2). Hence® and
x% have the same degree, which implies thatl,...,1) = 0 for all £ € L. Now
tensor (2.1.3) witl) and take duals to obtain an exact sequence

Ng — Q°® — Homg(Lg,Q) — 0.

The above argument shows thiat. .., 1) € Q% maps to zero in Hog(Lg, Q) and
hence comes from an element Ng. In other words{m;, ) = 1 for alli. Clearing
denominators gives the desirad N andk > 0 in N.
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Finally, we prove (d)= (b). Sincel. = I (Y, ), it suffices to show that
)?Q,/ N ((C*)s CVYy.
Letpe XN (C*)3. SinceX,, N Tps-1 is the torus ofX,,, it follows that

p=p-(x™(t),...,x™())

for someu € C* andt € Ty. The element € N from part (d) gives a one-parameter
subgroup ofTy, which we write ag- — A\Y(7) for 7 € C*. Then\Y(7)t € Ty maps
to the pointq € Y, given by

a= (XA, xTAU)Y) = (T, (),

sincex™(\Y(7)) = (MY by the description of , ) given in §1.1. The hypothesis
of part (d) allows us to rewritg as

q=7" (™ (),-...x™ (1))
Usingk > 0, we can choose so thatp = q € Y,,. This completes the proof. [

The condition(m,u) =k, i =1,...,s, for someu € N andk > 0 in N means
that.« lies in an affine hyperplane ®g not containing the origin. Whell = Z"
and.« consists of the columns of anx s integer matrixA, this is equivalent to
(1,...,1) lying in the row space of (Exercise 2.1.2).

Example 2.1.5. We will examine the rational normal cun@ C P¢ using two
different sets of lattice points.

First let.<7 consist of the columns of thex2(d + 1) matrix
d d-1 -- 1 0
A= (o 1 - d-1 d>'
The columns give the Laurent monomials defining the ratiommaimal curveCqy
in Example 2.0.1. It follows thaty is a projective toric variety. The ideal Gf
is the homogeneous ideal given in Example 2.0.1, and thegwonding affine
hyperplane ofZ? containing.e (= the columns of\) consists of all point¢a, b)

satisfyinga+ b = d. Itis equally easy to see thét,...,1) is in the row space of
A. In particular, we have

Xs=Cy and Y, =Cq.
Now let# = {0,1,...,d—1,d} C Z. This gives the map
Py C—PY t (Lt,... 19719,

The resulting projective variety is the rational normalweyri.e., X% = Cq4, but
the affine variety of% is not the rational normal cone, i.eYy # éd This is
becausé(Yy) C C[xo,...,Xq] is not homogeneous. For exampk%,— X2 vanishes
at(Lt,...,t9 1 t9) e C¥forall t € C*. Thusx® —x € 1(Ysz). O
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Given any«/ C M, there is a standard way to modify so that the conditions
of Proposition 2.1.4 are met: usé x {1} C M@ Z. This lattice corresponds to the
torusT, x C*, and since
(2.1.4) Dyt = M™O XSO p) = p- (M), x (D)),

it follows immediately thai,,/, (1, = Xy C PS-1, Sinces” x {1} lies in an affine
hyperplane missing the origin, Proposition 2.1.4 impliestX,, has affine cone
Yorx{1y = X.s. WhenM = Z" and < is represented by the columns of ax s
integer matrixA, we obtaine x {1} by adding the row(1,...,1) to A.

The Torus of a Projective Toric Variety Our next task is to determine the torus
of X,,. We will do so by identifying its character lattice. This ialso tell us the
dimension ofX,,. Givena/ = {my,...,ms} C M, we set

Zo = {3 am|acZ, Y78 =0}
The rank ofZ's/ is the dimension of the smallest affine subspadelgitontaining
the set« (Exercise 2.1.3).
Proposition 2.1.6. Let X, be the projective toric variety af# C M. Then:
(a) The latticeZ’« is the character lattice of the torus of X
(b) The dimension of X is the dimension of the smallest affine subspace f M

containing./. In particular,

rankZ«/ — 1 if o/ satisfies the conditions of Proposition 2.1.4

dimX, =
7 {ranngz% otherwise.

Proof. To prove part (a), leM’ be the character lattice of the tortis,, of X,,. By
(2.1.2), we have the commutative diagram

TN e TﬂmsflC—> ]P’S_l

N

Tx,
which induces the commutative diagram of character lattice

M —— Ms_1

N

M/
since.#s—1 = {(au,...,as) € Z°| >_5_oam = O} is the character lattice s 1
by (2.1.1). The map#s_; — M is induced by the maj® — M that sendg to m.
ThusZ'«/ is the image of#s_1 — M and hence equald’ by the above diagram.

The first assertion of part (b) follows from part (a) and theeaation that
rankZ'«/ is the dimension of the smallest affine subspac#gfcontaining.e/.
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Furthermore, if,, equals the affine cone of,,, then there isi € N with (m,u) =
k > 0 for alli by Proposition 2.1.4. This implies thgf>_; ami,u) = k(>3 &),
which gives the exact sequence

0—>Z/szf—>Zszfﬂ>kZ—>O.

Thenk > 0 implies rankZ.e — 1 = rankZ'e/ = dimX,,. However, ifY,, # )A(%,
then the ideal, is not homogeneous. Thus some generator y? is not homo-
geneous, so thdtv— 3)-(1,...,1) # 0. Buta— 3 € L, whereL is defined by

0—L—7Z2°—Z« —0.
This implies that in the exact sequence
0— Ms1—72°—7—0

(see (2.1.1)), the image &fC Z3is ¢Z C Z for somel > 0. This gives a diagram

0 0 0

4 { 1
O—-LNAs1—L—40Z—0

1l 1 ]
0— Ms1—75—7Z—0

1 1 1
0—Zo — 7of = LJlL —0

1 1 1

0 0 0

with exact rows and columns. Hence rdiW = rankZ'«/ = dimX,, . O

Example 2.1.7. Let o7 = {e1,e,€ + 26,261 + &} C Z2. One computes that
Z.of =72 butZ'e/ = {(a,b) € Z? |a+b=0mod 2. ThusZ'es has index 2 in
7.2/ . This means that,, # X,, and the map of tori

Ty

of wa

is two-to-one, i.e., its kernel has order 2 (Exercise 2.1.4) O

Affine Pieces of a Projective Toric VarietySo far, our treatment of projective toric
varieties has used lattice points and toric ideals. Whex¢ter semigroups? There
are actually lots of semigroups, one for each affine piecé,of- PS1.

The affine open séf; = PS~1\ V(x) contains the toru$ps-1. Thus
TX,Q{ - XWﬁTps—l Q XWOU|
SinceX,y is the Zariski closure ofx_, in Ps—1 it follows thatX., NU; is the Zariski
closure ofTy_, in Uj ~ CS L. ThusX., NUj; is an affine toric variety.
Givena/ = {my,...,ms} C Mg, the affine semigroup associateddg NU; is
easy to determine. Recall tHat~ CS 1 is given by

(a1,...,85) — (&1/a,...,8-1/8,8+1/a,...,85/&).
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Combining this and¢™ /x™ = x™~™ with the map (2.1.2), we see thdt, NY;
is the Zariski closure of the image of the map

v —Cs?

given by
(2.1.5) t— (Xml_m‘ (), o x ™M), M), L T (t))
If we sete/ = &/ —my = {m; —m; | j #1i}, it follows that

Xo NUi =Yy = Spe¢CISi)),
whereS; = N is the affine semigroup generated &§ We have thus proved the
following result.
Proposition 2.1.8. Let X, C PS~1 for .o/ = {my,...,ms} C Mg. Then the affine
piece X, NU; is the affine toric variety

Xo NUj =Yy = Spe¢C[Si])
wheres, = o —my andS; = N Il

We also note that the results of Chapter 1 imply that the tofu§, has char-

acter latticeZ.o/. Yet the torus isTx_,, which has character lattic&.c/ by Propo-
sition 2.1.6. These are consistent sifce! = Z'< for all i.

Besides describing the affine piecés NU; of X,  PS~1, we can also de-
scribe how they patch together. In other words, we can givenaptetely toric
description of the inclusions

Xz NUi 2 Xy NUiNnUj © X, NU;
wheni # j. For instancel); NU; consists of all points oK, NU; wherex; /% # 0.
In terms of X, NU; = Spe¢C|[S;]), this means those points whexdi—™ =£ 0.
Thus
(2.1.6) X NUiNU; = SpeqCISi]) m-m = Spe¢C[Si] m-n),
so that if we set = m; —m;, then the inclusiorX,; NU;NU; C X, NU; can be
written
(2.1.7) Spe€C[Si])m C SpecCISi]).
This looks very similar to the inclusion constructed in (4)3using faces of cones.
We will see in §2.3 that this is no accident.

We next say a few words about how the polytdhe Con(«7) C Mg relates
to X,,. As we will learn in 82.2, the dimension &fis the dimension of the small-
est affine subspace dfz containingP, which is the same as the smallest affine
subspace oflr containing.e/. It follows from Proposition 2.1.6 that
dimX, = dimP.

Furthermore, the vertices &fgive an especially efficient affine covering X, .
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Proposition 2.1.9. Givene/ = {my,...,ms} CM, let P=ConV«/) C Mg and set
J={je{1,....s} | mjis avertex of B. Then

Xo =X NU;j.
jed
Proof. We will prove that ifi € {1,...,s}, thenX, NU; C X,,NU; for somej € J.
The discussion of polytopes from §2.2 below implies that

PNMg = {3 csrimj [ rj € Qx0, 3jesj = 1}

Giveni € {1,...,s}, we havem, € PN'M, so thatm is a convexQ-linear combi-
nation of the vertices;. Clearing denominators, we get integ&rs 0 andk; > 0
such that

km =37 cakimy, > Zje0ki =k
Thus};c;kj(mj —m) = 0, which implies thaim —m; € S; whenk; > 0. Fix
such aj. Theny™~™ ¢ C[Sj] is invertible, so(C[Si]ijwi = CI[Si]. By (2.1.6),
Xz NUiNU;j = Spe¢C[Si]) = Xy NU;, giving X,y NU; € X NU;. O

Projective Normality An irreducible variety? C P" is calledprojectively normal
if its affine coneV C C™! is normal. A projectively normal variety is always
normal (Exercise 2.1.5). Here is an example to show thatdheerse can fail.

Example 2.1.10.Let o/ C 72 consist of the columns of the matrix

4 3 10
0 1 3 4)°

giving the Laurent monomiaks, st, st®,t4. The polytopeP = Conv(«7) is the line
segment connectingt,0) and (0, 4), with vertices corresponding & andt*. The
affine piece oX,, corresponding te* has coordinate ring

Clst/st, st/ t/sY] = Clt/s. (t/9)%, (t/9)*] = Ct/d],

which is normal since itis a polynomial ring. Similarly, opees that the coordinate
ring corresponding to* is C[s/t], also normal. These affine pieces co¥ey by
Proposition 2.1.9, so that,, is normal.

Since(1,1,1,1) is in the row space of the matriX,, is the affine cone oK.,
by Proposition 2.1.4. The affine variety, is not normal by Example 1.3.9, so that
X,z is normal but not projectively normal. O

The notion of normality used in this example is a bit ad-hocsiwe have not
formally defined normality for projective varieties. Once wefine normality for
abstract varieties in Chapter 3, we will see that Examplel@. s fully rigorous.

We will say more about projective normality when we expldre tonnection
with polytopes suggested by the above results.
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Exercises for §2.1

2.1.1.Consider the set?; C Z3*2 of 3 x 3 permutation matrices defined in Example 2.1.3.

(a) Prove the claim made in Example 2.1.3 that three of thenptation matrices sum to
the other three and use this to explain whysXo31X312 — X132%321%213 € | (X%, ).

(b) Show that dinXs, = 4 by computingZ’ #s.

(c) Conclude thak(Xz,) = (X123X231X312 — X132%321X213) -

2.1.2. Let o C Z" consist of the columns of amx s matrix A with integer entries. Prove

that the conditions of Proposition 2.1.4 are equivalenhtassertion thatl, ..., 1) € Z3
lies in the row space ok overR or Q.

2.1.3. Given a finite seteZ C M, prove that the rank df’<7 equals the dimension of the
smallest affine subspace (ovgrr R) containing< .

2.1.4. Verify the claims made in Example 2.1.7. Also compLté,,) and check that it is
not homogeneous.

2.1.5. LetV C P" be projectively normal. Use (2.0.6) to prove that the affire@sv NU;
of V are normal.

2.1.6. Fix a finite subsety C M. Givenme M, leteZ + m={m +m|m € «/}. Thisis

thetranslateof &7 by m.

(a) Prove thaty and its translate7 + mgive the same projective toric variety, i.¥o =
x(cz{-ﬁ-m-

(b) Give an example to show that the affine toric varietigsandY,, . m can differ. Hint:
Pick <7 so that it lies in an affine hyperplane not containing theiorighen translate
< to the origin.

2.1.7. In Proposition 2.1.4, give a direct proof that () (c).

2.1.8. In Example 2.1.5, the rational normal cur@Zg C P was parametrized using the
homogeneous monomias!, i + j = d. Here we will consider the curve parametrized by
a subset of these monomials corresponding to the exponetorse

o = {(aO,bO)v---a(ambn)}

whereag > a; > --- > a, anda + bj = d for everyi. This gives the projective curve
Xz CP". We assuma > 2.

(a) Ifag < dora, > 0, explain why we can obtain the same projective curve usiogan
mials of strictly smaller degree.

(b) Assumeay = d anda, = 0. Use Proposition 2.1.8 to show tltats smooth if and only
if a3 =d— 1 anda,_; = 1. Hint: For one direction, it helps to remember that smooth
varieties are normal.

§2.2. Lattice Points and Polytopes

Before we can begin our exploration of the rich connecticetsvben toric varieties
and polytopes, we first need to study polytopes and theicéatoints.
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Polytopes Recall from Chapter 1 that a polytopeC Mg is the convex hull of
a finite setSC Mg, i.e., P = ConS). Similar to what we did for cones, our
discussion of polytopes will omit proofs. Detailed treatrtseof polytopes can be
found in 24, 74, 17%.

The dimensionof a polytopeP C Mg is the dimension of the smallest affine
subspace oM containingP. Given a nonzero vectarin the dual spacélg and
b € R, we get theaffine hyperplane k} andclosed half-space Llﬁ) defined by

Hub={meMg | (mu)=b} and H;,={meMg|(mu)>b}.
A subsetQ C Pis afaceof P, writtenQ < P, if there areu € Ng \ {0}, b € R with
Q=HypNP and PC H,.

We say thatd, , is asupporting affine hyperplania this situation. Figure 1 shows
a polygon with the supporting lines of its 1-dimensionalelacThe arrows in the
figure indicate the vectons

N

Figure 1. A polygonP and four of its supporting lines

We also regardP as a face of itself. Every face &fis again a polytope, and
if P=ConvS) andQ = H,, NP as above, the® = Con(SNH,). Faces of
P of special interest arfacets edgesandvertices which are faces of dimension
dimP —1, 1 and 0 respectively. Facets will usually be denoted byeter .

Here are some properties of faces.

Proposition 2.2.1. Let PC Mg be a polytope.

(a) P is the convex hull of its vertices.

(b) If P=ConvS), then every vertex of P lies in S.

(c) If Q is a face of P, then the faces of Q are precisely the fac®slgihg in Q.
(d) Every proper face X P is the intersection of the facets F containing QU

A polytope P C Mg can also be written as a finite intersection of closed half-
spaces. The converse is true provided the intersectioruisdsal. In other words,

if an intersection .
P= ﬂ Hlji_bi
i=1
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is bounded, theR is a polytope. Here is a famous example.

Example 2.2.2.A d x d matrixM e R9%9 is doubly-stochastif it has nonnegative
entries and its row and column sums are all 1. If we red@fd“ as the affine
space]RiO'2 with coordinatess;j, then the set#y of all doubly-stochastic matrices
is defined by the inequalites

aj; >0 (alli, j)

Yila 21 Yila <1 (all))

d d :

Y@ =1 >a <1 (alli).
(We use two inequalities to get one equality.) These indgopmleasily imply that
0<aj < 1foralli, j, so that#q is bounded and hence is a polytope.

Birkhoff and Von Neumann proved independently that theisestof.#y are
thed! permutation matrices and that disly = (d — 1). In the literature,#4 has
various names, including thRirkhoff polytopeand thetransportation polytope
See [L75 p. 20] for more on this interesting polytope. O

WhenP is full dimensionali.e., dimP = dimMg, its presentation as an inter-
section of closed half-spaces has an especially nice fooause each facét has
auniquesupporting affine hyperplane. We write the supporting affipeerplane
and corresponding closed half-space as

He ={me Mg | (mup) = —ag} and HZ = {me Mg | (M ug) > —ar},
where(ug,ar) € Nr x R is unique up to multiplication by a positive real number.
We callug aninward-pointing facet normabdf the facet~. It follows that

(2.2.1) P= ﬂ HE = {me Mg | (mug) > —ar for all facetsF < P}.
F facet

In Figure 1, the supporting lines plus arrows determine thmpsrting half-planes
whose intersection is the polygéh We write (2.2.1) with minus signs in order to
simplify formulas in later chapters.

Here are some important classes of polytopes.

Definition 2.2.3. Let P C My be a polytope of dimensioth.

(a) Pis asimplexor d-simplexif it has d + 1 vertices.

(b) Pissimplicial if every facet ofP is a simplex.

(c) Pissimpleif every vertex is the intersection of precisalyfacets.

Examples include the Platonic solidsR:
e Atetrahedron is a 3-simplex.
e The octahedron and icosahedron are simplicial since the@t$ are triangles.
e The cube and dodecahedron are simple since three facetainevery vertex.



§2.2. Lattice Points and Polytopes 65

PolytopesP; andP, arecombinatorially equivalenif there is a bijection
{faces ofP, } ~ {faces ofP,}

that preserves dimensions, intersections, and the faagarel<. For example,
simplices of the same dimension are combinatorially edgitaand in the plane,
the same holds for polygons with the same number of vertices.

Sums, Multiples, and Duals Given a polytopeP = Con«(S), its multiple rP =
Conv(rS) is again a polytope for any> 0. If P is defined by the inequalities
(mu)>a, 1<i<s

thenrP is given by
(mu)>ra, 1<i<s

In particular, wherP is full dimensional, therP andrP have the same inward-
pointing facet normals.

TheMinkowski sunof subset#;,A, C Mg is
Al+A={asta|a €A,a € Ax}.

Given polytope$; = Con\(S;) andP, = Con\(S,), their Minkowski sunP; + P, =
ConvS; + $) is again a polytope. We also have the distributive law

rP+sP=(r+s)P.

WhenP C My is full dimensional and 0 is an interior point Bf we define the
dual or polar polytope

P°={ueNg | (mu) > —1forallme P} C Ng.

Figure 2 shows an example of this in the plane.

Figure 2. A polygonP and its duaP® in the plane

When we writeP = {me Mg | (m ug) > —ag,F facet as in (2.2.1), we have
ag > 0 for all F since 0 is in the interior. TheR° is the convex hull of the vectors
(1/as)up € Nr (Exercise 2.2.1). We also hayB°)° = P in this situation.
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Lattice Polytopes Now letM andN be dual lattices with associated vector spaces
Mg andNg. A lattice polytope RC My is the convex hull of a finite sS&C M. It
follows easily that a polytope iMg is a lattice polytope if and only if its vertices
lie in M (Exercise 2.2.2).

Example 2.2.4. Thestandard n-simplein R" is
Ap=Conv0,ey,...,&).
Another simplex inR3 is P = ConV0, ey, &, € + & + 3e3), shown in Figure 3.

e +te+3e

€

Figure 3. The simplexP = Conv(0, 1, &, €1 + & + 3e3) C R®

The lattice polytopeg\s andP are combinatorially equivalent but will give very
different projective toric varieties. O

Example 2.2.5. The Birkhoff polytope defined in Example 2.2.2 is a latticdypo
tope relative to the lattice of integer matricg$<? since its vertices are the permu-
tation matrices, whose entries are all O or 1. O

One can show that faces of lattice polytopes are againdgititytopes and that
Minkowski sums and integer multiples of lattice polytopee kttice polytopes
(Exercise 2.2.2). Furthermore, every lattice polytopenisraersection of closed
half-spaces defined ovét, i.e.,P=(_; HJ;bi whereu; € N andb; € Z.

When a lattice polytop® is full dimensional, the facet presentation given in
(2.2.1) has an especially nice form.Hfis a facet ofP, then the inward-pointing
facet normals of lie on a rational ray ifNg. Let ur denote the unique ray gener-
ator. The correspondings is integral sincem,ug) = —ag whenmis a vertex of
F. It follows that

(2.2.2) P={me Mg | (mug) > —ag for all facetsF < P}
is theuniquefacet presentation of the lattice polytope
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Example 2.2.6.Consider the squae= Conv(+e; + &) C R?. The facet normals
of P are+e; and+e, and the facet presentation Bfis given by

(m,+e) > -1
(m +ep) > —1.

Since theag are all equal to 1, it follows th&° = Conv(+e;, +e&) is also a lattice
polytope. The polytopeB andP°® are pictured in Figure 2.

It is rare that the dual of a lattice polytope is a lattice pape—this is related
to thereflexive polytopethat will be studied later in the book.

Example 2.2.7.The 3-simplexP = Conv(0, ey, &, €; + & + 3e3) C R3 pictured in
Example 2.2.4 has facet presentation

-3

(Exercise 2.2.3). However, if we replaee8 with —1 in the last inequality, we get
integer inequalities that defir{@/3)P, which isnot a lattice polytope. O

The combinatorial type of a polytope is an interesting abg#cstudy. This
leads to the question “Is every polytope combinatoriallyiegjent to a lattice
polytope?” If the given polytope is simplicial, the answer‘yes"—just wiggle
the vertices to make them rational and clear denominatagetta lattice polytope.
The same argument works for simple polytopes by wiggling fdeet normals.
This will enable us to prove results about arbitrary simiglior simple polytopes
using toric varieties. But in general, the answer is “no”-erthexist polytopes in
every dimensior> 8 not combinatorially equivalent to any lattice polytopen A
example is described iiy5, Ex. 6.21].

Normal Polytopes The connection between lattice polytopes and toric vaseti
comes from the lattice points of the polytope. Unfortunatel lattice polytope
might not have enough lattice points. The 3-simpiefrom Example 2.2.7 has
only four lattice points (its vertices), which implies ttiae projective toric variety
Xprz IS justP3 (Exercise 2.2.3).

We will explore two notions of what it means for a lattice polye to “have
enough lattice points.” Here is the first.

Definition 2.2.8. A lattice polytopeP C Mg is normal if
(kP)NM+ (P)NM = ((k+£0)P)NM
forall k,/ € N.
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The inclusion(kP) "M + (¢P)NM C ((k+¢)P) "M is automatic. Thus nor-
mality means that all lattice points ¢k ¢)P come from lattice points dfP and
£P. In particular, a lattice polytope is normal if and only if

PAOM+---+PNM = (kP)NM.

k times

for all integersk > 1. In other words, normality says thRthas enough lattice
points to generate the lattice points in all integer mudtpbfP.

Lattice polytopes of dimension 1 are normal (Exercise 2.2¥re is another
class of normal polytopes.

Definition 2.2.9. A simplex P C Mg is basicif P has a vertexmy such that the
differencesm— my, for verticesm £ my of P, form a subset of &-basis ofM.

This definition is independent of which vertex € P is chosen. The standard
simplexA,, C R"is basic, and any basic simplex is normal (Exercise 2.2.%yeM
general simplicies, however, need not be normal.

Example 2.2.10.Let P = Conv(0, ey, &, €1 + & 4 3e3) C R3. We noted earlier that
the only lattice points oP are its vertices. It follows easily that

e1+ € +e3 = 3(0)+3(2e1) +3(282) + (2e1 + 265+ Bes) € 2P
is not the sum of lattice points &. This shows thaP is not normal. In particular,
P is not basic. O

Here is an important result on normality.

Theorem 2.2.11.Let PC Mg be a full dimensional lattice polytope of dimension
n> 2. Then kP is normal for all k> n— 1.

Proof. This result was first explicitly stated ir2§], though (as noted in2g)), its
essential content follows fronbl] and [114]. We will use ideas from114 and
[137] to show that

(2.2.3) (KP)NM+PNM = ((k+1)P)NM

for all integersk > n— 1. In Exercise 2.2.6 you will prove that (2.2.3) implies that
kPis normal wherk > n— 1. Note also that for (2.2.3), it suffices to show

(k+1)P)NM C (kP)NM+PNM

since the other inclusion is obvious.

First consider the case wheReis a simplex with no interior lattice points.
Let the vertices oP bemy,...,m, and takek > n— 1. Then(k+ 1)P has vertices
(k+1)mg, ..., (k+1)my, so that a pointe ((k-+1)P) M is a convex combination

m= "o ui(k+1)m, wherey >0, 37 o pi = 1.
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If we set); = (k+ 1), then
m= 3", \im, where)i >0, > A\ =k+ 1.

If A\j > 1 for somei, then one easily sees that—m < (kP) M. Hencem =
(m—m) + m; is the desired decomposition. On the other hand; ¥ 1 for all i,
then

n=n-1)+1<k+1=37 A <n+1,

so thatk=n—1 and)_{' ,\i = n. Now consider the lattice point
M= (Mo + M) —m= 374 (1= Ai)m.

The coefficients are positive singg< 1 for all i, and their sumi§_"L o(1—\i) =
n+1—n=1. Hencemis a lattice point in the interior d? since 1— A; > 0 for all
i. This contradicts our assumption Brand completes the proof whétis a lattice
simplex containing no interior lattice points.

To prove (2.2.3) for the general case, it suffices to proveRha a finite union
of n-dimensional lattice simplices with no interior latticeips (Exercise 2.2.7).
For this, we use Carathéodory’s theorem (d&&[Prop. 1.15]), which asserts that
for a finite seteZ C Mg, we have

Conv(«) = |_JConu( ),

where the union is over all subse#C o7 consisting of dim Confer) 41 affinely
independent elements. Thus each Go#yis a simplex. This enables us to write
our lattice polytopeP as a finite union oh-dimensional lattice simplices.

If an n-dimensional lattice simple® = Con(wy, . .. ,W,) has an interior lattice
pointv, then

n
Q=[JQ. Q=Comvw,...,W...,Wn,V)
i=0

is a finite union oh-dimensional lattice simplices, each of which has fewegriot
lattice points thar@ sincev becomes a vertex of eafh. By repeating this process
on thoseQ; that still have interior lattice points, we can eventuallyiter Q and
hence our original polytopP as a finite union of-dimensional lattice simplices
with no interior lattice points. You will verify the detaila Exercise 2.2.7. a

This theorem shows that for the non-normal 3-simpkeaf Example 2.2.10,
its multiple 2P is normal. Here is another consequence of Theorem 2.2.11.

Corollary 2.2.12. Every lattice polygon B R? is normal. a

We can also interpret normality in terms of the cone

C(P) = CondP x {1}) C Mg x R



70 Chapter 2. Projective Toric Varieties

introduced in Figure 3 of Chapter 1. The key feature of thisecis thatkP is the
“slice” of C(P) at heightk, as illustrated in Figure 4. It follows that lattice points
m € kP correspond to pointem,k) € C(P) N (M x Z).

height =2

C(P)

height =1

Figure 4. The coneC(P) sliced at heights 1 and 2

In Exercise 2.2.8 you will show that the semigra@) N (M x Z) of lattice
points inC(P) relates to normality as follows.

Lemma 2.2.13.Let PC Mg be a lattice polytope. Then P is normal if and only if
(PNM) x {1} generates the semigroug) N (M x Z). O

This lemma tells us tha& C Mg is normal if and only if(PNM) x {1} is the
Hilbert basis ofC(P) N (M x Z).

Example 2.2.14.In Example 2.2.10, the simpldXx= Conv0,e;, e, e; + e, + 3e3)
gives the con€(P) C R%. The Hilbert basis o€(P) N (M x Z) is
(0,1),(e1,1),(e2,1), (er + €2+ 3e3,1), (&1 + &2+ €3,2), (€1 + €2+ 263, 2)

(Exercise 2.2.3). Since the Hilbert basis has generatoreight greater than 1,
Lemma 2.2.13 gives another proof thais not normal.

In Exercise 2.2.9, you will generalize Lemma 2.2.13 as fedlo
Lemma 2.2.15.Let PC Mg ~ R" be a lattice polytope of dimensior>n2 and let
ko be the maximum height of an element of the Hilbert basigBj CThen:
(@) ko<n—1.
(b) kP is normal for any k> kg. O
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The Hilbert basis of the simpleR of Example 2.2.14 has maximum height 2.
Then Lemma 2.2.15 gives another proof th&ti@ normal. The paperfL4] gives
a version of Lemma 2.2.15 that applies to Hilbert bases okrgeneral cones.

Very Ample PolytopesHere is a slightly different notion of what it means for a
polytope to have enough lattice points.

Definition 2.2.16. A lattice polytopeP C Mg is very ampleif for every vertex
m € P, the semigroubp m = N(PN'M —m) generated by the s&NM —m =
{mM —m|m € PNM} is saturated iM.

This definition relates to normal polytopes as follows.

Proposition 2.2.17. A normal lattice polytope P is very ample.

Proof. Fix a vertexmy € P and takem € M such thakme Sp r,, for some integer
k> 1. To prove thame Sp m,, write Kme Sp iy, as

km= 3" yeprm @ (M —Mo),  am € N.
Pickd € Nso thatkd> > /o v amw. Then

km-+kdmmp = 37y cpry am M + (kd— 37 cprmanr ) Mo € kdP.
Dividing by k givesm+ dmy € dP, which by normality implies that
d

m+drrb:Zm, m € PN M for all i.
i—1

We conclude thatn = Z?zl(m —mp) € Spm,, as desired. O

Combining this with Theorem 2.2.11 and Corollary 2.2.12githe following.

Corollary 2.2.18. Let PC Mr ~ R" be a full dimensional lattice polytope.
(@) If dimP > 2, then kP is very ample for allk n— 1. a
(b) If dimP = 2, then P is very ample.

Part (a) was first proved irbll]. We will soon see that very ampleness is
precisely the property needed to define the toric varietylaftize polytope.

The following example taken fron2p, Ex. 5.1] shows that very ample poly-
topes need not be normal, i.e., the converse of Propositia 2is false.
Example 2.2.19.Given 1< i < j < k< 6, let[ijk] denote the vector iZ°® with 1
in positionsi, j,k and 0 elsewhere. Thy$23 = (1,1,1,0,0,0). Then let

o = {[123,[124,[135, (146} [156] [23§),[245,[256], [345,[34§ } C Z°.
The lattice polytopeP® = ConV(.<7) lies in the affine hyperplane @&® where the

coordinates sum to 3. As explained 29], this configuration can be interpreted in
terms of a triangulation of the real projective plane.
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The points ofes of P are the only lattice points d? (Exercise 2.2.10), so that
& is the set of vertices d?. Number the points af# asmy,...,me. Then

10

10
(LLLLLY) =) m=> F(2m)
i=1 i=1
shows thatv = (1,1,1,1,1,1) € 2P. Sincev is not a sum of lattice points d?

(when(ijk] € <7, the vectorv— [ijk] is not in <), we conclude thaP is not a
normal polytope.

Showing thatP is very ample takes more work. The first step is to prove that
o x {1} U{(v,2)} C R® x R is a Hilbert basis of the semigrod@P) N Z’, where
C(P) C R® x R is the cone oveP x {1}. We used the softwarti2 [83).

Now fix i and letSp m, be the semigroup generated by the— m. Takem e
75 such thakkme Sp . As in the proof of Proposition 2.2.17, this implies that
m+dm € dP for somed € N. Thus(m+dm,d) € C(P)NZ’. Expressing this in
terms of the above Hilbert basis easily implies that

10
m=a(v—2m)+>» aj(m-m), aajcN.
i=1

If we can show that — 2m; € Sp y, thenme Sp i, follows immediately and proves
thatSp r, is saturated. Whein= 1, one can check that

v+ [123 = [124 + [135 + [236,
which implies that
V—2my = (M — My) + (Mg — My ) + (Mg — My) € Sp m,.
One obtains similar formulas for= 2,...,10 (Exercise 2.2.10), which completes
the proof thaP is very ample.
The polytopeP has further interesting properties. For example, up to affin
equivalenceP can be described as the convex hull of the 10 poin&Pigiven by
(0,0,0,0,0),(0,0,0,0,1),(0,0,1,1,0),(0,1,0,1,1),(0,1,1,1,0)
(1,0,1,0,1),(1,0,1,1,1),(1,1,0,0,0),(1,1,0,1,1),(1,1,1,0,0).
Of all 5-dimensional polytopes whose vertices lig{h1}°, this polytope has the

most edges, namely 45 (seB)[ Since it has 10 vertices and 4-5(120) every pair
of distinct vertices is joined by an edge. Such polytopeareighborly O

Exercises for §2.2

2.2.1. LetP C Mg be a polytope of maximal dimension with the origin as an iotgyoint.

(@) WriteP ={me Mg | (m,ug) > —a¢ for all facetsF }. Prove thate > 0 for all F and
thatP° = ConV((1/ar)ur | F a facej.

(b) Prove that the dual of a simplicial polytope is simple &it@ versa.
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(c) ProvethatrP)° = (1/r)P° forallr > 0.

(d) Use part (c) to construct an example of a lattice polytwhese dual is not a lattice
polytope.

2.2.2. LetP C Mg be a polytope.

(a) Prove thaP is a lattice polytope if and only if the vertices Bflie in M

(b) Prove thaP is a lattice polytope if and only ® is the convex hull of its lattice points,
i.e.,P=ConvPNM).

(c) Prove that every face of a lattice polytope is a latticlyiope.

(d) Prove that Minkowski sums and integer multiples of &#tpolytopes are again lattice
polytopes.

2.2.3.LetP=ConV0, ey, e, €1+ &+ 3e3) C R® be the simplex studied in Examples 2.2.4,

2.2.7,2.2.10 and 2.2.14.

(a) Verify the facet presentation Bfgiven in Example 2.2.7.

(b) Show that the only lattice points Bfare its vertices.

(c) Show that the toric variet¥pz is P3.

(d) Show that the vectors given in Example 2.2.14 form théfil basis of the semigroup
CP)N(M x Z).

2.2.4. Prove that every 1-dimensional lattice polytope is hormal.

2.2.5. Recall the definition of basic simplex given in Definition 22

(a) Show that if a simplex satisfies Definition 2.2.9 for onetere, then it satisfies the
definition for all vertices.

(b) Show that the standard simpléy, is basic.
(c) Prove that a basic simplex is normal.

2.2.6. LetP C Mg ~ R" be ann-dimensional lattice polytope.
(a) Prove that (2.2.3) implies that
(kPYNM+ ((P)NM = ((k+£)P)NM
for all integersk > n—1 and/ > 0. Hint: When? = 2, we have
(kP)NM+PNM+PNM C (kP)NnM+ (2P)NM C ((k+2)P)NM.
Apply (2.2.3) twice on the right.
(b) Use part (a) to prove th&P is normal wherk > n— 1 andP satisifes (2.2.3).

2.2.7. Let P C Mg ~ R" be ann-dimensional lattice polytope.

(a) Follow the hints given in the text to give a careful proedttP is a finite union of
n-dimensional lattice simplices with no interior latticeipts.

(b) In the text, we showed that (2.2.3) holds forradimensional lattice simplex with no
interior lattice points. Use this and part (a) to show tha2 (& holds forP.

2.2.8. Prove Lemma 2.2.13.

2.2.9. In this exercise you will prove Lemma 2.2.15. As in the lemiatk, be the maxi-
mum height of a generator of the Hilbert basi<gP).
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(a) Adapt the proof of Gordan’s Lemma (Proposition 1.2.brsthow that if. 77 is the
Hilbert basis of the semigroup of lattice points in a strgngbnvex cone Cone?),
then the lattice points in the cone can be written as the union

N UUme e (M+Na).
(b) Conclude that
C(P)N(Mx Z) =SUlJ_, ((m,h) +5),
whereS =N((PNM) x {1}).
(c) Use part (b) to show that (2.2.3) holds for k.
2.2.10. Consider the polytopE = ConV«?) from Example 2.2.19.
(a) Prove thaty is the set of lattice points d?.
(b) Complete the proof begun in the text tiais very ample.

2.2.11. Prove that every proper face of a simplicial polytope is gubax.

2.2.12.In Corollary 2.2.18 we proved th&tP is very ample fork > n— 1 using Theo-
rem 2.2.11 and Proposition 2.2.17. Give a direct proof oftkeker result thatP is very
ample fork sufficiently large. Hint: A vertexn € P gives the con€p , generated by the
semigroubp n, defined in Definition 2.2.16. The co@ n is strongly convex since is
a vertex and hend@ N M has a Hilbert basis. Furthermof@ n = Cypxm for all k € N.
Now argue that whek is large,(kP) "M —kmcontains the Hilbert basis @ M. A
picture will help.

2.2.13.Fix an integem > 1 and consider the 3-simpléx= ConV0, ae;, ae, &) C R

(a) Work out the facet presentation®fand verify that the facet normals can be labeled
so thatup+ u; + U, +au = 0.

(b) Show thaP is normal. Hint: Show tha® N Z3+ (kP) N Z3 = ((k+1)P) NZ3.
We will see later that the toric variety &fis the weighted projective spaél,1,1, a).

§2.3. Polytopes and Projective Toric Varieties

Our next task is to define the toric variety of a lattice pobgo As noted in §2.2,
we need to make sure that the polytope has enough latticespdlence we begin
with very ample polytopes. Strongly convex rational poljta cones will play an
important role in our development.

The Very Ample CaselLet P C Mg be a full dimensional very ample polytope
relative to the latticv, and let dinP =n. If PNM = {my,...,ms}, thenXpqy is
the Zariski closure of the image of the m&p— P51 given by
t—s (Xml(t),...,x%(t)) cps 1
Fix homogeneous coordinatgs . . ., xs for PS~1.
We examine the structure ¥b~y C P51 using Propositions 2.1.8 and 2.1.9.
For eachm; € PN M consider the semigroup

Si=N(PNM—m;)
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generated byn; —m; for mj € PNM. In PS~1 we have the affine open subset
U; ~ €5~ consisting of those points whexre+# 0. Proposition 2.1.8 showed that
the affine open piec¥p~v NU; of Xp is the affine toric variety

Xpam NU; ~ Spec{(C[Si]),
and Proposition 2.1.9 showed that

Xpam = U Xpam NU;.

m; vertex ofP

Here is our first major result aboMpv .

Theorem 2.3.1.Let X~ be the projective toric variety of the very ample polytope
P C Mg, and assume that P is full dimensional witimP = n.

(a) For each vertex e PN M, the affine piece pw NU; is the affine toric variety
Xeam NU; =U,, = Spec{(C[a,v N M])

wheregi C Ny is the strongly convex rational polyhedral cone dual to thee
CondPNM —m) C Mg. Furthermoredima; = n.

(b) The torus of ¥~m has character lattice M and hence is the torys T

Proof. LetC; = CondPNM —m;). Sincem is a vertex, it has a supporting hy-
perplaneH, 4 such thatP C HJfa andPNHya= {m}. It follows thatH,o is a
supporting hyperplane of @C; (Exercise 2.3.1), so th&} is strongly convex. Itis
also easy to see that ditn= dimP (Exercise 2.3.1). It follows tha&® ando; = C
are strongly convex rational polyhedral cones of dimension

We haveS; C CiNM = Y "M. By hypothesisP is very ample, which means
thatS; C M is saturated. Sinc& andC; = ;" are both generated B§NM — m,
part (a) of Exercise 1.3.4 impli&s = o;” "M. (This exercise was part of the proof
of the characterization of normal affine toric varietiesegivin Theorem 1.3.5.)
Part (a) of the theorem follows immediately.

For part (b), Theorem 1.2.18 implies th&§ is the torus ofU,, sinceo; is
strongly convex. Thefy C U,, = Xpam NU; € Xpnm shows thafTy is also the
torus of Xpm.- O

The affine pieceXp~v NU; andXpnw NU; intersect inXp NU; NU;. In order
to describe this intersection carefully, we need to study the coness; andoj fit
together inNg. This leads to our next topic.

The Normal Fan The conesri C Nr appearing in Theorem 2.3.1 fit together in a
remarkably nice way, giving a structure called ttegmal fan of P

Let P C Mg be a full dimensional lattice polytope, not necessarily\ample.
Faces, facets and verticesPiill be denoted byQ, F andv respectively. Hence
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we write the facet presentation Bfas
(2.3.1) P={meMg|(mug)> —ae forall F}.

A vertexv € P gives cones
Cy=CondPNM—-Vv)CMg and o,=C) C Ng.
(Whenv =m;, these are the con€sando; studied above.) Fac€sC P containing
v correspond bijectively to face3 C C, via the maps
Q— Q=CondQNM —v)
Q—Q=(Q+v)NP

which are inverses of each other. These maps preserve donsnisiclusions, and
intersections (Exercise 2.3.2), as illustrated in Figure 5

(2.3.2)

Figure 5. The coneC, of a vertexv € P

In particular, all facets of, come from facets dP containingv, so that
Cy={me Mg | (mug) > 0forall F containingv}.
By the duality results of Chapter 1, it follows that the duaheo, is given by
oy = Condug | F containsv).
This construction generalizes to arbitrary faGes P by setting
oq = Condur | F containsQ).

Thus the coner is the ray generated hy-, andop = {0} since{0} is the cone
generated by the empty set. Here is our main result abowt tiewes.
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Theorem 2.3.2.Let PC Mg be a full dimensional lattice polytope and s&t =
{oq | Q= P}. Then:

(a) For all og € Xp, each face ofg is also inXp.
e intersectiowro N oo of any two cones ittp is a face of each.
b) The int tiowgNog of t o) f f each

A collection of strongly convex rational polyhedral conatisfying conditions
(a) and (b) of Theorem 2.3.2 is calledan. General fans will be introduced in
Chapter 3. Since the cones in the aboveXarare built from the inward-pointing
normal vectorsig, we callXp thenormal fanor inner normal fanof P.

The following easy lemma will be useful in the proof of Theorg.3.2.

Lemma 2.3.3. Let Q be a face of P and letg be a supporting affine hyperplane
of P. Then e oq if and only if QC H,p N P.

Proof. First suppose that € og and writeu = ZQCF AEUE, Ar > 0. Then setting

b= ZQCF Arar easily implies thaP C H+b andQ C HypNP. Recall that the
integersar come from the facet presentation (2.3.1).

Going the other way, suppose titC H,,NP. Take a vertew € Q. Then
P CH/, andv e H,p, imply thatC, C H,. Henceu € C = oy, so that
UZZVGF AFUE, A >0.
Let Fp be a facet of containingv but notQ, and pickp € Q with p ¢ Fy. Then
p,ve QC Hypimply that
b= <p,U> = EVEF /\F<p7uF>
b= (v,u) = 2veF AR (V,Up) = _ZveF AFar,
where the last equality uség ur) = —ar for v e F. These equations imply

ZVGF Ar (P UF> = _ZVGF AFaF.

However,p ¢ Fo gives(p, ur,) > —ar,, and since p,ur) > —ar for all F, it follows
that \r, = 0 wheneveiQ Z Fy. This givesu € og and completes the proof of the
lemma. O

Corollary 2.3.4. If Q < P and F< P is a facet, thenpi € og ifand only if QC F.

Proof. One direction is obvious by the definition of,, and the other direction
follows from Lemma 2.3.3 sincely., 5 is a supporting affine hyperplane Bf
Wlth HUF,_aF ﬁ P == F D

Theorem 2.3.2 is an immediate corollary of the the followjmgposition.

Proposition 2.3.5. Let Q and Q be faces of a full dimensional lattice polytope
P C Mg. Then:

(@ Qc Q'ifand only ifoy C 0g.
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(b) IfQ C Q) thenogy is a face olrg, and all faces ofrq are of this form.
(c) cgNog = ogr, where @ is the smallest face of P containing Q and Q

Proof. To prove part (a), note that i) C Q’, then any facet containin@’ also
containsQ, which impliescy C og. The other direction follows easily from
Corollary 2.3.4 since every face is the intersection of #eefs containing it by
Proposition 2.2.1.

For part (b), fix a vertex € Q and note that by (2.3.2}) determines a fac®
of C,. Using the duality of Proposition 1.2.1Q,gives the dual face

Q* :C\\I/mQL :O_vaL
of the conery. Then usingry = Condug |v e F) andQ C C, = oy, one obtains
Q" =Congur [veF, QC Hy o).

Sincev € Q, the inclusionQ C H o is equivalent t@Q C Hy. _a-, Which in turn is
equivalent taQ C F. It follows that

(2.3.3) Q" =Condur | QC F) =0,

so thatoq is a face ofy, and all faces oby arise in this way.

In particular,Q C Q" means that is also a face o#y, and sincerg C oq by
part (a), we see thaty a face ofog. Furthermore, every face ot is a face ofry,
by Proposition 1.2.6 and hence is of the fosig for some faceQ’. Using part (a)
again, we see th&@ C Q’, and part (b) follows.

For part (c), letQ” be the smallest face &f containingQ andQ’. This exists
because a face is the intersection of the facets contaitiag thatQ” is the inter-
section of all facets containinQ and@’ (if there are no such facets, thé&{ = P).
By part (b)oq- is a facet of botlrg andog . Thusog: C ogNogy.

It remains to prove the opposite inclusioncfNog = {0} =op, thenQ” =P
and we are done. oNog # {0}, any nonzerai in the intersection lies in both
og andog. The proof of Proposition 2.3.6 given below will show théf, is a
supporting affine hyperplane & for someb € R. By Lemma 2.3.3u € 0g and
uc og imply thatQ andQ’ lie in Hyp N P. The latter is a face o containing
Q andQ’, so thatQ” C Hyp NP sinceQ” is the smallest such face. Applying
Lemma 2.3.3 again, we see that oq-. O

Proposition 2.3.5 shows that there is a bijective corredpooe between faces
of P and cones of the normal fadp. Here are some further properties of this
correspondence.

Proposition 2.3.6.Let PC Mg be a full dimensional lattice polytope of dimension
n and consider the cones, in the normal fanp of P. Then:

(a) dimQ+dimog = n for all faces Q=< P.
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(b) Nr = vaertex ofPOv = UoQEEP gQ-

Proof. Suppose&Q < P and take a vertex of Q. By (2.3.2) this gives a fac® of
the coneC,, which has a dual fac®* of the dual con€ = 0. SinceQ* = oq by
(2.3.3), we have

dimQ+dimog = dimQ+dimQ* = n,

where the first equality uses Exercise 2.3.2 and the secdludvéofrom Propo-
sition 1.2.10. This proves part (a). For part (b), Uet Nr be nonzero and set
b = min{(v,u) | vvertex ofP}. ThenP C H/, andv € H,}, for at least one ver-
tex of P, so thatu € oy by Lemma 2.3.3. The final equality of part (b) follows
immediately. O

A fan satisfying the condition of part (b) of Proposition BA.3s calledcom-
plete Thus the normal fan of a lattice polytope is always complete will learn
more about complete fans in Chapter 3.

In general, multiplying a polytope by a positive integer maseffect on its
normal fan, and the same is true for translations by lattaatp. We record these
properties in the following proposition (Exercise 2.3.3).

Proposition 2.3.7. Let PC Mg be a full dimensional lattice polytope. Then for
any lattice point me M and any integer k> 1, the polytopes m P and kP have
the same normal fan as P. O

Examples of Normal Fans Here are some examples of normal fans.

Example 2.3.8. The 2-simplexA, C R? has vertices @,&. Let P = kA, for
some positive integdt. Figure 6 show® and its normal farEp. At each vertex

Vs,

/

Vo / Vi

Figure 6. The triangleP = kA, C R? and its normal farte

of P, we have drawn the normal vectors of the facets containilmgd shaded the
coneo; they generate. The reassembled cones appear on the 1ait as O
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Example 2.3.9. Figure 7 shows a lattice hexag®hin the plane together with
its normal fan. The vertices d&? are labeleds, ..., Vs, with corresponding cone
o1,...,06 in the normal fan. In the figur® is shown on the left, and at each vertex
v;, we have drawn the normal vectors of the facets contaigirand shaded the
coneg; they generate. On the right, these cones are assembledaaigineto give
the normal fan.

Figure 7. A lattice hexagorP and its normal farte

Notice how one can read off the structureRarom the normal fan. For exam-
ple, two conesr; ando; share a ray irtp if and only if the vertices; andyv; lie
on an edge oP. O

Example 2.3.10.Consider the cubB C R® with vertices(+1,+1,+1). The facet
normals arete;, +6&, €3, and the facet presentation Bis

(m+g)> -1

The origin is an interior point oP. By Exercise 2.2.1, the facet normals are the
vertices of the dual polytope®, the octahedron in Figure 8 on the next page.

However, the facet normals also give the normal fa®,0fnd one can check
that in the above figure, the maximal cones of the normal farter octants oR3,
which are just the cones over the facets of the dual polyRSpe O

As noted earlier, it is rare that bothandP° are lattice polytopes. However,
wheneverP C My is a lattice polytope containing 0 as an interior point, istigl
true that maximal cones of the normal falp are the cones over the facets of
P° C Ng (Exercise 2.3.4).

The special behavior of the polytopBsandP° discussed in Examples 2.2.6
and 2.3.10 leads to the following definition.

Definition 2.3.11. A full dimensional lattice polytopd® C My is reflexiveif its
facet presentation is

P={me Mg | (mug) > —1 for all facetsF }.
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A Z

A (

Figure 8. A cubeP C R® and its dual octahedrd®®

If P is reflexive, then 0 is a lattice point &f and is theonly interior lattice
point of P (Exercise 2.3.5). Sinca- = 1 for all F, Exercise 2.2.1 implies that

P° = Conv(ur | F facet ofP).
ThusP? is a lattice polytope and is in fact reflexive (Exercise 2.3.5

We will see later that reflexive polytopes lead to some vetgrasting toric
varieties that are important for mirror symmetry.

Intersection of Affine Pieces Let P C Mg be a full dimensional very ample poly-
tope and ses= |[PNM|. This gives
Xprm C P51
If Xpnm NUy is the affine piece corresponding a vertex P, then
Xprm NUy = Uy, = Spe¢Cloy NM])
by Theorem 2.3.1. Thus the affine pieég v NUy is the toric variety of the cone
oy in the normal far®p of P.

Our next task is to describe the intersection of two of thdfeespieces.
Proposition 2.3.12.Let PC Mg be full dimensional and very ample. 1&&/w are
vertices of P and Q is the smallest face of P containing v antthen

Xprm NUyNUy = Uy, = Spe¢Clog NM])
and the inclusions

Xpam MUy 2 Xpam MUy N Uy € Xpam MUy
can be written

(234) Uov 2 (UO—V)XW—V == U == (UUW)XV—W Q UO-W.

9Q
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Proof. We analyzed the intersection of affine pieces<gfy in §2.1. Translated
to the notation being used here, (2.1.6) and (2.1.7) im@y th

XPOM ﬂUVﬂUW == (UO—V)wav == (UO—W)vaw.
Thus all we need to show is that
(UO—V)wav — UO-Q.

However, we havev—v € C, = o/, so thatr = H,_,N oy is a face ofs,. In this
situation, Proposition 1.3.16 and equation (1.3.4) impbtt

(UO—V)wav - UT.

Thus the proposition will follow once we prove= oq, i.e.,Hy_yNoy = og. Since
oq = oyNoy by Proposition 2.3.5, it suffices to prove that

HW—VﬁO-V - Uvﬁo'w.

Letu e Hy_yNoy. If u#0, there isb € R suchHy, is a supporting affine hyper-
plane ofP. Thenu € oy impliesv € Hy by Lemma 2.3.3, so that € H,, since
u € Hy—v. Applying Lemma 2.3.3 again, we gefe o,,. Going the other way, let
ueoyNoy. If U#0, pickb € R as above. Then € oyN oy and Lemma 2.3.3
imply thatv,w € Hyp, from whichu € Hy,_y follows easily. This completes the
proof. O

This proposition and Theorem 2.3.1 have the remarkablédt st the normal
fan Xp completely determines the internal structureXgfy: we build Xpqy from
local pieces given by the affine toric varietids,, glued together via (2.3.4). We
do not need the ambient projective sp&@&e! for any of this—everything we need
to know is contained in the normal fan.

The Toric Variety of a Polytope We can now give the general definition of the
toric variety of a polytope.

Definition 2.3.13. Let P C Mg be a full dimensional lattice polytope. Then we
define thetoric variety of Pto be

Xp = Xkp)rm
wherek is any positive integer such thiaP is very ample.

Such integerk exist by Corollary 2.2.18, and i and/ are two such integers,
thenkP and /P have the same normal fan by Proposition 2.3.7, namgly=
Yp = Yp. It follows that while Xxp)nm and X lie in different projective
spaces, they are built from the affine toric varietigs glued together via (2.3.4).
Once we develop the language of abstract varieties in Chaptee will see that
Xp is well-defined as an abstract variety.

We will often speak ofXp without regard to the projective embedding. When
we want to use a specific embedding, we will sa§ ‘is embedded usingP”,



§2.3. Polytopes and Projective Toric Varieties 83

where we assume thkP is very ample. In Chapter 6 we will use the language of
divisors and line bundles to restate this in terms of a divi3e on Xp such that
kDp is very ample precisely whetP is.

Here is a simple example to illustrate the difference betw&eas an abstract
variety andXp as sitting in a specific projective space.

Example 2.3.14.Consider then-simplexA, C R". We can defineXx, usingkA,
for any integelk > 1 sinceAp, is normal and hence very ample. The lattice points
in kKA, correspond to theg, = (”Jlgk) monomials ofC|ty, ..., t,] of total degree< n.
This gives an embeddinga, C P!, Whenk =1, AyNZ" = {0,ey,... e}
implies that

Xa, =P".
The normal fan of\,, is described in Exercise 2.3.6. For an arbitragy 1, we can
regardXa, C P%~! as the image of the map

v P"— Pt

defined using all monomials of total degreén C[xo,...,%n] (Exercise 2.3.6). It
follows that this map is an embedding, usually calledemnese embeddin@ut
when we forget the embedding, the underlying toric varistystP".

The Veronese embedding allows us to construct some intagesffine open
subsets oP". Let f € C[xo,...,X,] be nonzero and homogeneous of dedgread
write f = szkcax“. We write the homogeneous coordinate®&f! asy,, for
la| =k. ThenL = 3", , | _y CaYa is @ nonzero linear form in the variablgs, so that

P*—1\ V(L) is a copy ofC*~! (Exercise 2.3.6). If follows that
P"\V(f) >~ (P") N (P* 1\ V(L))

is an affine variety (usually not toric). This shows tifdthas a richer supply of
affine open subsets than just the open Bgts P"\ V(x;) considered earlier in the
chapter. O

When we explain the Proj construction®f later in the book, we will see the
intrinsic reason why""\ V( f) is an affine open subset Bf'.

Example 2.3.15.The 2-dimensional analog of the rational normal cugyes the
rational normal scroll §p,, which is the toric variety of the polygon

Pab = Conv(0,ae;, &, be; + &) C R?,

wherea,b € N satisfy 1< a <b. The polygonP = P, 4 and its normal fan are
pictured in Figure 9 on the next page.

In general, the polygoR,, hasa+ b+ 2 lattice points and gives the map

(C*)2 — PP+l (st) - (1,5,5,...,83t,8t,5%,...,s%)
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V=€ V=48 +6, 04

]

02

Figure 9. The polygon of a rational normal scroll and its normal fan

such tha, p = Xp, , is the Zariski closure of the image. To describe the image, we
rewrite the map as

Cx Pt — P3P (s X\ 1) — (A, S\, SN, ..., SPN, 10, S, 240, - .., S2p).

When(\, 1) = (1,0), the map is— (1,s,8%,...,53,0,...,0), which is the rational
normal curveC, mapped to the firsa+ 1 coordinates o2t?+1, In the same
way, (A, 1) = (0,1) gives the rational normal curv&, mapped to the ladt+ 1
coordinates oP2tP+1, |f we think of these two curves as the “edges” of a scroll,
then fixings gives a point on each edge, and lettilgy.) € P! vary gives the line
of the scroll connecting the two points. So it really is a #tro

An important observation is that the normal fan depesrlg on the difference
b—a, since this determines the slope of the slanted eddg f If we denote the
difference byr € N, it follows that as abstract toric varieties, we have

XP1,r+1 = XPz,r+2 = X%,r+3 =

since they are all constructed from the same normal fan. bEphn 3, we will see
that this is the Hirzebruch surface;.

But if we think of the projective surfacg, C Patb+l thena andb have a
unigue meaning. For example, they have a strong influencheodefining equa-
tions of Syp. Let the homogeneous coordinatesP3f P+ bexo, . .., %a, Y0, - - -, Yb
and consider the 2 (a+ b) matrix

(Xo Xt o+ Xa1|Yo Y1 o Yb—1>.

X1 X =+ Xa Y1 Y2 - W
One can show tha{S, ) € C[xo, ..., Xa, Yo, - - -, Yb] IS generated by the;22 minors
of this matrix (see{6, Ex. 9.11], for example). O

Example 2.3.15 is another example of a determinantal yadstis the rational
normal curve from Example 2.0.1. Note that the rational redrourveCy comes
from the polytopd0,d] = dA;, where the underlying toric variety is just.
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Exercises for §2.3
2.3.1. This exercise will use the same notation as the proof of Téradt.3.1.

(a) LetHy a be a supporting hyperplane of a vertexc P. Prove thatd, o is a supporting
hyperplane of G C

(b) Prove that dinT; = dimP.
2.3.2. Consider the maps defined in (2.3.2).

(a) Show that these maps are inverses of each other and ddfifextion between the
faces of the con€, and the faces d? containingv.

(b) Prove that these maps preserve dimensions, inclusiodsntersections.
(c) Explain how this exercise relates to Exercise 2.3.1.

2.3.3. Prove Proposition 2.3.7.

2.3.4. Let P C Mg be a full dimensional lattice polytope containing O as aerir point,
and letP° C Ny be its dual polytope. Prove that the normal fag consists of the cones
over the faces oP°. Hint: Exercise 2.2.1 will be useful.

2.3.5. Let P C Mg be a reflexive polytope.

(a) Prove that O is the only interior lattice pointff

(b) Prove thaP°® C Ny is reflexive.

2.3.6. This exercise is concerned with Example 2.3.14

(@) Letey,...,e, be the standard basis Bf'. Prove that the normal fan of the standard
n-simplex consists of the cones Cd@8g for all proper subsetS C {ep,ey,...,e},
wheregy = —Zi”_le.. Draw pictures of the normal fan for= 1,2, 3.

(b) For an integek > 1, show that the toric varietfxa, C P! is given by the map
v : P" — P~ 1defined using all monomials of total degie® C|xo, . . . ,Xn).

2.3.7. Let P C Mg ~ R" be ann-dimensional lattice polytope and |6t C P be a face.
Prove the following intrinsic description of the cong € p:

og={ueNg | (mu) < (m,u)forallme Q, m € P}.

2.3.8. Prove that all lattice rectangles in the plane with edgesljgdrto the coordinate
axes have the same normal fan.

82.4. Properties of Projective Toric Varieties

We conclude this chapter by studying when the projectivic teariety Xp of a
polytopeP is smooth or normal.

Normality. Recall from §2.1 that a projective variety pgojectively normalf its
affine cone is normal.

Theorem 2.4.1.Let PC Mg be a full dimensional lattice polytope. Then:

(@) Xp is normal.

(b) Xp is projectively normal under the embedding given by kP if anlg if kP is
normal.
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Proof. Part (a) is immediate sinces is the union of affine piecdd,,, v a vertex
of P, andU,, is normal by Theorem 1.3.5. In Chapter 3 we will give an irgiin
definition of normality that will make this argument comgligtrigorous.

For part (b), the discussion following (2.1.4) shows that grojective em-
bedding ofXp given by Xp)nm has affine cone given by kp)rm)x (13- By The-
orem 1.3.5, this is normal if and only if the semigrobig((kP) "M) x {1}) is
saturated irM x Z, and since((kP) " M) x {1} generates the cor@P), this is
equivalent to saying thdkP) "M) x {1} generates the semigro@P) N (M x Z).
Then we are done by Lemma 2.2.13. O

Smoothness Given the results of Chapter 1, the smoothnesssak equally easy
to determine. We need one definition.

Definition 2.4.2. Let P C My be a lattice polytope.

(a) Given a vertew of P and an edgd containingv, let wg be the first lattice
point of E different fromv encountered as one tranveréestarting atv. In
other wordswg — v is the ray generator of the ray Cqiie—v).

(b) P is smoothif for every vertexv, the vectorsvg — v, whereE is an edge oP
containingv, form a subset of a basis M. In particular, if dinP = dimMg,
then the vectorsye — v form a basis oM.

We can now characterize whéd is smooth.

Theorem 2.4.3.Let PC Mg be a full dimensional lattice polytope. Then the fol-
lowing are equivalent:

(a) Xp is a smooth projective variety.

(b) Xp is a smooth fan, meaning that every conelimis smooth in the sense of
Definition 1.2.16.

(c) P is a smooth polytope.

Proof. Smoothness is a local condition, so that a variety is smdatid only if its
local pieces are smooth. ThXs is smooth if and only iU, is smooth for every
vertexv of P, andU,, is smooth if and only ifoy is smooth by Theorem 1.3.12.
Since faces of smooth cones are smooth dpaonsists of ther, and their faces,
the equivalence (a (b) follows immediately.

For (b) < (c), first observe that, is smooth if and only if its duaC, = o\ is
smooth. The discussion following (2.3.2) makes it easy &tbat the ray genera-
tors ofC, are the vectorsie — v from Definition 2.4.2. It follows immediately that
P is smooth if and only ifC, is smooth for every vertex, and we are done. O

The theorem makes it easy to check the smoothness of simphepbes such
as the toric variety of the hexagon in Example 2.3.9 or themat normal scroll
S.p of Example 2.3.15 (Exercise 2.4.1).



§2.4. Properties of Projective Toric Varieties 87

We also note the following useful fact, which you will provekxercise 2.4.2.
Proposition 2.4.4. Every smooth full dimensional lattice polytope&_RMIy is very
ample. d

One can also ask whether every smooth lattice polytope malorThis is an
important open problem in the study of lattice polytopes.

Here is an example of a smooth reflexive polytope whose dumdtismooth.

Example 2.4.5.Let P = (n+ 1)Ap— (1,...,1) C R", whereA, is the standard
n-simplex. Proposition 2.3.7 implies thRtand A, have the same normal fan, so
thatP andXp are smooth. Note also thxp = X, = P".

The polytopeP has the following interesting properties (Exercise 2.4E3)st,
P has the facet presentation

X=X 2 =1
so thatP is reflexive with dual

P° = Conv(ey,€1,...,€1), €= —€ — - — €.

The normal fan oP° consists of cones over the facesRofln particular, the cone
of Ypo corresponding to the verteg € P° is the cone

0g = CONvVy,...,Vn), Vi=e+(n+1)a.
Figure 10 show® and the coneg, whenn = 2.

Vo

Vi

Figure 10. The conerg, of the normal fan oP°

For generah, observe that; —v; = (n+1)(e —¢;). This makes it easy to
see thaZv; + - - - + Zvy has index(n+ 1)"~1 in Z". Thusoyg, is not smooth when
n > 2. It follows that the “dual” toric varietyXp- is singular forn > 2. Later we
will construct Xpo as the quotient oP" under the action of a finite grou@ ~
(Z)(n+1)Z)" 1. O
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Example 2.4.6. ConsiderP = Conv(0,2e;,&,) C R2. SinceP is very ample, the
lattice pointsPNZ2 = {0,ey,2e1,&} give the magC*)2 — P2 defined by

(st)— (1,551

such thap is the Zariski closure of the image.’f has homogeneous coordinates
Yo,Y1,Y2,Ys, then we have

Xp =V (yoy2 — y%) C P3.

Comparing this to Example 2.0.5, we see tKatis the weighted projective space
P(1,1,2). Later we will learn the systematic reason why this is true.

The varietyXp is not smooth. By working on the affine pie¥g nUs, one can
check directly that0,0,0, 1) is a singular point oKp.

We can also use Theorem 2.4.3 and the normal fa®, shown in Figure 11.
One can check that the cones and o1 are smooth, but, is not, so thatp

Figure 11. The polygon givingP(1,1,2) and its normal fan

is not a smooth fan. In terms &% note that the vectors fromp to the first lattice
points along the edges containimgdo not generat&?2. Either way, Theorem 2.4.3
implies thatXp is not smooth.

If you look carefully, you will see tha# is the only nonsmooth cone of the
normal fanX¥p. Once we study the correspondence between cones and orbits i
Chapter 3, we will see that the non-smooth cenecorresponds to the singular
point (0,0,0,1) of Xp. O

Products of Projective Toric VarietiesOur final task is to understand the toric
variety of a product of polytopes. L& C (M;)r ~ R" be lattice polytopes with
dimB = n; for i = 1,2. This gives a lattice polytopB; x P, C (M1 x Ma)g of
dimensionn; + no.
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ReplacingP; andP, with suitable multiples, we can assume tRaandP, are

very ample. This gives projective embeddings
Xp —PSL s =|RNM|,
so that by Proposition 2.0.X%p, x Xp, is a subvariety oP$—1 x P%~1, Using the
Segre embedding
PRl P2l Pt s=gs),

we get an embedding
(2.4.1) Xp, X Xp, — P71,
We can understand this projective variety as follows.

Theorem 2.4.7.1f P. and B are very ample, then
(@) PLx P, C (M1 x Ma)R is a very ample polytope with lattice points
(PLx P)N (M1 x Mz) = (PLNM1) x (PN M).
Thus the integer s defined above is §P; x P») N (Mg x My)|.
(b) The image of the embedding, % Xp, < P~ coming from the very ample
polytope R x P, equals the image of2.4.1)
(€) Xp,xp, = Xp, X Xp,.

Proof. For part (a), the assertions about lattice points are cl€he vertices of
Py x P, consist of ordered pairs/,V2) wherey; is a vertex ofP (Exercise 2.4.4).
Given such a vertex, we have

(P]_ X Pg) N (Ml X Mg) — (Vl,Vz) = (Plﬁ Ml—Vl) X (Pzﬁ M2—V2).

SinceR is very ample, we know th&f(P NM; —v;) is saturated itM;. From here,
it follows easily thatP, x P is very ample.

For part (b), lefTy, be the torus oKp. SinceTy is Zariski dense iXp, it fol-
lows thatTy, x Tn, is Zariski dense iXXp, x Xp, (Exercise 2.4.4). When combined
with the Segre embedding, it follows th&p, x Xp, is the Zariski closure of the
image of the map

T, X Ty, — P2t
given by the characterg™y™, wherem ranges over the; elements ofP, N M;
andm ranges over the, elements o> N M. When we identifyTy, x Ty, with
Ty xN, the producty™y™ becomes the charactgt™™), so that the above map
coincides with the map

Ty s, — P71

coming from the product polytopE;, x P, C (M; x M2)r. Part (b) follows, and
part (c) is an immediate consequence. d

Here is an obvious example.
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Example 2.4.8.SinceP" is the toric variety of the standardsimplex A, it fol-
lows thatP" x P™ is the toric variety ofAp x Ap,.

This also works for more than two factors. Thii§ x P! x P! is the toric
variety of the cube pictured in Figure 8. O

To have a complete theory of products, we need to know whaidregpto the
normal fan. Here is the result, whose proof is left to the eedBxercise 2.4.5).

Proposition 2.4.9.Let R C (M;)r be full dimensional lattice polytopes foH 1, 2.
Then
2P1><P2 = Epl X Epz. O

Here is an easy example.

Example 2.4.10. The normal fan of an intervgb,b] C R, wherea< bin Z, is
given by

o1 0 00

The corresponding toric variety B'. The cartesian product of two such intervals
is a lattice rectangle whose toric varietyl$ x P! by Theorem 2.4.7. If we set
gij = oi X 0j, then Proposition 2.4.9 gives the normal fan given in Fidize

00

Figure 12. The normal fan of a lattice rectangle givifig x P*

We will revisit this example in Chapter 3 when we construgtctvarieties
directly from fans. O

Proposition 2.4.9 suggests a different way to think aboetfioduct. Let;
range over the vertices &f. Then thes,, are the maximal cones in the normal fan
Yp, which implies that

(2.4.2) Xp = Uy U, -



§2.4. Properties of Projective Toric Varieties 91

Thus

XPl X XPZ = (UV1U‘7V1) X (UV2U‘7V2)
- U(V17V2)UUV1 X UUVz

U(vl,vz)ualeo\,2
U(V17V2)U0(v1,v2) = Xp,xP,-
In this sequence of equalities, the first follows from (2)4tBe second is obvious,

the third uses Exercise 1.3.13, the fourth uses Propogt&f, and the last follows
since(vy, V2) ranges over all vertices & x P,.

This argument shows that we can construct cartesian predtiearieties using
affine open covers, which reduces to the cartesian prodadfiné varieties defined
in Chapter 1. We will use this idea in Chapter 3 to define thées&@n product of
abstract varieties.

Exercises for §2.4

2.4.1. Show that the hexagdd= Conv(0, e;, &, 2e; + &, €1 + 262, 2e; + 2€7) pictured in
Figure 6 and the trapezoig,, pictured in Figure 9 are smooth polygons. Also, of the
polytopes shown in Figure 8, determine which ones are smooth

2.4.2. Prove Proposition 2.4.4.

2.4.3. Consider the polytopE = (n+ 1)A,—(1,...,1) from Example 2.4.5.

(a) Verify the facet presentation Bfgiven in the example.

(b) What is the facet presentation®f? Hint: You know the vertices d®.

(c) Letvi=ep+ (n+1)g, wherei=1,...,nandey = —e; — --- — &, and then sett =
ZNy + - -+ Zvy. Use the hint given in the text to pro#@ /L ~ (Z/(n+1)Z)"~1. This
shows that the index df in Z" is (n+1)"~1, as claimed in the text.

2.4.4.LetR C (Mi)r ~ R" be lattice polytopes with diff = n; fori = 1,2. Also letS be

the set of vertices d®f.

(a) Use supporting hyperplanesto prove that every elenf&itoS; is a vertex o, x Ps.

(b) Prove thaP; x P, = ConS; x &) and conclude the®, x S is the set of vertices of
P]_ X Pz.

2.4.5. The goal of this exercise is to prove Proposition 2.4.9. Wavwkfrom Exercise 2.4.4

that the vertices dP; x P, are the ordered paifs1,Vv2) wherey; is a vertex ofR.

(@) Adapt the argument of part (a) of Theorem 2.4.7 to show @ga,) = C,, x Cy,.
Taking duals, we see that the maximal coneXgt.p, areoy, v,) = ov, x ov,.

(b) Given rational polyhedral cones C (Ni)r and faces; C g, prove thatry x 72 is a
face ofoy x 0, and that all faces of; x o, arise this way.

(c) Provethabp p, = Xp X Xp..
2.4.6. Consider positive integers= gp < g < --- < gn With the property thaty | Z?:Oq,-
fori=0,....,n. Setki = (>]_,q;)/q fori=1,...,nand let

Pop.....qn = CONV(0, k€1, koy, ..., Ka€n) — (1,...,1).
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Prove thalPy,, ... o, is reflexive and explain how it relates to Example 2.4.5. W prbve
later that the toric variety of this polytope is the weighpedjective spac®(do, ..., 0n)-

2.4.7. The Sylvester sequendg defined byag = 2 anday;1 = 1+ aya---a. It begins
2,3,7,431807,... and is described in157, AO0O0058]. Now fix a positive integer > 3
and definey,...,0n by o =1 =1 andg =2(a,-1— 1)/an—i fori=2,....,n. Forn=3
and 4 this gives 11,4,6 and 11,12,28 42. Prove thaty,...,(, satisfies the conditions
of Exercise 2.4.6 and hence gives a reflexive simplex, deirf@fein [132. This paper
proves that when > 4, &, has the largest volume of attdimensional reflexive simplices
and conjectures that it also has the largest number ofdgttiints.



Chapter 3

Normal Toric Varieties

83.0. Background: Abstract Varieties

The projective toric varieties studied in Chapter 2 are ngiof Zariski open sets,
each of which is an affine variety. We begin with a general tanton of abstract
varieties obtained by gluing together affine varieties inaaalogous way. The
resulting varieties will beabstractin the sense that they do not come with any
given ambient affine or projective space. We will see tha ihiexactly the idea
needed to construct a toric variety using the combinatdid#h contained in a fan.

Sheaf theory, while important for later chapters, will makdy a modest ap-
pearance here. For a more general approach to the concdptda variety, we
recommend standard books such48,[[77] or [152).

Regular Functions LetV = SpedR) be an affine variety. In §1.0, we defined the
Zariski open subséat; =V \ V(f) CV for f € Rand showed that; = Spe¢Ry),
whereRy is the localization oR at f. The open setg; form abasisfor the Zariski
topology onV in the sense that every open &eis a (finite) unionU = (J; _gVs

for someSC R (Exercise 3.0.1).

For an affine variety, a morphismi — C is called aregular map so that the
coordinate ring o¥/ consists of all regular maps frovhto C. We now define what
it means to be regular on an open subsét of

Definition 3.0.1. Given an affine variety = Spe¢R) and a Zariski opet) CV,
we say a functionp : U — C is regular if for all p € U, there existsf, € R such
thatp € Vi, CU andgl,, € Ry,. Then define

P

oy(U)={¢:U— C|¢isregulas.
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The conditionp € Vs, means thafp(p) # 0, and saying;b\vf € Ry, means that
p
¢ = ap/fp" for somea, € Randn, > 0.
Here are some cases whefg(U ) is easy to compute.

Proposition 3.0.2. Let V = Spe¢R) be an affine variety.
@ ov(V)=R.
(b) If f € R, thenoy (Vi) = Ry.

Proof. Itis clear from Definition 3.0.1 that elements Ridefine regular functions
onV, hence elements @, (V). Conversely, iip € &y (V), then for allp € V there
is fp € Rsuch thatp € Vs, and$ = ap/ fp” € Ry,. The ideall = (f" | pe V) CR
satisfiesV (1) = () sincef,(p) # 0 for all p € V. Hence the Nullstellensatz implies
that+/1 = 1(V(I)) =R, so there exists a finite S&C V and polynomialsyy, for

p € Ssuch that
pes

Hencep =3~ csOpfp’d = 3 pesOpap € R, as desired.
For part (b), let C V; be Zariski open. Thebl is Zariski open inv, and
whenevem € R satisfies/y C U, we havevy = Vg with coordinate ring

Rig = (Rf)g/ 1

for all ¢ > 0. These observations easily imply that
(3.0.2) oyU) =0y, (V).
Then settind) = V¢ gives

Ov(Vs) = Oy, (Vs) = Ry,
where the last equality follows by applying part (aMo= Spe¢Ry). O
Local Rings WhenV = Spe¢R) is an irreducible affine variety, we can describe
regular functions using thiecal rings &y ;, introduced in §1.0. A rational func-

tion in C(V) is contained in the local ring , precisely when it is regular in a
neighborhood of. It follows that wheneved C V is open, we have

() Ov.p= 64 ().

peu
Thus regular functions dd are rational functions ovi that are defined everywhere
onU. In particular, whetd =V, Proposition 3.0.2 implies that

(3.0.2) () Ovp=0(V)=R=C[V].
peVv
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The Structure Sheaf of an Affine Variety Given an affine variety', the operation
U~ oy(), U CV open

has the following useful properties:
e WhenW C U, Definition 3.0.1 shows that there is an obvious restricticap

PU,W . ﬁv(U) — ﬁv(W)

defined bypy w(¢) = ¢|,,. It follows thatpy y is the identity map and that
pvwopuy = puw WheneveWW CV CU.

e If {U,} is an open cover df CV, then the sequence

0— () — [ Ua) =] (UaNUp)
o B

is exact. Here, the second arrow is defined by the restretgry, and the
double arrow is defined byy, u,nu, and pu,u,nu,. Exactness aty (U)
means that regular functions are determined locally (#hatno regular func-
tions onU are equal if their restrictions to dll, are equal), and exactness at
1., &v(U,) means that regular functions on tbg agreeing on the overlaps
U, NUg patch together to give a regular functiondn

In the language of sheaf theory, these properties imply dhais a sheaf of C-

algebras, called thstructure sheabf V. We call (V, &y ) aringed space ove€.
Also, since (3.0.1) holds for all open sé&tsC V¢, we write

Oy, = O,

In terms of ringed spaces, this medWs, oy |\, ) = (Vi, Oy, ).

Morphisms By 81.0, a polynomial mappin@ : V; — V., between affine vari-
eties corresponds to tii&-algebra homomorphisrd* : C|V,] — C|V1] defined by
d*(g) = po @ for ¢ € C[V2]. We now extend this to open sets of affine varieties.

Definition 3.0.3. LetU; CV; be Zariski open subsets of affine varietiesiferl, 2.
A function @ : U; — U, is amorphismif ¢ — ¢ o ® defines a map

(I)* : ﬁVZ(UZ) — ﬁvl(Ul).

Thus® : U; — U, is a morphism if composing with regular functions ok,
gives regular functions ob;. Note also thatb* is a C-algebra homomorphism
since it comes from composition of functions.

Example 3.0.4. Suppose that : Vi — V» is a morphism according to Defini-
tion 3.0.3. IfV = Spe¢R)), then the above map* gives theC-algebra homo-
morphism

Ry = O, (Vo) — Gy, (V1) = Ry.
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By Chapter 1, theC-algebra homomorphisR, — R; gives a map of affine va-
rietiesV, — V. In Exercise 3.0.3 you will show that this is the original map
® : V; — Vo we started with. O

Example 3.0.4 shows that when we apply Definition 3.0.3 to srizgiween
affine varieties, we get the same morphisms as in ChapterBxdrcise 3.0.3 you
will verify the following properties of morphisms:

e If U is open in an affine variety, then
oy(U)={¢:U — C| ¢ is amorphisnj.
Hence regular functions du are just morphisms frord to C.
e A composition of morphisms is a morphism.
e An inclusion of open set&/ C U of an affine variety/ is a morphism.

e Morphisms are continuous in the Zariski topology.

We say that a morphisnb : U; — U, is anisomorphismif @ is bijective and its
inverse functiond~1 : U, — Uy is also a morphism.

Gluing Together Affine Varieties We now are ready to define abstract varieties by
gluing together open subsets of affine varieties. The madehat happens fd".
Recall from §2.0 of thaP" is covered by open sets

Ui =P"\V(x) :Spec{C[%,...,%,%,...,%})
fori=0,...,n. EachU; is a copy ofC" that uses a different set of variables. For
i # j, we “glue together” these copies as follows. We have openetab

(3.0.3) (U)x CUi and (Uj)x CUj,
% X

and we also have the isomorphism

(3.0.4) gji - (Ui)y — (Uj)x
% %j
since both give the same open BgU; in P". The notationg; was chosen so
thatg;i (x) meansx € U; since the index is closest to, hencegji (x) € Uj. At the
level of coordinate ringgyji comes from the isomorphism
g;C[& Xi1 M Xn]x,ﬁ(C[%, X1 %,,%]X_J

XX g g s X i

defined by
o % /% (k#j) and (&)—1._>ﬁ.

Xj Xj X
We can turn this around and start from the affine variaties C" given above
and glue together the open sets in (3.0.3) using the isorsongly;; from (3.0.4).
This gluing is consistent sinag; = gj‘il andgy = gkj o g;i wherever all three maps
are defined. The result of this gluing is the projective spélte
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To generalize this, suppose we have a finite collecf\},, of affine varieties
and for all pairsx, 3 we have Zariski open sets;, C V,, and isomorphismgg,, :
Via ~ V5 satisfying the following compatibility conditions:

® 9as = g, for all pairsa, 5.
° gﬁa(V5a ﬂVﬁ/a) =Vos NV, 3 andgﬁ,a = 0y3°03a ONVgo NV, 0 for all o, 3,7.

The notationgg, means that in the expressigg, (x), the pointx lies inV, since
« is the index closest tg, and the resuljg,, (X) lies inV;.

We are now ready to glue. L&t be the disjoint union of th¥/, and define
arelation~ onY by a~ b if and only ifa € V,, b € V3 for somec, 3 with b =
08 (). The first compatibility condition shows thatis reflexive and symmetric;
the second shows that it is transitive. Hereds an equivalence relation and we
can form the quotient spa¢e= Y/ ~ with the quotient topology. For eaeh let

U, ={a eX|aeV,}.

ThenU,, C X is an open set and the map(a) = [a] defines a homeomorphism
h. : V., ~ U, C X. ThusX locally looks like an affine variety.

Definition 3.0.5. We call X the abstract varietydetermined by the above data.

An abstract varietyX comes equipped with the Zariski topology whose open
sets are those sets that restrict to open sets inl@acihe Zariski closed subsets
Y C X are calledsubvarietiesof X. We say thaX is irreducibleif it is not the union
of two proper subvarieties. One can show tKais a finite union of irreducible
subvarietieX =Y, U- - -UYs such thal; Z Y; fori # j. We call theY; theirreducible
componentsf X.

Here are some examples of Definition 3.0.5.

Example 3.0.6. We saw above thaP" can be obtained by gluing together the
open sets (3.0.3) using the isomorphisgasfrom (3.0.4). This shows thak"

is an abstract variety with affine open subbgtC P". More generally, given a
projective varietyy C P", we can cove¥ with affine open subséat NU;, and the
gluing implicit in equation (2.0.8). We conclude that piijee varieties are also
abstract varieties. O

Example 3.0.7.1n a similar way,P" x C™ can be viewed as gluing affine spaces
U; x C™~ C™ ™M along suitable open subsets. THRisx C™is an abstract variety,
and the same is true for subvarieties. P" x C™. O

Example 3.0.8.LetVp = C? = Spe¢C[u,Vv]) andV; = C% = Spe¢C|w, Z), with

Vio=Vo\V(v) = Spe¢Clu,V]y)
Vo1 =V1\V(2) = Spe¢Clw, 7))
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and gluing data

O10: V1o — Vo1 coming from theC-algebra homomorphism
Oo1 : Clw,Z); — CJu,v]y defined byw+— uv and z— 1/v

and

Joz1 : Vo1 — Vo1 coming from theC-algebra homomorphism

001 : Clu,vly — C|w, 7, defined byu+— wz andv— 1/z
One checks thadp: = gl‘ol, and the other compatibility condition is satisfied since
there are only twd/. It follows that we get an abstract variety

The varietyX has another description. Consider the prodBt C? with
homogeneous coordinatégy,x;) on P! and coordinategx,y) on C2. We will
identify X with the subvarietyV = V (xgy — x;x) C P! x C2, called theblowup of
C? at the origin and denoted B[C?). First note thaP! x C2 is covered by

Uo x C? = SpedC[x1 /X0, x,y]) and Uj; x C2=Spe¢C|[xo/X1,XY]).
ThenW is covered by\o =W N (Ug x C2) andWy =W N (Uz x C?). Also,
Wb =V (y — (X1/%0)X) C U x C?,

which gives the coordinate ring

Clxa/%0,%,Y1/(y— (x1/%0)X) ~ C[x.x1 /%]~ Viay— (x1/%o)X.
Similarly, Wy = V (x— (xo/%1)y) C Uz x C2 has coordinate ring

Clxo/x1,% Y]/ (x= (x0/x1)y) = Cly,x0/x1]  viax— (Xo/X1)y.
You can check that these are glued togethaliim exactly the same way, and
V1 are glued together iK. We will generalize this example in Exercise 3.0.8¢)

Morphisms Between Abstract Varietied et X andY be abstract varieties with
affine open coverX = J, U, andY = (J;Uj;. A morphism® : X — Y is a Zariski
continuous mapping such that the restrictions

Cly,ne-1uy) 1 Ya o HUj) — Uj
are morphisms in the sense of Definition 3.0.3.

The Structure Sheaf of an Abstract VarietyLet U be an an open subset of an
abstract varietyX and seW, = h;(UNU,) CV,. Then a functionp : U — C is
regular if

(bohaywa ‘W, — C
is regular for alla. The compatibility conditions ensure that this is well-defi,
so that one can define

Ox(U)={¢:U — C|¢isregulas.
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This gives thestructure sheafd’x of X. Thus an abstract variety is really a ringed
space(X, Ox) with a finite open coveringU,, }, such thatU,, 0|, ) is isomor-
phic to the ringed spad®/,,, &y, ) of the affine variety,,. (We leave the definition
of isomorphism of ringed spaces to the reader.)

Open and Closed Subvarietie€iven an abstract variet{ and an open subset
U, we note that) has a natural structure of an abstract variety. For an affine
open subset), C X, U NU, is open inU, and hence can be written as a union
UNUy = Uses(Ua)t for a finite subse8 C C[U,]. It follows thatU is covered

by finitely many affine open subsets and thus is an abstraigtyaf he structure
sheafdy is simply the restriction ofx to U, i.e., Oy = Ox|,. Note also that a
function¢ : U — C is regular if and only it is a morphism as defined above.

In a similar way, a closed subsétC X also gives an abstract variety. For an
affine open sety C X, YNU is closed inJ and hence is an affine variety. Thus
Y is covered by finitely many affine open subsets and thus is sinaah variety.
This justifies the term “subvariety” for closed subsets ofabstract variety. The
structure shead is related toox as follows. The inclusiom:Y <« X is a mor-
phism. Leti. &y be the sheaf oX defined byi. 0y (U) = 6y (U NY). Restricting
functions onX to functions or¥ gives a map of sheave®s, — i, 6y whose kernel
is the subshea#y C 0 of functions vanishing ol, meaning

HAU)={feoxU)|f(p)=0forallpeYnU}.
In the language of Chapter 6, we have an exact sequence akshea

0— KA — Ox — i, 0y — 0.

All of the types of “variety” introduced so far can be subsdneder the con-
cept of “abstract variety.” From now on, we will usually bertking of abstract
varieties. Hence we will usually say “variety” rather thabstract variety.”

Local Rings and Rational Functions Let p be a point of an affine variety.
Elements of the local ringy , are quotientsf /g in a suitable localization with
f,ge CV] andg(p) # 0. It follows thatVy is a neighborhood g inV andf /g is
a regular function oWg. In this way, we can think of elements 6%, , as regular
functions defined in a neighborhood jpf

This idea extends to the abstract case. Given a poiot an varietyX and
neighborhoodt);,U, of p, regular functiond; : U; — C areequivalent at pwritten
f1 ~ fo, if there is a neighbhorhood € U C U1 NU; such thatfy |, = f| ;.

Definition 3.0.9. Let p be a point of a varietX. Then
Ox,p={f:U — C|U is aneighborhood ap in X}/ ~

is thelocal ring of X at p.
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Every ¢ € Ox p has a well-defined valug(p). It is not difficult to see that
Oxpis alocal ring with unigue maximal ideal

my p={¢p € Oxp| o(p) =0}.
The local ringdx , can also be defined as the direct limit

Ox.p = lim 6% (V)
peuU

over all neighborhoods gf in X (see Definition 6.0.1).

WhenX is irreducible, we can also define the field of rational fumesiC (X).
A rational functionon X is a regular functionf : U — C defined on a nonempty
Zariski open setJ C X, and two rational functions oX are equivalentif they
agree on a nonempty Zariski open subset. In Exercise 3.Q.4vilbshow that this
relation is an equivalence relation and that the set of edgiice classes is a field,
called thefunction fieldof X, denotedC(X).

Normal Varieties We return to the notion of normality introduced in Chapter 1.

Definition 3.0.10. An variety X is callednormal if it is irreducible and the local
rings Ox  are normal for allp € X.

At first glance, this looks different from the definition givéor affine varieties
in Definition 1.0.3. In fact, the two notions are equivalanthie affine case.

Proposition 3.0.11.LetV be an irreducible affine variety. Th€ijV] is normal if
and only if the local rings’y , are normal for all pe V.

Proof. If Oy, is normal for allp, then (3.0.2) shows th&t[V] is an intersection
of normal domains, all of which have the same field of fractio®ince such an
intersection is normal by Exercise 1.0.7, it follows tftdV] is normal.

For the converse, suppose thigV] is normal and letr € C(V) satisfy
o traa 44 a=0,  acdby,.

Write & = g;/f; with g;, fi € C[V] and fi(p) # 0. The productf = f;--- fx has
the properties tha; € C[V]¢ and f(p) # 0. The localizationC[V]¢ is normal by
Exercise 1.0.7 and is containedd¥y ,, sincef(p) # 0. Hencea € CV ]t C Gy p.
This completes the proof. O

Here is a consequence of Proposition 3.0.11 and Definitidr Q.

Proposition 3.0.12. Let X be an irreducible variety with a cover consisting of
affine open sets,Y Then X is normal if and only if each,\fs normal. O
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Smooth Varieties For an affine variety/, the definition of asmooth point g V
(Definition 1.0.7) used(V), the Zariski tangent space ®f at p, and dim,V,
the maximum dimension of an irreducible componer¥ aontainingp. You will
show in Exercise 3.0.2 thd}(X) and dim, X are well-defined for a poinp € X of
a general variety.

Definition 3.0.13. Let X be a variety. A pointp € X is smoothif dim Tp(X) =
dimp X, andX is smoothif every point ofX is smooth.

Products of Varieties As another example of abstract varieties and gluing, we
indicate why the producX; x X, of varietiesX; andX; also has the structure of

a variety. In 81.0 we constructed the product of affine veset From here, it is
relatively routine to see that X; is obtained by gluing together affine varietlés
andX; is obtained by gluing together affinU%, thenX; x X, is obtained by gluing
together theJ,, x U in the corresponding fashion. Furthermoxg,x X; has the
correct universal mapping property. Namely, given a diagra

w 1

oy
X]_ X X2 7T—1> Xl
k
X2

whereg; : W — X; are morphisms, there is a unique morphismwW — X; x X;
(the dotted arrow) that makes the diagram commute.

Example 3.0.14.Let us construct the produt x C2. Write P1 =V, UV, where
Vo = Spe¢C[u]) andV; = Spe¢C|v]), with the gluing given by

C|v]y =~ CJuly, vi—1/u.
ThenP?! x C? is constructed from
Uo x C2 = SpedC[u] ®c C[x,y]) ~ C*
Uy x C2 = SpedC[V] @¢c C[x,y]) ~ C3,

with gluing given by
(Ug x C?), ~ (Ug x C?),
corresponding to the obvious isomorphism of coordinatgsiin O

Separated VarietiesFrom the point of view of the classical topology, arbitrary
gluings can lead to varieties with some strange properties.

Example 3.0.15.In Example 3.0.14 we saw how to constriitt from affine va-
rietiesVo = Spe¢C|u]) ~ C andV; = Spe¢C]v]) ~ C with the gluing given by
vi— 1/uon open set€* ~ (Vp)y C Vo andC* ~ (V1)y C V1. This expresseB?! as
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consisting ofC* plus two additional points. But now consider the abstracewa
arising from the gluing map

(VO)u — (Vl)v

that corresponds to the map©falgebras defined by— u. As before, the glued
variety X consists ofC* together with two additional points. However here we
have a morphismr : X — C whose fiberr—(a) overa € C* contains one point,
but whose fiber over O consists of two poingg, corresponding to @ Vp and p,
corresponding to @ V;. If U1,U, are classical open sets ¥awith p; € U; and

p2 € Uy, thenU; NU, # (). So theclassicaltopology onX is not Hausdorff. ¢

Since varieties are rarely Hausdorff in the Zariski topgl@gxercise 3.0.5), we
need a different way to think about Example 3.0.15. CondigeproductX x X
and thediagonal mapping\ : X — X x X defined byA(p) = (p, p) for p € X. For
X from Example 3.0.15, there is a morphistnx X — C whose fiber over over 0
consists of the four pointp;, pj). Any Zariski closed subset of x X containing
one of these four points must contain all of them. The imagéhefdiagonal
mapping containgps, p1) and (pz, p2), but not the other two, so the diagonal is
not Zariski closed. This example motivates the followindjrigon.

Definition 3.0.16. We say a varietyX is separatedif the image of the diagonal
mapA : X — X x X is Zariski closed irX x X.

For instanceC" is separated because the image of the diagon@l'in C" =
Sped¢Clxy,..., X, Y1,---,Yn]) is the affine varietW¥ (x3 —ya, ..., X, —Yn). Similarly,
any affine variety is separated.

The connection between failure of separatedness anddafuhe Hausdorff
property in the classical topology seen in Example 3.0.85jeneral phenomenon.

Theorem 3.0.17.A variety is separated if and only if it is Hausdorff in thesdécal
topology. O

Here are some additional properties of separated varigiascise 3.0.6).

Proposition 3.0.18.Let X be a separated variety.
(@) If f,g:Y — X are morphisms, thefy € Y| f(y) = g(y)} is Zariki closed in Y .
(b) If U,V are affine open subsets of X, themWV is also affine. O

The requirement thaX be separated is often included in ttefinition of an
abstract variety. When this is done, what we have called ietyais sometimes
called apre-variety

Fiber Products Finally in this section, we will discuss fiber products ofieties,
a construction required for the discussion of proper mamkiin 83.4. First, if we
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have mappings of sets: X — Sandg: Y — S then thefiber product XxsY is
defined to be

(3.0.5) XxsY ={(xy) e XxY|f(x)=09(y)}.

The fiber product construction gives a very flexible languBmgedescribing or-
dinary products, intersections of subsets, fibers of maspithe set where two
mappings agree, and so forth:

e If Sis a point, therX xgY is the ordinary producX x Y.

e If XY are subsets ddandf,g are the inclusions, theX xsY ~ XNY.

o If Y ={s} C S thenX xsY ~ f~1({s}).
The third property is the reason for the name. All are easyceses that we leave
to the reader.

In analogy with the universal mapping property of the pradiigcussed above,
the fiber product has the following universal property. Wéar we have map-
pings ¢1 : W — X and ¢, : W — Y such thatf o ¢1 = go ¢», there is a unique
v:W — X xgY that makes the following diagram commute.

w é1

v

S

X xg¥Y ——

T

X
lﬂz Jf
Y—5 S
Equation (3.0.5) defines xsY as a set. To prove that xsY is a variety, we

assume for simplicity tha® is separated. Thef: X — Sandg:Y — Sgive a
morphism(f,g) : X xY — Sx S and one easily checks that

"

X xsY = (f,9)H(A(9)),

whereA(S) C Sx Sis the diagonal. This is closed Bix SsinceSis separated,
and it follows thatX xsY is closed inX x Y and hence has a natural structure as
a variety. From here, it is straightforward to show tRat sY has the desired uni-
versal mapping property. Proving that<sY is a variety wherSis not separated
takes more work and will not be discussed here.

In the affine case, we can also describe the coordinate rin¢>ofY. Let
X = SpedRy), Y = Spec¢Ry), andS= Spe¢R). The morphismg, g correspond
to ring homomorphismd™* : R — Ry, g* : R— R,. Hence bothR;, R, have the
structure ofR-modules, and we have the tensor prodecRr R,. This is also a
finitely generatedC-algebra, though it may have nilpotents (Exercise 3.0.9). T
get a coordinate ring, we need to take the quotient by theé e all nilpotents.
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Then one can prove that
X xg¥Y = SpecﬁRl ®R Rz/N).

We can avoid worrying about nilpotents by constructiigsY as theaffine scheme
Spe¢R; ®rR2). Interested readers can learn about the construction ofgioe-
ucts as schemes id§, 1.3.1] and [/ 7, pp. 87-89].

Exercises for 83.0

3.0.1. LetV = Spe€R) be an affine variety.

(a) Show that every ide&lC R can be written in the formh= (fy,..., fs), wherefi e R.
(This is the Hilbert Basis Theorem R)

(b) LetW CV be a subvariety. Show that the complemenf\bin V can be written as a
union of a finite collection of open affine sets of the fovim

(c) Deduce that every open cover \df(in the Zariski topology) has a finite subcover.
(This says that affine varieties agjgasicompacin the Zariski topology.)

3.0.2. As in the affine case, we want to say a varigtys smooth atp if dim Tp(X) =

dimy X. In this exercise, you will show that this is a well-definedion.

(a) Show that ifp € X is in the intersection of two affine open s&tsN Vs, then the
Zariski tangent spacély, , andTy, , are isomorphic as vector spaces otzer

(b) Show that dirgX is a well-defined integer.
(c) Deduce that the proposed notion of smoothnegsatvell-defined.

3.0.3. This exercise explores some properties of the morphismsastkiin Definition 3.0.3.

(a) Prove the claim made in Example 3.0.4. Hint: Take a ppiatV, and definem, =
{f €Ry| f(p) = 0}. Then describéd*)~1(mp) in terms ofd(p).

(b) Prove the properties of morphisms listed on page 96.

3.0.4. Let X be an irreducible abstract variety.

(@) Letf,gbe rational functions oX. Show thatf ~ gif f|, = g|, for some nonempty
open sety C X is an equivalence relation.

(b) Show that the set of equivalence classes of the relatipait (a) is a field.

(c) Show thatifu C X is a nonempty open subsetXfthenC(U) ~ C(X).

3.0.5. Show that a variety is Hausdorff in the Zariski topology ifiaanly if it consists of

finitely many points.

3.0.6. Consider Proposition 3.0.18.

(a) Prove part (a) of the proposition. Hint: Show first tha if Y — X x X is defined by
F(y) = (f(¥),9(y)), thenZ = F~1(A(X)).

(b) Prove part (b) of the proposition. Hint: Show first thRhV can be identified with
AX)N(U xV) T X xX.

3.0.7. LetV = Spe¢R) be an affine variety. The diagonal mappiag V — V x V cor-
responds to &-algebra homomorphisiR®@c R — R. Which one? Hint: Consider the
universal mapping property & x V.
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3.0.8. In this exercise, we will study an important variety i~ x C", the blowup of
C" at the origin, denoted BIC"). This generalizes B(C?) from Example 3.0.8. Write
the homogeneous coordinates®h t asxo, . .., X,—1, and the affine coordinates @ as

V1,...,Yn. Let
(3.0.6) W =Blo(C") = V(x_1yj —Xj_1yi |1 <i< j<n) TPt xC".
LetUi_1,i=1,...,n, be the standard affine opensAf—:

Uip =P\ V(%_1),

i =1,...,n (note the slightly non-standard indexing). So the; x C" form a cover of
P—1xC".
(@) Show that for each=1,...,n,W_; =WnN (Uj_; x C") ~

Xo Xi—2 X Xn—1
Spec| C|——,...,—,—,..., ) Yi
f c( [Xil Xi—1 Xi—1 Xi—1 yl})

using the equations (3.0.6) definiig
(b) Give the gluing data for identifying the subs@éfs 1 \ V (xj_1) andWj_1 \ V(Xi_1).

3.0.9. LetV =V(y?—x) C C2? and consider the morphism: V — C given by projection
onto thex-axis. We will study the fibers aof.

(@) As noted in the text, the fiber—%(0) = {(0,0)} can be represented as the fiber
product{0} xc V. In terms of coordinate rings, we ha{@} = Spe¢C[x]/(X)),
C = Spec¢C[x]) andV = Sped¢C|[x,y]/(y?> — X). Prove that

CIX/(X) @ Cx Y/ = %) = Clyl/y?).
Thus, the coordinate ring3[x]/(x), C[x] andC[x,y]/{y? — x) lead to a tensor product
that has nilpotents and hence cannot be a coordinate ring.
(b) Ifa#0inC, thent—1(a) = {(a,+£+/a@)}. Show that the analogous tensor product is

C[x/(x—a) ®cp C[x,y]/{y* —x) ~ Cly]/(y* — a)
~Chl/{y—va) & Cll/{y+ Va).

This has no nilpotents and hence is the coordinate ringéfa).

What happens in part (a) is that the two square roots coinsil¢hat we get only one
point with “multiplicity 2.” The multiplicity informationis recorded in the affine scheme
Spec¢Cly]/(y?)). This is an example of the power of schemes.

83.1. Fans and Normal Toric Varieties

In this section we construct the toric variety, corresponding to a fair. We will

also relate the varietiess. to many of the examples encountered previously, and
we will see how properties of the fan correspond to propegiech as smoothness
and compactness .
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The Toric Variety of a Fan A toric variety continues to mean the same thing as in
Chapters 1 and 2, although we now allow abstract varietias 83.0.

Definition 3.1.1. A toric variety is an irreducible varietyX containing a torus
Tn ~ (C*)" as a Zariski open subset such that the actiofyafn itself extends to an
algebraic action oy on X. (By algebraic action, we mean an actiggx X — X
given by a morphism.)

The other ingredient in this section is a fan in the vectoce.

Definition 3.1.2. A fan X in Ny is a finite collection of cones such that:
(a) Everyo € X is a strongly convex rational polyhedral cone.
(b) Forallo € X2, each face of is also inX..
(c) Foralloy,02 € X3, the intersectionr; N o is a face of each (hence alsoi).
Furthermore, it is a fan, then:
e Thesupportof X is [X| = [J,cx 0 € Ng.
e X(r) is the set of-dimensional cones of.

We have already seen some examples of fans. Theorem 2.3\2 #hat the
normal fanXp of a full dimensional lattice polytopE C Mg is a fan in the sense
of Definition 3.1.2. However, there exist fans that are natatdo the normal fan
of any lattice polytope. An example of such a fan will be giweExample 4.2.13.

We now show how the cones in any fan give the combinatoria datessary
to glue a collection of affine toric varieties together tdgii@n abstract toric variety.
By Theorem 1.2.18, each condn X gives the affine toric variety

U, = SpecC[S,]) = Spe¢C[s" N M]).

Recall from Definition 1.2.5 that a fase< ¢ is given byr = 0 NHy,, whereme oV
andHm = {u € Nr | (m,u) = 0} is the hyperplane defined log. In Chapter 1, we
proved two useful facts:

First, Proposition 1.3.16 used the equality

(3.1.1) S =So+Z(—m)

to show thatC[S;] is the localizatiorC[S,|,». ThusU, = (U, ),m whent < 0.
Second, ifr = 01N o>, then Lemma 1.2.13 implies that

(3.1.2) o1NHm=7=02NHm,

for someme oy N (—02)¥ NM. This shows that

(3.1.3) Uy 2 (Ugy)ym = Uy = (Uy,)y-m € Uy,

The following proposition gives an additional property betS, and their
semigroup rings that we will need.
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Proposition 3.1.3.If 01,02 € ¥ andT = g1 N oy, then
S:=S6,+Ss,.

Proof. The inclusionS,, +S,, C S, follows directly from the general fact that
o) + 0y = (c1No2)Y = 7Y. For the reverse inclusion, taee S, and assume
thatm € o) N (—02)Y NM satisfies (3.1.2). Then (3.1.1) applieddpgivesp =
q+ ¢(—m) for someg € S,, and/ € Z>o. But—me o implies—me S,,, so that
p < Sy, + So,. O

This result is sometimes called teparation Lemmand is a key ingredient
in showing that the toric varieties: are separated in the sense of Definition 3.0.16.

Example 3.1.4. Let o1 = Conde; + &,€) (as in Exercise 1.2.11), and lep =
Conder, e + &) in Ng = R2. Thent = g1 Nop = Conde; +€). We show the
dual conesr) = Conde;,—e; + &), oy = Conde; —ep,&), andr¥ = o) + o)
in Figure 1.

Figure 1. The conesr1, 02,7 and their duals

The dark shaded region on the rightisnoy. Noter = o1 NHm=o02NH_p,
wherem= —e; + & € 0} and—m=e; — & € o). SinceS is the set of all sums
m+m withme oy "M andm' € 0y NM, we see thab. =S,, +S,,. O

Now consider the collection of affine toric varietids = Spe¢C|[S,|), where
o runs over all cones in a fand. Let o1 ando, be any two of these cones and let
T =01Noy. By (3.1.3), we have an isomorphism

Yo3,01 (UUl)Xm = (Uaz)x*m
which is the identity orJ.. By Exercise 3.1.1, the compatibility conditions as in

§3.0 for gluing the affine varietidd,, along the subvarietied),; ), are satisfied.
Hence we obtain an abstract variedy associated to the fan.

Theorem 3.1.5.LetY be a fan in N. The variety X is a normal separated toric
variety.
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Proof. Since each cone i is strongly convex{0} C N is a face of allo €

Y. Hence we havdy = Spe¢C[M]) ~ (C*)" C U,, for all 0. These tori are all
identified by the gluing, so we havg C Xy. We know from Chapter 1 that each
U, has an action offy. The gluing isomorphisng,, ,, reduces to the identity
mapping onC[S,,ns,]. Hence the actions are compatible on the intersections of
every pair of sets in the open affine cover, and patch togethgive an algebraic
action of Ty on Xs..

The varietyXs is irreducible because all of thé:, are irreducible affine toric
varieties containing the torufy. Furthermorel, is a normal affine variety by
Theorem 1.3.5. Hence the variety, is normal by Proposition 3.0.12.

To see thaKsy, is separated it suffices to show that for each pair of cones,
in X, the image of the diagonal map

A:U; = Uy xUg,, T=01N02

is Zariski closed (Exercise 3.1.2). Bt comes from theC-algebra homomor-
phism
A*: C[Ss,| ®c C[Ss,] — C[S/]
defined byy™® x" — x™™". By Proposition 3.1.3A* is surjective, so that
C[S;] ~ (C[Ss,] ®c C[Sy,]) /ker(A¥).

Hence the image oA is a Zariski closed subset bf;, x U,,. O

Toric varieties were originally known dsrus embeddingsand the varietys,
would be writtenTyembi(X) in older references such as34. Other commonly
used notations ar¥(X), or X(A), if the fan is denoted byA. When we want to
emphasize the dependence on the laficeve will write Xy, asXy; n.

Many of the toric varieties encountered in Chapters 1 andn2ecfsom fans.
For example, Theorem 1.3.5 implies that a normal affine taaitety comes from
a fan consisting of a single cometogether with all of its faces. Furthermore, the
projective toric variety associated to a lattice polytope&hapter 2 comes from a
fan. Here is the precise result.

Proposition 3.1.6. Let PC Mg be a full dimensional lattice polytope. Then the
projective toric variety X ~ Xy, whereXp is the normal fan of P.

Proof. WhenP is very ample, this follows immediately from the descriptiaf the
intersections of the affine open pieces<gfin Proposition 2.3.12 and the definition
of the normal far®p. The general case follows since the normal fanB ahdkP
are the same for all positive integees O

In general, every separated normal toric varieties conws & fan. This is a
consequence of a theorem of Sumihiro fra67].
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Theorem 3.1.7(Sumihiro) Let the torus Jj act on a normal separated variety X.
Then every point g X has a -invariant affine open neighborhood. O

Corollary 3.1.8. Let X be a normal separated toric variety with torug. TThen
there exists a fatu in Ng such that X~ Xs..

Proof. The proof will be sketched in Exercise 3.2.11 after we haweld@ed the
properties ofTy-orbits on toric varieties. O

Examples We now turn to some concrete examples. Many of these areviariic
eties already encountered in previous chapters.

Example 3.1.9. Consider the fart in Nz = R? in Figure 2, whereN = Z2 has

standard basiei, e;. This is the normal fan of the simplek, as in Example 2.3.8.
Here we show all points in the cones inside a rectangularimggwox (all figures

of fans in the plane in this chapter will be drawn using the saonvention.)

Figure 2. The fanX for P2

From the discussion in Chapter 2, we expgt ~ P2, and we will show
this in detail. The far® has three 2-dimensional coneg = Con€e;, &), o1 =
Cond—e; — e,€), and o, = Conde;, —e; — €), together with the three rays
7ij = oiNoj for i # j, and the origin. The toric varietXs, is covered by the
affine opens

Us, = SpecC(Sq]) ~ Spe¢Cx,y])
U,, = Spe¢C|[S,,]) ~ Spe¢C[x1,x1y])
Us, = SpecCIS,,]) ~ SpedClxy *,y]).
Moreover, by Proposition 3.1.3, the gluing data on the cioate rings is given by
010 ClxYlx ~ Cx 4, x Yy
930 Clxyly = Clxy ™y Yy

91 (C[X_1>X_1y]x*1y = C[Xy_1>y_l]xr1'
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Itis easy to see that if we use the usual homogeneous coteslig X1, X2) onP?,
thenx — % andy — % identifies the standard affine opgnC P2 with U, C Xsx.
Hence we have recover@f as the toric varietys.. O

Example 3.1.10. Generalizing Example 3.1.9, I&z = R", whereN = Z" has
standard basie,...,e,. Set
@=-€—€— &

and letX be the fan inNg consisting of the cones generated by all proper subsets
of {ep,...,en}. This is the normal fan of tha-simplex A, and Xy, ~ P" by Ex-
ample 2.3.14 and Exercise 2.3.6. You will check the detailgetify that this gives

the usual affine open cover Bf' in Exercise 3.1.3.

Example 3.1.11.We classify all 1-dimensional normal toric varieties addak.
We may assumbl = Z andNgr = R. The only cones are the intervaig = [0, o)
andoj = (—o0,0] and the trivial cone- = {0}. It follows that there are only four
possible fans, which gives the following list of toric vaigss:

{7}, which givesC*
{o0,7} and{o1,7}, both of which giveC

{00,01,7}, which givesP?.

Here is a picture of the fan fd#':

o1 6 00
This is the fan of Example 3.1.10 when= 1. O

Example 3.1.12.By Example 2.4.8P" x P™M is the toric variety of the polytope
An x Am. The normal fan ofA,, x A, is the product of the normal fans of each
factor (Proposition 2.4.9). These normal fans are destribbé&Example 3.1.10. It
follows that the product fai givesXs; ~ P" x P™,

Whenn = m= 1, we obtain the fait C R? ~ Ny pictured in Figure 3 on the
next page. Here, we can use an elementary gluing argumehbvothat this fan
givesP! x P! Label the 2-dimensional cones = i x o} as above. Then

J

SpegC[Sog)) =~ Clx.Y]
Spe¢C(Ss,]) =~ C[x ]

[Sona)) = Clx 1,y

[Soea]) = Clxy ]

We see that ilg andU; are the standard affine open set@%mthenuc,” ~Uj x U;
and it is easy to check that the gluing makes~ P! x P2, O

Spe¢C[S,,]) ~
SpecC[S,,,]) ~
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10 00

11 01

Figure 3. A fan X with X5 ~ P! x P!

Example 3.1.13.Let N = Nj x Np, with N; = Z" and Ny = 7M. Let Y1 in (Nl)R
be the fan givingP", but let>, be the fan consisting of the cone Céeg...,en)
together with all its faces. Thel = 31 x ¥, is a fan inNg and the the corre-
sponding toric variety i¥s, ~ P" x C™. The caséP! x C? was studied in Exam-
ple 3.0.14. O

Examples 3.1.12 and 3.1.13 are special cases of the folljpgameral con-
struction, whose proof will be left to the reader (Exercisk ).

Proposition 3.1.14. Suppose we have fahg in (N;)g andX; in (N2)g. Then
YixYp={o1X02]|0i €%}

isafanin N x N> and

X21><22 ~ le X Xzz. O

Example 3.1.15. The two conesr; ando, in Ng = R? from Example 3.1.4 (see
Figure 1), together with their faces, form a fan By comparing the descriptions
of the coordinate rings df,, given there with what we did in Example 3.0.8, it is
easy to check thaty, ~ W, whereW C P! x C? is the blowup ofC? at the origin,
defined a®W = V (xoy — x1x) (Exercise 3.1.5).

Generalizing this, leN = Z" with standard basis, ..., e, and then seg =
e1+---+e,. LetX be the fan ifNg consisting of the cones generated by all subsets
of {ep,...,en} not containing{ey, ..., e }. Then the toric variet)y, is isomorphic
to the blowup ofC" at the origin (Exercise 3.0.8). O

Example 3.1.16.Letr € Z>o and consider the fai, in Ng = R? consisting of the
four conessi shown in Figure 4 on the next page, together with all of thedek.



112 Chapter 3. Normal Toric Varieties

Figure 4. Afan X, with Xs, ~ 74

The corresponding toric varielys, is covered by open affine subsets,
Uy, = SpedClx,y]) ~
U,, = SpecCx,y ]) ~ C?
Uy, = SpedCx 1, x "y 1)) ~ C?
Uy, = SpecClx 1, X'y]) =~ C?,

and glued according to (3.1.3). We ca&lt, theHirzebruch surface’.

Example 2.3.15 constructed thational normal scroll §p using the polygon
Pap With b >a > 1. The normal fan oPy,}, is the fanX,_, defined above, so that
as an abstract variet§, p >~ % _a. Note also that#g ~ P* x P1. O

The Hirzebruch surfaceg? will play an important role in the classification of
smooth projective toric surfaces given in Chapter 10.

Example 3.1.17.Let qo,...,0n € Z~o Satisfy gcdqp,...,qn) = 1. Consider the
weighted projective spad®qo,...,qn) introduced in Chapter 2. Define the lattice
N=2Z""1/Z-(tp,...,qn) and letu;, i = 0,...,n, be the images iN of the standard
basis vectors iZ"1, so the relation

QoUo+ -+ Cnln =0

holds inN. Let X be the fan made up of the cones generated by all the proper sub-
sets of{up,...,un}. Wheng; = 1 for all i, we obtainXy, ~ P" by Example 3.1.10.

And indeed X5, ~ P(qo,...,0n) in general. This will be proved in Chapter 5 using
the toric generalization of homogeneous coordinaté®’in

Here, we will consider the special caBgl, 1,2), whereup = —u; — 2u,. The
fan X in Ng is pictured in Figure 5 on the next page, using the plane sghbg
Uy, U. This example is different from the ones we have seen so tarsi@ero, =
Con€ug,u;) = Cong—u; — 2up,up). Thenoy = Cond —up,2u; —up) € M, so the
situation is similar to the case studied in Example 1.2.8dleéd, there is a change
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Figure 5. A fan X with Xs ~ P(1,1,2)

of coordinates defined by a matrix in G, Z) that takesr to the cone withd = 2
from that example. It follows that there is an isomorphidg ~ V (xz—y?) C c?
(Exercise 3.1.6). This is the rational normal caBe hence has a singular point
at the origin. The toric varietXy, is singular because of the singular point in this
affine open subset.

In Example 2.4.6, we saw that the polytope= Conv(0,2e;, &) C R? gives
Xp ~P(1,1,2) and that the normal faBp coincides with the fan shown above(

There is a dictionary between propertiesef and properties of that gener-
alizes Theorem 1.3.12 and Example 1.3.20. We begin with $em@nology. The
first two items parallel Definition 1.2.16.

Definition 3.1.18. Let ¥ C Nr be a fan.

(a) We say is smooth(or regular) if every cones in X is smooth (or regular).
(b) We sayX is simplicial if every cones in X is simplicial.

(c) We sayX is completeif its support|X| = |,y o is all of Ng.

Theorem 3.1.19.Let X be the toric variety defined by a fahC Ng.

(a) Xy is a smooth variety if and only if the fanis smooth.

(b) Xs is an orbifold(that is, X%; has only finite quotient singularitig$ and only
if the fanX is simplicial.

(c) Xsx is compact in the classical topology if and onlylfis complete.

Proof. Part (a) follows from the corresponding statement for afforie varieties,
Theorem 1.3.12, because smoothness is a local propertyn{iefi3.0.13). In
part (b), Example 1.3.20 gives one implication. The otheplication will be
proved in Chapter 11. A proof of part (c) will be given in §3.4. O

The blowup ofC? at the origin (Example 3.1.15) is not compact, since the
support of the cones in the corresponding fan is not alR&f The Hirzebruch
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surfacess; from Example 3.1.16 are smooth and compact because evegyirton
the corresponding fan is smooth, and the union of the con®&2.isThe variety
P(1,1,2) from Example 3.1.17 is compact but not smooth. It is an olbifd has
only finite quotient singularities) since the correspogdian is simplicial.

Exercises for §3.1

3.1.1. Let ¥ be a fan inNg. Show that the isomorphisngs, ., satisfy the compatibility
conditions from 80 for gluing the,, together to creatXs.

3.1.2. Let X be a variety obtained by gluing affine open subg&ts} along open subsets
Vos C V, by isomorphismg,s : Vo s > Vgo. Show thaiX is separated when the image of
A : Vo5 — V, x Vg defined byA(p) = (p,das(p)) is Zariski closed for alty, 5.

3.1.3. Verify that if ¥ is the fan given in Example 3.1.10, th¥g ~ P".
3.1.4. Prove Proposition 3.1.14.

3.1.5.LetN ~Z", letey,...,e, € N be the standard basis anddgt=e; +--- +€,. LetX
be the set of cones generated by all subse{&gf .., e,} not containing{ey,...,e}.

(@) Show thats is a fan inNg.
(b) Construct the affine open subsets covering the correpgroric varietyXs, and
give the gluing isomorphisms.

(c) Show thatXs; is isomorphic to the blowup of" at the origin, described earlier in
Exercise 3.0.8. Hint: The blowup is the subvariety®f! x C" given byW =
V(xy; —Xyi | 1 <i< j<n). CoverW by affine open subsetf =W, and com-
pare those affines with your answer to part (b).

3.1.6. In this exercise, you will verify the claims made in Exampl&.27.

(a) Show that there is a matrixe GL(2,Z) defining a change of coordinates that takes
the cone in this example to the cone from Example 1.2.21, addHie mapping takes
oy to the dual cone.

(b) Show that SpeC|S,,]) ~ V(xz—y?) C C3.

3.1.7. In Ng = R?, consider the far with cones{0}, Conde;), and Coné—e;). Show
thatXs, ~ P! x C*.

83.2. The Orbit-Cone Correspondence

In this section, we will study the orbits for the action@f on the toric varietyXs.
Our main result will show that there is a bijective corregbemce between cones
in ¥ andTy-orbits inXs;. The connection comes ultimately from looking at limit
points ofone-parameter subgroups Ty defined in 81.1.

A First Example. We introduce the key features of the correspondence between
orbits and cones by looking at a concrete example.
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Example 3.2.1.ConsiderP? ~ X, for the fanX from Figure 2 of §3.1. The torus
Ty = (C*)? C P2 consists of points with homogeneous coordindtes,t), s,t # 0.
For eachu = (a,b) € N = Z2, we have the corresponding curveR#:

AU(t) = (1,t3,tD).

We are abusing notation slightly; strictly speaking, the-parameter subgrouy'
is a curve in(C*)?, but we view it as a curve it via the inclusion(C*)? C P2,

We start by analyzing the limit of(t) ast — 0. The limit point inP? depends
onu= (a,b). Itis easy to check that the pattern is as follows:

limit is (1,1,0)
l
° L] [ ] o ° L] [ ] L]
limit is (1,0,0)
° L] (] o o L] ° L]
limit is (0,1,0)
- o——t—e—e+  limitis (1,0,1)
. limitis (1,1,1)

a-e--e--e--0--

limit is (0,0,1)
° L] o ]

T-0--0--0--0--0--

limitis (0,1,1)
Figure 6. lim(_o\"(t) foru= (a,b) € Z2

For instance, supposeb > 0 inZ. These points lie in the first quadrant. Here,
it is obvious that linp_o(1,t,t°) = (1,0,0). Next suppose thai =b < 0 in Z,
corresponding to points on the diagonal in the third quadrfdate that

(L,t3,t°) = (L,t3,t%) ~ (t73,1,1)

since we are using homogeneous coordinate®?n Then —a > 0 implies that
lim{_o(t~2,1,1) = (0,1,1). You will check the remaining cases in Exercise 3.2.1.

The regions oNN described in Figure 6 correspond to cones of theXarin
each case, the set afgiving one of the limit points equals N Relint(o), where
Relint(o) is therelative interiorof a cones € 3. In other words, we have recovered
the structure of the falv by considering these limits!

Now we relate this to th@y-orbits in?2. By considering the descriptid?h? ~
(C3\ {0})/C*, you will see in Exercise 3.2.1 that there are exactly s@xearbits
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in P2
01 = {(X0,X1,X2) | X #0foralli} > (1,1,1)
02 = {(X0,X%1,X2) | X2 =0, andxg,x; # 0} 5 (1,1,0)
O3 = {(X0,X1,X) | xg =0, andxg, X # 0} 5 (1,0,1)
O4 = {(X0,X%1,X2) | X0 =0, andxz,x; # 0} 5 (0,1,1)
Os = {(X0,X1,X2) | X2 =% =0, andxg # 0} = {(1,0,0)}
Og = {(X0,X1,X2) | Xo =% =0, andx; # 0} = {(0,1,0)}

O7 = {(x0,X1,%2) | Xo = X1 = 0, andx, # 0} = {(0,0,1)}.
This list shows that each orbit contains a unique limit poiHence we obtain a
correspondence between comeand orbitsO by

o corresponds t® < tIimo/\“(t) € Ofor all u € Relint(o).
We will soon see that these observations generalize torall\arietiesXs.. O

Points and Semigroup Homomorphismst will be convenient to use the intrinsic
description of the points of an affine toric varidty, given in Proposition 1.3.1.
We recall how this works and make some additional obsemstio

e Points ofU, are in bijective correspondence with semigroup homomaerp\i
v:S, — C. Recall thaS, = ¢V NM andU,, = Spe¢C|[S,]).

e For each cone we have a point df), defined by

1 meS,Not=0ctNM
meS, — )
0 otherwise

This is a semigroup homomorphism singén o' is a face ofsV. Thus, if
m,m €S, andm+m €S, Not, thenmm €S, Not. We denote this point
by ~, and call it thedistinguished pointorresponding te.

e The pointy, is fixed under thdy-action if and only if dino = dimNg (Corol-
lary 1.3.3).

e If 7 <o is aface, then, € U,. This follows sinces C 7.

Limits of One-Parameter Subgroupsin Example 3.2.1, the limit points of one-
parameter subgroups are exactly the distinguished pantthé cones in the fan
of P? (Exercise 3.2.1). We now show that this is true for all affinkctvarieties.

Proposition 3.2.2. Leto C Nk be a strongly convex rational polyhedral cone and
letue N. Then

Uc o< tIirrz))&’(t) exists inU,.

Moreover, if ue Relint(o), thenlim¢_o AY(t) = v,.
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Proof. Givenu € N, we have
tIirrg))\“(t) exists inU, < tIirrg)xm()\“(t)) exists inC forallme S,
— tlir%t<m’“> exists inC for allme S,

<= (mu)>0foralmecs’'NM
< ue(0") =o,
where the first equivalence is proved in Exercise 3.2.2 aadther equivalences
are clear. This proves the first assertion of the proposition
In Exercise 3.2.2 you will also show that whare o NN, lim;_oAY(t) is the
point corresponding to the semigroup homomorphtsm- C defined by

meo’'NM — tlirrét<m’“>.

If ue Relint(c), then(m,u) > 0forallme S, \ o+ (Exercise 1.2.2), anfin,u) =0
if me S, Not. Hence the limit point is precisely the distinguished paipt [

Using this proposition, we can recover the farfrom Xs; cone by cone as in
Example 3.2.1. This is also the key observation needed #pthof of Corol-
lary 3.1.8 from the previous section.

Let us apply Proposition 3.2.2 to a familiar example.

Example 3.2.3.Consider the affine toric variety = V (xy— zw) studied in a num-
ber of examples from Chapter 1. For instance, in Exampld.8,ive showed that
V is the normal toric variety corresponding to a cenehose dual cone is

(3.2.1) o/ = Condey, e, 63,61+ €& — €3),
andV = Spe¢Clo¥ NM]).
In Example 1.1.18, we introduced the toflis= (C*)3 of V as the image of
(3.2.2) (t1,t2,t3) = (ta, b, ta, tatotz ).
Givenu = (a,b,c) € N = Z3, we have the one-parameter subgroup
(3.2.3) AU(t) = (t3tP,tC t3+hc)

contained inv, and we proceed to examine limit points using Propositi¢h23.
Clearly, lim_oA"(t) exists inV if and only if a,b,c > 0 anda+b > c. These
conditions determine the coreC Nk given by

(3.2.4) o =Congey, e, e + €3, + €3).

One easily checks that (3.2.1) is the dual of this cone (Es®r8.2.3). Note
also thatu € Relint(c) meansa,b,c > 0 anda+ b > ¢, in which case the limit
lim;_oAY(t) = (0,0,0,0), which is the distinguished point,. O
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The Torus Orbits Now we turn to thely-orbits in Xs;. We saw above that each
coneor € ¥ has a distinguished point, € U, C Xx. This gives the torus orbit

0(0) = Tn-70 C Xs:.

In order to determine the structure ©fo), we need the following lemma, which
you will prove in Exercise 3.2.4.

Lemma 3.2.4. Let o be a strongly convex rational polyhedral cone in.NLet N,
be the sublattice of N spanned by the points inN, and let No) = N/N,.

(a) There is a perfect pairing
(,):0tNMxN(o) — Z,
induced by the dual pairing, ) : M x N — Z.
(b) The pairing of part(a) induces a natural isomorphism
Homy (o NM,C*) ~ Ty,
where ) = N(0) @z C* is the torus associated to(i). O

To studyO(o) CU,, we recall howt € Ty acts on semigroup homomorphisms.
If pe U, isrepresented by : S, — C, then by Exercise 1.3.1, the pointp is
represented by the semigroup homomorphism

(3.2.5) t-y:m— xM(t)y(m).
Lemma 3.2.5. Leto be a strongly convex rational polyhedral cone in.N'hen
O(0)={y:S, = C|y(m) #0& mecotnNM}
~ Homg (o= NM, C*) ~ Ty ),
where No) is the lattice defined in Lemma 3.2.4.

Proof. The setO’ = {v:S, — C | v(m) # 0< me o NM} containsy, and is
invariant under the action @iy described in (3.2.5).

Next observe that* is the largest vector subspace Mf: contained ino".
Henceo' NM is asubgroupof S, = ¢V NM. If v € O, then restrictingy to
me S, Not = o+ NM yields agroup homomorphisrg : - NM — C* (Exer-
cise 3.2.5). Conversely, i : o "M — C* is a group homomorphism, we obtain
a semigroup homomaorphisme O’ by defining

A(m) ifmeotnM
y(m) = (m) .
0 otherwise.
It follows thatO’' ~ Homy (o N M, C*).
Now consider the exact sequence

(3.2.6) 0— N, — N — N(0) — 0.
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Tensoring withC* and using Lemma 3.2.4, we obtain a surjection
Tn =N®7zC* — Ty = N(0) @2 C* ~ Homy (o NM,C*).
The bijections
TN(o) = Homy (0 NM,C*) =~ Of
are compatible with th@y-action, so thafly acts transtively ol®’. Then~, € O’
implies thatO’ = Ty -7, = O(0), as desired. O

The Orbit-Cone Correspondencelur next theorem is the major result of this
section. Recall that the face relatierx ¢ holds whenr is a face ofs.

Theorem 3.2.6(Orbit-Cone Correspondencelet X be the toric variety of the
fanX in Ng.

(a) There is a bijective correspondence
{coness in ¥} «—— {Ty-orbits inXy}
o «—— O(0) ~ Homy (- N M, C*).
(b) Let n=dimNg. For each coner € ¥, dimO(¢) = n—dimo.
(c) The affine open subset; ik the union of orbits

T0

whereO(r) denotes the closure in both the classical and Zariski togieln

For instance, Example 3.2.1 tells us that¥dt there are three types of cones
and torus orbits:

e The trivial cones = {(0,0)} corresponds to the orb@(c) = Ty C P2, which
satisfies dinO(c) = 2= 2—dimo. This is a face of all the other cones in
¥, and hence all the other orbits are contained in the closutkione by
part (d). Note also that, = O(c) ~ (C*)? by part (c), since there are no
cones properly contained in

e The three 1-dimensional conegjive the torus orbits of dimension 1. Each is
isomorphic toC*. The closures of these orbits are the coordinate ®¥Xg3 in
IP?, each a copy oP!. Note that each is contained in two maximal cones.

e The three maximal cones in the fanX correspond to the three fixed points
(1,0,0),(0,1,0),(0,0,1) of the torus action ofP?. There are two of these in
the closure of each of the 1-dimensional torus orbits.
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Proof of Theorem 3.2.6.Let O be aTy-orbit in Xs. SinceXy is covered by the
Tn-invariant affine open subsdtls. C Xy, andU,, NU,, =U,,ns,, there is a unique
minimal coner € ¥ with O C U,,. We claim thatO = O(o). Note that part (a) will
follow immediately once we prove this claim.

To prove the claim, let € O and consider those € S, satisfyingy(m) # 0.
In Exercise 3.2.6, you will show that theses lie on a face ofrV. But faces o
are all of the formgV N7 for some facer < o by Proposition 1.2.10. In other
words, there is a face < ¢ such that

{meS, |y(m) #£0} =c"NriNM.

This easily impliesy € U.- (Exercise 3.2.6), and then= ¢ by the minimality ofo.
Hence{me S, | v(m) # 0} = - NM, and theny € O(c) by Lemma 3.2.5. This
impliesO = O(o) since two orbits are either equal or disjoint.

Part (b) follows from Lemma 3.2.5 and (3.2.6).

Next consider part (c). We know thdt, is a union of orbits. Ifr is a face ofr,
thenO(7) C U, C U, implies thatO(7) is an orbit contained itJ,. Furthermore,
the analysis of part (a) easily implies that any orbit coradi inU, must equal
O(r) for some facer < o.

We now turn to part (d). We begin with the closure®@fr) in the classical
topology, which we denot®(7). This is invariant undefy (Exercise 3.2.6) and
hence is a union of orbits. Suppose ti¥) C O(r). ThenO(7) C U,, since
otherwiseO(7) NU, = @, which would implyO(7) NU,, = () sinceU,, is open in
the classical topology. Once we ha@ér) C U,, it follows thatr < o by part (c).

Conversely, assume < ¢. To prove thatO(c) C O(r), it suffices to show that

O(7)NO(o) # (. We will do this by using limits of one-parameter subgroups a
in Proposition 3.2.2.

Let v be the semigroup homomorphism corresponding to the digshgd
point of U, sov,(m) = 1if me 7+ NM, and 0 otherwise. Lat € Relint(s), and
fort € C* definey(t) = AY(t) - v,. As a semigroup homomorphism(t) is

m— xM(A(t)) 77 (M) =ty (m).

Note thaty(t) € O(7) for all t € C*since the orbit ofy; is O(r). Now lett — 0.
Sinceu € Relint(o), (mu) >0 if me ¢\ ot, and=0if me o*. It follows
that~(0) = lim¢_p~(t) exists as a point i), by Proposition 3.2.2, and represents
a point inO(cs). But it is also in the closure oD(7) by construction, so that
O(o)NO(T) # 0. This establishes the first assertion of (d), and

o(r) = J 0l0)

T=0

follows immediately for the classical topology.
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It remains to show that this set is also the Zariski closureielintersectO()
with an affine open subsk,., parts (c) and (d) imply that

omnu, = U o).

T7=0'<0
In Exercise 3.2.6, you will show that this is the subvarié{yf) C U, for the ideal

(3.2.7) l=(x"|mertn(c’)NM)CC[(c")VNM] =S,

This easily implies that the classical clos@ér) is a subvariety oKXy, and hence
is the Zariski closure oD(7). O

Orbit Closures as Toric VarietiesIn the example o2, the orbit closure©(7)
also have the structure of toric varieties. This holds inegah We use the notation

V(1) =0O(r).
By part (d) of Theorem 3.2.6, we have< ¢ if and only if O(¢) CV(7), and

V(r) =[] 0(o).

70

The torusO(7) = Ty(r) is an open subset of (1), whereN(7) is defined in
Lemma 3.2.4. We will show that () is a normal toric variety by constructing
its fan. For each cone € X containingr, leta be the image cone iN(7)r under
the quotient map

Ng — N(7)r
in (3.2.6). Then
(3.2.8) Stafr) = {7 CN(7)r | T 20 € X}
is a fan inN(7)r (Exercise 3.2.7).

Proposition 3.2.7. For any T € 3, the orbit closure \(7) = O(r) is isomorphic to
the toric variety X,

Proof. This follows from parts (a) and (d) of Theorem 3.2.6 (Exex@2.7). O

Example 3.2.8.Consider the faiX in Nr = R3 shown in Figure 7 on the next page.
The support of is the cone in Figure 2 of Chapter 1, ainds obtained from this
cone by adding a new 1-dimensional coné the center and subdividing. The
orbit O(7) has dimension 2 by Theorem 3.2.6. By Proposition 3.2.7, thé o
closureV (7) is constructed from the cones Bfcontainingr and then collapsing
7 to a point inN(7)r = (N/N;)r ~ R?. This clearly gives the fan fdP* x P, so
thatV (7) ~ P! x PL. O
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Figure 7. The fanX and its 1-dimensional cone

A nice example of orbit closures comes from the toric varigsyof a full
dimensional lattice polytopB C Mg. Here, we use the normal faty of P, which
by Theorem 2.3.2 consists of cones

(3.2.9) oq = Condur | F is a facet ofP containingQ)

for each face) < P. Recall thatu is the facet normal of.

The basic idea is that the orbit closurédiizg) is the toric variety of the lattice
polytopeQ. SinceQ need not be full dimensional ik, we need to be careful.
The idea is to translate by a vertex ofQ so that the origin is a vertex @. This
affects neithe®p nor Xp, butQ is now full dimensional in Spg®) and is a lattice
polytope relative to Spd@) N M. This gives the toric variet)Xq, which is easily
seen to be independent of how we translate to the origin. iderer result.

Proposition 3.2.9. For each face Q< P, we have Voq) ~ Xg.

Proof. We sketch the proof and leave the details to reader (Exe3cks8). Let
P={me Mg | (mug) > ar for all facetsF < P}

be the facet presentation Bf The facets oP containingQ also contain the origin,
so thatag = O for these facets. This implies that

og = SparQ),
and therN(oq) is dual to SpafQ) N M. Note also thaN(oq)r = Nr/Sparioq).

To keep track of which polytope we are using, we will write ttane (3.2.9)
associated to a fag@ < P asog p. ThenXp andXq are given by the normal fans

Yp= {O’Qgp C Nr ’ Ql < P}
Yq={og.Q S N(ogp)r | Q' < Q}.
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By Proposition 3.2.7, the toric varieW(oq) =V (0qgp) is determined by the fan
Staogp) ={7 | ogp <0 € Xp}
={oqrloop<ogpepr}={ogr|Q =Q}
Then the proposition follows once one proves #@tp = o o. O

Final Comments The technique of using limit points of one-parameter subgso
to study a group action is also a major tool in Geometric liawdrTheory as in
[127], where the main problem is to construct varieties (or gmgsnore general
objects) representing orbit spaces for the actions of afgelgroups on varieties.
We will apply ideas from group actions and orbit spaces tcsthdy of toric vari-
eties in Chapters 5 and 14.

We also note the observation made in part (d) of Theorem hat@orus orbits
have the same closure in the classical and Zariski topdogier arbitrary subsets
of a variety, these closures may differ. A torus orbit is aaragle of aconstructible
subset and we will see in §3.4 that constructible subsets havedheeslassical
and Zariski closures since we are working o{er

Exercises for §3.2
3.2.1. In this exercise, you will verify the claims made in Exampl2.3 and the following
discussion.

(a) Show that the remaining limits of one-parameter subgs@®3 are as claimed in the
example.

(b) Show that théC*)?-orbits inP? are as claimed in the example.

(c) Show that the limit point equals the distinguished peinbf the corresponding cone
in each case.

3.2.2. Let o C Nr be a strongly convex rational polyhedral cone. This exerail con-

sider lim_,o f(t), wheref : C* — Ty is an arbitrary function.

(a) Prove that lim.,o f(t) exists inU, if and only if lim;_o x™(f(t)) exists inC for all
me S,. Hint: Consider a finite set of characterssuch thaS, = N7

(b) When lim_,o f(t) exists inU,,, prove that the limit is given by the semigroup homo-
morphism that maps € S, to lim¢_o x™(f(t)).

3.2.3. Consider the situation of Example 3.2.3.

(@) Show thatthe conesin (3.2.1) and (3.2.4) are dual.

(b) Identify the limits of all one-parameter subgroups irs tbxample, and describe the
Orbit-Cone Correspondence in this case.

(c) Show that the matrix
1 1 -
A= 10 O
-1 0 1

defines an automorphism hf~ Z3 and the corresponding linear mapg maps the
cones” too.
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(d) Deduce that the affine toric varietids andU,v are isomorphic. Hint: Use Proposi-
tion 1.3.15.

3.2.4. Prove Lemma 3.2.4.

3.2.5.Let O’ be as defined in the proof of Lemma 3.2.5. In this exercisewitt@omplete
the proof thatD' is aTy-orbitin U,.

(@) Show thatify € O, theny : 0 "M — C* is a group homomorphism.

(b) Deduce tha®’ has the structure of a group.

(c) Verify carefully that we have an isomorphism of gro@s~ Homy (o "M, C*).

3.2.6. This exercise is concerned with the proof of Theorem 3.2.6.

(@) Lety:S, — C be a semigroup homomorphism giving a pointlgf. Prove that
{meS, |v(m)+#£0} =TNM for some facd” < 5.

(b) ShowO(r) is invariant under the action dy.

(c) Prove thaO(7)NU,- is the variety of the idedl defined in (3.2.7).

3.2.7. LetT be a cone in a fai, and let Stafr) be as defined in (3.2.8).
(a) Show that Star) is a fan inN(7)g.
(b) Prove Proposition 3.2.7.

3.2.8. Supply the details omitted in the proof of Proposition 3.2.9

3.2.9. Consider the action ofy on the affine toric variety),. Use parts (c) and (d) of
Theorem 3.2.6 to show th&X(o) is the unique closed orbit @ acting onJ,.

3.2.10.In Proposition 1.3.16, we saw thatifis a face of the strongly convex rational poly-
hedral coner in Ng thenU, = Spe¢C|[S-]) is an affine open subset 0f, = Spe¢C|S,)).

In this exercise, you will prove the converse, i.e., that if o and the induced map of
affine toric varieties) : U, — U, is an open immersion, then< o, i.e., 7 is a face ofr.

(a) Letu,u’ € NNno, and assume+ U’ € 7. Show that
tIi_r‘)rg))\“(t) -tli_r%)\“ (t) e U,.
(b) Show that linp_,o \"(t) and lim_, AV (t) are each itJ,.. Hint: Use the description of
points as semigroup homomorphisms.
(c) Deduce that, U’ € 7, soT is a face ofr.
3.2.11.Inthis exercise, you will use Proposition 3.2.2 and Thedde?rb to deduce Corol-

lary 3.1.8 from Theorem 3.1.7.

(a) By Theorem 3.1.7, and the results of Chapter 1, a sebi@ie variety has an open
cover consisting of affine toric varietiels = U,,, for some collection of coneg. Show
that for alli, j, Ui NUj is also affine. Hint: Use the fact thitis separated.

(b) Show thatJ; NUj is the affine toric variety corresponding to the cane: o N oj.
Hint: Exercise 3.2.2 will be useful.

(c) If 7 =0yN0oj, then show that is a face of botty; ando;. Hint: Use Exercise 3.2.10.
(d) Deduce thaK ~ Xy, for the fan consisting of the; and all their faces.
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§3.3. Toric Morphisms

Recall from §3.0 that iX andY are varieties with affine open covexs= U,
andY = UB Ué, then a morphisng : X — Y is a Zariski-continuous mapping such
that the restrictions

are morphisms in the sense of Definition 3.0.3 foraalb.

In 81.3 we definedoric morphismsbetween affine toric varieties and studied
their properties. When applied to arbitrary normal torideties, these results yield
a class of morphisms whose construction comes directly frencombinatorics of
the associated fans. The goal of this section is to stud thigscial morphisms.

Definition 3.3.1. Let Np, N, be two lattices with:; a fan in(N;)g andX, a fan in
(N2)r. A Z-linear mappingp : N; — Ny is compatiblewith the fansy; and¥; if
for every coner; € X1, there exists a cong, € X, such thatpg (o1) C 0.

Example 3.3.2.Let Ny = Z2 with basise;, e and letY,; be the fan from Figure 4
in 83.1. By Example 3.1.16Xy, is the Hirzebruch surfacg?;. Also letN, = Z
and consider the fal giving P*:

o

01 00

as in Example 3.1.11. The mapping
¢:NL— Nz,  ae+be—a

is compatible with the fank; andX since each cone ai; maps onto a cone af.
If r £ 0, on the other hand, the mapping

¢¥:Ni— N,  ae+ber—b
is not compatible with these fans singgc >, does not map into a cone bf ¢

The Definition of Toric Morphism In 81.3, we defined a toric morphism in the
affine case and gave an equivalent condition in PropositiBrild. For general
toric varieties, it more convenient to take the result ofgésition 1.3.14 as the
definitionof toric morphism.

Definition 3.3.3. Let X5, Xs;, be normal toric varieties, witlki; a fan in(Np)r
andX; a fan in(N2)gr. A morphisme : Xs;;, — Xy, is toric if ¢ maps the torus
Ty, € Xy, into Ty, € Xy, and¢|, s a group homomorphism.

1
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The proof of part (b) of Proposition 1.3.14 generalizeslgasishow that any
toric morphism¢ : Xy, — Xy, is anequivariant mappindor the Ty,- and Ty,-
actions. That is, we have a commutative diagram

TN1 X Xz;l —_— Xz;l

(3.3.1) mg% ld’
TN2 X Xz;z E— Xz;z

where the horizontal maps give the torus actions.

Our first result shows that toric morphisms Xs;; — Xy, correspond tdZ-
linear mappings : Ny — N> that are compatible with the fang and>,.

Theorem 3.3.4.Let N, N, be lattices and leE; be a fan in(N;)g, i = 1,2.

(@) If ¢ : Ny — N, is aZ-linear map that is compatible with; and,, then there
is a toric morphismyp : Xs;; — Xy, such thath\TN is the map
1

d®@1: N1 ®zC* — Np®zC*.

(b) Conversely, ity : Xs; — Xy, is a toric morphism, thew induces aZ-linear
map¢ : N; — N, that is compatible with the fars; and X».

Proof. To prove part (a), let; be a cone ir21. Since¢ is compatible with>;
andY,, there is a cone, € ¥, with ¢ (01) C o2. Then Proposition 1.3.15 shows
that ¢ induces a toric morphism,, : U,, — U,,. Using the general criterion for
gluing morphisms from Exercise 3.3.1, you will show in Exeec3.3.2 that the
¢o, glue together to give a morphism: X5, — Xs,. Moreover, ¢ is toric be-
cause takingr, = {0} givesg gy : Tn, — Tn,, Which is easily seen to be the group
homomorphism induced by tf#&linear mapp : Ny — No.

For part (b), we show first that the toric morphigtrinduces aZ-linear map
¢ : Ny — Np. This follows sinceqﬁ\TN is a group homomorphism. Hence, given
1

u € Ny, the one-parameter subgrodp: C* — Ty, can be composed WifrhITN to
1
give the one-parameter subgroc&prN oA': C* — Ty,. This defines an element
1

¢(u) € Ny. Itis straightforward to show that: N; — N, is Z-linear.

It remains to show that is compatible with the fans; andX,. Because of the
equivariance (3.3.1), eadky, -orbit O; C Xy, is mapped into dy,-orbit O, C Xy, .
By the Orbit-Cone Correspondence (Theorem 3.2.6), &ggcbrbit is O, = O(o1)
for some conery in 31, and similarly eacfTy,-orbit is O, = O(o2) for some cone
o2 in X,. Furthermore, ifr; < o7 is a face, then by the same reasoning, there is
some coner in ¥ such thatp(O(71)) C O(72).

We claim that in this situation, must be a face of,. This follows since
O(o) C O(r) by part (d) of Theorem 3.2.6. Singgis continuous in the Zariski

topology,¢ <0(71)> C O(72). But the only orbits contained in the closure@(rz)
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are the orbits corresponding to cones which havas a face. Sa, is a face ofr».
It follows from part (c) of Theorem 3.2.6 thdtalso maps the affine open subset
Uy, € Xy, intoU,, € Xy, i€,

(3.3.2) ®(Us,) CUg,.

Hencep induces a toric morphistd,, — U,,, which by Proposition 1.3.15 implies
thatgg (1) C 0. Henceg is compatible with the fang; and,. O

First Examples Here are some examples of toric morphisms defined by mappings
compatible with the corresponding fans.

Example 3.3.5.LetN; = Z2 andN, = Z, and let
¢:Ny—No,  ae+ber—a,

be the first mapping in Example 3.3.2. We saw thas compatible with the fans
¥, of the Hirzebruch surface? and¥ of PL. Theorem 3.3.4 implies that there is
a corresponding toric morphism: .7 — PL. We will see later in the section that
this mapping gives’ the structure of @1-bundle oveiP?. O

Example 3.3.6.Let N = Z" andX be a fan ilNg. For/ € Z~ ¢, the multiplication
map

¢p:N— N, ar—/-a
is compatible withX. By Theorem 3.3.4, there is a corresponding toric morphism
¢ : X3 — Xs; whose restriction tdy C Xy, is the group endomorphism

il (t1, . tn) = (tf,...,th.

For a concrete example, [Etbe the fan ifNg = R? from Figure 2 and také = 2.
Then we obtain the morphisgy, : P? — P? defined in homogeneous coordinates
by ¢2(X0, X1, %2) = (X3,%2,%3). We will use¢, in Chapter 9. O

Sublattices of Finite Index We get an interesting toric morphism when a lattice
N’ has finite index in a larger lattidd. If X is a fan inNg, then we can vievt as

a fan either ifNg or in Ng, and the inclusiotN’ — N is compatible with the faix

in N andNg. As in Chapter 1, we obtain toric varieti&s; - andXs; y depending
on which lattice we consider, and the inclusidh— N induces a toric morphism

¢: Xe N — XoN-

Proposition 3.3.7. Let N be a sublattice of finite index in N and [Etbe a fan in
Nr = Ni. Let G=N/N’. Then

¢ : XN — XN

induced by the inclusion N— N presents X \ as the quotient X/ /G.
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Proof. SinceN’ has finite index ilN, Proposition 1.3.18 shows that the finite group
G = N/N’is the kernel ofTyy — Ty. It follows thatG acts onXs; n/. This ac-
tion is compatible with the inclusiob, n» € X5, v for each coner € X. Using
Proposition 1.3.18 again, we see thhty /G ~ U, n, Which easily implies that
XZ,N’/G ~ XEJ\]. O

We will revisit Proposition 3.3.7 in Chapter 5, where we vghHow that the
mapg : Xy nv — Xson IS @ageometric quotient

Example 3.3.8.Let N = Z2, and¥. be the fan shown in Figure 5, $6: 5 gives
the weighted projective spa@1,1,2). Let N’ be the sublattice oN given by
N'={(a,b) e N|b=0 mod 2, soN’ has index 2 ifN. Note thatN’ is generated
by u; = e1, up = 26, and that

U=—-6—-26=-Uu—UcN.

Let ¢ : N’ — N be the inclusion map. It is not difficult to see that with respe
the latticeN’, Xs; » ~ P2 (Exercise 3.3.3). By Theorem 3.3.4, thdinear maps
induces a toric morphism : P? — P(1,1,2), and by Proposition 3.3.7, it follows
thatP(1,1,2) ~ P?/Gfor G=N/N' ~ Z/27.

Figure 8. The semigroupsy NM andoy NM’

The coneo, from Figure 5 has the dual corg shown in Figure 8. It is
instructive to consider howy interacts with the latticé!’ dual toN’. One checks
thatM’ ~ {(a,b/2) : a,b € Z} ando; = Cond2e; — &, —&). In Figure 8, the
points inoy N M are shown in white, and the points ¢ "M’ not in oy NM
are shown in black. Note that the picturedti "M is the same (up to a change
of coordinates in G[2,7Z)) as Figure 10 from Chapter 1. This shows again that
P(1,1,2) contains the affine open sub4#y, N isomorphic to the rational normal
coneéz. On the other hant,, ' ~ C? is smooth. The other affine open subsets
corresponding te; andog are isomorphic t&? in both P2 and inP(1,1,2). ¢
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Torus Factors A toric variety Xs: has atorus factorif it is equivariantly isomor-
phic to the product of a nontrivial torus and a toric varietgmaller dimension.

Proposition 3.3.9. Let Xx, be the toric variety of the fak. Then the following are
equivalent:

(a) Xy has a torus factor.

(b) There is a nonconstant morphisng X- C*.

(c) The y,, p € ¥(1), do not span .

Recall that>(1) consists of the 1-dimensional conesfi.e., its rays, and
thatu, is the minimal generator of a raye »(1).

Proof. If Xy ~ X5 x (C*)" for r > 0 and some toric varieti s, then a nontrivial
character of C*)" gives a nonconstant morphisg, — (C*)" — C*.

If ¢: Xs; — C* is a nonconstant morphism, then Exercise 3.3.4 impliestieat
restriction of¢ to Ty is cx™ wherec € C* andm < M. Multiplying by ¢c1, we
may assume tha;t|TN = x™. Then¢ is a toric morphism coming from a surjective

homomorphismy : N — Z. SinceC* comes from the trivial fanp maps all cones

of X to the origin. Hence, € ker(¢) for all p € X(1), so theu,, do not sparNg.
Finally, suppose that the,, p € 3(1) span a proper subspaceMf. ThenN’ =
Sparfu, | p € 3(1)) NN is proper sublattice dfl such thaiN/N’ is torsion-free, so
N’ has a complemerit” with N = N’ x N”. Furthermore}. can be regarded as a
fan X' in N, and thenX is the product fark = ' x ¥, whereX" is the trivial
fan inNg. Then Proposition 3.1.14 gives an isomorphism
XE ~ XE/,N/ X TN// ~ XE/,N/ X ((C*)n—k’

where dimNg = nand dimNg = k. O

In later chapters, torus varieti®@athout torus factors will play an important
role. Hence we state the following corollary of Proposit8.9.

Corollary 3.3.10. Let X be the toric variety of the fal. Then the following are
equivalent:

() Xx has no torus factors.

(b) Every morphism X — C* is constant, i.e.I'(Xs, Ox,,)* = C*.

(c) The y,, p € X(1), span M. O

We can also think about torus factors from the point of viewsublattices.

Proposition 3.3.11.Let N' C N be a sublattice witllimNr = n, dimNg = k. Let
¥ be afan in N, which we can regard as a fan ingN\

(a) If N” is spanned by a subset of a basis of N, then we have an isoraorphi
¢ XN~ Xy % Ty = X x ().
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(b) In general, a basis for Ncan be extended to a basis of a sublattice NN of
finite index. Then Xn is isomorphic to the quotient of

n—k
Xe N7 = XN X Ty v =2 Xg v X (CF)

by the finite abelian group NN”.

Proof. Part (a) follows from the proof of Proposition 3.3.9, andtpé) follows
from part (a) and Proposition 3.3.7. a

Refinements of Fans and BlowupsGiven a fanY in Ng, a fan’ refinesX if
every cone obY is contained in a cone af and|>’| = |X|. Hence every cone af
is a union of cones af’. WhenX.'’ refinesy, the identity mapping oiN is clearly
compatible with¥’ andX. This yields a toric morphism : X5 — Xs..

Example 3.3.12.Consider the fart’ in N ~ Z? pictured in Figure 1 from §3.1.
This is a refinement of the faR consisting of Conge;,e) and its faces. The
corresponding toric varieties axg; ~ C? andXs; ~W = V (xgy — X1x) C P x C?,
the blowup ofC? at the origin (see Example 3.1.15). The identity majNanduces
a toric morphismp : W — C2. This “blowdown” morphism mapg? x {0} CW to
0 € C? and is injective outside dF* x {0} in W. O

We can generalize this example and Example 3.1.5 as follows.

Definition 3.3.13. Let X be a fan inNg ~ R". Let 0 = Con€uy,...,u,) be a
smooth cone ik, so thatuy, ..., Uy is a basis folN. Letug =u; +--- +u, and let
Y'(o) be the set of all cones generated by subsetfugf...,u,} not containing
{ug,...,un}. Then

X o) = (E\{e}) U (o)
is a fan inNg called thestar subdivisionof X alongo.

Example 3.3.14.Let 0 = Conguy, Uz, U3) C N ~ R3 be a smooth cone. Figure 9
on the next page shows the star subdivision ofto three cones

Condug, Uz, Uz), Congug, Uy, us), Condup, Uy, Us).
The fanX*(o) consists of these cones, together with their faces. O
Proposition 3.3.15. X% (o) is a refinement of, and the induced toric morphism
¢ : X+ () — X5

makes X- () the blowup of X at the distinguished poinf, corresponding to the
coneo.

Proof. SinceX andX*(o) are the same outside the canewithout loss of gener-
ality, we may reduce to the case thais the fan consisting of and all of its faces,
andXy is the affine toric variety),, ~ C".
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Figure 9. The star subdivisio* (o)

Under the Orbit-Cone Correspondence (Theorem 3.2.6nrresponds to the
distinguished pointy,, the origin (the unique fixed point of the torus action). By
Theorem 3.3.4, the identity map dhinduces a toric morphism

(;5 : XE*(U) - Ua ~C".

Itis easy to check that the affine open sets coveXing,, are the same as for the
blowup of C" at the origin from Exercise 3.0.8, and they are glued togéththe
same way by Exercise 3.1.5. a

The blowupXs; at~, is sometimes denoted Bl(Xs;). In this notation, the
blowup of C" at the origin is written BJ(C").

The point blown up in Proposition 3.3.15 is a fixed point of tbris action.
In some cases, torus-invariant subvarieties of larger déa have equally nice
blowups. We begin with the affine case. The standard lmsis. , e, of Z" gives
o = Condey,...,e,) with U, = C", and the face = Condey,...,& ), 2<r <n,
gives the orbit closure

V(7)=0(r) = {0} xC"".
To construct the blowup of (7), letup = us + - - - + U, and consider the fan
(3.3.3) Y*(r) ={CondA) | AC {ug,...,Un}, {u1,...,u } ZA}.

Example 3.3.16.Let 0 = Conder, e, e3) C Ng ~ R3 andr = Condey, e;). The
star subdivision relative to subdividess into the cones

Condep, €1,€3), Congep, e, €3),

as shown in Figure 10 on the next page. TheXa(r) consists of these two cones,
together with their faces. O



132 Chapter 3. Normal Toric Varieties

Figure 10. The star subdivisioX* ()

For the fan (3.3.3), the toric varied:- (. is the blowup of{0} x C"™" C C".
To see why, observe that*(7) is a product fan. NamelyZ" = Z' x Z"~", and

Y (1) =31 x Xa,
whereY.; is the fan for B§(C") (coming from a refinement of Cofw,...,ur))
andX:; is the fan forC"~" (coming from Conéu,;1,...,uy)). It follows that
XE*(T) = B|o((cr) x C" .

Since B(C") is built by replacing 0= C" with P'—1, it follows that X5y (r) =
Blo(C") x C"" is built by replacing{0} x C"™" C C" with P"~1 x C"™". The
intuitive idea is that BJ(C") separates directions through the originGh, while
the blowup Blg, , oo+ (C") = Xs+ () separatesormaldirections to{0} x C™" in
C". One can also study %ch—r((cn) by working on affine pieces given by the
maximal cones oE*(7)—see [L34, Prop. 1.26].

We generalize (3.3.3) as follows.

Definition 3.3.17. Let X be a fan inNg ~ R" and assume < X has the property
that all cones oE containingr are smooth. Leti, =) | u, and for each cone
o € X containingr, set

¥5(m) ={CondA) |AC {u-}Uc(1), 7(1) Z A}
Then thestar subdivisionof ¥ relative tor is the fan

S r)={cex|r goyu ] Zi(m).

7Co

peT(1)

The fanX*(7) is a refinement oE and hence induces a toric morphism

(25 : XZ*(T) — Xz;.
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Under the mapp, Xs-(-) becomes the blowup §|.)(Xs) of Xs along the orbit
closureV (7).

In Chapters 10 and 11 we will use toric morphisms coming frayereralized
version of star subdivision to resolve the singularitiesooic varieties.

Exact Sequences and FibrationsNext, we consider a class of toric morphisms
that have a nice local structure. To begin, consider a giwgeZ-linear mapping
¢:N—-N.
If ¥ in Ng andX’ in Ng are compatible witlp, then we have a corresponding toric
morphism
(25 : XZ — le.

Now let Np = ker(¢), so that we have an exact sequence

(3.3.4) 0— Ny — NN — 0.
It is easy to check that
20:{U€E|UQ(N0)R}
is a subfan of- whose cones lie itiNg)r € Ng. By Proposition 3.3.11,
(3.3.5) Xsio,N = XszgNg X T

sinceN/No ~ N’. Furthermore is compatible with:g in N and the trivial fan
{0} in Ng. This gives the toric morphism

¢|X207N : XN — Tnre
In fact, by the reasoning to prove Proposition 3.3.4,
(3.3.6) ¢_1(TN/) = X53o,N = Xsg No X T

In other words, the part oy, lying over Ty C Xy is identified with the product
of Ty and the toric varietys;, n,. We say this subset ofs. is afiber bundleover
T with fibengmNo.

When the fan has a suitable structure relative gowe can make a similar
statement for every torus-invariant affine open subsétof

Definition 3.3.18. In the situation of (3.3.4), we sa&y is split byY’ andX if there
exists a subfal C X such that:

(@) ¢x maps each cornec 5 bijectively to a coner’ € ¥’ such that — o’ defines
a bijectionY — X',

(b) Given cones € S andog € Xo, the sums + oy lies in X, and every cone of
Y. arises this way.
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Theorem 3.3.19.If ¥ is split by >’ and Xg as in Definition 3.3.18, thenyXis a
locally trival fiber bundle over X with fiber X, n,, i.€., X' has a cover by affine
open subsets U satisfying

¢_1(U) ~ X207No xU.
Proof. Fix ¢’ in ¥’ and let¥ (o) = {0 € | ¢(c) C o’}. Then
¢ M Uor) = Xsy(or).-
It remains to show thaXs,,) =~ X5, N, X Ugr. SinceXi(o’) is split by Yo N3(o’)

andX N ¥(0’), we may assums, = U,.. In other words, we are reduced to the
case whert) consists ob’ and its proper faces.

A Z-linear mapw : N’ — N splitsthe exact sequence (3.3.4) providgd7 is
the identity onN’. A splitting induces an isomorphism

No X NI ~ N.
By Definition 3.3.18, there is a coree S such thaip, mapsa bijectively too’.

Usirp o, one can find a splittingg with the property thatg maps7’ to 7 for all
7 € X (Exercise 3.3.5). Using Definition 3.3.18 again, we see that

(NO)R X Nﬁ{ ~ N]R

carries the product fafXo, (No)r) % (X,Ng) to the fan(X,Ng). By Proposi-
tion 3.1.14, we conclude that

XZ ~ XEO,NO X XE’ ~ XZO,NO X Ua/7
and the theorem is proved. O
Example 3.3.20.To complete the discussion from Examples 3.3.2 and 3.3, co
sider the toric morphism : 74 — P! induced by the mapping

$:7° —17, ae +be—a.
The fany, of 7% is split by the fan ofP! and %o = {0 € % | ér(c) = {0}}
because of the subfan of 3, consisting of the cones

Cong—e; +rey), {0},Congley).

These cones are mapped bijectively to the coné¥ imdergg. Note also thakg
consists of the cones

Cone(ez), {0}7 Conq_ez)'
The fansY and¥ are shown in Figure 11 on the next page.

As we vary over alb € ) andog € X, the sums + o give all cones of.
Hence Theorem 3.3.19 shows th#f is a locally trivial fibration overP!, with
fibers isomorphic to

X207N0 ~ Pl,
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Figure 11. The Splitting of the Farx;

whereNp = ker(¢) gives the vertical axis in Figure 11. This fibration is notiggty
trivial whenr > 0, i.e., it is not true thap# ~ P x P1. There is some “twisting”
on the fibers involved when we try to glue together #e (U, ) ~ U, x P to
obtainJs#4. O

We will give another, more precise, description of theserfinmdles and the
“twisting” mentioned above using the language of sheavé&shiapter 7.

Images of Distinguished PointsEach orbitO(c) in a toric varietyXs, contains
a distinguished point,,, and each orbit closuré(o) is a toric variety in its own
right. These structures are compatible with toric morpkisi follows.

Lemma 3.3.21.Let ¢ : X5, — X5y be the toric morphism coming from a map
N — N’ thatis compa_tible with and Y. Giveno € ¥, leto’ € ¥’ be the minimal
cone ofY’ containing¢g (o). Then:

(@) ¢(7v5) =, Wherey, € O(c) and~, € O(o’) are the distinguished points.
(b) $(0(0)) C O(c”) and$(V (o)) C V(o).
(c) The induced mapy, :V(o) — V(o) is a toric morphism.

Proof. First observe that if},0% € ¥’ containgg (o), then so does their intersec-
tion. HenceX' has a minimal cone containingg (o).
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To prove part (a), pick € Relint(o) and observe that(u) € Relint(c’) by the
minimality of o’. Then

QS(’YU) = ¢(I|mt—>0)‘u(t)) = Ilmt—>0¢()‘u(t)) = IImt—»O)‘g(U) (t) = Yo',
where the first and last equalities use Proposition 3.2.2.

The first assertion of part (b) follows immediately from p@} by the equiv-
ariance, and the second assertion follows by continuitygasil, we get the same
closure in the classical and Zariski topologies).

For (c), observe tha;tyo(o) : O(0) — O(0’) is a morphism that is also a group
homomorphism—this follows easily from equivariance. ®irlce orbit closures
are toric varieties by Proposition 3.2.7, the mMap ) :V (o) — V(o') is a toric
morphism according to Definition 3.3.3. O

Exercises for §3.3

3.3.1. Let X be a variety with an affine open covd; }, and letY be a second variety. Let
¢i : Ui — Y be a collection of morphisms. We say that a morphisnX — Y is obtained
by gluing theg; if Ply, = i for all i. Show that there exists suchya X — Y if and only if
for every pain, j,

¢i |UiﬂU] = (bj |UiﬁUj !
3.3.2. Let Ny, N; be lattices, and IeE; in (Ny)g, £2 in (N2)g be fans. Lets: N; — N, be
aZ-linear mapping that is compatible with the correspondangst Using Exercise 3.3.1

above, show that the toric morphisms, : U,, — U,, constructed in the proof of Theo-
rem 3.3.4 glue together to form a morphismXs, — Xs,.

3.3.3. This exercise asks you to verify some of the claims made imipta 3.3.8.

(@) Verify thatXs; v ~ P2 with respect to the lattichl’.

(b) Verify carefully that the affine open sub&ét, n ~ Cy, whereC, is the rational normal
coneéd withd = 2.

3.3.4. A charactery™, me M, gives a morphisiiy — C*. Here you will determinall

morphismshy — C*.

(a) Explain why morphism$y — C* correspond to invertible elements in the coordinate
ring of Ty.

(b) Letc € C* anda € Z". Prove thatct® is invertible inC[t;*, ... t;1] and that all
invertible elements of [t ... Y] are of this form.

(c) Use part (a) to show that all morphisifis— C* onTy are of the forncy™force C*
andme M.

3.35.Let¢:N— N bea surjectiveZ-linear mapping and lef ando’ be cones ifNg
andNj;, respectively with the property that, mapss bijectively ontoo’. Prove that) has
a splittingz : N’ — N such that mapso’ to 7.

3.3.6. Let X’ be the fan obtained from the fahfor P2 in Example 3.1.9 by the following
process. Subdivide the come into two new conesr,; and oy by inserting an edge

Cond—ey).
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(a) Show that the resulting toric varieg is smooth.
(b) Show thatXs is the blowup ofP? at the poinV/ (o).
(c) Show thaiXs; is isomorphic to the Hirzebruch surfagé.

3.3.7. Let Xx, be the toric variety obtained frof? by blowing up the point¥ (a;) and
V(o2) (see Figure 2 in Example 3.1.9). Show th&f is isomorphic to the blowup of
P! x P! at the poinV (o11) (see Figure 3 in Example 3.1.12).

3.3.8. Let 3’ be the fan obtained from the fanfor P(1,1,2) in Example 3.1.17 by the

following process. Subdivide the cong into two new cones,; ando,; by inserting an

edge Cong-uy).

(a) Show that the resulting toric varie¥g, is smooth.

(b) Construct a morphism : X5,y — X5 and determine the fiber over the unique singular
point of Xs;.

(c) One of our smooth examples is isomorphi&to. Which one is it?

3.3.9. Consider the action of the gro@= {(¢,¢3) | ¢® =1} C (C*)2 onC2. We will

study the quotien€?/G and its resolution of singularities using toric morphisms.

(@) LetN’=Z?andN = {(a/5,b/5)|a,bc Z, b=3amod 5}. Also let(s = €™/°. Prove
that the magN — (C*)? defined by(a/5,b/5) — (¢&,¢P) induces an exact sequence

0—N —N—G—0.

(b) Leto = Condey,er) C Ni = Ng = R2. The inclusionN’ — N induces a toric mor-
phismU, \» — U, n. Prove that this is the quotient mdl — C?/G for the above
action ofG on C2.

(c) Find the Hilbert basis (i.e., the set of irreducible edmts) of the semigroup NN.
Hint: The Hilbert basis has four elements.

(d) Use the Hilbert basis from part (c) to subdivi@e This gives a fart with || = o.
Prove thats is smooth relative tdN and that the resulting toric morphism

Xsn —U,n=C?/G
is a resolution of singularities. See Chapter 10 for moraitiet
(e) The groupG gives the finite se€ C (C*)2 C C? with ideal | (G) = (x* — 1,y —x3).
Read about th&rdbner fanin [36, Ch. 8, 84] and compute the Grobner fan (&).
The answer will be identical to the fan described in part (this is no accident, as
shown in the paperd] (see also 810.3). There is a lot of interesting mathematics

going on here, including the 8Kay correspondence and t&eHilbert scheme. See
also [L24] for the higher dimensional case.

3.3.10. Consider the far® in R® shown in Figure 12 on the next page. This fan has
five 1-dimensional cones with four “upward” ray generatot4,0,1),(0,4+1,1) and one
“downward” generatof0,0,—1). There are also nine 1-dimensional cones. Figure 12
shows five of the 2-dimensional cones; the remaining fougarerated by the combining
the downward generator with the four upward generators.

(a) Show that projection onto theaxis induces a toric morphisixy;, — PL.

(b) Show thatXs; — P! is a locally trivial fiber bundle oveP* with fiber P(1,1,2). Hint:
Theorem 3.3.19 andL,0,1) + (—1,0,1) + 2(0,0,—1) = 0. See Example 3.1.17.
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Figure 12. Afan X in R®

(c) Explain how you can see the splitting (in the sense of M&fin3.3.18) in Figure 12.
Also explain why the figure makes it clear that the fibeP(4, 1,2).

3.3.11. Consider the fai in R? with ray generators
U=6€+6E,U=6€,U==86, Uu3=—¢€
and 1-dimensional cones Cdug, u;), Congug, uy), Condu,, us).

a) Draw a picture oE and prove thaXs; is the blowup ofP! x C at one point.
(a) p p p p

(b) Show that the mape, + be, — b induces a toric morphism : Xs; — C such that
¢~ () ~ P for a € C* andp—1(0) is a union of two copies dP* meeting at a point.
Hint: Once you understang=1(0), show that the fan foXs, \ ¢~1(0) givesP! x C*.

(c) To get a better picture ofs;, consider the mag : (C*)? — P3 x C defined by
B(st) = (3,52, st,t2),1).

Let X = ®((C*)2) C P® x C be the closure of the image. Prove that- Xs and
that the restriction of the projectidp® x C — C to X gives the toric morphisn of
part (b).

(d) Letx,y,z,w be coordinates oR®. Prove thaiX C P2 x C is defined by the equations

yw— 272 =0, xz—ty? = 0, xw—tyz=0.

Also use these equations to describe the figerga) for a € C, and explain how this
relates to part (b). Hint: The twisted cubic is relevant.

This is asemi-stable degeneration of toric varieti€&&ee PQ] for more details.
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§3.4. Complete and Proper
The Compactness CriterianWe begin by proving part (c) of Theorem 3.1.19.

Theorem 3.4.1. The following are equivalent for a toric varietys-X
(a) Xy is compact in the classical topology.

(b) The limitlim_oAY(t) exists in X% for allu € N.

(c) X is complete, i.e[X| = J, 50 = Nr.

Proof. First observe that sincéy, is separated (Theorem 3.1.5), it is Hausdorff in
the classical topology (Theorem 3.0.17). In fact, sincedlassical topology on
each affine open sé&t, is a metric topologyXs, is compact if and only if every
sequence of points idy; has a convergent subsequence.

For (a) = (b), assume thaXy, is compact and fixu € N. Given a sequence
ty € C* converging to 0, we get the sequenctty) € Xs,. By compactness, this se-
guence has a convergent subsequence. Passing to thisigissgve can assume
that limg_. A\U(tx) = v € Xy. BecauseXy is the union of the affine open subsets
U, for o € X, we may assume € U,. Now takeme oV N M. The charactex™ is
a regular function otJ, and hence is continuous in the classical topology. Thus

x"(7) = Jim (k) = fim ™.
Sincetx — 0, the exponent must be nonnegative, i@u) > 0 for allme oV NM.
This implies (m,u) > 0 for all me€ ¢", so thatu € (¢")" = ¢. Then Proposi-

tion 3.2.2 implies that lim o AY(t) exists inU, and hence irXs.

To prove (b)=- (c), takeu € N and consider the limit ligo AY(t). This lies
in some affine opebl,,, which impliesu € o "N by Proposition 3.2.2. Thus every
lattice point ofNg is contained in a cone df. It follows thaty is complete.

We will prove (c)=- (a) by induction om = dimNg. In the casen = 1, the
only complete fart is the fan inR pictured in Example 3.1.11. The corresponding
toric variety isXs; = P. This is homeomorphic t&?, the 2-dimensional sphere,
and hence is compact.

Now assume the statement is true for all complete fans of mbina strictly
less tham, and consider a complete fahin Ng ~ R". Let~ € Xy, be a sequence.
We will show thaty has a convergent subsequence.

Since Xy, is the union of finitely many orbit©(7), we may assume the se-
quencey lies entirely within an orbiO(7). If 7 # {0}, then the closure dd(r) in
Xs: is the toric varietyV (1) = Xgiay) Of dimension< n— 1 by Proposition 3.2.7.
SinceX is complete, it is easy to check that the fan Staiis complete inN(7)r
(Exercise 3.4.1). Then the induction hypothesis implied there is a convergent
subsequence M (7). Hence, without loss of generality again, we may assume that
our sequence lies entirely in the torfg C Xs.
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Recall from the discussion following Lemma 3.2.5 that
Tn ~ Homy (M, C*).

Moreover, when we regardc Ty as a group homomorphism: M — C*, then for
anyo € X, restriction yields a semigroup homomorphisnM — C and hence
a pointy in U,.

A key ingredient of the proof will be the logarithm map Ty — Ng defined
as follows. Given a poirny : M — C* of Ty, consider the map — R defined by
the formula

m— log|~(m)].

This is a homomorphism and hence gives an elerhént € Homy(M,R) ~ Ng.
For more properties of this mapping, see Exercise 3.4.2\belo

For us, the most important property lofs the following. Suppose that a point
v € Ty satisfied (v) € —o for somes € 3. If me oV NM, then the definition of
L implies that

(3.4.1) log~y(m)| = (m,L(7)),

which is < 0 sinceme ¢" andL(y) € —o. Hence|y(m)| < 1. Thus we have
proved that

(3.4.2) L(y)€ =0 = |y(m)|<1forallmes’NM.

Now applyL to our sequence, which gives a sequebtg) € Ng. SinceX is
complete, the same is true for the fan consisting of the cenrefor o € 3. Hence,
by passing to a subsequence, we may assume that there 3ssuch that

L(w) € —o

for all k. By (3.4.2), we conclude thatyx(m)| < 1 for allme o¥ N M. It follows
that they are a sequence of mappings to the closed unit di§k iBince the closed
unit disk is compact, there is a subsequemngevhich converges to a pointe U,.
You will check the details of this final assertion in Exercssé.3. O

Proper Mappings The property of compactness also has a relative versionsthat
used often in the theory of complex manifolds.

Definition 3.4.2. A continuous mapping : X — Y is properif the inverse image
f=1(T) is compact inX for every compact subs@tC Y.

It is immediate thaX is compact if and only if the constant mapping frofn
to the spac& = {pt} consisting of a single point is proper. This relative vemsio
of compactness may also be reformulated, for reasonabdytopmlogical spaces,
in the following way.

Proposition 3.4.3.Let f: X — Y be a continuous mapping of locally compact first
countable Hausdorff spaces. Then the following are eqeital
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(a) f is proper.
(b) f is a closed mapping, i.e.,(l) CY is closed for all closed subsets@UX,
and all fibers 1(y), yc Y, are compact.

(c) Exery sequenceoe X such that fxc) € Y converges in Y has a subsequence
X, that converges in X.

Proof. A proof of (a)< (b) can be found ing9, Ch. 9,84]. See Exercise 3.4.4 for
@) < (o). O

Before we can give a definition of properness that works forphisms, we
need another criterion for properness. Recall from 8§3.0rtt@phismsf : X — S
andg:Y — Sgive the fiber producK xsY. Fiber products can also be defined
for continuous maps between topological spaces. In ExeBik4, you will prove
that properness can be formulated using fiber products lasvil

Proposition 3.4.4. Let f: X — Y be a continuous map between locally compact
Hausdorff spaces. Then f is proper if and only if uisversally closegdmeaning
that for all spaces Z and all continuous mappings4— Y, the projectionr;
defined by the commutative diagram

X xyZ —25 X
J Jf
4 —g>Y
is a closed mapping.

In algebraic geometry, it is customary to use the followiefjrdtion of proper-
ness for morphisms of algebraic varieties.

Definition 3.4.5. A morphism of varieties) : X — Y is properif it is universally
closed in the sense that for all varieti@&sand morphisms : Z — Y, the projection
w7 defined by the commutative diagram

X xyZ 25X

||
is a closed mapping in the Zariski topology. A variedyis said to becompleteif
the constant morphism : X — {pt} is proper.

Example 3.4.6. The Projective Extension Theorer8§ Thm. 6 of Ch. 8, 85]
shows that foiX = P", the mapping

mem: P'x CM— CM
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is closed in the Zariski topology for ath. It follows that if V C C™ is any affine
variety, the projection

mv P"xV =V
is a closed mapping in the Zariski topology. By the gluingstaunction, it follows
that the constant morphisif' — {pt} is proper, s®" is a complete variety. In fact,
one can think of®" as the prototypical complete variety. Moreover, any pribjec
variety is complete (Exercise 3.4.5). However, there arspiete varieties that are
not projective—we will give a toric example in Chapter 6.

On the other hand, consider the morphi€m- {pt}. We claim that this is not
proper, saC is not complete. To see this, considex , C = C? and the diagram

(CZF—2>(C

1]

C —— {pt}.

The closed subséf (xy— 1) C C2 does not map to a Zariski-closed subsetCof
underry. Hencer; is not a closed mapping, so thatis not complete. %

Completeness is the algebraic version of compactness,tamh ibe shown
that a variety is complete if and only if it is compact in thasgical topology. This
is proved in Serre’'s famous pap@eonetrie alggbrique et @onetrie analytique
called GAGA for short. Seelp5 Prop. 6, p. 12].

The Properness Criterion Theorem 3.4.1 can be understood as a special case of
the following statement for toric morphisms.

Theorem 3.4.7.Let ¢ : X5 — Xy be the toric morphism corresponding to a ho-
momorphismp : N — N’ that is compatible with fan® in Ng and>’ in N§,. Then
the following are equivalent:

(a) ¢ : Xy — Xy is proper in the classical topolog§pefinition 3.4.2.

(b) ¢: Xy — Xs is a proper morphisniDefinition 3.4.5.

(©) If u e N andlim_oA?({ (t) exists in X, thenlim;_.o AU(t) exists in X%.
— _l P

(@) or " (IX]) =[]

Proof. The proof of (a)= (b) uses two fundamental results in algebraic geometry.

First, given any morphism of varietiels: X — Y and a Zariski closed subset
W C X, a theorem of Chevalley tells us that the im&@@/) C Y is constructible
meaning that it can be written as a finite unibfw) = J; (Vi \W), whereV; and
W are Zariski closed iiY. A proof appears inq7, Ex. 11.3.19].

Second, given any constructible subSetf a varietyY, its closure inY in the
classical topology equals its closure in the Zariski toggldoNVhenC is open in the
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Zariski topology, a proof is given inlR5 Thm. (2.33)], and whef is the image
of a morphism, a proof can be found in GAGAS5, Prop. 7, p. 12].

Now suppose thap : Xy — Xsv is proper in the classical topology and let
1 : Z — X5y be a morphism. This gives the commutative diagram

Xy Xx Z — Xy

| s

Z——— X

LetY C Xs. xx,, Z be Zariski closed. We need to prove thatY) is Zariski closed

in Z. First observe thaY is also closed in the classical topology, so thatY)

is closed inZ in the classical topology by Proposition 3.4.4. Howevex(Y) is
constructible by Chevalley’'s Theorem, and then, beingsataly closed, it is also
Zariski closed by GAGA. Hencey is a closed map in the Zariski topology for any
morphismy : Z — Xs. It follows that¢ is a proper morphism.

To prove (b)= (c), letu € N and assume that = lim;_o A?( (t) exists inXs. .
We first prove lim_o AY(t) exists inXy, under the extra assumption tha(u) # 0.
This means thax®") is a nontrivial one-parameter subgroupXsy .

Let AY(C*) C Xy, be the closure ofY(C*) C Xs. in the classical topology.
Our earlier remarks imply that this equals the Zariski ctesuSince¢ is proper,

it is closed in the Zariski topology, so thaAY(C*)) is closed inXs; in both
topologies. It follows that

XPW(C7) € $(WO(T)).

Hence there is € \Y(C*) mapping toy’. Thus there is a sequence of poitats C*
such that\Y(tx) — ~. Then

7= 6(y) = lim (A1) = lim A (t).

This, together withy’ = lim;_oA?((t) and $(u) # 0, imply thatty — 0. From
here, the arguments used to prove-£a)b) = (c) of Theorem 3.4.1 easily imply
that lim_ o AY(t) exists inXs.

For the general case when we no longer assufg # 0, consider the map
(¢,1c) : X x C — Xy x C. This is proper since is proper (Exercise 3.4.6).
Furthermore Xy, x C and Xy x C are toric varieties by Proposition 3.1.14, and
the corresponding map on lattices(is 17) : N x Z — N’ x Z. Then applying the
above argument t¢u, 1) € N x Z shows that linL,o AY(t) exists inXs. We leave
the details to the reader (Exercise 3.4.6).

For (c)= (d), first observe that the inclusion

5] Cdg (1)
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is automatic sincep is compatible with: and ¥’. For the opposite inclusion,
takeu € g5 ~(|2']) NN. Theng(u) € [¥'|, which by Proposition 3.2.2 implies that
lim_oA?M (t) exists inXsy. By assumption, lim.oAY(t) exists inXs,. Using
Proposition 3.2.2, we conclude thate o "N for someo € X. Because all the
cones are rational, this immediately impl%l(m’\) C 3]

Finally, we prove (d)= (a). We begin with two special cases.

Special Case 1Suppose that a toric morphisin: Xy, — Ty satisfies (d) and
has the additional property that: N — N’ is onto. The fan offy- consists of the
trivial cone {0}, so that (d) implies

—1 —
(3.4.3) %] = ¢ (0) =ker(¢g).
When we think of as a fan:"” in ker(¢g) € Ng, (3.3.5) implies that
Xy >~ Xsov X Ty

Theng corresponds to the projectiofy;» x Ty — Tyy. The fanX” is complete in
ker(¢g) by (3.4.3), so thaKs;» is compact by Theorem 3.4.1. ThMs~ — {pt} is
proper, which easily implies that- x Ty, — Ty is proper. We conclude thatis
proper in the classical topology.

Special Case 2.Suppose that a homomorphism of tert Ty — Ty has the
additional property thap : N — N’ is injective. Then (d) is obviously satisfied. An
elementary proof thap is proper is given in Exercise 3.4.7.

Now consider a general toric morphispn Xy — Xy satisfying (d). We will
prove thate is proper in the classical topology using part (c) of Propmsi3.4.3.
Thus assume thaj € Xy, is a sequence such thatyx) converges iXyy. We need
to prove that a subsequence~gfconverges irXs.

SinceXs, has only finitely manyly-orbits, we may assume that the sequence
lies in an orbitO(s). As in Lemma 3.3.21, let’ be the minimal cone ot
containinggy (o). The restriction

PN (o) V(o) = V(o)

is a toric morphism by Lemma 3.3.21, and the fan¥ of) andV (¢’) are given by
Star(o) in N(o)r and Stafo’) in N’(¢”)r respectively. Furthermore, one can check
that sinceX and> satisfy (d), the same is true for the fans $tgrand Stafo’)
(Exercise 3.4.8). Hence we may assume that Ty ando (k) € Ty for all k.

The limit+" = limk_ ¢(7x) lies in an orbitO(7") for somer’ € ¥'. Thus the
sequence (k) and its limit+’ all lie in U,. Note that{o € | ¢(o) C 7'} is the
fan giving¢—1(U,+). Since (d) implies that

—1, ,
¢R (T ) = U g,
Pr(o)Cr’

we can assume th¥y =U,, i.e.,¢: Xz — U, anda_l(T’) =|X|.
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If 7/ = {0}, thenO(7') = U, = Ty. If we write ¢ as the composition
N — ¢(N) — N/,
then¢ : Xy, — Ty factorsXy — T$(N) — Tn'. Special Cases 1 and 2 imply that

these maps are proper, and since the composition of propes maroper, we
conclude that is proper.

It remains to consider the case wheZ {0}. When we think ofy’ €U, as a
semigroup homomorphis : (7)Y NM — C, Lemma 3.2.5 tells us that

A (M) =0 forallm e (7)Y nM’\ (')t M’
Since thep(vk) : M — C* converge toy’ in U,., we see that
Jim () () =0 foralln € ()M ()M’
Since(7')Y NM’ is finitely generated, it follows that we may pass to a subsecel
and assume that
(3.4.4) lp()(M)] <1 forallkand allm' € (7)Y NM’\ (')t NM’.
The logarithm map from the proof of Theorem 3.4.1 gives mapsTy — Ng
andLy : Ty' — Ng linked by a commutative diagram:

L
TN—N>NR

w |

T —— N;
N R

Leté : M’ — M be dual tog: N — N'. Thennt € (7)Y N M’ \ (') NM’ implies
that for allk, we have
(" (ml), Ln () = (!, dg (L ()
= (', Lnr(¢())) = log () ()] <0,

where the first equality is standard, the second follows fiteerabove commutative
diagram, the third follows from (3.4.1), and the final inelifyauses (3.4.4).

Now consider the following equivalences:

(3.4.5)

UEdp (7) <= dp(U) ™
<= (M, pr(u)) >0 forallm € (r')¥NM’
— (¢"(m),u) >0 forallm e (') NM’,

where the first and third equivalences are obvious and tlendacses”’ = (7/)""
and the rationality of’. But we also know that’ # {0}, which means thatr’)"
is a cone whose maximal subspdeé)* is a proper subset. This implies that

ue Eﬂgl(r’) — (¢ (m),u) >0 forallm e () NM'\ ()M’
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(Exercise 3.4.9). Using (3.4.5), we conclude tha () € 5@1(7’) for all k. But,
as noted above, (d) means (') = |Z|. It follows that

—Ln(wn) € [Z]
for all k. Passing to a subsequence, we may assume that thereXssuch that

LN(’yk) € —0o

for all k. From here, the proof of (¢} (a) in Theorem 3.4.1 implies that there is
a subsequenceg, which converges to a point € U, C Xs;. This proves thab is
proper in the classical topology. The proof of the theoremols complete. [

An immediate corollary of Theorem 3.4.7 is the following ma@omplete ver-
sion of Theorem 3.4.1.

Corollary 3.4.8. The following are equivalent for a toric varietysX

(a) Xy is compact in the classical topology.

(b) Xs; is complete.

(c) The limitlim{_oAY(t) exists in X for all u € N.

(d) X is complete, i.e|X| =, c5 0 = Nr. O

We noted earlier that a variety is complete if and only if ic@mpact. In a
similar way, a morphisnf : X — Y of varieties is a proper morphism if and only if
it is proper in the classical topology. This is proved T2,[Prop. 3.2 of Exp. XII].
Thus the equivalences (&) (b) of Theorem 3.4.7 and Corollary 3.4.8 are special
cases of this general phenomenon.

Theorem 3.4.7 and Corollary 3.4.8 show that properness antbleteness
can be tested using one-parameter subgroups. In the casenpiateness, we
can formulate this as follows. Givane N, the one-parameter subgroup gives a
map AY : C\ {0} — Ty C Xy, and saying that lim,oAY(t) exists inXy, means
that \! extends to a morphisnyy : C — Xsx.. In other words, whenever we have a
commutative diagram

C\{0} = Xs

| e

C % {pt},
)\3’(“)

the dashed arrow exists. The existence off tells us thatXy; is not missing
any points, which is where the term “complete” comes froma kimilar way, the
properness criterion given in part (c) of Theorem 3.4.7 aafobmulated as saying
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that wheneveu € N gives a commutative diagram,

C\ {0} — X

il . /AH l(ﬁ

-
C — XZ/7
)\3’(“)

the dashed arrowg exists so that the diagram remains commutative.

For general varieties, there are similar criteria for cortgrhess and properness
that replace\" : C\ {0} — Xy, and g : C — X5, with maps coming frondiscrete
valuation rings to be discussed in Chapter 4. An example of a discrete vaituat
ring is the ring of formal power seridd= C[[t]], whose field of fractions is the field
of formal Laurent serie& = C((t)). By replacingC with Spe¢R) andC\ {0} with
Spe¢K) in the above diagrams, wheReis now an arbitrary discrete valuation
ring, one gets thealuative criterion for propernesf77, Ex. 11.4.11 and Thm.
[1.4.7]). This requires the full power of scheme theory gir8pe¢R) and Spe(K)
are not varieties as defined in this book. Using the valuatikerion of properness,
one can give a direct, purely algebraic proof of £€d)(b) in Theorem 3.4.7 and
Corollary 3.4.8 (seed8, Sec. 2.4] or134, Sec. 1.5)).

Example 3.4.9. An important class of proper morphisms are the toric morphis
¢ : Xsv — Xy, induced by a refinemeni’ of X. Condition (d) of Theorem 3.4.7 is
obviously fulfilled sincep : N — N is the identity and every cone &f is a union
of cones ofx'. In particular, the blowups

¢ : Xy (0) = X5

studied in Proposition 3.3.15 are always proper. O

Exercises for §3.4

3.4.1. Let X be a complete fan ifNg and letr be a cone irE. Show that the fan Stér)
defined in (3.2.8) is a complete fan\{(7)x.

3.4.2. In this exercise, you will develop some additional properf the logarithm map-
pingL : Ty — Ng defined in the proof of Theorem 3.4.1.
(@) LetS' be the unit circle in the complex plane, a subgroup of the iplidative group
C*. Show that there is an isomorphism of groups
d:C*—S'xR
z— (|2, log|2)),
where the operation in the second factor on the right is afdit

(b) Show that the compact realdimensional torugS')" can be viewed as a subgroup of
Ty and thatl : Ty — Ng induces an isomorphisify /(SH)" ~ Ng. Hint: Use® from
part (a).
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(c) LetX be a fan inN. Show that the action of the compact real tof89" C Ty on Ty
extends to an action on the toric variety and that the quotient space

(Xs)/(SH" 2= | N(0)z,

where2 denotes homeomorphism of topological spaces, and the usiower all
cones in the fan. Hint: Use the Orbit-Cone Correspondeniediiem 3.2.6).

(d) Let ¥ in R? be the fan from Example 3.1.9, so thét ~ P2. Show that under the
action of(S')? C (C*)? as in part (c)[P?/(S')? =2 A,, the 2-dimensional simplex.

We will say more about the topology of toric varieties in Ctead.2.

3.4.3. This exercise will complete the proof of Theorem 3.4.1. Lentflc¥ NM,C) be

the set of semigroup homomorphism$nM — C. Assume thaty € Hom(c¥ NM,C) is

a sequence such thak(m)| < 1 for allme ¢¥ NM and allk. We want to show that there
is a subsequencg, that converges to a pointe Hom(a¥ NM,C).

(a) The semigroufs, = ¢¥ NM is generated by a finite s¢try,...,ms}. Use this fact
and the compactness ¢f € C | |z < 1} to show that there exists a subsequenge
such that the sequenceg (m;) converge inC for all j.

(b) Deduce that the subsequenggconvergesto g € Hom(c¥ NM,C).
£

3.4.4. Here you will prove some characterizations of propernegedtin the text.
(a) Prove (a)= (c) from Proposition 3.4.3.

(b) Prove Proposition 3.4.4. Hint: Show first that compas$nef X is equivalent to the
statement that the mappirfg X — {pt} is universally closed. Then use the easy fact
that any composition of universally closed mappings is ersally closed.

3.4.5. Show that any projective variety is complete according téiriteon 3.4.5.
3.4.6. Complete the proof of (b} (c) of Theorem 3.4.7 begun in the text.

3.4.7. Let ¢ : Ty — Ty be a map of tori corresponding to an injective homomorphism
é:N—N.Alsoleté : M — M be the dual map. Finally, lei € Ty be a sequence such
that¢(x) converges to a point iy, .

(&) Prove that ir(E*) C M has finite index. Hence we can pick an inteder 0 such that

dM Cim(g").

(b) Show thaty™(+x) converges for alin € im(a*). Concludetha;(m(wg) converges for
allme M, whered is as in part (a).

(c) Pick a basis oM so thatTy ~ (C*)" and writey = (y1.k,---,7nk) € (C*)". Show
that(y{\....,7%,) converges to a poir(f, ..., 3n) € (C*)".

(d) Show that thelth rootsﬁil/d can be chosen so that a subsequence of the sequence
Y= (71k--->Ynk) CONVerges to a point = (ﬁ/d, e ,%/d) e Tx.

(e) Explain why this implies thaly — Ty- is proper in the classical topology.

3.4.8.To finish the proof of (d}=- (a) of Theorem 3.4.7, suppose we have a toric morphism

¢: Xy, — Xz and a cone € X. Leto’ € ¥/ be the smallest cone containing(c).

(@) Prove thap induces a homomorphisa), : N(a) — N(c”).

(b) Assume furtherthaﬂgl(mﬂ) = |%|. Prove tha(¢, )5 *(|Star(o”)|) = |Star(o)|.
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3.4.9. Let 7’ # {0} be a strongly convex polyhedral coneNf. Prove that
Uer < (mu)>0 forallm € (7')VNM\ (') M

and then apply this to’ = ¢ (u) to complete the argument in the text. Hint: To prove
«, first show that the right hand side of the equivalence inspit(n’,u’) > 0 for all

m € () NMg )\ ()t NMg. Then show that’ # {0} implies that any element of
(7')Y N M is a limit of elements i)V NMg \ (7')* NMg.

3.4.10. Give a second argument for the implication
X5 compact=- 3 complete

from part (c) of Theorem 3.1.19 using induction on the dini@ma of N. Hint: If X is not
complete andh > 1, then there is a 1-dimensional con@ the boundary of the support of
3. Consider the fan Stéar) and the corresponding toric subvarietyaf.

3.4.11. Let X', ¥ be fans inNg compatible with the identity maN — N. Prove that the
toric morphismgp : X5,y — Xs is proper if and only if2’ is a refinement oE.

Appendix: Nonnormal Toric Varieties

In this appendix, we discuss toric varieties that are noessarily normal. We begin with
an example to show that Sumihiro’s Theorem (Theorem 3.hhe existence of a torus-
invariant affine open cover can fail in the nonnormal case.

Example 3.A.1. Consider the nodal cubic C P? defined byy?z = x?(x+ z). The only
singularity ofC is p = (0,0,1). We claim thatC is a toric variety withC\ {p} ~ C* as
torus. Assuming this for the moment, consider a torus-iavameighborhood op. It
containsp and the torus and hence is the whole curve! We concludepthas no torus-
invariant affine open neighborhood. Thus Sumihiro’s Theofals forC.

To see thaC is a toric variety, we begin with the standard parametrizatibtained
by intersecting liney = t x with the affine curve/? = x2(x+ 1). This easily leads to the
parametrization

x=t2—-1, y=t({t>-1).
The valueg = +1 map to the singular poird. To get a parametrization that looks more
like a torus, we replacewith % to obtain

4t 4t(t+1)

BRI A (1,
Thent = 0,00 map top andt € C* maps bijectively taC\ {p}.

Using this parametrization, we g€t C C, and the action o™ on itself given by
multiplication extends to an action &by makingp a fixed point of the action. With
some work, one can show that this action is algebraic andehgines a toric variety. (For
readers familiar with elliptic curves, the basic idea i tha description of the group law
in terms of lines connecting points on the curve reduces thipfioation in C* C C for
our curveC.) %

In contrast, the projective toric varieties constructehmapter 2 satisfy Sumihiro’s
Theorem by Proposition 2.1.8. Since these nonnormal t@ieties have a good local
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structure, it is reasonable to expect that they share sontieeofiice properties of nor-
mal toric varieties. In particular, they satisfy a versidrile Orbit-Cone Correspondence
(Theorem 3.2.6).

We begin with the affine case. Givévh and a finite subset/ = {my,...,ms} C M,
we get the affine toric variety,, C C* whose torus has character gro#ip7 (Proposi-
tion 1.1.8). AssuméM = Z</ and letc C Ng be dual to Congz') C Mg. By Proposi-
tion 1.3.8, the normalization &f,, is the map

U, — Yy
induced by the inclusion of semigroup algebras
C|N&] C C[e¥ NM].
Recall thatC[s¥ N M] is the integral closure of [N.«/] in its field of fractions. We now

apply standard results in commutative algebra and algebegimetry:

e Since the integral closur€[c" N M] is a finitely generate@-algebra, it is a finitely
generated module ovél[N.¢/| (see B, Cor. 5.8]).

e Thus the corresponding morphidsy — Y., is finite as defined inf7, p. 84].
¢ A finite morphism is proper with finite fibers (se€f Ex. 11.3.5 and 11.4.1]).

SinceU, — Y,y is the identity on the torus, the image of the normalizatiorariski dense
inY,,. Butthe image is also closed since the normalization mapisgy. This proves that
the normalization map is onto.

Here is an example of how the normalization map can fail toreeto-one.

Example 3.A.2. The seteZ = {e),€, + &, 26,} C Z? gives the parametrizatioh,, (s,t) =
(s,st,t2), and one can check that

Y. =V(y?—x?2) C C3.

FurthermoreZ«/ = 72 ando = Cond.«7)" = Conde;, ). It follows easily that the
normalization is given by

C?— Yy
(st) — (s,st,t?).

This map is one-to-one on the torus (the torug¥gfis normal and hence is unchanged
under normalization) but not on theaxis, since here the map(i8,t) — (0,0,t?). We will
soon see the intrinsic reason why this happens. %

We now determine the orbit structureYaf.

Theorem 3.A.3. Let Y, be an affine toric variety with M= Z.«/ and letoc C Ng be as
above. Then:

(a) There is a bijective correspondence
{facesr of o} «— {Ty-orbitsinY,/}

such that a face of of dimension k corresponds to an orbit of dimengdimY,, — k.

(b) If O’ C Y, is the orbit corresponding to a face of o, then O is the torus with
character groufZ(r+ N <7).
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(c) The normalization Yy — Y., induces a bijection
{Tn-orbits inU, } «—— {Ty-orbits inY,,}

such that if OC U, and O C Y, are the orbits corresponding to a faceof o, then the
induced map OG- O’ is the map of tori corresponding to the inclusidifr- N <) C
7+ N M of character groups.

Proof. We will sketch the main ideas and leave the details for thdeearhe proof uses
the Orbit-Cone Correspondence (Theorem 3.2.6). We regantsofU,, andY,, as semi-
group homomorphisms, so that ¢¥ NM — C in U, maps toy|y,, : Nov — Cin Y.
Note also thal, — Y,y is equivariant with respect to the actionTy.

By Lemma 3.2.5, the orbi®(r) C U,, corresponding to a face of o is the torus
consisting of homomorphisms: 7= "M — C*. Thus7 NM is the character group of
O(7). The normalization maps this orbit onto an or®i(r) C Y,,, where a pointy of
O(7) maps to its restriction t®l.e7. Since

(P AM)NZe =7t N2t = Z(rH N ),
it follows thatZ(7+ N .«7) is the character group @ (7). This proves part (b), and the
final assertion of part (c) follows easily.

Sinces¥ NM is the saturation oN.«Z, it follows that there is an integet > 0 such
thatde¥ NM C N7 It follows easily thaZ(7+ N <) has finite index inr- "M, so that

dimO’(7) = dimO(r) = dimU,, — dim7 = dimY,, — dim~,
proving the final assertion of part (a).

Finally, every orbit inY,, comes from an orbit itJ,, sinceU, — Y, is onto. If orbits

O(71),0(72) map to the same orbit &, then
Z(ris Ne) = L3 Nd).

This impliest{- = 73", so thatr; = 7. The bijections in parts (a) and (c) now follow..]

We leave it to the reader to work out other aspects of the @bite Correspondence
(specifically, the analogs of parts (c) and (d) of TheoremG3 frY,,.

Let us apply Theorem 3.A.3 to our previous example.

Example 3.A.4. Let & = {e),e1 + &,2e,} C Z? as in Example 3.A.2. The cone=
Cond.«Z)" = Condey, &) has a face such that-+ = Spare,). Thus

Z(tH No) = 7(2e)
™ NM = Ze,.
It follows thatZ(7+ N <) has index 2 inr- WM, which explains why the normalization

map is two-to-one on the orbit correspondingto %

We now turn to the projective case. Herg,= {my,...,ms} C M gives the projective
toric varietyX,, C PS~! whose torus has character grdffpy (Proposition 2.1.6). Recall
thatZ'e” = {3°; ;am |a € Z, Y5 ,a =0}.

One observation is that translating by m € M leaves the corresponding projective
variety unchanged. In other word§y, ., = X (See part (a) of Exercise 2.1.6). Thus, by
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translating an element of/ to the origin, we may assumedd.e/. Note that the torus of
X has character latticd'«/ = Z.o/ when 0¢ <.

We defined the normalization of an affine variety in 81.0. dsirgluing construction,
one can define the normalization of any variety (€& Ex. 11.3.8]). We can describe the
normalization of a projective toric variely,, as follows.

Theorem 3.A.5. Let X, be a projective toric variety wheré € &/ and M= Z.«/. If
P = ConV &) C Mg, then the normalization of X is the toric variety %, of the normal
fan of P with respect to the lattice N Honmy, (M, Z).

Proof. Again, we sketch the proof and leave the details to the readleruse the local
description ofX,, given in Propositions 2.1.8 and 2.1.9. There, we saw Xhathas an
affine open covering given by the affine toric varieties = Sped¢N.«%), wherev € &/ is
avertex ofP = Con &) ande, = &/ —v={m—v|me &}.

For the moment, assume thais very ample. Then Theorem 2.3.1 implies tKathas
an affine open cover given by the affine toric varietigs = Spe¢s)’ NM), wherev € o7
is a vertex of? ando/ = CondPNM —v). One can check that NM is the saturation of
N.#,, so thatJ,, is the normalization of,. The gluings are also compatible by equations
(2.1.6), (2.1.7) and Proposition 2.3.12. It follows thatget a natural majy, — X that
is the normalization oX_,.

In the general case, we note thgP is very ample for some integép > 1 and that
P andkoP have the same normal fan. Singgis a maximal cone of the normal fan, the
above argument now applies in general, and the theoremyggro O

Combining this result with the Orbit-Cone Correspondenwt Bheorem 3.A.3 gives
the following immediate corollary.
Corollary 3.A.6. With the same hypotheses as Theorem 3.A.5, we have:
(a) There is a bijective correspondence
{conesr of ¥p} «—— {Ty-orbits inX, }
such that a cone of dimension k corresponds to an orbit of dimengiim X,, — k.

(b) If O’ C X, is the orbit corresponding to a coneof ¥p, then O is the torus with
character grougZ(r+ N <7).

(c) The normalization ¥, — X, induces a bijection
{Tn-orbits inXs, } «— {Ty-orbits inX,,}
such that if OC Xy, and O C X,, are the orbits corresponding te € p, then the

induced map OG- O’ is the map of tori corresponding to the inclusidifr- N <) C
71 NM of character groups.

We leave it to the reader to work out other aspects of the @@bite Correspondence
for X.,. A different approach to the study ¥f, appears in§2, Ch. 5].



Chapter 4

Divisors on Toric Varieties

84.0. Background: Valuations, Divisors and Sheaves

Divisors are defined in terms of irreducible codimension sulgvarieties. In this
chapter, we will considéVeil divisorsandCartier divisors These classes coincide
on a smooth variety, but for a normal variety, the situatiomore complicated. We
will also studydivisor classeswhich are defined using the order of vanishing of
a rational function on an irreducible divisor. We will seattimormal varieties are
the natural setting to develop a theory of divisors and dividasses.

First, we give a simple motivational example.

Example 4.0.1.1f f(x) € C(x) is nonzero, then there is a unigne: Z such that
f(x) = x”%, whereg(x), h(x) € C[x] are not divisible by. This works because
C[x] is a UFD. The integen describes the behavior df(x) at 0: if n > 0, f(x)
vanishes to ordamat 0, and ifn < 0, f(x) has a pole of orden| at 0. Furthermore,
the map from the multiplicative grou@(x)* to the additive grouZ. defined by
f(x) — nis easily seen to be a group homomorphism. This works in thee seay

if we replace 0 with any point of. O

Discrete Valuation Rings The simple construction given in Example 4.0.1 applies
in far greater generality. We begin by reviewing the algelonachinery we will
need.

Definition 4.0.2. A discrete valuatioron a fieldK is a group homomorphism
v:K" —7Z

that is onto and satisfiegx+y) > min(v(x),v(y)) whenx,y,x+y € K* =K\ {0}.
The correspondingiscrete valuation rings the ring

R={xeK* | v(x) > 0}U{0}.

153
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One can check that a DVR is indeed a ring. Here are some prepeftDVRS.

Proposition 4.0.3. Let R be a DVR with valuation : K* — Z. Then:
(@) xe Ris invertible in R if and only i#(x) = 0.

(b) Ris alocal ring with maximal ideah = {x € R| v(x) > 0} U{0}.
(c) Ris normal.

(d) Ris a principal ideal domaiiiPID).

(e) R is Noetherian.

(f) The only proper prime ideals of R af®@} andm.

Proof. First observe that sinceis a homomorphism, we have
(4.0.1) v(x 1) =—v(x)

for all x € K*. If x € Ris a unit, thenv(x), v(x 1) > 0 sincex, x " € R Thus
v(x) = 0 by (4.0.1). Conversely, if(x) = 0, thenv(x~!) = 0 by (4.0.1), so that
x~1 € R. This proves part (a).

For part (b), note thatn = {x € R| v(x) > 0} U{0} is an ideal ofR (this
follows directly from Definition 4.0.2). Then part (a) easiinplies thatR is local
with maximal ideaim (Exercise 4.0.1).

To prove part (c), supposec K* = K\ {0} satisfies
X" X" 44 rp =0,

with ri € R If x € R, we are done, so supposef R. Thenn > 1 andv(x) < 0.
Using (4.0.1) again, we see that! ¢ R. Sox!~" = (x~1)"~! ¢ Rand hence

xI=n. (Xn + rn_lxn—l +---+r19) =0,

showing that = —(r,_1 +rp_ox 2 +---+roxt™") € R,

Let 7 € Rsatisfyv(m) = 1 and letl # {0} be an ideal oR. Pickx € |\ {0}
with k = v(x) minimal. Theny = xr ¥ € K satisfies/(y) = v(x) —kv(r) = 0, s0
thaty is invertible inR. From here, one proves without difficulty thiat= (7%).
This proves part (d), and part (e) follows immediately.

For part (f), it is obvious thaf0} and the maximal ideah are prime. Note
also thatm = (7). Now let P # {0} be a proper prime ideal. By the previous
paragraphP = (%) for somek > 0. If k > 1, thenr - 7k~1 ¢ P and 7, 7k"1 ¢ P
give a contradiction. O

This shows that every DVR is a Noetherian local domain of disien one.
In general, thalimensiondimR of a Noetherian rindR is one less than the length
of the longest chaiy C --- C Py of proper prime ideals contained R Among
Noetherian local domains of dimension one, DVRSs are charaed as follows.
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Theorem 4.0.4.1f (R,m) is a Noetherian local domain of dimension one, then the
following are equivalent.

(@) RisaDVR.

(b) R is normal.

(c) mis principal.

(d) (R,m) is aregular local ring.

Proof. The implications (a}= (b) and (a)= (c) follow from Proposition 4.0.3, and
the equivalence (¢ (d) is covered in Exercise 4.0.2. The remaining implicagion
can be found in3, Prop. 9.2]. O

DVRs and Prime Divisors DVRs have a natural geometric interpretation. Ket
be an irreducible variety. Arime divisor DC X is an irreducible subvariety of
codimension one, meaning that dim= dimX — 1. Recall from 83.0 thaK has
a field of rational functionsC(X). Our goal is to define a ringx p with field
of fractions C(X) such thatdx p is a DVR whenX is normal. This will give
a valuationvp : C(X)* — Z such that forf € C(X)*, vp(f) gives the order of
vanishing off alongD.

Definition 4.0.5. For a variety X and prime divisdd C X, Ox p is the subring of
C(X) defined by

Oxp = {¢ € C(X) | ¢ is defined orJ C X open withU ND # (}}.

We will see below thaOx p is aring. Intuitively, this ring is built from rational
functions onX that are defined somewhere BPn(and hence defined on mostof
sinceD is irreducible).

Since X is irreducible, Exercise 3.0.4 implies that{X) = C(U) whenever
U C X is open and nonempty. If we further assume thatD is nonempty, then
(4.0.2) Oxp = Ouunp

follows easily (Exercise 4.0.3).

Hence we can reduce to the affine cse- Spe¢R) for an integral domain
R. The codimensionof a prime idealp, also called itsheight is defined to be
codimp = dimR—dimV (p). It follows easily thatp — V(p) induces a bijection

{codimension one prime ideals B} ~ {prime divisors ofX}.

Given a prime divisoD = V(p), we can interpre¥x p in terms ofR as follows.
The field of rational function€(X) is the field of fractionK of R, and a rational
functiong = f /g€ K, f,g € R, is defined somewhere dh= V(p) precisely when
g¢ (D) =p. It follows that

Oxp=1{f/geK|f,geR g¢p},
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which is the localizatiorR, of R at the multiplicative subse®\ p (note thatR\ p
is closed under multiplication becausés prime). This localization is a local ring
with maximal ideabR, (Exercise 4.0.3). It follows that

(4.0.3) Oxp=R,
whenX = Spe¢R) andp is a codimension one prime ideal Bf

Example 4.0.6.1n Example 4.0.1, we constructed a discrete valuatio® of) by
sendingf(x) € C(x)* ton € Z, provided

() = xn%, 9(x), h(x) € C[x, 9(0), h(0) # 0,

The corresponding DVR is the localizati@hx] , . It follows that the prime divisor
{0} =V(x) C C = Spe¢C|x]) has the local ring

Oc 40y = C[X»
which is a DVR. O

More generally, a normal ring or variety gives a DVR as folkow

Proposition 4.0.7.

(a) Let R be a normal domain andC R be a codimension one prime ideal. Then
the localization R is a DVR.

(b) Let X be a normal variety and D X a prime divisor. Then the local ringx p
isa DVR.

Proof. By Proposition 3.0.12, part (b) follows immediately fronripéa) together
with (4.0.2) and (4.0.3).

It remains to prove part (a). The maximal idealRyf is the idealm, = pR,
generated by in R,. The localization of a Noetherian ring is Noetherian (Exer-
cise 4.0.4), and the same is true for normality by Exerci®€er1lt follows that the
local domain(R,,m;) is Noetherian and normal.

We compute the dimension &, as follows. Since dinX = dimR (see B5,
Ex. 17 and 18 of Ch. 9, §4]), our hypothesis@r= V(p) implies that there are no
prime ideals strictly betweefO} andp in R. By [3, Prop. 3.11], the same is true
for {0} andm,, in R,. It follows thatR, has dimension one. The®, is a DVR by
Theorem 4.0.4. O

WhenD is a prime divisor on a normal variety, the DVR 0 p means that
we have a discrete valuation

vp: C(X)" — Z.
Given f € C(X)*, we call vp(f) the order of vanishingof f along the divisor

D. Thus the local ring/x p consists of those rational functions whose order of
vanishing alongD is > 0, and its maximal ideahx p consists of those rational
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functions that vanish oB. Whenvp(f) = n < 0, we say thaf has apoleof order
In| alongD.

Weil Divisors Recall that a prime divisor on an irreducible variétyis an irre-
ducible subvariety of codimension one.

Definition 4.0.8. Div(X) is the free abelian group generated by the prime divisors
onX. A Weil divisoris an element of Di(X).

Thus a Weil divisoD € Div(X) is a finite sunD = ) _; g; D; € Div(X) of prime
divisorsD; with g € Z for all i. The divisorD is effective writtenD > 0, if the g
are all nonnegative. Theupportof D is the union of the prime divisors appearing
in D:

SuppD) =  J Di.

a#0

The Divisor of a Rational Function An important class of Weil divisors comes
from rational functions. X is normal, any prime divisob on X corresponds to a
DVR 0x p with valuationyp : C(X)* — Z. Given f € C(X)*, the integersp(f)
tell us howf behaves on the prime divisors Xf Here is an important property of
these integers.

Lemma 4.0.9.1f X is normal and fe C(X)*, thenvp(f) is zero for all but a finite
number of prime divisors @ X.

Proof. If f is constant, then it is a nonzero constant sifice C(X)*. It follows
thatyp(f) = 0 for all D. On the other hand, if is nonconstant, then we can find
a nonempty open subsetC X such thatf : U — C is a nonconstant morphism.
ThenV = f~1(C*) is a nonempty open subset Xfsuch thatf ly:V —C*. The
complementX \ V is Zariski closed and hence is a union of irreducible compo-
nents of dimensiorc n. Denote the irreducible components of codimension one
byDl,...,Ds.

Now let D be prime divisor inX. If VND = (), thenD C X\V, so thatD is
contained in an irreducible componentXf V sinceD is irreducible. Dimension
considerations imply thdd = D; for somei. On the other hand, W N D ## (), then
f is an invertible element afx p = &y vnp, Which implies thavp(f) = 0. O

Definition 4.0.10. Let X be a normal variety.
(@) Thedivisorof f € C(X)*is

div(f) => wp(f)D,
D

where the sum is over all prime divisdsC X.

(b) div(f) is called aprincipal divisor, and the set of all principal divisors is de-
noted Divp(X).
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(c) DivisorsD andE arelinearly equivalent written D ~ E, if their difference is
a principal divisor, i.e.p — E =div(f) € Divg(X) for somef € C(X)*.

Lemma 4.0.9 implies that dif) € Div(X). If f,g € C(X)*, then di\fg) =
div(f) +div(g) and div f~1) = —div(f) since valuations are group homomor-
phisms onC(X)*. It follows that Divp(X) is a subgroup of DigX).

Example 4.0.11.Let f =c(x—a;)™--- (x—a& )™ € C[x] be a polynomial of de-
greem> 0, wherec € C* anday,...,a € C are distinct. Then:

e WhenX =C, div(f) =>1_ m{a}.
e WhenX = P! =CuU{oo}, div(f) =>i_;m {a} —m{oco}. O

The divisor off € C(X)* can be written diyf) = divg(f) — divy (), where
divo(f) = > wp(f)D

vp(f)>0

divee(f) = Y —up(f)D.

vp(f)<0

We call divp(f) the divisor of zerosof f and div,(f) the divisor of polesof f.
Note that these are effective divisors.

Cartier Divisors If D =), & D; is a Weil divisor onX andU C X is a nonempty
open subset, then

Diy= > aunD
UND;#£0
is a Weil divisor onlJ called therestrictionof D toU.
We now define a special class of Weil divisors.

Definition 4.0.12. A Weil divisor D on a normal variet is Cartier if it is locally
principal, meaning thaX has an open coveiJ; }i¢; such thaD|,, is principal in
Ui for everyi € I. If D, = div(fi)|, fori eI, then we cal{(U;, fi) }ic thelocal
datafor D.

A principal divisor is obviously locally principal. Thuswif) is Cartier for all
f € C(X)*. One can also show thatlif andE are Cartier divisors, theD + E and
—D are Cartier (Exercise 4.0.5). It follows that the Cartierigbirs onX form a
group CDiyX) satisfying

Divo(X) C CDiv(X) C Div(X).

Divisor Classes For Weil and Cartier divisors, linear equivalence classesfthe
following important groups
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Definition 4.0.13. Let X be a normal variety. Itslass groups
CI(X) = Div(X)/Divg(X),
and itsPicard groupis
Pic(X) = CDiv(X)/Divo(X).

We will give a more sophisticated definition of PXc) in Chapter 6. Note that
since CDi\(X) is a subgroup of DigX), we get a canonical injection

Pic(X) — CI(X).

In [77, 11.6], Hartshorne writes “The divisor class group of a solkeeis a very
interesting invariant. In general it is not easy to calailatFortunately, divisor
class groups of normal toric varieties are easy to descbee will see in 84.1.

More Algebra Before we can derive further properties of divisors, we need
learn more about normal domains. Equation (3.0.2) showsfti¥a= Spe¢R) is
irreducible, then

peX

If a point p € X corresponds to a maximal idealC R, then the local ringx p is
the localizationR,,. Hence the above equality can be written

R = ﬂ Run.

m maximal

WhenR is normal, we get a similar result using codimension one giitheals.

Theorem 4.0.14.If R is a Noetherian normal domain, then

Proof. LetK be the field of fractions oR and assume that/b € K, a,b € R, lies
in R, for all codimension one prime ideajs It suffices to prove tha € (b). This
is obviously true whem is invertible inR, so we may assume thét) is a proper
ideal of R. Then we have a primary decomposition (s&& [Ch. 4, 87])

(4.0.4) (b) =q1N---Ngs,

and each prime ideak = ,/q; is of the formp; = (b) : ¢; for somec; € R. In the
terminology of [L18 p. 38], thep; are theprime divisorsof (b).

SinceRis Noetherian and normal, the Krull Principal Ideal Theostates that
every prime divisor ofb) has codimension one (seElB, Thm. 11.5] for a proof).
This implies that in the primary decomposition (4.0.4), thiene divisorsp; have
codimension one and hence are distinct.
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Note thata/b € Ry, for all i by our assumption oa/b. This impliesa € bR,;.
Since(qj)p = Ry for j # i (Exercise 4.0.6), localizing (4.0.4) ptshows that for
alli, we have

SinceqiR, NR= q; (Exercise 4.0.6), we obtame _; qi = (b). O

This result has the following useful corollary.

Corollary 4.0.15. Let X be a normal variety and let :flU — C be a morphism
defined on an open setd X. If X\ U has codimensiop 2 in X, then f extends
to a morphism defined on all of X.

Proof. SinceX has an affine open cover, we can assumeXhatSpe¢R), where
Ris a Noetherian normal domain. If C X is a prime divisor, thet) ND # () for
dimension reasons. It follows théte Oy y~p = Ox p, So that

(4.0.5) fe ﬂ ﬁU,UﬂD = ﬂ ﬁxp = ﬂ Rp =R,
D D codimp=1
where the final equality is Theorem 4.0.14. O

These results enable us to determine when the divisor ofamahtfunction is
effective.

Proposition 4.0.16.Let X be a normal variety. If € C(X)*, then:
(@) div(f) > 0ifand only if f: X — C is a morphism, i.e., € Ox(X).
(b) div(f) =0ifand only if f: X — C* is a morphism, i.e., € 0% (X).

In general &%, is the sheaf oiX defined by
Ox(U) = {invertible elements of’x (U)}.

This is a sheaf of abelian groups under multiplication.

Proof. If f : X — Cis amorphism, theri € O p for every prime divisoD, which

in turn impliesyp(f) > 0. Hence diyf) > 0. Going the other way, suppose that
div(f) > 0. This remains true when we restrict to an affine open subsete may
assume thaX is affine. Then diyf) > 0 implies

fe m ﬁxp,
D

where the intersection is over all prime divisors. By (4)0vie conclude thaf is
defined everywhere. This proves part (a), and part (b) fadlowmediately since
div(f) = 0if and only if div(f) > 0 and di\ f~1) > 0. O
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Singularities and Normality The set of singular points of a varie¥/is denoted
Sing(X) C X.

We call SingX) the singular locusof X. One can show that Si¥) is a proper
closed subvariety oKX (see [f7, Thm. 1.5.3]). WhenX is normal, things are even
nicer.

Proposition 4.0.17.Let X be a normal variety. Then:
(@) SingX) has codimensiopr 2in X.
(b) If X is a curve, then X is smooth.

Proof. You will prove part (b) in Exercise 4.0.7. A proof of part (egrcbe found
in [152 Vol. 2, Thm. 3 of §I1.5]. O

Computing Divisor ClassesThere are two results, one algebraic and one geomet-
ric, that enable us to compute class groups in some cases.

We begin with the algebraic result.

Theorem 4.0.18.Let R be a UFD and set X% SpecR). Then:
(&) R is normal and every codimension one prime ideal is priricipa
(b) CI(X)=0.

Proof. For part (a), we know that a UFD is normal by Exercise 1.0.5. pllee a
codimension one prime ideal 8fand picka € p \ {0}. SinceRis a UFD,

S
a=c[]n?,
i—1

with the p; prime andc is invertible inR. Because is prime, this means some
pi € p, and since codim = 1, this forcep = (p;).

Turning to part (b), leD C X be a prime divisor. Thep = I(D) is a codi-
mension one prime ideal and hence is principal,jsay(f). Thenf generates the
maximal ideal of the DVRR,,, which impliesvp(f) =1 (see the proof of Propo-
sition 4.0.3). It follows easily that dif) = D. Then C[X) = 0 since all prime
divisors are linearly equivalent to 0. O

In fact, more is true: a normal Noetherian domain is a UFD df anly if every
codimension one prime ideal is principal (Exercise 4.0.8).

Example 4.0.19.C[xq, ..., X,] is a UFD, so CIC") = 0 by Theorem 4.0.18. ¢

Before stating the geometric result, note thatl if- X is open and nonempty,
then restriction of divisor® — D|; induces a well-defined map &) — CI(U)
(Exercise 4.0.9).
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Theorem 4.0.20.Let U be a nonempty open subset of a normal variety X and let
Dy,...,Ds be the irreducible components of\XJ that are prime divisors. Then
the sequence

ESBZDJ- — CI(X) — CI(U) — 0
j=1

is exact, where the first map send3_, a; Dj to its divisor class irCI(X) and the
second is induced by restriction to U.

Proof. LetD’ = )", Dj € Div(U) with D] a prime divisor inJ. Then the Zariski
closureD] of D} in X is a prime divisor inX, andD = }"; D] satisfiesD|, = D’.
Hence C{X) — CI(U) is surjective.

Since eaclD; restricts to 0 in DiyU ), the composition of the two maps is
trivial. To finish the proof of exactness, suppose fiigte CI(X) restricts to 0 in
Cl(U). This means thdD| , is the divisor of somd € C(U)*. SinceC(U) = C(X)
and the divisor off in Div(X) restricts to the divisor of in Div(U ), it follows that
we havef € C(X)* such that

D, = div(f)|,.

This implies that the differencB — div(f) is supported orX \ U, which means
thatD —div(f) € @5_, ZDj by the definition of theD;. O

Example 4.0.21.Write P* = CU{co} and note thafoo} is a prime divisor orP?.
Then Theorem 4.0.20 and Example 4.0.21 give the exact seguen

Z{>0} — CI(P') — CI(C) = 0.
Hence the ma — CI(P') defined bya — [a{oo}] is surjective. This map is
injective sincea{oo} = div(f) implies div(f)|. =0, so thatf € I'(C, 0¢)* = C*

by Proposition 4.0.16. Henckis constant, which forcea = 0. If follows that
CI(PY) ~ Z. O

Later in the chapter we will use similar methods to compugedhass group of
an arbitrary normal toric variety.

Comparing Weil and Cartier Divisors Once we understand Cartier divisors on
normal toric varieties, it will be easy to give examples ofiMdérisors that are not
Cartier. On the other hand, there are varieties whessyWeil divisor is Cartier.

Theorem 4.0.22.Let X be a normal variety. Then:

(a) If the local ring Ox p is a UFD for every pe X, then every Weil divisor on X
is Cartier.

(b) If X is smooth, then every Weil divisor on X is Cartier.
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Proof. If X is smooth, ther , is a regular local ring for alp € X. Since every
regular local ring is a UFD (see 81.0), part (b) follows froartya).

For part (a), it suffices to show that prime divisors are llycatincipal. This
condition is obviously local oiX, so we may assume thxt= Spe¢R) is affine.
Let D = V(p) be a prime divisor orX, wherep C Ris a codimension one prime
ideal. Note thaD is obviously principal olJ = X\ D sinceD|; = 0. It remains
to show thaD is locally principal in a neighborhood of a poipte D.

The pointp corresponds to a maximal idealC R. Thusp € D impliesp C m.
Sincep C Rhas codimension one, it follows that the prime idgl, C R, also has
codimension one (this follows fron3] Prop. 3.11]). Then Theorem 4.0.18 implies
that pRy, is principal sinceR,, is a UFD by hypothesis. ThusR,, = (a/b)Rn
wherea, b € Randb ¢ m. Sinceb is invertible inR,,, we in fact haveR,, = aR,,.

Now suppose = (ay,...,as) C R. Thena € pR,, = aRy, so thalg; = (g /hi)a,
whereg;, h; € Randh; ¢ m, i.e.,hi(p) # 0. If we seth=h; --- hs, thenpR, = aR,
follows easily. TherJ = SpecR;) is a neighborhood op, and from here, it is
straightforward to see th&é = div(a) onU. O

Example 4.0.23.SinceP! is smooth, Theorem 4.0.22 and Example 4.0.21 imply
that Pi¢P!) = CI(P!) ~ Z. O

Sheaves ofP’x-modules Weil and Cartier divisors oiX lead to some important
sheaves oiX. Hence we need a brief excursion into sheaf theory (we witlegper
into the subject in Chapter 6). The sheaf was defined in 83.0. The definition
of asheaf.# of &x-modulesis similar: for each open subset C X, there is an
Ox(U)-module.Z (U) with the following properties:

e WhenW C U, there is a restriction map
puw: FU)— F(W)
such thatpy y is the identity anghy w o puv = puw WhenW CV C U. Fur-
thermore py w is compatible with the restriction ma@x (U) — Ox (W).
e If {U,} is an open cover df C X, then the sequence

0—ZU) — [[FUa) =][FUanUp)
[e% o,

is exact, where the second arrow is defined by the restrefigrny, and the

double arrow is defined blyUQ,uamuﬁ andpumuanuﬁ.
WhenU — .7 (U) satisfies just the first bullet, we say th@&tis apresheaf

Given a sheaf otx-modules.#, elements of# (U) are calledsections of#
over U. In practice, the module of sections.@f overU C X is expressed in several
ways:
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We will useT in this chapter and switch tBl® in later chapters. Traditionally,
I'(X,.#) is called the module aflobal sectionof .7

Example 4.0.24.Let f : X — Y be a morphism of varieties and 16f be a sheaf
of Ox-modules orX. Thedirect image sheaf .f# onY is defined by

U— Z(f 1))

forU CY open. Thenf,.Z is a sheaf oftyy-modules. Foi : Y — X, the direct
imagei, &y was mentioned in §3.0. O

If .# and¥ are sheaves ofx-modules, then @omomorphism of sheaves
¢ F — ¥4 consists ofvx (U )-module homomorphisms

ou: FU)—YU),

such that the diagram

F(U) -2 20)

lpu v lpu v

FV) 2 g V)

commutes whenevéf C U. It should be clear what it means for sheay8s¢ of
Ox-modules to be isomorphic, writtetf ~ ¢.

Example 4.0.25.Let f : X — Y be a morphism of varieties. f CY is open, then
composition withf induces a natural map

Oy(U) — Ox(f71(U)) = f.0x(U).
This defines a sheaf homomorphigm — f, Ox. O

Over an affine variet)X = Spe¢R), there is a standard way to get sheaves of
Ox-modules. Recall that a nonzero elemént R gives the localizatioRs such
thatXs = Spe€Ry) is the open subset\ V( f). Given anR-moduleM, we get the
Ri-moduleM; = M ®gR¢. Then there is a unique sheldlf of &x-modules such
that

M(Xf) = M;
for every nonzerd € R. This is proved inT7, Prop. 11.5.1].
We globalize this construction as follows.

Definition 4.0.26. A sheaf.# of 0x-modules on a varietX is quasicoherentif

X has an affine open covél, }, Ua = SpecﬁRa), such that for each, there is
an R,-moduleM,, satlsfylngJ| . Furthermore, if eaciM,, is a finitely
generated?,,-module, then we say th@ is coherent
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The Sheaf of a Weil Divisar Let D be a Weil divisor on a normal variety. We
will show thatD determines a sheafx (D) of &x-modules onX. Recall that if
U C X is open, ther¥x (U) consists of all morphismd — C. Proposition 4.0.16
tells us that an arbitrary elemefite C(X)* is a morphism orJ if and only if
div(f)|, > 0. It follows that the sheaf’x is defined by

U+— Ox(U)={f € C(X)" |div(f)|, >0} U {0}.
In a similar way, we define the sheék (D) by
(4.0.6) U+— Ox(D)(U) = {f € C(X)" | (div(f)+D)|, > 0} uU{0}.

Proposition 4.0.27.Let D be a Weil divisor on a normal variety X. Then the sheaf
Ox (D) defined in(4.0.6)is a coherent sheaf afx-modules on X.

Proof. In Exercise 4.0.10 you will show thatx (D) is a sheaf of¢’x-modules.
The proof is a nice application of the properties of valuadio

To show thatox (D) is coherent, we may assume tixat= Sped¢R). LetK be
the field of fractions oR. It suffices to prove the following two assertions:

e M =T(X,0x(D)) ={f e K|div(f)+D > 0} U{0} is a finitely generated

R-module.

o I'(Xf,Ox(D)) = M for all nonzerof € R.

For the first bullet, we will prove the existence of an elenteatR\ {0} such
thathT'(X, 0x(D)) € R. This will imply thathT'(X, &x(D)) is an ideal ofR and
hence has a finite basis sinBeis Noetherian. It will follow immediately that
I'(X, 0x(D)) is a finitely generate&-module.

Write D =7 ;& Dj. Since supfD) is a proper subvariety of, we can find
g € R\ {0} that vanishes on eadh. Thenvp,(g) > O for everyi, so there isne N
with mup, (g) > & for all i. Since di\(g) > 0, it follows thatmdiv(g) — D > 0. Now
let f € I'(X,0x(D)). Then div f)+ D > 0, so that

div(g™f) = mdiv(g) + div(f) = mdiv(g) —D+div(f)+ D >0
since a sum of effective divisors is effective. By Propaositd.0.16, we conclude
thatg™f € 0x(X) = R. Henceh = g™ € R has the desired property.

To prove the second bullet, observe thatC K and f € R\ 0 imply that

My = {% |gET(X,6x(D)), m>0}.

It is also easy to see thit; C I'(Xs, Ox(D)). For the opposite inclusion, |& =
> o_;aDjand write{1,...,s} =1 UJ whereD; N X; # () fori € | andD; C V(f)
for j € J. Givenh € I'(Xt, Ox (D)), (div(h) + D)|y, > 0 implies thatvp, (h) > —a;
fori 1. There is no constraint arp, (h) for j € J, but f vanishes o; for j € J,
so thatvp, (f) > 0. Hence we can pickn € N sufficiently large such that

mup, (f)+vp;(h) >0 forjed.
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Since div f) > 0, it follows easily that di¢f "h)+D > 0 onX. Thusg= f"h e
I['(X,0x(D)), and therh = g/ f™ has the desired form. O

The sheave®x (D) are more than just coherent; they have the additional prop-
erty of beingreflexive Furthermore, whed is Cartier,0x (D) is invertible The
definitions of invertible and reflexive will be given in Chapd 6 and 8 respectively.

For now, we give two results about the sheaggD). Here is the first.
Proposition 4.0.28. Distinct prime divisors B, ...,Dson a normal variety X give

the divisor D= D; + --- + Ds and the subvariety ¥= SupdD) = D3 U--- U Ds.
ThenOx(—D) is the ideal sheaf#, of Y, i.e.,

I'U,0x(—D)) ={f € Ox(U) | f vanishes orY}

for all open subsets L X.

Proof. Since sheaves are local, we may assumeXhatSpe¢R). Then note that
f eI'(X,0x(—D)) implies div(f) —D > 0, so di\ f) > D > 0 sinceD is effective.
Thusf € Rby Proposition 4.0.16 and hentéX, 0x(—D)) is an ideal ofR.

Letp; = 1(Dj) C Rbe the prime ideal db;. Then, forf € R, we have
vp,(f) >0 <= fepR, < fep,

where the last equivalence uses the easy equaly N R=p;. Hence diyf) > D
if and only if f vanishes oD, ...,Ds, and the proposition follows. O

Linear equivalence of divisors tells us the following irsting fact about the
associated sheaves.

Proposition 4.0.29.If D ~ E are linearly equivalent Weil divisors, thefix (D)
and 0x (E) are isomorphic as sheaves @k-modules.

Proof. By assumption, we hav@ = E + div(g) for someg € C(X)*. Then
fe'(X,0x(D)) < div(f)+D>0
> div(f) +E +div(g) >0
< div(fg)+E>0
— fgeI'(X,0x(E)).
Thus multiplication byg induces an isomorphisfi(X, 0x (D)) ~ T'(X, Ox(E))
which is clearly an isomorphism &f(X, ©x )-modules.

The same argument works over any Zariski operJsetnd the isomorphisms
are easily seen to be compatible with the restriction maps. O

The converse of Proposition 4.0.29 is also true, i.e.pgaAmodule isomor-
phism 0x (D) ~ Ox(E) implies thatD ~ E. The proof requires knowing more
about the sheavegy (D) and hence will be postponed until Chapter 8.
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Exercises for 84.0
4.0.1. Complete the proof of part (b) of Proposition 4.0.3.

4.0.2. Prove (c)= (d) in Theorem 4.0.4. Hint: Let be the maximal ideal dR. SinceR
has dimension one, it is regular if and onlynif/m? has dimension one as a vector space
overR/m. For (d)=- (c), use Nakayama’s Lemma (s& Props. 2.6 and 2.8)).

4.0.3. This exercise will study the ringgx p andR,;.

(a) Prove (4.0.2).

(b) Letp be a prime ideal of a rin® and letR, denote the localization d® with respect
to the multiplicative subseR\ p. Prove thaRR, is a local ring and that its maximal
ideal is the ideapR, C R, generated by.

4.0.4. Let Sbe a multiplicative subset of a Noetherian riRgProve that the localization
Rs is Noetherian.

4.0.5. Let D andE be Weil divisors on a normal variety.

(a) If D andE are Cartier, show thd + E and—D are also Cartier.

(b) If D ~ E, show thaD is Catrtier if and only ifE is Cartier.

4.0.6. Complete the proof of Theorem 4.0.14.
4.0.7. Prove that a normal curve is smooth.

4.0.8. Let R be a Noetherian normal domain. Prove that the following grévalent:
(a) Risa UFD.

(b) Cl(Spe¢R)) =0.

(c) Every codimension one prime idealRfs principal.

Hint: For (b) = (c), assume thad = div(f) corresponds t@. Use Theorem 4.0.14 to
showf € Rand use the Krull Principal Ideal Theorem to sh¢fy is primary inR. Then
pR, = fR, and B, Prop. 4.8] implyp = (f). For (c)= (a), leta € R be noninvertible and
let Dy,...,Ds be the codimension one irreducible component¥ (). If 1(D;) = (&),
compare the divisors (Itand]_[f:l ai"Di @ using Proposition 4.0.16.

4.0.9. Prove that the restriction map — D|, induces a well-defined homomorphism
CI(X) — Cl(U).

4.0.10. Let D be a Weil divisor on a normal variety. Prove that (4.0.6) defines a sheaf
Ox(D) of Ox-modules.

4.0.11.For each of the following ringR, give a careful description of the field of fractions
K and show that the ring is a DVR by constructing an appropdaserete valuation oK.

(@) R={a/beQ|abeZ,b#0,gcdb,p) =1}, wherepis a fixed prime number.
(b) R=C{{z}}, the ring consisting of all power seriesamvith coefficient inC that have
a positive radius of convergence.

4.0.12. The plane curvé/(x3 — y?) C C2? has coordinate rinR = C[x,y]/ (x> —y?). As
noted in Example 1.1.15, this is the coordinate ring of tHmaftoric variety given by
the affine semigroup = {0,2,3,...}. This semigroup is not saturated, which means that
R~ C[S] = CJ[t?,t%] is not normal by Theorem 1.3.5. It follows th@&tis not a DVR by
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Theorem 4.0.4. Give a direct proof of this fact using onlydieénition of DVR. Hint: The
field of fractions ofC[t2,t3] is C(t). If C[t?,t%] comes from the discrete valuatienwhat
isv(t)?

4.0.13. Let X be a normal variety. Use Proposition 4.0.16 to prove thaktiean exact
sequence

1— O0x(X)* — C(X)* — Div(X) — CI(X) — 0,
where the maf©(X)* — Div(X) is f — div(f) and DiyX) — CI(X) isD — [D]. Similarly,
prove that there is an exact sequence
1— Ox(X)* — C(X)* — CDiv(X) — Pic(X) — 0.

4.0.14.LetD =}~ 4im,—1 8 Dy be a Weil divisor on a normal affine variety= Spe¢R).

As usual, letK be the field of fractions oR. Here you give give an algebraic description

of T'(X, Ox(D)) in terms of the prime ideals

(a) Letp be a codimension one prime Bf so thatR, is a DVR. Hence the maximal ideal
pR, is principal. Use this to defing?R, C K for allac Z.

(b) Prove that
I(X,0x(D)= () » >R,
codimp=1
(c) Now assume thdd is effective, i.e.a, > 0 for all p. Prove thal'(X, Ox(—D)) is the
ideal ofR given by

L(X,0x(-D)= [\ p*Ry.
codimp=1
4.0.15. Let R be an integral domain with field of fractior6. A finitely generatedR-
submodule oK is called afractional ideal If Ris normal andD is a Weil divisor on
X = Spe¢R), explain whyl'(X, 0x (D)) C K is a fractional ideal.

84.1. Weil Divisors on Toric Varieties

Let Xs; be the toric variety of a fai in Ng with dimNg = n. ThenXy, is normal
of dimensionn. We will use torus-invariant prime divisors and charactergive a
lovely description of the class group Xf-.

The Divisor of a Character The order of vanishing of a character along a torus-
invariant prime divisor is determined by the polyhedralmetry of the fan.

By the Orbit-Cone Correspondence (Theorem 3.X&)imensional cones
of X correspond tdn — k)-dimensionalTy-orbits in Xy.. As in Chapter 3X(1)
is the set of 1-dimensional cones (i.e., the raysfofThusp € (1) gives the

codimension one orbi®(p) whose closure(p) is a Ty-invariant prime divisor

Xs:. To emphasize thad(p) is a divisor we will denote it byd, rather tharV (p).

ThenD, = O(p) gives the DVROx,, p, with valuation
vp=up,:C(Xg)" — Z.
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Recall that the ray € 3(1) has a minimal generatar, € pNN. Also note that
whenm € M, the charactex™ : Ty — C* is a rational function irC(Xs)* sinceTy
is Zariski open inXs.

Proposition 4.1.1. Let X be the toric variety of a faiX. If the rayp € 3(1) has
minimal generator yandx™ is character corresponding to mM, then
vp(x™) = (M up).

Proof. Sinceu, € N is primitive, we can extend, to a basise; = u,,,...,e, of
N, then we can assuni¢ = Z" andp = Conde;) C R". By Example 1.2.20, the
corresponding affine toric variety is

U, = SpedC[x, %57, ..., xF1]) = C x (C*)"?
andD,NU, is defined byx; = 0. It follows easily that the DVR is
Oxs,p, = Ou,u,nD, = (C[xl,...,xn]<xl>.
Similar to Example 4.0.6f € C(xy,...,X,)* has valuation/,(f) = ne Z when

f :xf%, g he Cxa,... %]\ (X0).

To relate this ta/,(x™), note thatxy, ..., x, are the characters of the dual basis
ofe; =u,,e,...,& € N. It follows that given anyn € M, we have

"= Xim,el)xém,ez) .. .xr(]mvaﬂ> = x:<Lm’UP>x§m’e2> ... Xf]vaﬁ.
Comparing this to the previous equation implies thaty™) = (m,u,). O

We next compute the divisor of a character. As above, @ray:(1) gives:
e A minimal generatou, € pNN.

e A prime Ty-invariant divisorD, = O(p) on Xs..
We will use this notation for the remainder of the chapter.
Proposition 4.1.2. For me M, the charactery™ is a rational function on X, and
its divisor is given by
div(x™ = > (mu,)D,.

pEX(D)

Proof. The Orbit-Cone Correspondence (Theorem 3.2.6) implietsttieeD,, are
the irreducible components of\ Ty. Sincex™ is defined and nonzero ok, it
follows thatx ™ is supported oy 5 ;) D,,. Hence

div(x™) = Z VDP(Xm)Dp'
peX(1)

Then we are done sineg, (x™) = (m,u,) by Proposition 4.1.1. O
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Computing the Class GroupDivisors of the formzpez(l) a, D, are precisely the
divisors invariant under the torus action ¥x (Exercise 4.1.1). Thus

Divry(Xs) = @D ZD, C Div(Xs)
pEX(D)

is the group ofTy-invariant Weil divisors orXs.. Here is the main result of this
section.

Theorem 4.1.3.We have the exact sequence
M — Divy (Xs) — Cl(Xg) — O,

where the first map is m- div(x™) and the second sends g-hvariant divisor to
its divisor class inCl(Xy). Furthermore, we have a short exact sequence

0— M — Divy(Xy) — Cl(Xy) — O

if and only if{u, | p € 3(1)} spans N, i.e., %; has no torus factors.

Proof. Since theD, are the irreducible components ¥f \ Ty, Theorem 4.0.20
implies that we have an exact sequence

DiVTN (XE) — Cl(XE) — Cl(TN) — 0.

SinceC|xy,..., %] is a UFD, the same is true f@[x;"%, ..., xF1]. This is the co-

ordinate ring of the toru¢C*)", which is isomorphic to the coordinate riGgM|
of the torusTy. HenceC[M] is also a UFD, which implies CTy) = 0 by Theo-
rem 4.0.18. We conclude that Qi Xs,) — CI(Xy) is surjective.

The compositiorM — Divy, (Xs) — Cl(Xx) is obviously zero since the first
map ism+— div(x™). Now suppose thdd € Divy, (Xs) maps to 0in GlXx). Then
D = div(f) for somef € C(Xx)*. Since the support dd missesly, this implies
that div( f) restricts to O only. When regarded as an element@fTy)*, f has
zero divisor onTy, so thatf € C[M]* by Proposition 4.0.16. Thu§ = cx™ for
somec € C* andm € M (Exercise 3.3.4). It follows that 0Ky,

D =div(f) = div(cx™ =div(x™),

which proves exactness at Bi(Xs).

Finally, suppose thamn € M with div(x™) = Zpex(l)(m, u,) D, is the zero
divisor. Then(m,u,) = 0 for all p € 3(1), which forcesm = 0 when theu, span
Ng. This gives the desired exact sequence. Conversely, ifahaesce is exact,
then one easily sees that thg spanNg, which by Corollary 3.3.10 is equivalent
to Xs; having no torus factors. O

In particular, we see that Cfy,) is a finitely generated abelian group.
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Examples It is easy to compute examples of class groups of toric vasetin
practice, one usually picks a basis. .., e, of M, so thatM ~ Z" and (via the dual
basis)N ~ Z". Then the pairingm,u) becomes dot product. We list the rays of
¥ aspi,...,pr With corresponding ray generatous, ..., u, € Z". We will think

of u; as the column vectof(er,u;),...,(en,U))T, where the superscript denotes
transpose.

With this setup, the mapl — Divyy, (Xs) in Theorem 4.1.3 is the map
AZN—7

represented by the matrix whose columns are the ray generdtoother words,
A= (ug,...,u)". By Theorem 4.1.3, the class groupX is the cokernel of this
map, which is easily computed from the Smith normal forni\of

When we want to think in terms of divisors, we [Btbe theTy-invariant prime
divisor corresponding tp; € 3(1).

Example 4.1.4.The affine toric surface described in Example 1.2.21 conus fr
the cones = Condde; — e;,€;). Ford = 3, o is shown in Figure 1. The resulting

Figure 1. The conesr” whend =3

toric varietyU,, is the rational normal con€y. Using the ray generatong =
de; — e = (d,—1) andu; = & = (0,1), we get the magZ? — Z? given by the

matrix
d 0
A= <—1 1) ’

This makes it easy to compute that

~

CI(Cy) ~ Z/dZ.

We can also see this in terms of divisors as follows. The amsap C(Cy) is
generated by the classes of the divisbesD, corresponding te1, p2, subject to
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the relations coming from the exact sequence of Theorer:4.1.
0~ div(x®) = (e1,u1) D1+ (&1, u2) D2 = d Dy
0~ div(x®) = (e, u1) D1+ (€2, Up) D2 = —D1 + Do.
Thus CICy) is generated byD3] with d[D;] = 0, giving CkCy) ~ Z/dZ. O

Example 4.1.5.In Example 3.1.4, we saw that the blowup®@f at the origin is
the toric variety B§(C?) given by the far® shown in Figure 2.

Figure 2. The fan for the blowup of:? at the origin

The ray generators ate = €;,U, = &, Ug = €1 + & corresponding to divisors
D1,D5,Dg. By Theorem 4.1.3, the class group is generated by the slatseeD;
subject to the relations

0~ diV(Xel) =D1+Dg
0~ diV(Xez) =Dy + Dy.

Thus C[BIlo(C?)) ~ Z with generatofD;] = [D2] = —[Dy|. This calculation can
also be done using matrices as in the previous example. O

Example 4.1.6.The fan ofP" has ray generators given by= —e; —--- — e, and
Ui = €y,...,U, = . Thus the map — Divy, (P") can be written as

Zn_)Zn-i-l
(a1>"'>an) — (_al—"‘—an>a1>'-'aan)-
Using the map

Zn—i—l -7

(bo,...,bn) — bo+---+ by,
one getS the exact sequence

0—2Z"—7™ — 70,
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which proves that GQP") ~ Z, generalizing Example 4.0.21. It is easy to redo this
calculation using divisors as in the previous example. O

Example 4.1.7.The class group CP" x P™) is isomorphic tdZ?. More generally,
Cl(Xgl X ng) ~ Cl(Xz;l) D Cl(Xz;z).
You will prove this in Exercise 4.1.2. O

Example 4.1.8. The Hirzebruch surfaces?; are described in Example 3.1.16.
The fan for.s# appears in Figure 3, along with the ray generatars- —e; + rey,

U2 =€, U3 =€, Ug = —€5.

Figure 3. Afan X, with Xs, ~ 4

The class group is generated by the classd3,0D,, D3, D4, with relations
0~ div(x®)=—-D;+D3
0~ diV(Xez) =rD1+Dy—Dag.

It follows that Cl.777) is the free abelian group generated[By| and[D»]. Thus
Cl(s8) ~ 72.

In particular,r = 0 gives C[s%) = CI(P* x P1) ~ Z?, which is a special case of
Example 4.1.7. O

Exercises for §4.1

4.1.1. This exercise will determine which divisors are invariandar theTy-action on

Xs. Givent € Ty and p € Xy, the Ty-action givest - p € Xg. If D is a prime divisor,

the Ty-action gives the prime divisdr- D. For an arbitrary Weil divisoD = ) ;& D;,

t-D=>,a(t-Dj). ThenD is Ty-invariantif t-D =D for all t € Ty.

(@) Showthab_ .y a,D, is Ty-invariant.

(b) Conversely, show that afy-invariant Weil divisor can be written as in part (a). Hint:
Consider SupfD) and use the Orbit-Cone Correspondence.
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4.1.2. Given fansX; in (Np)g andX; in (N2)g, we get the product fan
YixYo={o1x02]|0i €%},
which by Proposition 3.1.14 is the fan of the toric vari#y, x Xs,. Prove that
Cl(Xg, x Xs,) ~ Cl(Xs,) @ Cl(Xs,)-
Hint: The product fan has rays x {0} and{0} x p, for p; € ¥1(1) andp, € ¥,(1).

4.1.3. Redo the divisor class group calculation given in Examplexusing matrices, and
redo the calculation given in Example 4.1.6 using divisors.

4.1.4. The blowup ofC" at the origin is the toric variety B{C") of the fany described in
Example 3.1.15. Prove that @lo(C")) ~ Z.

4.1.5. The weighted projective spa&&qo, ...,0n), gcddp, . ..,0n) = 1, is built from a fan
inN = Z"t1/Z(qo,...,qn). The dual lattice is

M:{(ao,...,an)EZ”+1|anO+...+anqn:O}_

Letuo,...,un € N denote the images of the standard basis. ., e, € Z"*1. Theu; are the
ray generators of the fan giviriqo, . ..,qn). Define maps

M — Z" me— ((m,up), ..., (M,up))
2" — 7 (ao, ..., 8n) — 8oGo + *+* + @nCln.
Show that these maps give an exact sequence
0—M—2Z" -7 -—0

and conclude that QP(qp, . ..,0n)) ~ Z.

84.2. Cartier Divisors on Toric Varieties

Let X5, be the toric variety of a falt. We will use the same notation as in 84.1,
where eactp € ¥(1) gives a minimal ray generatar, and aTy-invariant prime
divisor D, C Xs. In what follows, we writezp for a summation over the rays
p € ¥(1) when there is no danger of confusion.

Computing the Picard Group A Cartier divisorD on Xy is also a Weil divisor
and hence
D~) a,D, ac¢cZ
p
by Theorem 4.1.3. TheEp a, D, is Cartier sinceD is (Exercise 4.0.5). Let

CDiVTN (XE) - DiVTN (XE)

denote the subgroup of Diy(Xsx:) consisting ofTy-invariant Cartier divisors. Since
div(x™) € CDivy, (Xx) for allme M, we get the following immediate corollary of
Theorem 4.1.3.
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Theorem 4.2.1.We have an exact sequence
M — CDivy(Xy) — Pic(Xs) — 0,
where the first map is defined above and the second sengéadriant divisor to
its divisor class irPic(Xy). Furthermore, we have a short exact sequence
0 — M — CDivy, (Xs) — Pic(Xg) — 0
if and only if{u, | p € (1)} spans M. O

Our next task is to determine the structure of GRi{Xsx). In other words,
which Ty-invariant divisors are Cartier? We begin with the affineecas

Proposition 4.2.2. Letoc C N be a strongly convex polyhedral cone. Then:

(a) Every N-invariant Cartier divisor on | is the divisor of a character.
(b) PiqU,)=0.

Proof. Let R= C[s¥ NM]. First suppose thdd =3 a,D, is an effectiveTy-
invariant Cartier divisor. Using Proposition 4.0.16 as lwe tproof of Proposi-
tion 4.0.28, we see that
I'U,,0u,(-D))={feK|f=0orf#0anddivf)>D}
is an ideall C R. Furthermore] is Ty-invariant sinceD is. Hence
(4.2.1) Iz@@.xm: EB C-x™
xMel div(x™>D

by Lemma 1.1.16.

Under the Orbit-Cone Correspondence (Theorem 3.2.6), a gy (1) gives

an inclusion ofTy-orbits O(o) € O(p) € O(p) = D,. Thus

O(0) €(\D,.
P

Now fix a pointp € O(o). SinceD is Cartier, it is locally principal, and in particular
is principal in a neighborhood of p. ShrinkingU if necessary, we may assume
thatU = (U, )n = Spe¢R,), whereh € R satisfiesh(p) # 0.

ThusD|, = div(f)]|, for somef € C(U,)*. SinceD is effective, f € R, by
Proposition 4.0.16, and sintds invertible onUJ, we may assumé € R. Then

div(f)=> up,(f)D,+ > ve(f)E> 1p,(f)D,=D.
P E#D, p

Here,} ¢_.p, denotes the sum over all prime divisors different from fhe The

first equality is the definition of di\f ), the second inequality follows sindec R,

and the final equality follows frond |, = div(f)|, sincepc U ND, for all p ¢

o(1). This shows that di¢f ) > D, so thatf 1.
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Using (4.2.1), we can writd = ) ;& x™ with g € C* and di\x™) > D.
Restricting tdJ, this becomes dig™ )|, > div(f)|,, which implies thaty™ / f is
a morphism ofJ by Proposition 4.0.16. Then

1— Z|a|X Za'_

andp € U imply that(x™ /f)(p) # 0 for some. Hencex™ /f is nonvanishing in
some open sat with peV C U. It follows that

div(x™)},, = div(f)|, =Dy
Since dix™) andD have support contained [Up D, and everyD, meetsV (this
follows fromp eV ND,), we have diyx™) =D.

To finish the proof of (a), leD be an arbitraryly-invariant Cartier divisor on
U,. Since dimrY = dimMg (o is strongly convex), we can finth € ¢V N M such
that(m,u,) > O for all p € o(1). Thus di\x") is a positive linear combination of
theD,,, which implies thaD’ = D + div(x*™) > 0 for k € N sufficiently large. The
above argument implies thBt is the divisor of a character, so that the same is true
for D. This completes the proof of part (a), and part (b) followsnetiately using
Theorem 4.2.1. O

Example 4.2.3. The rational normal congy is the affine toric variety of the cone
o = Condde, — e,6) C R%. We saw in Example 4.1.4 that @©l,) ~ Z/dZ.
The edgew, p2 of o give prime divisorsdD1,D, on Cq, and the computations of
Example 4.1.4 show thdD1] = [D,]| generates QU,). Since Pi¢U,) = 0 by
Proposition 4.2.2, it follows that the Weil divisoBs, D, are not Cartier il > 1.

Next consider the faky consisting of the conesy, p2, {0}. This is a subfan of
the fanX giving Cq, and the corresponding toric varietyXs, ~Cyq \ {75}, where
vo is the distinguished point that is the unique fixed point & Ty-action on
Cq. The varietyXs;, is smooth since every cone Yy is smooth (Theorem 3.1.19).
SinceXg andX have the same 1-dimensional cones, they have the sameidags g
by Theorem 4.1.3. Thus

Pic(Xs,) = Cl(Xg,) = Cl(Xs) = CI(Cy) ~ Z/dZ.
It follows that Xy, is a smooth toric surface whose Picard group has torsionp
Example 4.2.4.0ne of our favorite examples ¥= V (xy— zw) C C* which is the

toric variety of the cone = Condey, e, €1 + €3,€ +€3) C R3. The ray generators
are

U =8, =6, l3=©€ +€3 Uy =E+E€3.
Note thatu; + us = Up + us. Let D; C X be the divisor corresponding t§. In
Exercise 4.2.1 you will verify that

;D1 +ayDy+agDs+a4Dyis Cartier <= aj+tay=ar+ag
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and that C(X) ~ Z. Since Pi¢X) = 0, we see that thB; are not Cartier, and in
fact no positive multiple oD; is Cartier. O

Example 4.2.3 shows that the Picard group of a normal torietyacan have
torsion. However, if we assume thdthas a cone of maximal dimension, then the
torsion goes away. Here is the precise result.

Proposition 4.2.5. Let X;; be the toric variety of a fai in Ng ~ R". If X contains
a cone of dimension n, thé?ic(Xy) is a free abelian group.

Proof. By the exact sequence in Theorem 4.2.1, it suffices to showiftiiais a
Tn-invariant Cartier divisor an#é D is the divisor of a character for sonke> 0,
then the same is true f@. To prove this, writeD =} a,D, and assume that
kD=div(x™), me M.

Let o have dimensiom. SinceD is Cartier, its restriction tb, is also Cartier.
Using the Orbit-Cone Correspondence, we have

Dy, = >_ 3D,
pea(l)

This is principal onU, by Proposition 4.2.2, so that therens € M such that
Dly, = div(x™)]y, . This implies that

a, = (m,u,) forallpeo(l).
On the other hand D = div(x™) implies that
ka, = (m.u,) forallpec3(1).
Together, these equations imply
(km,u,) =ka, = (mu,) forallpeco(l).
Theu, spanNg since dino = n. Then the above equation forcksi = m, and

D = div(x™) follows easily. 0

This proposition does not contradict the torsion Picardigrim Example 4.2.3
since the fartg in that example has no maximal cone.

Comparing Weil and Cartier Divisors Here is an application of Proposition 4.2.2.
Proposition 4.2.6. Let X, be the toric variety of the fak. Then the following are
equivalent:

(a) Every Weil divisor on X is Cartier.

(b) PidXy) = CI(Xy).

(c) Xx is smooth.
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Proof. (a) < (b) is obvious, and (c} (a) follows from Theorem 4.0.22. For
the converse, suppose that every Weil divisoXgris Cartier and leU, C Xy, be
the affine open subset correspondingste X. Since C(Xy) — CI(U,) is onto
by Theorem 4.0.20, it follows that every Weil divisor &k is Cartier. Using
Pic(U,) = 0 from Proposition 4.2.2 and the exact sequence from Thedr&r8,
we conclude tham — div(x™) induces a surjective map

M — Divyy(Uy) = €D ZD,.
peo(l)
Writing (1) = {p1,...,ps}, this map becomes
M — Z°

(4.2.2) m— ((Muy,,),..., (M u,.)).

Now define® : Z° — N by ®(ay,...,as) = Y., & U,. The dual map
®*: M = Homy(N,Z) — Homy(Z%Z) = Z°
is easily seen to be (4.2.2). In Exercise 4.2.2 you will shioa t

423 ®* is surjective < & is injective andN/®(Z®) is torsion-free.
(42.3) < U,,...,U, can be extended to a basisNf

The first part of the proof shows thét* is surjective. Then (4.2.3) implies that the
u, for p € o(1) can be extended to a basisNf which implies thair is smooth.
ThenXs is smooth by Theorem 3.1.19. O

Proposition 4.2.6 has a simplicial analog. Recall tkatis simplicial when
everyo € ¥ is simplicial, meaning that the minimal generatorsooéire linearly
independent oveR. You will prove the following result in Exercise 4.2.2.

Proposition 4.2.7. Let Xy be the toric variety of the fak. Then the following are
equivalent:

(a) Every Weil divisor on X has a positive integer multiple that is Cartier.
(b) PidXs) has finite index irCl(Xs).
(c) Xs is simplicial. O

In the literature, a Weil divisor is calle@-Cartier if some positive integer mul-
tiple is Cartier. Thus Proposition 4.2.7 characterizesd¢hmormal toric varieties for
which all Weil divisors aré&)-Cartier.

Describing Cartier Divisors We can use Proposition 4.2.2 to characterlze
invariant Cartier divisors as follows. Léia € X be the set of maximal cones
of 32, meaning cones il that are not proper subsets of another cong.in
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Theorem 4.2.8.Let X; be the toric variety of the fai and let D=3_ a,D,,.
Then the following are equivalent:

(a) D is Catrtier.

(b) D is principal on the affine open subset br all o € 3.

(c) For eacho € 3, there is g € M with (m,,u,) = —a, for all p € o(1).
(d) For eacho € ¥max there is g € M with (m,,u,) = —a, for all p € o(1).
Furthermore, if D is Cartier andm, },<x is as in part(c), then:

(1) m, is unique modulo Nb) = o+ NM.

(2) If 7 is a face ofr, then | = m; modM(r).

Proof. SinceD|, = Zpeo(l) a,D,, the equivalences (& (b) < (c) follow im-
mediately from Proposition 4.2.2. The implication €¢)(d) is clear, and (d)> (c)
follows because every cone M is a face of somer € Yhax and if M, € Xmax
works foro, it also works for all faces of.

For (1), suppose thah, € M satisfies(m,u,) = —a, for all p € o(1). Then,
givenm, € M, we have
(m,u,) = —a,forall peo(l) <= (M,—m,,u,) =0 forallp e o(l)
< (M, —m,,u)y=0forallueco
= m, —m, €0 NM=M(0).
It follows thatm, is unique moduldV (o). Sincem, works for any facer of o,
unigueness implies that, = m. modM(7), and (2) follows. O

Them, of part (c) of the theorem satis|, = div(X—mo)|UU forall o € X.
Thus{(U,,x ™ )},ex is local data foD in the sense of Definition 4.0.12. We
call {m, },ex theCartier dataof D.

The minus signs in parts (c) and (d) of the theorem are rel@tede minus

signs in the facet presentation of a lattice polytope givef2i2.2), namely
P={me Mg | (mug) > —ag for all facetsF of P}.

We will say more about this below. The minus signs are alsatedltosupport

functions to be discussed later in the section.

WhenX is a complete fan ilNg ~ R", part (d) of Theorem 4.2.8 can be recast
as follows. Letx(n) = {o € £ | dimo = n}. In Exercise 4.2.3 you will show that
a Weil divisorD =} a,D,, is Cartier if and only if:

(dy For eacho € X(n), there is 3 € M with (m,u,) = —a, for all p € o(1).
Part (1) of Theorem 4.2.8 shows that thesgs are uniquely determined.
In general, eacim, in Theorem 4.2.8 is only unique moduld(s). Hence we

can regardn, as a uniquely determined element\dfM (o). Furthermore, ifr is
a face ofo, then the canonical magd/M(o) — M/M(7) sendsm, tom,.
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There are two ways to turn these observations into a comgéseription of

CDivy, (Xs). For the first, write

Emaxz {0'17 .o ,O‘r}
and consider the map

PM/M(ai) — PM/M(oina))
i i<j

(M) — (M —mj)icj.

In Exercise 4.2.4 you will prove the following.

Proposition 4.2.9. There is a natural isomorphism
CDiv (Xs) = ker(@;M/M(ai) — @;;M/M(ai N aj)). O

For readers who know inverse limits (se& p. 103]), a more sophisticated
description of CDiy, (Xs;) comes from the directed sgf, <), where= is the face
relation. We get an inverse system where o givesM/M(c) — M/M(7), and
the inverse limit gives an isomorphism

CDivy, (Xs) ~ lim M/M(o).
[ADY

The Toric Variety of a Polytope In Chapter 2, we constructed the toric variety
Xp of a full dimensional lattice polytop® C Mg. If Mg ~ R", this means that
dimP = n. As noted aboveR has a canonical presentation

(4.2.4) P={me Mg | (mug) > —ag for all facetsF of P},

wherear € Z andug € N is the inward-pointing facet normal that is the minimal
generator of the rayr = Congug). The normal fanXp consists of conesq
indexed by face® < P, where

oq = Con€ur | F containsQ).

Proposition 2.3.6 implies that the fatp is complete. Furthermore, the vertices of
P correspond to the maximal cones¥i(n), and the facets d? correspond to the
rays inXp(1).

The ray generators of the normal fap are the facet normalg-. The corre-
sponding prime divisors iXp will be denotedDg. Everything is now indexed by
the facetd= of P. The normal fan tells us the facet normajsin (4.2.4), butsp
cannot give us the integess in (4.2.4). For these, we need the divisor

(4.2.5) Dp=> aDr.

F
As we will see in later chapters, this divisor plays a centodé in the study of
projective toric varieties. For now, we give the followingaful result.

Proposition 4.2.10.Dp is a Cartier divisor on % and Dy £ 0.
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Proof. A vertexv e P corresponds to a maximal cong and a raye lies inoy(1)
if and only if ve F. Butv e F implies that(v,ug) = —ag. Note also thav € M
sinceP is a lattice polytope. Thus we have= M such that(v,ur) = —ag for all
pr € oy(1), so thatDp is Cartier by Theorem 4.2.8. You will prove thap £ 0 in
Exercise 4.2.5. O

In the notation of Theorem 4.2.8),, is the vertexv. Thus the Cartier data of
the Cartier divisoDp is the set

(4.2.6) {My, }oyesp(m) = {V| Vis a vertex ofP}.
This is very satisfying and explains why the minus signs i2.@) correspond to

the minus signs in Theorem 4.2.8.

The divisor clas$Dp| € Pic(Xp) also has a nice interpretation.Df~ Dp, then
D = Dp +div(x™) for somem e M. In Proposition 2.3.7 we saw th&and its
translateP — m have the same normal fan and hence give the same toric variety
i.e.,Xp = Xmyp. We also have

D= Dp—l—diV(Xm) =Dp_m

(Exercise 4.2.5), so that the divisor clasdgf gives all translates d?.

The divisorDp has many more wonderful properties. We will get a glimpse
of this in 84.3 and learn the full power @fp in Chapter 6 when we study ample
divisors on toric varieties.

Support Functions The Cartier data{m, },cx that describes a torus-invariant
Cartier divisor can be cumbersome to work with. Here we ohice a more ef-
ficient computational tool. Recall thathas supporty| = (J,c5; 0 € Ng.

Definition 4.2.11. Let ¥ be a fan inNg.

(@) Asupport functionis a functiony : |¥| — R that is linear on each cone B&f
The set of all support functions is denoted(Sk

(b) A support functiony is integral with respect to the lattic®\ if
o(|2]NN) C Z.

The set of all such support functions is denotedXSN).

LetD =3}, a,D, be Cartier and lefm, },cx be the Cartier data db as in
Theorem 4.2.8. Thus

(4.2.7) (My,u,) = —a, forall pco(l).

We now describe Cartier divisors in terms of support fundio
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Theorem 4.2.12.LetY be a fanin k.
(a) Given D= Zp a, D, with Cartier data{m, },¢x, the function
¢p: X —R
ur— ¢p(U) = (M,,u) when ue o
is a well-defined support function that is integral with respto N.
(b) ¢p(u,) = —a, forall p € ¥(1), so that

D=-> ¢p(u,)D,.
P

(c) The map D— ¢p induces an isomorphism
CDiv, (X)) ~ SHX,N).

Proof. Theorem 4.2.8 tells us that eaaofy, is unique modulas-NM and that
m, = m,» mod (¢ No’)- NM. It follows easily thatpp is well-defined. Alsop
is linear on eaclr sinceyp |, (u) = (M,,u) for uc o, and it is integral with respect
to N sincem, € M. This proves part (a), and part (b) follows from the defimitaf
pp and (4.2.7).

It remains to prove part (c). First note thay € SHX,N) by part (a). Since

D,E € CDivy, (Xs) andk € Z imply that
PD+E = ¢D + PE
©YkD = kSOD7
the map CDiy, (Xs) — SKX,N) is a homomorphism, and injectivity follows from
part (b). To prove surjectivity, takg € SHX,N). Fix o € ¥. Sincey is integral
with respect taN, it defines aN-linear mapp|, NN — Z, which extends to
N-linear mapp, : N, — Z, whereN, = Spar{c) " N. Since
Homy(N,,Z) ~M/M(o),

it follows that there ism, € M such thatp|_(u) = (m,,u) foruc 0. ThenD =
—>_,%p(U,) D, is a Cartier divisor that maps te. O

In terms of support functions, the exact sequence of Thedr@rih becomes
(4.2.8) M — SHX,N) — Pic(Xy) — O,

wherem € M maps to the linear support function defined by~ —(m,u) and
¢ € SHX,N) maps to the divisor class- > ¢(u,)D,| € Pic(Xs). Be sure you
understand the minus signs.

Here is an example of how to compute with support functions.
Example 4.2.13.The eight pointste; + e, + e; are the vertices of a cube i®.

Taking the cones over the six faces gives a complete f&¥irModify this fan by
replacinge; + e, + e3 with e; + 2e, + 3e;3. The resulting fark has the surprising
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property that Pi€Xy) = 0. In other words Xy, is a complete toric variety whose
Catrtier divisors are all principal.

We will prove PigXy) = 0 by showing that all support functions far are
linear. Label the ray generators as follows, using cootdm&r compactness:
u=(1,23), b=(1,-1,1), s=(1,1,-1), us =(-1,-1,1)
us=(1,-1,-1), us=(—1,-1,1), uy=(-1,1,—-1), us = (—1,-1,-1).
The ray generators are shown in Figure 4. The figure alsodeslthree maximal
cones ofy:
o1 = Con€ug, Uy, U3, Us)
o = Con€ug, s, Ug, Uy)
o3 = Con€ug, Uy, Ug, Ug).
The shading in Figure 4 indicates No»,01 No3,02No3. Besidessy,07,03, the

fan X has three other maximal cones, which we t&fl, down, andback. Thus
the condeft has ray generators, us, Ug, Ug, and similarly for the other two.

Figure 4. A fan X with Pic(Xs) =0

Takep € SKX,Z3). We show thaty is linear as follows. Sinc<~‘,:>]0l is linear,
there ismy € Z2 such thatp(u) = (my, u) for u € o1. Hence the support function

ur— (u) — (mg, u)

vanishes identically on;. Replacingy with this support function, we may assume
that<p|01 = 0. Once we provep = 0 everywhere, it will follow that all support
functions are linear, and then P¥g;) = 0 by (4.2.8).

Since up, Uz, U3, Us € 01 and ¢ vanishes oro1, we havep(u

1)
»(uz) = ¢(us) = 0. It suffices to proveo(us) = ¢(Us) = @(U7) = p(u

= p(Up) =
g) = 0.
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To do this, we use the fact that each maximal cone has fourggems, which
must satisfy a linear relation. Here are the cones and thesmonding relations:

cone relation
o1 2uq + 5us = 4u;, + 3us
o2 2uq +4u7 = 3uz + 5uy
o3 2u; + 3ug = 4uy + 5uy
left Uo + Ug = Us + Ug
down Uz + Ug = Us + Uy
back Ug + Ug = Ug + U7

Sinceyp is linear on each cone andu; ) = p(U2) = p(uz) = p(us) = 0, the second,
third, fourth and fifth relations imply

Ap(u7) = 5p(Us)
3(Us) = 5p(Ua)
p(Ug) = ©(Us)
p(Ug) = ¢(ur).
The last two equation give(us) = ¢(u7), and substituting these into the first two
shows thatp(us) = ¢(Us) = p(u7) = p(ug) = 0. O

Since the toric variety of a polytope has the non-principal Cartier divisor
Dp, its follows that the far®: of Example 4.2.13 is not the normal fan arfy 3-
dimensional lattice polytope. As we will see later, this liep thatXy; is complete
but not projective.

A full dimensional lattice polytopd® C My leads to an interesting support
function on the normal faXp.

Proposition 4.2.14. Assume RC Mg is a full dimensional lattice polytope with
normal fanXp. Then the functiopp : Ng — R defined by

pp(u) = min((mu) |[me P)
has the following properties:

(a) vp is a support function fokp and is integral with respect to N.
(b) The divisor corresponding t@p is the divisor [ defined in(4.2.5)

Proof. First note that minimum used in the definition pf exists becaus® is
compact. Now write
P={me Mg | (mug) > —ag for all facetsF of P}.

ThenDp = ) ar Dr is Cartier by Proposition 4.2.10, and Theorem 4.2.12 shows
that the corresponding support function mapso —ar.



8§4.2. Cartier Divisors on Toric Varieties 185

It remains to show thapp(u) € SHXp) andpp(Ug ) = —ar. Recall that maxi-
mal cones obp correspond to vertices &, where the vertex gives the maximal
coneoy = Congur |veE F). Takeu= )" r AfUr € oy, whereAr > 0. Then
me P implies

(4.2.9) (Mu)=> Ae(mUe) > - Aear.
veF veF

Thuspp(u) > — > cr AFaF. Since equality occurs in (4.2.9) when= v, we
obtain

pp(U) ==Y Arar = (V,u).

veF
This shows thatop € SHXp,N). Furthermore, when € F, we havepp(ug) =
(V,up) = —ar, as desired. O

We will return to support functions in Chapter 6, where we wie them to
give elegant criteria for a divisor to be ample or generatedsbglobal sections.

Exercises for §4.2
4.2.1. Prove the assertions made in Example 4.2.4.
4.2.2. Prove (4.2.3) and Proposition 4.2.7.

4.2.3. When is complete, prove thdd = Zp a,D, is Cartier if and only if it satisfies
condition (d} stated in the discussion following Theorem 4.2.8.

4.2.4. Prove Proposition 4.2.9.

4.2.5. A lattice polytopeP gives the toric varietXp and the divisoDp from (4.2.5).
(a) Prove thabDp+div(x™) = Dp_mforanyme M.

(b) Prove thaDp +£ 0. Hint: The normal fan oP is complete.

4.2.6. Let D be aTy-invariant Cartier divisor oiXy. By Theorem 4.2.8D is determined
by its Cartier datdm, },cx. Given anyme M, show thatD + div(x™) has Cartier data
{m, —m},cx. Be sure to explain where the minus sign comes from.

4.2.7. Let Xy, be the toric variety of the fak. Prove the following consequences of the
Orbit-Cone Correspondence (Theorem 3.2.6).

(@) O(o) =Mpex1) Do
(b) Raysu,,,...,u, € X(1) lieinacone of ifand only if D, N---ND,, # 0.
4.2.8. LetX be afan inlNg ~ R" and assume that has a cone of dimensian
(a) Fix a coner € X of dimensiom. Prove that

Pic(Xs) ~ {¢ € SHE,N) | ¢|, = 0}.
(b) Explain how part (a) relates to Example 4.2.13.
(c) Use part (a) to give a different proof of Proposition 8.2.
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4.2.9. Leto be as in Example 4.2.4, but instead of using the lattice géeébye;, e, e3,
instead ustN = Z- xe1+Z- te; + Z- 1e3+ Z- % (€1 + €, + e3), wherea, b are relatively
prime positive integers with > 1. Prove that no multiple dd; + D, + D3+ D4 is Cartier.
Hint: The first step will be to find the minimal generators étele toN) of the edges of.

4.2.10. Let Xp be the toric variety of the octahedrén= Conv(+e;, +-&, +e3) C R3.
(@) Show that QIXp) ~ Z° @ (Z/27,)>.
(b) Use support functions and the strategy of Example 4@ %Bow that PiXp) ~ Z.

4.2.11. In Exercise 4.1.5, you showed that the weighted projectreedP(q, . . .,q,) has
class group GIP(qp, . ..,0n)) ~ Z. Prove that PigP(qo, . ..,qn)) € CI(PP(qp,. . .,0n)) maps
to the subgroupZ C Z, wherem= lcm(qp, . .. ,qn). Hint: Show thatzi”:O b;D; generates
the class group, Whergjinzobiqi = 1. Also note thatm € Mg lies in M if and only if
(m,u;) € Z for all i, where thay; are from Exercise 4.1.5.

4.2.12. Let X5, be a smooth toric variety and lete 3 be a cone of dimensior 2. This

gives the orbit closur¥ (7) = O(7) C Xs. In 83.3 we defined the blowup Bl (Xs).
Prove that
Pic(Bly () (X)) ~ Pic(Xs) ® Z.
4.2.13. A nonzero polynomiaf =3 . CmnX™ € C[xq, ..., %] hasNewton polytope
P(f) =Convm| ¢y # 0) C R".
When P(f) has dimensiom, Proposition 4.2.14 tells us that the functigp(u) =

min((m,u) | me P(f)) is the support function of a divisor o%(r). Here we interpret
vp(t) as thetropicalizationof f.

Thetropical semiring(R, @, ®) has operations

a®b=min(a,b) (tropical addition

acb=a+b (tropical multiplicatior).
A tropical polynomialin real variables, . .., X, is a finite tropical sum

F = Cl®Xi1’1®~~~®Xﬁ1'" @D Cr@)(i“@...@)(ﬁ‘v"
whereci € R andx* =x ©---©X (atimes). For a more compact representation, define
a tropical monomial to be™ = xfl ©---Ox& form= (ay,...,a,) € N". Then, using the
tropical analog of summation notation, the tropical polynial F is
F=@_.cox™, m=(ay...an5).

(a) Show thafF = ming<i<((C + & 1%t + - - - + @i,nXn)-
(b) Thetropicalizationof our original polynomialf is the tropical polynomial

Fi = @cm;éOOQXm'
Prove thatFs = ¢p(r). (The 0 is explained as follows. In general, the coefficients
of f are Puiseux series, and the tropicalization uses the ofdearashing of the
coefficients. Here, the coefficients are nonzero constaitts order of vanishing 0.)
(c) Thetropical varietyof a tropical polynomiaF is the set of points ifR" whereF is
not linear. Forf = x+ 2y + 3x? — xy? + 4x?y, compute the tropical variety & and
show that it consists of the rays in the normal farPof).

A nice introduction to tropical algebraic geometry can befoin [14§.



84.3. The Sheaf of a Torus-Invariant Divisor 187

84.3. The Sheaf of a Torus-Invariant Divisor

If D=3,a,D, is aTy-invariant divisor on the normal toric varie}s:, we get the
sheaf?x, (D) defined in 84.0. We will study these sheaves in detail in Glra
and 8. In this section we will focus primarily on global secs.

We begin with a classic example of the shéaf, (D).

Example 4.3.1.ForP", the divisorsDy, . .., D, correpsond to the ray generators of
the usual fan fo". The computation CP") ~ Z from Example 4.1.6 shows that
Do ~ D1~ --- ~ Dp. These linear equivalences give isomorphisms

ﬁ]}nn(Do) ~ ﬁpn(Dl) ™~ ﬁpn(Dn)
by Proposition 4.0.29. In the literature, these sheavesi@meteddpn(1). Simi-
larly, the sheave#ipn (kDy), k € Z, are denote@pn (K). O

Global Sections Let D be aTy-invariant divisor on a toric varietiXs;. We will
give two descriptions of the global sectiofiéXs;, O, (D)). Here is the first.

Proposition 4.3.2. If D is a Ty-invariant Weil divisor on X, then

T'(Xs,0x:(D)= P C-x™
div(x™-+D>0

Proof. If f € I'(Xs, Ox,,(D)), then div(f) +D > 0 implies div(f)|; > O since
Dy, = 0. SinceC[M] is the coordinate ring ofy, Proposition 4.0.16 implies
f € C[M]. Thus

T'(Xs, O, (D)) € CM].

Furthermore['(Xs, Ox, (D)) is invariant under th@y-action onC[M] sinceD is
Tn-invariant. By Lemma 1.1.16, we obtain

['(Xs;, Oxs, (D)) = a C-x™
XmEF(XEvﬁXE(D))

Sincex™ € I'(Xy, Ox,, (D)) if and only if div(x™) 4+ D > 0, we are done. O

The Polyhedron of a Divisar ForD = Zpapr andme M, div(x™)+D >0is
equivalent to

(mu,)+a,>0 forallpe (1),
which can be rewritten as
(4.3.1) (mu,) > —a, forallpeX(1).
This explains the minus signs! To emphasize the underlyaangetry, we define
(4.3.2) Po={me Mg |(mu,) >—a,forall pc3(1)}.
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We say that, is apolyhedronsince it is an intersection of finitely many closed
half spaces. This looks very similar to the canonical priedem of a polytope
(see (4.2.4), for example). However, the reader should lzeeatihatFy need not
be a polytope, and even when it is a polytope, it need not bitieelgolytope. All
of this will be explained in the examples given below.

For now, we simply note that (4.3.1) is equivalentmice P " M. This gives
our second description of the global sections.

Proposition 4.3.3. If D is a Ty-invariant Weil divisor on X, then

F(thﬁXE(D)): @ (C'Xm7
mePbNM

where B C Mg is the polyhedron defined {@.3.2) d

As noted above, a polyhedron is an intersection of finitelyhyynelosed half
spaces. A polytope is a bounded polyhedron.

Examples Here are some examples to illustrate the kinds of polyhduxadan
occur in Proposition 4.3.3.

Example 4.3.4. The fanX for the blowup Bj(C?) of C? at the origin has ray
generatorsly = €, + &, U1 = €1, Up = & and correponding diviso®g, D1, D».
For the divisorD = Do+ D + D, a pointm= (x,y) lies in P if and only if

(Mmug) > -1 < x+y>-1
(mug) > -1 «<— x>-1
(Muz) > -1 <= y> -1

'y ° °
Uz e ° °
Up
> P D Y
Uy D e
)

Figure 5. The fanX and the polyhedrof,

The fan and the polyhedroiy are shown in Figure 5. Note th&p is not
bounded. By Proposition 4.3.3, the lattice point®ef(the dots in Figure 5) give
characters that form a basisBfBlo(C?), Oy, 2 (D)). O
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Example 4.3.5. The fanX, for the Hirzebruch surface?s has ray generators
U =—6+26, U =6, U3 =€, Uy = —&. The corresponding divisors are
D1, Dy, D3, D4, and Example 4.1.8 implies that the classePeofandD, are a
basis of C{./#%3) ~ 7Z2.

Consider the divisoaD; + D», a € Z, and letP, C R? be the corresponding
polyhedron, which is a polytope in this case. A paimt= (x,y) lies in P, if and
only if

(Mmug) > —a < y>3ix—3

mu)>-1<«<—y>-1
(muz) >0 < x>0.
(mug) >0 <= y<0.

Figure 6 shows:,, together with shaded areas marléedB, C. These are related

Figure 6. The fanX; and the polyhedr&,

to the polygond>; for a= 1,2,3 by the equations

P=A
P, =AUB
P, = AUBUC.

Notice that as we increase the liney = %x— g corresponding tai; moves to the
right and makes the polytope bigger. In fact, you can seediha the normal fan
of the lattice polytopd®, for anya > 3. Fora= 2, we get a lattice polytop, but

its normal fan is nok,—you can see how the “facet” with inward normal vector
U, collapses to a point d®. Fora= 1, P; is not a lattice polytope since%ez is a
vertex. O

Chapters 6 and 7 will explain how the geometry of the polybeéh relates to
the properties of the divisdd. In particular, we will see that the divisarD; + D»
from Example 4.3.5 immpleif and only if a > 3 since these are the ondys for
which X35 is the normal farP,.
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Example 4.3.6. By Example 4.3.1, the sheafpn(k) can be writtendpn (k Dp),
where the divisoDg corresponds to the ray generatgrfrom Example 4.1.6. Itis
straightforward to show that the polyhedron»& k Dy is

0 k<0
P =
kAn k>0,
whereA, C R" is the standara-simplex. We can think of characters as Laurent
monomialg™ =t .. .t& wherem= (ay,...,a,). It follows that
F(]P’n, ﬁpn(k)) ~ {f S (C[tl,. .. ,tn] ‘ dGQf) < k}
Thehomogenizatiomf such a polynomial is

F=x§(X/%.--,%/%) € C[Xo, ... X].
In this way, we get an isomorphism
[(P", Opn(k)) ~ {f € C|xo,...,X,] | f is homogeneous with dé§) = k}.
The toric interpretation of homogenization will be disesn Chapter 5. O

Example 4.3.7. Let Xp be the toric variety of a full dimensional lattice polytope
P C Mg. The facet presentation Bfgives the Cartier divisdDp defined in (4.2.5),
and one checks easily that the polyhedRap is the polytopeP that we began with
(Exercise 4.3.1). It follows from Proposition 4.3.3 that

I'(Xp, Ox-(Dp)) @ C-x™
mePNM

Recall from Chapter 2 that the charactgr8 for me PN M give the projective
toric varietyXpnm. The divisork Dp gives the polytop&P (Exercise 4.3.2), so that

I'(Xp, Ox-(kDp)) = € C-x"
mekPNM
In Chapter 2 we proved th&P is very ample fok sufficiently large, in which case
X(kp)nm is the toric varietyXp. So the characterg™ that realizeXp as a projective

variety come from global sections &, (kDp). In Chapter 6, we will pursue these
ideas when we studgmpleandvery ampleCartier divisors.

Note also that din'(Xp, Ox, (kDp)) gives number of lattice points in multiples
of P. This will have important consequences in later chapters. O

The operation sending &-invariant Weil divisorD C Xs. to the polyhedron
Po € Mg defined in (4.3.2) has the following properties:

e Rip=kR fork> 0.
i I:)D+d|v =Fh-m
. F’D+PE§PD+E-

You will prove these in Exercise 4.3.2. The multik&, and Minkowski sum
P> + P= are defined in §2.2, arfd— mis translation.
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Complete Fans When the fanX is complete, we have the following finiteness
result that you will prove in Exercise 4.3.3.

Proposition 4.3.8. Let X5, be the toric variety of a complete fanin Ng. Then:
(@) I'(Xs, Ox,,) = C, so the only morphismsyX— C are the constant ones.
(b) Py is a polytope for any J-invariant Weil divisor D on X.

(c) I'(Xs;, Ox,, (D)) has finite dimension as a vector space o{efor any Weil
divisor on X:.

The assertions of parts (a) and (c) are true more generafyisianycomplete
variety and# is a coherent sheaf of, thenI'(X, 0x) = C and diml’(X,.%) < oo
(see 52 \Vol. 2, 8VI.1.1 and 8VI.3.4)).

Exercises for §4.3
4.3.1. Prove the assertiof,, = P made in Example 4.3.7.
4.3.2. Prove the properties & — Py listed above.

4.3.3. Prove Proposition 4.3.8. Hint: For part (a), use completenie show tham =0
when(m,u,) > 0 for all p. For part (b), assumblz = R" and supposen € R satisfy
[|mi]| — oco. Then consider the poinﬁa—” on the spher& -1 C R".

4.3.4. Let X be a fan inNg with convex support. ThefE| C Ng is a convex polyhedral

cone with dualX|¥ C M.

(a) Prove thatX|Y is the polyhedron associated to the diviBoe 0 onXs..

(b) Conclude thal'(Xs, Oxs) = Pmejsyvm € - x™

(c) Use part (b) to prove part (a) of Proposition 4.3.8.

4.3.5. Example 4.3.5 studied divisors on the Hirzebruch surfa€e This exercise will

consider the divisor® = D4 andD’ = D + Dy = Dy + Dg.

(a) Show thab’ gives the same polygdmasD.

(b) Since.7% is smooth,D andD’ are Cartier. Compute their respective Cartier data
{Ms}oes, 2 and{ma’}G’GEz(Z)'

(c) Show thaP = Convm, | o € 3»(2)) and thatP # Convm, | o € 3,(2)).

ThusD andD’ give the same polygon but differ in how their Cartier datates to the
polygon. In Chapter 6 we will use this to prove tlial,, (D) is generated by global sections
while &,4(D’) hasbase points






Chapter 5

Homogeneous Coordinates

85.0. Background: Quotients in Algebraic Geometry
Projective spac®" is usually defined as the quotient
P" = (C™h\{0})/C*,
whereC* acts onC™?! by scalar multiplication, i.e.,
A-(ag,...,a)) = (Aag, ..., A\an).

The above representation defifi&sas aset makingP" into a variety requires
the notion of abstract variety introduced in Chapter 3. Tlérgoal of this chapter
is to prove that every toric variety has a similar quotiemstauction as a variety.

Group Actions Let G be a group acting on a variel. We always assume that
for everyg € G, the map¢y(x) = g- x defines a morphismpg : X — X. When
X = Spec¢R) is affine,¢g : X — X comes from a homomorphisgy, : R— R. We
define thenduced actiorof G onR by

g-f= <Z5S—1(f)
for f € R. In other words(g- f)(x) = f(g~1-x) for all x € X. You will check in
Exercise 5.0.1 this gives an action®fon R. Thus we have two objects:
e The setG-orbitsX /G = {G-x| x € X}.
e The ring of invariant®k® = {f ¢ R|g-f = f forallg € G}.

To makeX /G into an affine variety, we need to define its coordinate rireg, ive
need to determine the “polynomial” functions BiG. A key observation is that if
f € RC, then

f(G-x) = f(x)

193
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gives a well-defined functiorf : X/G — C. Hence elements d& give obvious
polynomial functions orX /G, which suggests that

as an affine varietyX /G = Spe¢R®).
As shown by the following examples, this works in some casgédils in others.
Example 5.0.1. Let up = {#+1} act onC? = Spe¢C|s t]), where—1 € uy acts

by multiplication by—1. Note that every orbit consists of two elements, with the
exception of the orbit of the origin, which is the unique fixgaint of the action.

The ring of invariantsC[s,t]#2 = C[s?, st,t?] is the coordinate ring of the affine
toric varietyV (xz— y?). Hence we get a map

®: C?/pp — SpecC|s,t]#2) = V(xz—y?) C C3
where the orbij; - (a,b) maps to(a?,ab,b?). This is easily seen to be a bijection,
so that Spe(C|[s,t]*2) is the perfect way to makg? /., into an affine variety.
This is actually an example of the toric morphism induced bgnging the
lattice—see Examples 1.3.17 and 1.3.19. O
Example 5.0.2.Let C* act onC* = SpeC[x1, X2, X3, X4]), Wherel € C* acts via

\-(ag,ap,83,a4) = (Nag, ap, A\ tag, A tay).
In this case, the ring of invariants is

Cx1, %2, Xa,Xa] < = C[X1Xa, XoXa, X1 X4, X2X3)
which gives the map

®: C*/C* — SpecC|xy, X, X3,x4) ) = V(xy—zw) C C*
where the orbitC* - (a1, ap,83,a4) maps to(ayas, axas, a124,a283). Then we have
(Exercise 5.0.2):
e ® is surjective.

o If pc V(xy—2zw) )\ {0}, then®~1(p) consists of a singl&€*-orbit which is
closed inC*.

e ®1(0) consists of allC*-orbits contained inC2 x {(0,0)} U {(0,0)} x C2.
Thus®~1(0) consists of infinitely many*-orbits.
This looks bad until we notice one further fact (Exercise®.0
e The fixed point 0= C* gives the unique closed orbit mapping to 0 under
If (a,b) # (0,0), then an example of a non-closed orbit is given by
C*-(a,b,0,0) = {(Aa,\b,0,0) | A € C*}
since limy_o(\a, A\b,0,0) = 0. However, restricting to closed orbits gives
{closedC*-orbits} ~ V (xy— zw).
We will see that this is the best we can do for this group action O
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Example 5.0.3.Let C* act onC"! = SpecC|[x, ..., Xn]) by scalar multiplication.
Then the ring of invariants consists of polynomials saisdy

f(AX0,. .., A ) = F(X0,. .-, Xn)
for all A € C*. Such polynomials must be constant, so that
Clxo,..., %" =C.

It follows that the “quotient” is Spd€), which is just a point. The reason for this
is that the only closed orbit is the orbit of the fixed point @™, O

Examples 5.0.2 and 5.0.3 show what happens when there asmoogh in-
variant functions to separa@-orbits.

The Ring of Invariants WhenG acts on an affine variet{ = Spe¢R), a natural
guestion concerns the structure of the ring of invariantge doordinate rindRis a
finitely generatedC-algebra without nilpotents. Is the same true RS It clearly
has no nilpotents sind&® C R. But is R® finitely generated as @-algebra? This
is related to Hilbert's Fourteenth Problem, which was sdtlly a famous example
of Nagata thaR® need notbe a finitely generate@-algebra! An exposition of
Hilbert’s problem and Nagata’'s example can be foundii) Ch. 4].

If we assume thaRC® is finitely generated, then Sp@®) is an affine variety
that is the “best” candidate for a quotient in the followirense.

Lemma 5.0.4. Let G act on X= SpecR) such that R is a finitely generated-
algebra, and letr : X — Y = Spe¢R®) be the morphism of affine varieties induced
by the inclusion R C R. Then:

(a) Given any diagram

where¢ is a morphism of affine varieties such thiig- x) = ¢(x) forge G
and x< X, there is a unique morphisg making the diagram commute, i.e.,

Fom=g.
(b) If X isirreducible, then Y is irreducible.
(c) If X is normal, then'Y is normal.

Proof. Suppose thaZ = SpecS) and that¢ is induced by¢* : S— R. Then
#*(S) C RC follows easily from¢(g-x) = ¢(x) for g € G,x € X. Thus¢* fac-
tors uniquely as

S’ . R "R

The induced mag : Y — Z clearly has the desired properties.
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Part (b) is immediate sind&® is a subring oR. For part (c), leK be the field
of fractions ofRC. If a € K is integral overR®, then it is also integral oveR and
hence lies irR sinceRis normal. It follows that € RN K, which obviously equals
RC sinceG acts trivially onK. ThusR® is normal. O

This shows that¥ = Spe¢R®) has some good properties whifi is finitely
generated, but there are still some unanswered questitisas:

e Is7: X — Y surjective?

e DoesY have the right topology? Ideally, we would liké C Y to be open if
and only if7~1(U) C X is open. (Exercise 5.0.3 explores how this works for
group actions on topological spaces.)

e While Y is the best affine approximation of the quotiehtG, could there be a
non-affine variety that is a better approximation?

We will see that the answers to these questions are all “yas8 e work with the
correct type of group action.

Good Categorical Quotientsin order to get the best properties of a quotient map,
we consider the general situation whéses a group acting on a variet{ and

m: X — Y is a morphism that is constant @xorbits. Then we have the following
definition.

Definition 5.0.5. Let G act onX and letr : X — Y be a morphism that is constant
on G-orbits. Thenr is agood categorical quotieni:
(@) If U C Y is open, then the natural magy(U) — Ox(7—%(U)) induces an
isomorphism
Oy(U) ~ Ox(n~1(U))C.
(b) If W C X is closed andz-invariant, thenr(W) C Y is closed.
(c) If Wi,W, are closed, disjoint, an@-invariant inX, thenw (W) and=(W,) are
disjoint inY.
We often write a good categorical quotientr/asX — X//G. Here are some
properties of good categorical quotients.
Theorem 5.0.6.Letr : X — X //G be a good categorical quotient. Then:
(a) Given any diagram

X +Z
"
\x//G

where¢ is a morphism such that(g-x) = ¢(x) for g € G and xe€ X, there is
a unique morphism making the diagram commute, i.8.0 7™ = ¢.
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(b) = is surjective.

(c) A subset UC X //G is open if and only ifr1(U) C X is open.

(d) If U C X//G is open and nonempty, therpw,l(u) ;7 }U) — U is a good
categorical quotient.

(e) Given points xy € X, we have

m(X) =7(y) <= G-xNG-y# 0.

Proof. The proof of part (a) can be found 44, Prop. 6.2]. The proofs of the
remaining parts are left to the reader (Exercise 5.0.4). O

Algebraic Actions So far, we have allowe® to be an arbitrary group acting on
X, assuming only that for everye G, the mapx— g-xis a morphismpg : X — X.
We now make the further assumption ti@atis an affine variety. To define this
carefully, we first note that the group GIC) of nx n invertible matrices with
entries inC is the affine variety

GLn(C) = {A € C™" =C™ | det(A) # 0}.
A subgroupG C GLy(C) is anaffine algebraic groupf it is also a subvariety of
GLn(C). Examples include GI(C), SLy(C), (C*)", and finite groups.

If Gis an affine algebraic group, then the connected componeheadentity,
denotedG®, has the following properties (se@d 7.3]):

e G° is a normal subgroup of finite index .
e G is anirreducible affine algebraic group.
An affine algebraic grougs acts algebraicallyon a varietyX if the G-action
(9,X) — g-x defines a morphism
GxX—X.
Examples of algebraic actions include toric varieties eitie torusTy C X acts
algebraically onX. Examples 5.0.1, 5.0.2 and 5.0.3 are also algebraic actions
Algebraic actions have the property th@atorbits are constructible sets K.
This has the following nice consequence for good catedayisatients.
Proposition 5.0.7. Let an affine algebraic group G act algebraically on a variety
X, and assume that a good categorical quotientX — X //G exists. Then:
(@) If p € X//G, thent—1(p) contains a unique closed G-orbit.
(b) 7 induces a bijection

{closedG-orbits inX} ~ X //G.

Proof. For part (a), first note that uniqueness follows immediatedyn part (e) of
Theorem 5.0.6. To prove the existence of a closed orb’rt‘ii’( p), letG° C G be
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the connected component of the identity. Thert(p) is stable unde6®, so we
can pick an orbitG® - x € 7~1(p) such thaiG® - x has minimal dimension.

Note thatGe - x is irreducible sinces® is irreducible, and sinc&° - x is con-
structible, there is a nonempty Zariski open subsef G° - x such thaty C G° - x.
If G°-xis not closed, thes® - x contains an orbiG° -y # G° - x. Thus

G°y C G°-x\G°-x C G°-x\U.

However,G° - X is irreducible, so that
dim(G°-x\U) <dimG° - x.

HenceGe -y has strictly smaller dimension, a contradiction. TI&fs x is closed.
If g1,...,0 are coset representatives®@fG°, then

t
G-x=[JgGx
i=1
shows thaG - x is also closed. This proves part (a) of the proposition, aartl ()
follows immediately from part (a) and the surjectivity of O

For the rest of the section, we will always assume i an affine algebraic
group acting algebraically on a variety

Geometric Quotients The best quotients are those where points are orbits. For
good categorical quotients, this condition is captured dguiring that orbits be
closed. Here is the precise result.

Proposition 5.0.8. Let 7 : X — X//G be a good categorical quotient. Then the
following are equivalent;
(a) All G-orbits are closed in X.
(b) Given points xy € X, we have
m(X) = 7(y) <= x and y lie in the same G-orbit
(c) winduces a bijection
{G-orbits inX} ~ X //G.

(d) The image of the morphismGX — X x X defined byg,Xx) — (g-X,X) is the
fiber product Xxx ;g X.

Proof. This follows easily from Theorem 5.0.6 and Proposition B.0\Ne leave
the detalils to the reader (Exercise 5.0.5). a

In general, a good categorical quotient is calledemmetric quotientf it
satisfies the condtions of Proposition 5.0.8. We write a ggdmquotient as
m: X — X/G since points inX /G correspond bijectively t&-orbits inX.
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We have yet to give an example of a good categorical or geangiptient.
For instance, it is not clear that Examples 5.0.1, 5.0.2 afBSatisfy Defini-
tion 5.0.5. Fortunately, once we restrict to the right kif@lgebraic group, exam-
ples become abundant.

Reductive Groups An affine algebraic groufs is calledreductiveif its maximal
connected solvable subgroup is a torus. Examples of redgumtoups include finite
groups, tori, and semisimple groups such ag(8l).

For us, actions by reductive groups have the following kepprties.

Proposition 5.0.9. Let G be a reductive group acting algebraically on an affine

variety X= Spe¢R). Then

(a) RC is a finitely generated-algebra.

(b) The morphismr : X — Spe¢R®) induced by R C R is a good categorical
quotient.

Proof. See §5, Prop. 3.1] for part (a) andlp, Thm. 6.1] for part (b). O

In the situation of Proposition 5.0.9, we can write S{iR¢/G = Spe¢RC).
Examples 5.0.1, 5.0.2 and 5.0.3 involve reductive groufiggon affine varieties.
Hence these are good categorical quotients that have dlegfroperties listed in
Theorem 5.0.6 and Proposition 5.0.7. Furthermore, Examld (the action of
2 onC?) is a geometric quotient. This last example generalizesliss.

Example 5.0.10.Given a strongly convex rational polyhedral cane&c Ng and
a sublatticeN’ C N of finite index, part (b) of Proposition 1.3.18 implies thhaét
finite groupG = N /N’ acts orlJ,, nv such that the induced map on coordinate rings
is given by

CleY NM] = CloY nM]€ C Cle¥V NM).
It follows that ¢ : U, v — Uy N iS @ good categorical quotient. In fact,is a
geometric quotient since the-orbits are finite and hence closed. This completes
the proof of part (c) of Proposition 1.3.18. O

Almost Geometric QuotientsLet us examine Examples 5.0.2 and 5.0.3 more
closely. As noted above, both give good categorical qutstigfowever:

¢ (Example 5.0.3) Here we have the quotient
C™1//C* = SpedClxo, ..., %< ) = Spe¢C) = {pt}.
So the “good” categorical quotiefit™* — C"1//C* = {pt} is really bad.
e (Example 5.0.2) In this case, the quotient is
m:C*— C*)/C* =V (xy—zw).

LetU =V (xy—zw)\ {0} andUp = 7—1(U). Thenr |, :Uo — U is a good cat-
egorical quotient by Theorem 5.0.6, and by Example 5.01{of elements
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in Ug are closed irC%. Themryu0 is a geometric quotient by Proposition 5.0.8,
so thatC*//C* = V(xy— zw) is a geometric quotient outside of the origin.

The difference between these two examples is that the seswoady close to being
a geometric quotient. Here is a result that describes trea@menon in general.

Proposition 5.0.11.Let7 : X — X //G be a good categorical quotient. Then the
following are equivalent:

(a) X has a G-invariant Zariski dense open subsgsuich that Gx is closed in X
for all x € Uo.

(b) X//G has a Zariski dense open subset U such ngll(u) cm Y U) = Uis
a geometric quotient.

Proof. GivenUy satisfying (a), thetW = X\ Uy is closed ands-invariant. For
X € Ug, the orbitG-x C Ug is also closed ané-invariant. These are disjoint,
which impliesw(x) ¢ 7(W) sincer is a good categorical quotient. Sincés onto,
we see thak //G = 7(Ug) Un(W) is a disjoint union. If we set) = 7(Up), then
Uo = 7~1(U). Note also that) is open sincer(W) is closed and Zariski dense
sinceUg is Zariski dense irX. Then<;5|UO :Up — U is a good categorical quotient

by Theorem 5.0.6, and by assumption, orbits of elementsyiare closed irC*
and hence itJy. It follows thatqsyuo is a geometric quotient by Proposition 5.0.8.

The proof going the other way is similar and is omitted (Eie&.0.6). O

In general, a good categorical quotient is callechbmost geometric quotient
if it satisfies the conditions of Proposition 5.0.11. Exaenpl0.2 is an almost
geometric quotient while Example 5.0.3 is not.

Constructing Quotients Now that we can handle affine quotients in the reductive
case, the next step is to handle more general quotients.iglangseful result.

Proposition 5.0.12.Let G act on X and let : X — 'Y be a morphism of varieties
that is constant on G-orbits. If Y has an open covetY]J V., such that

T r=1(Va) 7 (Vo) — Vo

is a good categorical quotient for evety, thenw : X — Y is a good categorical
guotient.

Proof. The key point is that the properties listed in Definition 5.6an be checked
locally. We leave the details to the reader (Exercise 5.0.7) O

Example 5.0.13.Consider a latticé&N and a sublatticd’ C N of finite index, and
let X be a fan inN; = Ng. This gives a toric morphism

¢ : Xs N — X5 N-
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By Proposition 1.3.18, the finite grop= N/N’ is the kernel ofTy: — Ty, so that
G acts onXy, . Since

¢_1(U0,N) = UU,N/
for o € 32, Example 5.0.10 and Propostion 5.0.12 imply thés a geometric quo-
tient. This strengthens the result proved in Propositi@a73. O

It is sometimes possible to construct the quotienXdby G by taking rings
of invariants for a suitable affine open cover. If the locabtints patch together
to form a separated variely, then the resulting morphism : X — Y is a good
categorical quotient by Proposition 5.0.12. Here are twemgples that illustrate
this strategy.

Example 5.0.14.Let C* act onC?)\ {0} by scalar multiplication, wher€? =
Spe¢C|xo,x1]). ThenC?\ {0} = UpUU1, where

Uo = C*\ V(%) = Spe¢Cx; . xa))
Up = C?\V(x1) = SpecCxo, ;™))
UoNUz = C?\ V(xox1) = SpeeCg ).
The rings of invariants are
Clxg %] = Clxa /o]
Clxo, ™" = Clxo/x]
Chg 3" = Clxa/x0) ™.

It follows that theV; = U; //C* glue together in the usual way to cred@k Since
C*-orbits are closed it?\ {0}, it follows that

Pt = (C?\{0})/C*
is a geometric quotient. O

This example generalizes to show that
P"= (C™\ {0})/C*

is a good geometric quotient whéi acts onC™* by scalar multiplication. At
the beginning of the section, we wrote this quotient as drsiretic construction.
It is now an algebro-geometric construction.

Our second example shows the importance of being separated.

Example 5.0.15.Let C* act onC?\ {0} by A(a,b) = (A\a, A\~1b). ThenC?\ {0} =
Up UUq, whereUg, U; andUgNU; are as in Example 5.0.14. Here, the rings of
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invariants are
CixE,x]C" = Clxoxd)]
Cxo, X ¢ = Cxoxq]
Clxg 3% = Cl(xoxa) ™).
Gluing togetheV; = U; //C* alongUpNU;//C* gives the variety obtained from
two copies ofC by identifying all nonzero points. This is the non-sepafatariety
constructed in Example 3.0.15.

In Exercise 5.0.8 you will draw a picture of tli& -orbits that explains why the
quotient cannot be separated in this example. O

In this book, we usually use the word “variety” to mean “sejped variety”.
For example, when we say that X — Y is a good categorical or geometric quo-
tient, we always assume thdtandY are separated. So Example 5.0.15d¢ a
good categorical quotient. In algebraic geometry, mostaifms on varieties pre-
serve separatedness. Quotient constructions are one fevthexceptions where
care has to be taken to check that the resulting variety isratgd.

Exercises for §5.0
5.0.1. Let G act on an affine variet{ = Spe¢R) such thatyy(x) = g-x is a morphism for
allge G.

(@) Show thag- f = qb;,l(f) defines an action & on R. Be sure you understand why
the inverse is necessary.

(b) Theevaluation map ’ X — C is defined by(f,x) — f(x). Show that this map is
invariant under the action @ onR x X given byg- (f,x) = (g- f,g-x).
5.0.2. Prove the claims made in Example 5.0.2.

5.0.3. Let G be a group acting on a Hausdorff topological space, and /& be the set of

G-orbits. Definer : X — X/G by 7(x) = G- x. Thequotient topologyn X/G is defined

by saying thaty C X/G is open if and only ifr=1(U) C X is open.

(a) Prove thatifX/G is Hausdorff, then th&-orbits are closed subsetsXf

(b) Prove thatifv C X is closed and-invariant, thent(W) C X/G is closed.

(c) Prove that ifW;,W, are closed, disjoint, an@-invariant inX, thensx(W; ) and (W)
are disjoint inX /G.

5.0.4. Prove parts (b), (c), (d) and (e) of Theorem 5.0.6. Hint fat (i&): Part (a) of Def-
inition 5.0.5 implies that’x ;6(U) injects intodx (7 ~*(U)) for all open set&J C X//G.
Use this to prove that(X) is Zariski dense it //G. Then use part (b) of Definition 5.0.5.

5.0.5. Prove Proposition 5.0.8.

5.0.6. Complete the proof of Proposition 5.0.11.

5.0.7. Prove Proposition 5.0.12.

5.0.8. Consider theC* action onC?\ {0} described in Example 5.0.15.
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(a) Show that with two exceptions, thig -orbits are the hyperbolagx, = a, a# 0. Also
describe the two remaining*-orbits.

(b) Give an intuitive explanation, with picture, to showtttize “limit” of the orbitsx;x, =
aasa — 0 consists of two distinct orbits.

(c) Explain how part (b) relates to the non-separated gobtienstructed in the example.

5.0.9. Give an example of a reductivg-action on an affine varietX such thatX has
a nonemptyG-invariant affine open sdf C X with the property that the induced map
U//G — X//Gis not an inclusion.

5.0.10. Let a finite groupG act onX. Then a good categorical quotient X — X //G
exists since finite groups are reductive. Explain whyg a good geometric quotient.

85.1. Quotient Constructions of Toric Varieties

Let X5 be the toric variety of a fal in Ng. The goal of this section is to construct
Xy as an almost geometric quotient

Xg =~ (C"\2)//G

for an appropriate choice of affine spack exceptional seZ C C", and reductive
groupG. We will use our standard notation, where each (1) gives a minimal
generatou, € pNN and aTy-invariant prime divisoD, C Xs.

No Torus Factors Toric varieties with no torus factors have the nicest qunbtie
constructions. Recall from Proposition 3.3.9 tKathas no torus factors whe¥ig
is spanned by, p € 3(1), and when this happens, Theorem 4.1.3 gives the short
exact sequence
0—M-—@,ZD, — Cl(Xs) — 0,

wherem € M maps to divx™) = - ,(m u,)D, and C[Xs) is the class group
defined in §4.0. We use the convention that in expressiorts as ,, >, and
[1, the indexp ranges over alp € %(1).

We write the above sequence more compactly as

(5.1.1) 0— M — 7> — Cl(Xs) — 0.
Applying Homy,(—,C*) gives
1 — Homy(Cl(Xs),C*) — Homz(Z>M ,C*) — Homy (M, C*) — 1,

which remains a short exact sequence since #emC*) is left exact andC* is
divisible. We have natural isomorphisms

Homy, (ZEW,C*) ~ (C*)=®
Homy (M, C*) ~ Ty,
and we define the group by
G = Homy(Cl(Xy),C*).
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This gives the short exact sequence of affine algebraic group

(5.1.2) 1—G— (C)* — Ty — 1.

The Group G The groupG defined above will appear in the quotient construction
of the toric varietyXsx,. For the time being, we assume tbaf has no torus factors.

The following result describes the structure®find gives explicit equations
for G as a subgroup of the torg€*)>®.
Lemma5.1.1. Let GC (C*)*W be as in(5.1.2) Then:
(@) ClI(Xy) is the character group of G.

(b) G° is a torus, so that G is isomorphic to a product of a torus andnétei
abelian group. In particular, G is reductive.

(c) Givenabasisg...,e, of M, we have
G={(t,) e (C*)™Y | [ ,t"™ = 1forallme M}
={(t,) € (C)*@ | [[ 4% =1for1<i <n}.

Proof. Since C(Xx) is a finitely generated abelian group(&4) ~ Z x H, where
H is a finite abelian group. Then

G = Homy (CI(Xs),C*) ~ Homy,(Z* x H,C*) ~ (C*)* x Homy(H,C*).

This proves part (b) since HonH, C*) is a finite abelian group. For part (a), note
thata € Cl(Xy) gives the map that sends G =Homy(Cl(Xx),C*) tog(a) € C*.
Thus elements of CXyx,) give characters o6, and the above isomorphisms make
it easy to see that all characters®#rise this way.

For part (c), the first description @ follows from (5.1.2) sincM — Z>(% s
defined byme M — ((m,u,)) € Z*™, and the second description follows imme-
diately. a

Example 5.1.2. The ray generators of the fan fé" areup = — > ;&,u =
€1,...,U, = &,. By Lemma 5.1.1(to,...,t,) € (C*)"* lies in G if and only if

tém,—el—---—aq> timveﬁ o timen) — 1
for all me M = Z". Takingmequal toey, ..., €, we see thaG is defined by
b= =tgta=1

Thus
G={(\...,\) | AeC"} ~C",

which is the action of£* onC™? given by scalar multiplication. %
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Example 5.1.3. The fan forP! x P! has ray generatons; = e;,U, = —€y,U3 =
&,Us = —€ in N =Z2 By Lemma 5.1.1{t3,t,t3,t) € (C*)* lies in G if and
only if

t]<.m,el> témy_el> t§m7e2> tim’_e2> — l

for all me M = Z2. Takingm equal toe;, e, we obtain
i, =tat; T =1

Thus

G={(1t, 11, A A) | ;A € C*} = (C¥)2. 0
ExamApIe 5.1.4.Leto = Congde; — ezkez) C R?, which gives the rational normal
coneCy. Example 4.1.4 shows that ©y) ~ Z/dZ, so that

G =Homy(Z/dZ,C*) ~ ug,
whereq C C* is the group ofdth roots of unity. To see how acts onC?, one
uses the ray generatans = de, — e, andu, = & to compute that

G={(¢O) ¢ =1} =pq

(Exercise 5.1.1). This shows th@tcan have torsion. %

The Exceptional Set For the quotient representation X§, we have the groufs
and the affine spac&™™. All that is missing is the exceptional s2tC C*® that
we remove fromC>® before taking the quotient bg.

One useful observation is th&tand C*") depend only ort:(1). In order to
getXs, we need something that encodes the rest of th&faie will do this using
a monomial ideal in the coordinate ring (. Introduce a variable, for each
p € X(1) and let

S=Clx, | p € S(1)].
Then SpetS) = C*). We callSthetotal coordinate ringof Xs..

For each cone ¢ ¥, define the monomial

x> = T] %
p¢o(1)

Thusx? is the product of the variables corresponding to rays net ifihen define
theirrelvant ideal

BX)=(X|oceX)CS
A useful observation is tha” is a multiple ofx” wheneverr < o. Hence, ifSmax
is the set of maximal cones f, then

B(X) = (X° | 0 € Zmax)-

Furthermore, one sees easily that the minimal generat@gXof are precisely the
x? for o € ¥max. Hence, once we hawg(1), B(X) determiness uniquely.



206 Chapter 5. Homogeneous Coordinates

Now define
Z(x)=V(B(x)) c Cc*W,
The variety of a monomial ideal is a union of coordinate sabsp. FoB(X), the

coordinate subspaces can be described in termsroftive collections which are
defined as follows.

Definition 5.1.5. A subsetC C ¥(1) is aprimitive collectionif:
@ CZo(1) forall o e X.
(b) For every proper subsét C C, there isoc € ¥ withC' C o(1).

Proposition 5.1.6. The ZX) as a union of irreducible components is given by

Z(X) = UV(XP | peC),
C

where the union is over all primitive collectionsCX(1).

Proof. It suffices to determine the maximal coordinate subspacetaiced in
Z(X). Suppose thaV (x,,,...,X,) € Z(3) is such a subspace and takes 3.
Sincex® vanishes orZ(X) and (X,, ..., X,,) is prime, the Nullstellensatz implies
x% is divisible by somex,,, i.e., pi ¢ o(1). It follows thatC = {p1,...,ps} sat-
isfies condition (a) of Definition 5.1.5, and condition (b)léavs easily from the
maximality ofV(x,,,...,X,). HenceC is a primitive collection.

Conversely, every primitive collectioB gives a maximal coordinate subspace
V(x, | p € C) contained irZ(X), and the proposition follows. O

In Exercise 5.1.2 you will show that the algebraic analog rmfg@sition 5.1.6
is the primary decomposition

B(S) = ()% | p € C).

c
Here are some easy examples.

Example 5.1.7. The fan forP" consists of cones generated by proper subsets of
{Uo,...,un}, whereu, ..., u, are as in Example 5.1.2. Latgenerate;, 0<i <n,
and letx; be the corresponding variable in the total coordinate rinvg. compute
Z(X%) in two ways:
e The maximal cones of the fan are givendy= Con€uo, ..., U;,...,Uy). Then
X% = x;, so thatB(X) = (X, ..., Xn). HenceZ(x) = {0}.
e The only primitive collection is{po,...,pn}, SOZ(X) = V(Xo,...,X) = {0}
by Proposition 5.1.6. O

Example 5.1.8. The fan forP! x P! has ray generatons; = e;,u = —€y,Us =
e,U; = —e. See Example 3.1.12 for a picture of this fan. Eachives a rayp;
and a variableg. We computeZ(X) in two ways:
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e The maximal cone Cortas,us) gives the monomiakyxs, and similarly the
other maximal cones give the monomi&{y4, X1X3, XoX3. Thus
B(X) = (XoXa, X1Xa, X1X3, X2X3) ,
and one checks that(X) = {0} x C>UC2 x {0}.
e The only primitive collections arép1,p2} and{ps, pa}, so that
Z(%) =V (x1,%) UV(x3, %) = {0} x C2UC? x {0}
by Proposition 5.1.6. Note also thB(>) = (x1,X2) N (X3,Xa). O

A final observation is thatC*)>( acts onC*™ by diagonal matrices and
hence induces an action @V \ Z(%). It follows thatG C (C*)*( also acts on
=@\ Z(%). We are now ready to take the quotient.

The Quotient Construction To represeniXs. as a quotient, we first construct a
toric morphismC*® \ Z(%) — Xs. Let{e, | p € £(1)} be the standard basis of
the latticeZ>®). For eachr € 3, define the cone

& =Conde, | p € 0(1)) CR*D,
It is easy to see that these cones and their faces form a fan

S = {r | 7 < & for somes € £}
in (Z*M)r = R*D, This fan has the following nice properties.

Proposition 5.1.9. Let Y. be the fan defined above.

(a) C¥M\ Z(%) is the toric variety of the fai.

(b) The map g+ u, defines a map of latticés™(? — N that is compatible with
the fansy in R and ¥ in Ng.

(c) The resulting toric morphism

7:C¥M\ Z(2) — Xy

is constant on G-orbits.

Proof. For part (a) let, be the fan conS|st|ng of Cofe, | p € 3(1)) and its
faces. Note thak is a subfan ofy. SinceXy is the fan of C>(), we get the
toric variety ofS by taking C*@ and then removing the orbits corresponding to
all cones mEO\E By the Orbit-Cone Correspondence (Theorem 3.2.6), this is
equivalent to removing the orbit closures of the minimahedats ono\Z. But
these minimal elements are precisely the primitive cabestC C 3(1). Since the
corresponding orbit closure ¥(x, | p € C), removing these orbit closures means
removing

= UV(Xp |peC).
c
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For part (b), defing : Z>®) — N by 7(e,) = u,. Since the minimal generators
of o € ¥ are given byu,, p € o(1), we havewg(c) = o by the definition ofo.
Hencer is compatible with respect to the falisandX..

The map of tori induced byt is the map(C*)*® — Ty from the exact se-
quence (5.1.2) (you will check this in Exercise 5.1.3). Hgritg ¢ G C (C*)>(
andx e C*W\ z(%), then

7(g-X) = 7(g) - 7(X) = 7(x),
where the first equality holds by equivariance and the seboldb sinceG is the
kernel of(C*)*(® — Ty. This proves part (c) of the proposition. O

We can now give the quotient construction6f.

Theorem 5.1.10.Let X be a toric variety without torus factors and consider the
toric morphismr : ¥\ Z(22) — X, from Proposition 5.1.9. Then:

(a) T is an almost geometric quotient for the action of G®HY \Z(%), so that
X5 = (C¥D\Z(%)) //G.
(b) 7 is a geometric quotient if and only ¥ is simplicial.

Proof. We begin by studying the map
(513) 7T|7T71(UU) : ﬂ‘_l(Uo-) — U,
for o € X. First observe that if,o € X, then7g (7) C o is equivalent tor < o.

It follows thatw=1(U,,) is the toric variety; of & = Conde, | p € o(1)). This
shows that (5.1.3) is the toric morphism

Ty Uz — Uy,
where for simplicity we writer, instead ofr| 1 ;.

Our first task is to show that, is a good categorical quotient. SinGeis
reductive, Proposition 5.0.9 reduces this to showing tmatapr on coordinate
rings induces an isomorphism

(5.1.4) C[U,] ~ C[U5]°.
The mapr: can be described as follows:
e ForU;, the coner gives the semigroup
5Nz ={(a,) € Z*Y |a, > 0forall p € 7(1)}.
Hence the coordinate ring tf; is the semigroup algebra
ClUs] =C[I1,%’ |a, > 0forallpe o(1)] =S,
whereS, is the localizatiorS= C[x, | p € %(1)] atx” = [ ¢, 1) Xo-
e ForU,, the coordinate ring is the usual semigroup algebia’ N M).
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e The map7 : Z*M — N dualizes to the map — Z*>@ sendingme M to
((m,u,)) € Z*M). It follows thatr}; : Clo¥ NM] — S is given by

(M =TLx.
Note that(m,u,) > 0 for all p € o (1), so that the expression on the right really
liesinSs.
Thusr: can be writtenr’ : C[c¥ N"M] — S, and sincer, is constant oiG-orbits,
w7 factors
(C[O‘V N M] — (S(&)G - g(c}-
The mapr, has Zariski dense image , sincer, ((C*)*®) = Ty by the

exact sequence (5.1.2). It follows tha} is injective. To show that its image is
(S)C, takef € S» and write it as

f= anxa
a

where eachx® =[], X, satisfiesa, > 0 for all p € o(1). Thenf is G-invariant if
and only if for allt = (t,) € G, we have

Z CaX? = Z Cat®2.
a a

Thus f is G-invariant if and only ift2 = 1 for all t € G wheneverc, # 0. The
mapt — t? is a character oiG and hence is an element of its character group
Cl(Xy) (Lemma 5.1.1). This character is trivial whep+# 0, so that by (5.1.1), the
exponent vectoa = (a,) must come from an elementc M, i.e.,a, = (m,u,) for

all p € 3(1). Butx? € S5, which implies that

(mu,)=a,>0 forallpeo(l).

Henceme oY NM, which implies thaff is in the image ofr*. This proves (5.1.4).
We conclude that,, is a good categorical quotient.

We next prove that
(5.1.5) 7, :Us — U, IS a geometric quotient=> o is simplicial.

First suppose that is simplicial. Then its ray generatots, p € o(1), are lin-
early independent, and by hypothesis, the ray generatoysc (1), spanR>(,
Hence we can writ& (1) as a disjoint union

2(1) = o(1)UAUB

such that the, for p € o(1) UA form a basis oR*®. Projection onto the coordi-
nates coming fronar(1) U A gives an exact sequence

0—s ZB SN ZZ(l) N ZO’(l)UA —0.
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Note also that since the,, p € o(1) UA, form a basis, the mald — Z 1A given
by mi— ({m,u,)) ,co(1)ua gives an exact sequence

0—M-—7OA_,Q—0

where the cokernd] is finite.

Combining the two above exact sequences with (5.1.1), wa getnmutative
diagram with exact rows and columns:

0 0
! !
7B _— 7B
! !
0 - M - 2z - CliXg) — 0
| l |
0 - M — zo@QUA _, Q — 0
! !
0 0

Now letH = Hom;(Q,C*). Then applying Hom(—,C*) to the column on the
right gives the exact sequence

(5.1.6) 1—H-—G-2 (C)B—1

of affine algebraic groups. Note thdtis finite sinceQ is.
We can writdJ; as the product

Uz = C70 x (C*)Ax(C*)B =Y x (C*)B,
Y

and note that th&-action on the second factor Of = Y x (C*)B is given by the
map® from (5.1.6). We regard as a subset dfi; via the mapy €Y — (y,1) €
Y x (C*)B. ThusH = ker(®) acts onY. Hence we have a commutative diagram

U5—>U0

(5.1.7) T /

Y

We showed above th&U,] ~ C[U5|®, andC[U,] ~ C[Y]" follows by a similar
argument (Exercise 5.1.4). Bt s finite, so that théd-orbits are closed. Hence
Y — U, is a geometric quotient by Proposition 5.0.8.

Now consider two distincG-orbits in Uz. Using the action of C*)B and
(5.1.6), we can assume that the orbits @rey,G -y for y,y € Y. These orbits
containH -y,H -y, which are also distinct. Sinéé— U,, is a geometric quotient,
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theseH-orbits map to distinct points ib,, and then the same is true for the
orbits by the commutativity of (5.1.7). By Proposition B0it follows thatr, is a
geometric quotient wheh is simplicial.

To prove the other implication of (5.1.5), suppose thatX. is non-simplicial.
We construct a non-closed orbit Wy as follows. Sincer is non-simplicial, there
is a relation_ . (1)@, U, = 0 wherea, € Z anda, > 0 for at least one. If we
seta, = 0 for p ¢ o(1), then the one-parameter subgroup

N = (1) € (C7)=0

is actually a one-parameter subgroup®fThis follows easily from Lemma 5.1.1
and}_ a,u, =0 (Exercise 5.1.4).

The affine open subskk; € C*™) consists of all points whoseth coordinate
is nonzero for alp ¢ o(1). Hence the pointi = (u,), where

U — 1l a,>0
710 a,<0

lies inUz. Now consider lim_o\(t) -u. The limit exists inC*® sinceu, = 0
whenever,, < 0. Furthermore, ip ¢ (1), thepth coordinate\?(t) - uis 1 for allt,
so that the limitup = lim{_o A%(t) - u lies inU;. By assumption, there jg € (1)
with a,, > 0. This has the following consequences:
e Since thepgth coordinate ofi is nonzero, the same is true for every element in
its G-orbit G - u.

e Sincea,, > 0, thepoth coordinate ofip = lim{_g A%(t) - uis zero.

ThenG-uis not closed ifJ; since its Zariski closure contaimg € Uz \ G- u. This
shows thatr,, is not a geometric quotient and completes the proof of (5.1.5

We can now prove the theorem. Since the maps (5.1.3) are gedarical
quotients, the same is true far: C*() \ Z(X) — Xx by Proposition 5.0.12. To
prove part (a), lek’ C X be the subfan of simplicial cones Bfand set

U=JUs, Uo=7"U)= ] Us.

ocey’ oex’

As above,7r|UO :Up — U is a good categorical quotient, and by (5.1.b),is a
geometric quotient for each € 3. It follows (—:‘asilywyUo is a geometric quotient,
so thatr satisfies the second condition of Proposition 5.0.11. Fhissan almost
geometric quotient. This argument also shows thista geometric quotient when
3} is simplicial, which proves half of part (b). The other haiflbws form (5.1.5),
and then the proof of the theorem is complete. O
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One nice feature of the quotieXt = (C*(M\ Z(X))//Gis that it is compatible
with the tori, meaning that we have a commutative diagram
Xs = (C*ON\Z(%))//G
T T
™~ (CH*D/G

where the isomorphism on the bottom comes from (5.1.2) amdehtical arrows
are inclusions.

1

Examples Here are some examples of the quotient construction.
Example 5.1.11.By Examples 5.1.2 and 5.1.}' has quotient representation
P" = (C™\ {0})/C,
whereC* acts by scalar multiplication. This is a geometric quotiginice Y. is
smooth and hence simplicial. O
Example 5.1.12.By Examples 5.1.3 and 5.1.8! x P! has quotient representation
P! x Pt = (C*\ ({0} x C2UC? x {0}))/(C*)?,

where(C*)? acts via(u, \) - (a,b, c,d) = (ua, ub, A, \d). This is again a geometric
quotient. O

Example 5.1.13.Fix positive integersy, ..., q, with gcd(qp, ...,q,) = 1 and let
N be the latticeZ"1/Z(qp, ... ,0n). The images of the standard basigZi* give
primitive elementsly, ... ,u, € N satisfyinggoup + - - - + gnun = 0. LetX: be the fan
consisting of all cones generated by proper subse{sof. . u,}.

As in Example 3.1.17, the corresponding toric variety isadedP(dp, ... ,0n).
Using the quotient construction, we can now explain why ihisalled a weighted
projective space.

We haveC>() = C"™*1 sinceX hasn+1 rays, and (%) = {0} by the argument
used in Example 5.1.7. It remains to compGte (C*)"2. In Exercise 4.1.5, you
showed that the maps € M — ((m,up),...,(M,un)) € Z™?! and (ay,...,a,) €
71— aggo + - - - + anan € Z give the short exact sequence

(5.1.8) 0—M-—zZ" 70

This shows that the class groupZs Note also thag € Z"1 maps tog € Z. In
Exercise 5.1.5 you will compute that

G={(t%,... t%) [t e C*} ~C*.
This is the action of* on C"*? given by

t-(Ug,...,Uy) = (t%up,... t%uy).
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SinceX is simplicial (every proper subset @i, . .., un} is linearly independent in
Nr), we get the geometric quotient

P(do, -, Gn) = (C™H\ {0})/C*.
This gives the set-theoretic definition Bfdp,...,qn) from §2.0 and also gives its
structure as a variety since we have a geometric quotient. O

Example 5.1.14.Consider the cone = Condey, e, €, + €3, +e3) C R3. To
find the quotient representation df, we label the ray generators as
Up=8€, lp =6 +€3 U3=6E, Uy =€ +E3.
ThenC* = C* andZ(%) = § sincex’ = 1. To determine the grou C (C*)%,
note that the exact sequence (5.1.1) becomes
0—23—7*—7-—0,
where(ay,ap,a3,a4) € Z* — a1 +ap — ag — a4 € Z. This makes it straightforward
to show that
G={WX2 I AxhH|rec ) ~cCn
Hence we get the quotient presentation
U, =C4//C*.

In Example 5.0.2, we gave a naive argument that the quotiaatfxy — zw). We
now see that the intrinsic meaning of Example 5.0.2 is thdignibconstruction of
U, given by Theorem 5.1.10. This example is not a geometricigpiosinces is
not simplicial. O

Example 5.1.15. Let Blo(C?) be the blowup ofC? at the origin, whose fai is
shown in Figure 1 on the next page. By Example 4.1.3BGI(C?)) ~ Z with

P, Po

Figure 1. The fanX for the blowup ofC? at the origin

generatofD4] = [D2] = —[Dg|]. HenceG = C* and the irrelevant ideal B(X) =
(x,y). This gives the geometric quotient

Blo(C?) ~ (C*\ (C x {0,0})) /C*,
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where theC*-action is given by\ - (t,x,y) = (A7, Ax, \y).
We also haveC[t,x,y|®" = Cltx,ty]. Then the inclusion

c3\(Cx {00} ccC®
induces the map on quotients
¢ Blo(C2) = (C3\ (C x {0,0}))/C* — C¥//C* ~ 2,
where the final isomorphism uses
C3//C* = SpedClt,xy|®") = SpedCltx,ty)).

In terms of homogeneous coordinatest, x,y) = (tx,ty). This map is the toric
morphism B(C?) — C2? induced by the refinement of Cofug, uy) given by>..

The quotient representation makes it easy to see wHyCB) is the blowup of
C? at the origin. Given a point of B{C?) with homogeneous coordinatésx, y),
there are two possibilities:
e t £ 0, in which casd - (t,x,y) = (1,tx,ty). This maps taltx,ty) € C2 and
is nonzero since,y cannot both be zero. It follows that the part ob&L?)
wheret # 0 looks likeC?\ {0,0}.

e t =0, in which casg0,x,y) maps to the origin irC?. Since\ - (0,x,y) =
(Ax, \y) andx,y cannot both be zero, it follows that the part of&L?) where
t = 0 looks likeP?.

This shows that B(C?) is a built fromC? by replacing the origin with a copy
of P1, which is called theexceptional locus E SinceE = ¢~1(0,0), we see that
& : Xs; — C? induces an isomorphism

Blo(C?) \ E ~ C?\ {(0,0)}.

Note also thak is the divisorDg corresponding to the ray. You should be able
to look at Figure 1 and see instantly tiizg ~ P2

We can also check that lines through the origin behave pkop@onsider the
line L defined byax+ by = 0, where(a,b) # (0,0). When we pull this back to
Blo(C?), we get the subvariety defined by

a(tx) + b(ty) = 0.

This is thetotal transformof L. It factors ag(ax+by) = 0. Note that = 0 defines
the exceptional locus, so that once we remove this, we getithe in Bb((CZ)
defined byax+ by = 0. This is theproper transformof L, which meets the excep-
tional locusE at the point with homogeneous coordinat@s—b, a), corresponding
to (—b,a) € PL. In this way, we see how blowing up separates tangent cireti
through the origin. O
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The General CaseSo far, we have assumed th&t has no torus factors. When
torus factors are presendy, still has a quotient construction, though it is no longer
canonical.

Let Xy be a toric variety with a torus factor. By Proposition 3.39 ray
generatorsl,, p € 3(1), span a proper subspaceMf. Let N’ be the intersection
of this subspace withl, and pick a complemem” so thatN = N’@&N”. The cones
of ¥ all lie in Ni and hence give afad’ in Nj,. Asin the proof of Proposition 3.3.9.
we obtain

XZ ~ X2/7|\|/ X ((C*)r
whereN” ~ Z". Theorem 5.1.10 applies ¥, n sinceu,,, p € ¥'(1) = 3(1), span
N by construction. Note also th&(>') = B(X) andZ(X') = Z(X). Hence
Xsy v = (CEWN\ (%)) //G.
It follows that
XE ~ XE',N' X ((C*)r
(5.1.9) ~ (C*M\ Z2(2)) /G x (C*)
~ (C¥W < (C)"\ Z(2) x (C)") //G,
In the last line, we use the trivial action & on (C*)". You will verify the last
isomorphism in Exercise 5.1.6.
We can rewrite (5.1.9) as follows. Usiti§*)" = C"\ V(x1---X; ), we obtain

C¥W 5 (C)"\Z(D) x (C) = C¥IH\Z/(%),
whereC*W+" = =M x C" andZ/(2) = Z(2) x C" U C*D x V(x1--- % ). Hence
the quotient presentation &f: is the almost geometric quotient
(5.1.10) Xs; = (C¥DH\ Z'(%2)) //G.
This differs from Theorem 5.1.10 in two ways:

e The representation (5.1.10) is non-canonical since it midpen the choice of
the complemeniN”.

e Z/(X) containsV(x - - x) x C>1) and hence has codimension 1G M+,
In constrastZ(X) always has codimensior 2 in C*() (this follows from
Proposition 5.1.6 since every primitive collection haseatst two elements).

In practice, (5.1.10) is rarely used, while Theorem 5.1sl®¢ommon tool in toric
geometry.

Exercises for 85.1

5.1.1. In Example 5.1.4, verify carefully th& = {(¢,{) | ¢ € pa}-

5.1.2. Prove thaB(X) = (X, | p € C), where the intersection ranges over all primitive
collectionsC C 3(1).
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5.1.3. In Proposition 5.1.9, we defingd: Z>® — N, and in the proof we use the map of
tori (C*)>® — Ty induced byr. Show that this is the map appearing in (5.1.2).
5.1.4. This exercise is concerned with the proof of Theorem 5.1.10.
(@) Prove that the map — U, in (5.1.7) induces an isomorphistjU, ] ~ C[Y]".
(b) Prove that\®(t) = (t*) € G when}_ a,u, = 0. Hint: Use Lemma 5.1.1. You can
give a more conceptual proof by taking the dual of (5.1.1).
5.1.5. Show that the grouf® in Example 5.1.13 is given b§ = {(t%,... t%) |t € C*}.
Hint: Pick integersy such thad " bigi = 1. Given(to,...,tn) € G, sett = [ ,t*. Also
note that ifey, ..., €, is the standard basis @2, thenge; — gje € Z"*! maps to 0= Z
in (5.1.8).
5.1.6. Let X be a variety with trivialG action. Prove thatX x Uz)//G ~ X x U, and use
this to verify the final line of (5.1.9).
5.1.7. Consider the usual faxi for P2 with the latticeN = {(a,b) € Z? | a+ b= 0 modd},
whered is a positive integer.
(a) Prove that the ray generators age= (d,0), u, = (0,d) and
U — (—d,—d) d odd
°7 ) (-d/2,-d/2) deven
(b) Prove that the dual lattice @ = {(a/d,b/d) | a,b € Z, a— b= 0 modd}.
(c) Prove that QiXs) = Z & Z/dZ (d odd) orZ & Z/3Z (d even).
(d) Compute the quotient representatiorXef

5.1.8. Find the quotient representation of the Hirzeburch surf&gén Example 3.1.16.

5.1.9. Prove thatG acts freely orC* \ Z(%2) when the fark: is smooth. Hint: Letr € .
and suppose that= (t,) € G fixesu = (u,) € Us. Show that, =1 for p ¢ o and then
use Lemma 5.1.1 to show thigt= 1 for all p.

5.1.10. Prove thaG acts with finite isotropy subgroups @M \ Z() when the fart is
simplicial. Hint: Use the proof of Theorem 5.1.10.

5.1.11. Prove that < codim(Z(X)) < |X(1)]. WhenX is a complete simplicial fan, a
stronger result states that either

(@) 2<codimz(X)) < [3dimXs | +1, or

(b) [X(1)] =dimXs + 1 andZ(X) = {0}.

This is proved in9, Prop. 2.8]. See the next exercise for more on part (b).

5.1.12. Let ¥ be a complete fan such th&t(1)| = n+ 1, wheren = dimXs. Prove
that there is a weighted projective spa@gy,...,q,) and a finite groufH acting on
P(qo, - -.,0n) such that

Xs: ~ P(qp,...,0n)/H.
Also prove that the following are equivalent:

(a) Xy is a weighted projective space.
(b) Cl(Xs) ~Z.
(c) Nis generated by, p € (1).
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Hint: Label the ray generators,...,u,. First show thats is simplicial and that there
are positive integersp, ...,0n satisfyingZLOqi u = 0 and gcdqo,...,qn) = 1. Then
consider the sublattice & generated by the; and use Example 5.1.13. You will also
need Proposition 3.3.7. If you get stuck, sBelfem. 2.11].

5.1.13. In the proof of Theorem 5.1.10, we showed that a non-singlldne leads to a
non-closedG-orbit. Show that the non-closd@-orbit exhibited in Example 5.0.2 is an
example of this construction. See also Example 5.1.14.

5.1.14. The proof of Theorem 5.1.10 used the fahconsisting of the simplicial cones of
3. Show that the quotient constructionXf- is the mapr |, : Uo — U used in the proof
of the theorem.

5.1.15. Example 5.1.15 gave the quotient construction of the bloafuppe C? and used
the quotient construction to describe the properties obtbeup. Give a similar treatment
for the blowup ofC" C C" using the star subdivision described in §3.3.

85.2. The Total Coordinate Ring

In this section we assume thét; is a toric variety without torus factors. Itetal
coordinate ring

S=C[x, | p € 2(1)]
was defined in §5.1. This ring gives™() = Spe¢S) and contains the irrelevant
ideal

B(X)= (X |oceX)
used in the quotient construction Xf;. In this section we will explore how this
ring relates to the algebra and geometrygf

The Grading An important feature of the total coordinate ri8gs its grading by
the class group CXs). We have the exact sequence (5.1.1)
0—M— 2z — Cl(X5) — 0,

wherea = (a,) € Z*() maps to the divisor clasgy,a,D,] € Cl(Xs). Given a
monomialx® = prﬁ” € S define its degree to be

degx?®) = [>-,a,D,] € Cl(Xs).
For 3 € Cl(Xy), we letS; denote the corresponding graded piec&.of

The grading orSis closely related to the group = Homy(Cl(Xx),C*). Re-
call that C[Xy,) is the character group @, where as usua$ € Cl(Xyx,) gives the
charactery” : G — C*. The action ofG on C*® induces an action o8with the
property that giverf € S we have

feSy < g f=x (g )fforallgeG
(5.2.1) S g-f=x"(g7") g
— f(g-x) = x%(g) f(x) forallge G, xe C*V
(Exercise 5.2.1). Thus the graded pieceSafe the eigenspaces of the action of
GonS We say thatf € Sz is homogeneousf degrees.
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Example 5.2.1.The total coordinate ring df" is C|xo, ..., X,]. By Example 4.1.6,
the mapzZ"*t! — Z = CI(P") is (a,...,an) — @+ --- +a,. This gives the grad-
ing on C[xg,...,Xn] where each variablg has degree 1, so that “homogeneous
polynomial” has the usual meaning.

In Exercise 5.2.2 you will generalize this by showing that tbtal coordi-
nate ring of the weighted projective spae@p,...,0n) is Clxo,...,Xn|, where the
variablex; now has degreg;. Here, “homogeneous polynomial” means weighted
homogeneous polynomial. O

Example 5.2.2. The fan forP" x P™ is the product of the fans &" andP™, and
by Example 4.1.7, the class group is

CI(P" x P™) ~ CI(P") x CI(P™) ~ 72,
The total coordinate ring i€[xo, - .. ,%n, Yo, - - - , Ym|, Where
deqxl) = (1’ O) deqyl) = (O’ 1)
(Exercise 5.2.3). For this ring, “homogeneous polynomia€ans bihomogeneous
polynomial. O

Example 5.2.3. Example 5.1.15 gave the quotient representation of the ugow
Blo(C?) of C2 at the origin. The fart of Blo(C?) is shown in Example 5.1.15 and
has ray generatorg, u;, Uz, corresponding to variablésx, y in the total coordinate
ring S= C[t,x,y]. Since C[Blo(C?)) ~ Z, one can check that the grading 8iis
given by

degt) =—1 and degx) =deqy) =1
(Exercise 5.2.4). Thus total coordinate rings can have selsraents of positive
degree and other elements of negative degree. O

The Toric Ideal-Variety Correspondence~or n-dimensional projective spad¥',
a homogeneous ideblC C[xo,...,X,| defines a projective variety(l) C P". This
generalizes to more general toric varietigsas follows.

We first assume that is simplical, so that we have a geometric quotient
7:C*W\ Z(%) — Xg

by Theorem 5.1.10. Givep € Xs, we say a poink € 7—(p) giveshomogeneous
coordinatesfor p. Sincer is a geometric quotient, we hawe!(p) = G-x. Thus
all homogeneous coordinates fpare of the forng- x for someg € G.

Now let Sbe the total coordinate ring of; and letf € Sbe homogeneous for
the CI(Xx;)-grading onS, sayf € S;. Then
f(g-x) = x"(g) f(x)
by (5.2.1), so thaf (x) = 0 for onechoice of homogeneous coordinatespaf Xy,
if and only if f(x) = O for all homogeneous coordinates pf It follows that the
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equationf = 0 is well-defined inXs;. We can use this to define subvarieties<gf
as follows.

Proposition 5.2.4. Let S be the total coordinate ring of the simplicial toric iety
Xs:. Then:

(@) If I € Sis ahomogeneous ideal, then
V() ={r(x) eXg | f(x)=0forall f €1}
is a closed subvariety ofsX
(b) All closed subvarieties ofsXarise this way.

Proof. Givenl C Sas in part (a), notice that
W= {xeC*®\z(x)| f(x)=0forall f eI}

is a closedz-invariant subset of > \ (). By part (b) of the definition of good
categorical quotient (Definition 5.0.9Y,(1) = 7(W) is closed inXy..

Conversely, given a closed sub¥ef Xy, its inverse image

T HY) CC¥M\z(%)
is closed ands-invariant. Then the same is true for the Zariski closure
1Y) c C*®,

It follows without difficulty thatl =1 (7~1(Y)) C Sis a homogeneous ideal satis-
fying V(1) =Y. O

Example 5.2.5. The equationx, = 0 defines thely-invariant closed subvariety
V(x,) € Xy which is easily seen to be the prime dividdg. This shows thab,
always has a global equation, though it fails to have locahtigns wherD,, is not
Cartier (see Example 4.2.3). O

Classically, the Weak Nullstellensatz gives a necessatsafficient condition
for the variety of an ideal to be empty. This appliesfbandP" as follows:

e ForC": Given anideal C C[xy,...,%n,
VIH=0inC" < 1€l.
e ForP™: Given a homogeneous iddal- C[xo, ..., X,
V() =0inP" <= (xo,...,%,)* C | for somel > 0.
For a toric version of the weak Nullstellensatz, we use tredevant ideaB(X) =
(x?|oeX)CS

Proposition 5.2.6(The Toric Weak Nullstellensatz) et X, be a simplicial toric
variety with total coordinate ring S and irrelevant idea(B) C S. If ICSis a
homogeneous ideal, then

V() =0inXs < B(X)" C I for somel > 0.
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Proof. LetV4(l) € C*(™ denote the affine variety defined b S. Then:
V() =0inXs < Va(l)n (CED\Z(2)) =0
s Va() CZ() = Va(B(D))
— B(X)" C | for somel >0,

where the last equivalence uses the Nullstellensat2iy. O

For C" andP", the irrelevant ideal ig1) C C[xq,...,X,] and (Xo,...,%n) C
C[Xo, - .. ,Xn) respectively. Furthermore, fd@", the grading orC[xy, ..., Xy is triv-
ial, so that every ideal is homogeneous. Thus the toric wedlstdllensatz implies
the classical version of the weak Nullstellensatz for ®trandP".

The relation between ideals and varieties is not perfeaume different ideals
can define the same subvariety.dhandP", we avoid this by using radical ideals:

e ForC": There is a bijective correspondence
{closed subvarieties @"} «+— {radical ideald C C[xy,...,Xn]}.

e ForP": There is a bijective correspondence

{closed subvarieties &} { radical homogeneous |deal?

I C (X0,-..,%) € C[Xo,...,Xn]
Here is the toric version of this correspondence.

Proposition 5.2.7(The Toric Ideal-Variety Correspondencd)et X, be a simpli-
cial toric variety. Then there is a bijective correspondenc

- radical homogeneou
{closed subvarieties ofy.} —— { ideals! C B(Y) C S }5

Proof. Given a closed subvariely C Xy, we can find a homogeneous idéal S
with V(1) =Y by Proposition 5.2.4. Thew/l is also homogeneous and satisfies
V(v1)=V(l) =Y, so we may assume thits radical. Since

Va(l NB(E)) = Va(l) UVa(B(E)) = Va(1) UZ(E)
in C*M, we see that NB(X) C B(X) is a radical homogeneous ideal satisfying
V(INB(X)) =Y. This proves surjectivity.

To prove injectivity, suppose thatJ C B(X) are radical homogeneous ideals

with V(1) =V(J) in Xs. Then

Va(1) N (CED\Z(3) = Va() N (CIV\ Z2()).
However,|,J C B(X) implies thatZ(X) is contained inv4(l) andV4(J). Hence
the above equality implies

Va(l ) == Va(\]),

so thatl = J by the Nullstellensatz sindeandJ are radical. a
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For general ideals, another way to recover injectivity isvtrk with closed
subschemes rather than closed subvarieties. We will sag atoout this in the
appendix to Chapter 6.

When Xsx; is not simplicial, there is still a relation between ideaighe total
coordinate ring and closed subvarietiesxgf

Proposition 5.2.8. Let S be the total coordinate ring of the toric variety X' hen:
(@) If I C Sis ahomogeneous ideal, then
V(1) = {p € Xz | there is xc 7~%(p) with f(x) =0 forall f €1}
is a closed subvariety ofsX
(b) All closed subvarieties ofsXarise this way.

Proof. The proof is identical to the proof of Proposition 5.2.4. a

The main difference between Propositions 5.2.4 and 5.2t&ighrase “there
isx € 7~%(p)”. In the simplicial case, all suckare related by the group, while
this may fail in the non-simplicial case. One consequendtkasthe ideal-variety
correspondence of Proposition 5.2.7 breaks down in theimgtisial case. Here
is a simple example.

Example 5.2.9.In Example 5.1.14 we described the quotient representation
U, = (C4//(C* for the cones = Condey, e, €1 + 3,6 + €3) C R3, and in Exam-
ple 5.0.2 we saw that the quotient map

7:C* —U, =V(xy—zw) C C*
is given byr(ag,ap,83,a4) = (ay83, &y, 2184, 8233). Note that the irrelevant ideal
is B(X) = C[xq, X2, X3, X4].
Theideald; = (x1,X2) andl, = (x3,X4) are distinct radical homogeneous ideals
contained irB(X) that give the same subvarietylily :

V(1) = 7(Va(l1)) = 7(C? x {0}) = {0} € U,
V(o) = 1(Va(l2)) = 7({0} x C?) = {0} € U,,.
Thus Proposition 5.2.7 fails to hold for this toric variety. O

Local Coordinates Let Xy, be ann-dimensional toric variety. WheR contains a
smooth coner of dimensionn, we get an affine open set

U, C X, with U, ~C"
The usual coordinates f@" are compatible with the homogeneous coordinates

for X, in the following sense. The conegives the map), : C°® — C*>W that
sendsa,) ,c,(1) to the point(b,) ,cx (1) defined by

b = aP pGO’(l)
711 otherwise
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Proposition 5.2.10.Leto € 3 be a smooth cone of dimensior=dim Xy, and let
bo : C7M — > pe defined as above. Then we have a commutative diagram

co O CE 0\ z(x)

|

U,— Xy,

where the vertical maps are the quotient maps from Theor&r@. Furthermore,
the vertical map on the left is an isomorphism.

Proof. We first show commutativity. In the proof of Theorem 5.1.10 sa&v that
771(U,) = Ug. Since the image af, lies inUz;, we are reduced to the diagram

%Uf\/

\/

Since everything is affine, we can consider the correspgndiagram of coordi-
nate rings

[prefvf\iypez(l)]
Clo ﬁM

wherea* (x™) = HpEJ(l) xi™) and g+ (x™) = [pesa) X XM for me oV M. It
is clear thay} o §* = o* and commutativity follows.

For the final assertion, note that is an isomorphism since the, p € (1),
form a basis ol by our assumption oa. This completes the proof. O

It follows that if a closed subvariety C Xy, is defined by an ideal C S
then the affine piec¥ NU, C U, ~ C’Y is defined by the dehomogenized ideal
I CC[x, | p € o(1)] obtained by setting, = 1, p ¢ (1), in all polynomials ofi.
We will give examples of this below, and in 85.4, we will exdhe corresponding
notion of homogenization.

Proposition 5.2.10 can be generalized to any cere satisfying dimr =
dimXs, (Exercise 5.2.5).

Example 5.2.11.In Example 5.1.15 we described the quotient constructichef
blowup of C2 at the origin. This variety can be expressed as the unig(CB) =
Uy, UU,,, Whereo, 02 € 3 are as in Example 5.1.15.



§5.2. The Total Coordinate Ring 223

The map B}(C?) — C2? s given by(t,x,y) — (tx,ty) in homogeneous coordi-
nates. Combining this with the local coordinate maps froopBsition 5.2.10, we
obtain

Uy, © X — C2: (1,X) = (£,%,1) > (txt)
U, X — C2: (ty) = (L 1Y) = (Lty).
Consider the curvé (x,y) = 0 in the planeC?, wheref (x,y) = x3 —y?. We study
this on the blowup BJ(C?) using local coordinates as follows:
e OnU,,, we getf(txt) =0, i.e, (tx)® —t?> =t?(tx3—~ 1) = 0. Sincet =0

defines the exceptional locus, we get the proper transfe?m 1 = 0.

e OnU,,, we getf(t,ty) =0, i.e.,t*— (ty)2 = t?(t — y?) = 0, with proper trans-
formt —y2=0.
Hence the proper transform is a smooth curve ig{(8F). This method of studying

the blowup of a curve is explained in many elementary tex@lgabraic geometry,
such as 145 p. 100].

We relate this to the homogeneous coordinates gf@) as follows. Using
the above mapXy, — C?, we get the curve irXy, defined byf(tx,ty) = 0, i.e.,
(tx)3 — (ty)? = t2(tx3 —y?) = 0. Hence the proper transformtis’ —y? = 0. Then:

e Settingy = 1 gives the proper transfortw® —1 =0 onU,,.
e Settingx = 1 gives the proper transfortn-y? = 0 onU,,,.

Hence the “local” proper transforms computed above ararddarom the homo-
geneous proper transform by setting appropriate coortnagqual to 1. O

Exercises for 85.2
5.2.1. Prove (5.2.1).

5.2.2. Show that the total coordinate ring of the weighted proyecsipace?(qo, - . . ,qn) IS
C[Xo,-- -, %] Wwhere de@x) = q;. Hint: See Example 5.1.13.

5.2.3. Prove the claims made about the total coordinate ring of thdyztP" x P™ made
in Example 5.2.2.

5.2.4. Prove the claims made about the class group and the totatlioate ring of the
blowup of P? at the origin made in Example 5.2.3.

5.2.5. Let X5 be the toric variety of the fall and assume as usual thgt has no torus
factors. A subfart’ C Y isfull if ¥’ = {c € ¥ | (1) C ¥’(1)}. Consider a full subfan
Y’ C ¥ with the property thaXs;y has no torus factors.

(a) Define the mags : C= @ — C*@ by sending(a,) s (1) to the point(b,) ,cx 1)
given by

b, = aP pEE/(l)
711 otherwise
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Prove that there is a commutative diagram

C¥ O\ z(x) < €2 Z(x)

I }
XE’ « XEv

where the vertical maps are the quotient maps from Theorgrh(.
(b) Explain how part (a) generalizes Proposition 5.2.10.
(c) Use part (a) to give a version of Proposition 5.2.10 thgtlias to any coner € X
satisfying dimr = dimXs.
5.2.6. The quinticy? = x° in C? has a unique singular point at the origin. We will resolve
the singularity using successive blowups.

(a) Show that the proper transform of this curve ip(B1°) is defined byy? —t3x> = 0.
This uses the homogeneous coordinatrs/ from Example 5.2.3.

(b) Show that the proper transform is smoothibn but singular orJ,,,.
(c) Subdivides; to obtain a smooh fal’. The toric varietyXs; has variablesit,x,y,
whereu corresponds to the ray that subdivides Show that C(Xy. ) ~ Z? with
degu) = (Oa _1)7 degt) = (_11 O)a deqX) = (11 1)1 de@(y) = (17 2)
(d) Show that(u,t,x,y) — (utx,u?ty) defines a toric morphistés, — C? and use this to
show that the proper transform of the quintidif is defined byy? — ut®x® = 0.
(e) Show that the proper transform is smooth by inspectimgldcal coordinates.

5.2.7. Adapt the method Exercise 5.2.6 to desingulayze- x*"*1, n > 1 an integer.

5.2.8. Given an ideal in a commutative rind, its Rees algebrés the graded ring
Rl =PIt R,

i=0

wheret is a new variable antP = R. There is also thextended Rees algebra
RILt =PIt c Rt

iz
wherel' = Rfori < 0. These rings are graded by letting &g- 1, so that elements &t
have degree 0. Se29, 4.4] and §11.3 for more about Rees algebras.
(@) Whenl = (x,y) C R= C[x,y], prove that the extended Rees algeRfat—1] is the

polynomial ringC[xt, yt,t —%]

(b) Prove that the ring of part (a) is isomorphic to the totadrlinate ring of the blowup

of C? at the origin.
(c) Generalize parts (a) and (b) to the caséef(xs,...,Xn) CR=C[Xq,...,%n).

85.3. Sheaves on Toric Varieties

Given a toric varietyXs;, we show that graded modules over the total coordinate
ring S=C[x, | p € £(1)] give quasicoherent sheavesXy We continue to assume
thatXsx; has no torus factors.
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Graded Modules The grading or§ gives a direct sum decomposition

s= P s

aECl(XE)
such thats, - S3 € S,4 4 for all o, 5 € CI(Xy).

Definition 5.3.1. An SmoduleM is gradedif it has a decomposition

M:@Ma

a€CI(Xs)

such thals,-Mg C M, forall o, 3 € CI(Xy). Givena € Cl(Xy), theshift M(«)
is the gradeds-module satisfying

M(a)ﬁ = Ma+5
for all g € Cl(Xy).

The passage from a grad&dmodule to a quasicoherent sheafXn requires
some tools from the proof of Theorem 5.1.10. A cene X gives the monomial
X7 = [1,e01)% € S and by (5.1.4), the map™ — x(™ = prf,m’“”> induces an
isomorphism

75 CleY NM] =5 (S6)® C S,
whereS,s is the localization oBatx’. Since monomials are homogeneo8g, is

also graded by @Ky), and its elements of degree 0 are preciselyGsvariants
(Exercise 5.3.1), i.e(Si)o = (S )®. Hence the above isomorphism becomes

(5.3.1) 75 CloY NM] — (S )o-

g
These isomorphisms glue together just as we would hope.

Lemma 5.3.2.LetT = o nm" be a face ob. Then(S;- )o = ((S5)0)z (xym)» and
there is a commutative diagram of isomorphisms

(Se)o —— ((S¢)0)mz (xm)
J }

CleV NM] —= C[r¥Y NM]ym.

Proof. Sincer =onmt, we have(m,u,) = 0whenp € 7(1) and(m,u,) > 0 when
p€o(1)\7(1). Thismeans thd: = (S )« (,m. Taking elements of degree zero
commutes with localization, hend&)o = ((Si)o)rz(ym- The vertical maps
in the diagram come from (5.3.1), and the horizontal mapdaalization. In
Exercise 5.3.2 you will chase the diagram to show that it cobesh O
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From Modules to SheavesWe now construct the sheaf of a graded module.

Proposition 5.3.3. Let M be a graded S-module. Then there is a quasicoherent
sheafM on Xy such that for every € ¥, the sections df1 over U, C X5, are

Uy, M) = (Mys )o.

Proof. SinceM is a gradedS-module, it is immediate thail,, is a gradedS; -
module. HencgM,s )o is an (S )o-module, which induces a sheéfl,;)o on
U, = Sped¢C|[ocY NM]) = Spe¢(S)o). The argument of Lemma 5.3.2 applies
verbatim to show that

(Mx*)o = ((fo’)o)w;(xm)-
Thus the sheavgdV,; )o patch to give a shedfl on X, which is quasicoherent by
construction. O

Example 5.3.4.The total coordinate ring df" is S= C|[xo, ..., X,] with the stan-
dard grading where every variable has degree 1. The quasauhsheaf orfP"
associated to a gradedimodule was first described by Serre in his foundational
paperFaisceaux algbriques cobrrents[154), called FAC for short. O

An important special case is whéfis a finitely generated gradezimodule.
We will need the following finiteness result to understanelgsheaiM.

Lemma 5.3.5. (S5 ), is finitely generated as &S,s )o-module for allo € 3 and
(AS Cl(XE).

Proof. Write o = [} a,D,] and consider rational polyhedral cone
g={(MAX) eMr xR|A>0, (mu,) > —Aa, forall p} C Mg xR.

By Gordan’s Lemmag N (M x Z) is a finitely generated semigroup. Let the gen-
erators with last coordinate equal to 1 (e, 1),...,(my,1). Then you will prove

in Exercise 5.3.3 that the monomiq@pr)m’“”Ha”, i=1,...,r, generatgS;)q
as a(S )o-module. O

Here are some coherent sheaves<gn

Proposition 5.3.6. The sheaM on % is coherent wheiM is a finitely generated
graded S-module.

Proof. BecauseM is graded, we may assume its generators are homogeneous of
degreesyy,...,ar. Giveno € %, it follows immediately thatM,. is finitely gen-
erated overS; with generators in the same degrees. However, we need to be
careful when taking elements of degree 0. Multiply a gemeraf degreen; by

the (S )o-module generators dfS.)_,; (finitely many by the previous lemma).
Doing this for alli gives finitely many elements ifM,: )o that generatéM, )o as

an (S, )o-module (Exercise 5.3.3). It follows that is coherent. O
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Given a € Cl(Xy), the shiftedSmodule S(«) gives a coherent sheaf ofy;
denoteddx, («). This is a sheaf we already know.
Proposition 5.3.7. Fix a € Cl(Xy). Then:
(a) There is a natural isomorphism,S= I'(Xs;, Ox, ().
(b) IfD = Zp a,D, is a Weil divisor satisfyingr = [D], then

Oxs, (D) ~ Ox, ().
Proof. By definition, the sections af’x,, («) overU, are

L'(Us, Oxs () = (S(@)xe )o = (S )a
for o € ¥. Since the open covelU, },¢x of Xy satisfiesU, NU,; = U,n~,, the
sheaf axiom gives the exact sequence

0 — I'(Xs, 0% (@) — [ [(Se)a = [[(Sem o

o,T
The localization(Ss ), has a basis consisting of all Laurent monom[é{l;xg” of
degreex such thato, > O for all p € o(1). Then the exact sequence implies that

I'(Xs, Ox, (o)) basis consisting of all Laurent monomi:il]spxgp of degreex such
thatb, > O for all p € ¥(1). These are precisely the monomialsSiof degreex,
which gives the desired isomorphist) ~ I'(Xs;, Ox, ().

We turn to part (b). Given a Weil divis®d = ©  a,D,, with o = [D], we need
to construct a sheaf isomorphisfix,. (D) ~ Ox,. («). By the above description of
the sections oved,,, it suffices to prove that for every € X, we have isomor-
phisms
(5.3.2) ['(Us, Oxs (D)) =~ (Ses )a-
compatible with inclusiont); C U, induced byr <o in X.

To construct this isomorphism, we apply Proposition 4.8.3 1 to obtain

P(UmﬁXE(D)): @ C-x™

meM
(Mmup)>a,,p€a(1)

A lattice pointm € M gives the Laurent monomial
(533) X<m7D> — ngmvuﬂ>+aﬂ.
p

When(m,u,) > —a, for p € ¥(1), this lies inS,s, and in factx™P) € (S5 ), since
degx™?) = [3=,({(mu,) +a,)D,] = [div(x™) + D] = [D] = .

We claim that map™ — x™P) induces the desired isomorphism (5.3.2).

Suppose thag™, x™ map to the same monomial. Theém, Up) = (N, u,)
for all p. This impliesm = m' since Xy, has no torus factors. Furthermore, if
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xP = ]_[pxtpjp € (S )as then[d_ b, Dyl = a = [}, a,D,], so that there isne M
such thato, = (m,u,) +a, for all p. Sincex® is a monomial inS., b, > 0 for
p € o(1), hence(mu,) > —a, for p € o(1). Theny™ e I'(U,, Ox,, (D)) maps to
xP. This defines an isomorphism (5.3.2) which is easily seer twompatible with
the inclusion of faces. O

Example 5.3.8. For P" we haveS = C|x,...,X,] with the standard grading by
Z = CI(P"). Then&pn(K) is the sheaf associated k) for k € Z. The classes of
the toric divisordDg ~ - -- ~ Dy, correspond to & Z, so that
ﬁﬂ»n(k) ~ ﬁ]pn(kDo) e ﬁﬂ»n(an).
Thus &pn(K) is a canonical model for the she@pn (kD;). This justifies what we
did in Example 4.3.1.
Also note that whek > 0, we have

D (P", G (K)) = Sk

Hence global sections ofpn(k) are homogeneous polynomials Xg, ..., X, of
degreek, which agrees with what we computed in Example 4.3.6. O

Sheaves versus Moduleg\n important result is thatll quasicoherent sheaves on
Xs; come from graded modules.

Proposition 5.3.9. Let.# be a quasicoherent sheaf og XThen:

(a) There is a graded S-modub such thatM ~ .%.
(b) If # is coherent, the can be chosen to be finitely generated over S.

The proof will be given in the appendix to Chapter 6 since\blaes tensor
products of sheaves from §6.0.

Although the mapv — M is surjective (up to isomorphism), it is far from
injective. In particular, there are nontrivial graded mieduthat give the trivial
sheaf. This phenomenon is well-known %, where a finitely generated graded
moduleM overS= C|xy,...,Xn] gives the trivial sheaf of" if and only if M, =0
for /> 0 (see V7, Ex. 11.5.9]). This is equivalent to

(X0, %) M =0
for ¢ > 0 (Exercise 5.3.4). Sincé,...,Xn) is the irrelevant ideal fof®", this
suggests a toric generalization. In the smooth case, wethavellowing result.

Proposition 5.3.10. Let B(X) C S be the irrelevant ideal of S for a smooth toric
variety X, and letM be a finitely generated graded S-module. Theg: 0 if and
only if B(X)*M = 0 for £ > 0.

Proof. First observe thavl = 0 if and only if it vanishes on each affine open subset
U, C Xy. But on an affine variety, the correspondence between clesient
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sheaves and modules is bijective (sé& [Cor. I1.5.5]). HenceM = 0 if and only if
(Mys)o=0forallo € X.

First suppose thd(%)* M = 0 for some/ > 0. Then(x?)*M = 0, which easily
implies thatM,; = 0. ThenM = 0 follows from the previous paragraph. This part
of the argument works for any toric variety.

For the converse, we hay&l,; )o =0 for all o € ¥. Givenh € M, we will
show thai(x?)*h = 0 for somef > 0, which will imply B(X)* M = 0 for £ > 0 since
M is finitely generated. Let = [D], whereD = Zp a,D,. Sinceo is smooth, there
m, € M such thatm,,u,) = —a, for all p € o(1) (this is part of the Cartier data
for D). ReplacingD with D +div(x™ ), we may assume th&ét = 1) @D
Now setk = max(0, ap | p gé a(l)) and observe that

*IT %% =11 X¥es
p¢o(1) p¢o(1)
Furthermorex®h/(x?)k € M, has degree 0. Henoéh/(x?)k = 0 in M,», which
by the definition of localization implies that theres& 0 with
(x7)S-xPh=0in M.

Sincex® involves onlyx, for p ¢ o(1), we can findx® € Ssuch thax®-x° is a
power ofx®. Hence multiplying the above equation k¥ implies (x°)‘h = 0 for
somel > 0, as desired. O

p¢o(l

Unfortunately, the situation is more complicated wb&nis not smooth. Here
is an example to show what can go wrong whenis simplicial.

Example 5.3.11. The weighted projective spadg(1,1,2) has total coordinate
ring S= C[x,y,z], wherex,y have degree 1 andhas degree 2, and the irrele-
vant ideal isB(X) = (x,y,z). The gradedSmoduleM = S(1)/(xS1) +yS1))
has only elements of odd degree. THé&fM,)o = O sincez has degree 2, and it is
clear that(My)o = (My)o = 0. It follows thatM = 0, yet one easily checks that
B(X)*M = M +£ 0 for all £ > 0. Thus Proposition 5.3.10 fails fé(1,1,2). ¢

Exercise 5.3.5 explores a version of Proposition 5.3.10applies to simpli-
cial toric varieties. The condition th&(X)‘M = 0 is replaced with the weaker
condition thatB(2)*M,, = 0 for all a € Pic(Xs,).

We will say more about the relation between quasicoheraravas and graded
Smodules in the appendix to Chapter 6.

Exercises for §5.3

5.3.1. As described in 85.0, the action Gon C>® induces an action dB on the total
coordinate ringS. Also recall thag € G is a homomorphisrg: Cl(Xs) — C*.

(@) Givenx? € Sandg € G, show thagg-x2 = g~1(a)x?, wherea = degx?).
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(b) Show thatS® = S and that a similar result holds for the localizati®g.
5.3.2. Complete the proof of Lemma 5.3.2.
5.3.3. Complete the proofs of Lemma 5.3.5 and Proposition 5.3.6.

5.3.4. Let S= C[Xy,. .., %) Where degx;) = 1 for all i, and letM be a finitely generated
gradedS-module. Prove tha¥l, = 0 for ¢ >> 0 if and only if B(X)*M = 0 for £ >> 0.

5.3.5. Let X5; be a simplicial toric variety and le¥l be a finitely generated grade
module. Prove thatl = 0 if and only if B(X)*M,, = 0 for all £ >> 0 anda € Pic(Xs).

5.3.6. Let Xy be a smooth toric variety. State and prove a version of Piip0n$.3.10
that applies to arbitrary gradesimodulesM. Also explain what happens whef; is
simplicial, as in Exercise 5.3.5.

85.4. Homogenization and Polytopes

The final section of the chapter will explore the relationvien torus-invariant
divisors on a toric varietyXsy; and its total coordinate ring. We will also see that
whenXs. comes from a polytop®, the quotient construction &y, relates nicely
to the definition of projective toric variety given in Chapg

Homogenization When working with affine and projective space, one often aeed
to homogenize polynomials. This process generalizesyntoethe toric context.
The full story involves characters, polyhedra, divisoteaves, and graded pieces
of the total coordinate ring.

A Weil divisor D = Zp a, D, on X5, gives the polyhedron
Po={me Mg |(mu, >—a,forall pc3(1)}.

Proposition 4.3.3 tells us that the global sections of treabtix,, (D) are spanned
by characters coming from lattice pointsh, i.e.,

I'(Xs,0x,(D) = P C-x™
mePoNM

This relates to the total coordinate rifg= C[x, | p € £(1)] as follows. Given
m e P N M, theD-homogenizatiomf y™ is the monomial

x(mb) _ H Xém,up>+ap
p

defined in (5.3.3). The inequalities definiRg guarantee that™P lies inS. Here
are the basic properties of these monomials.

Proposition 5.4.1. Assume that X has no torus factors. If D andyPare as above
anda = [D] € Cl(Xy) is the divisor class of D, then:

(a) For each me PoN M, the monomial ¥*P) lies in S,.
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(b) The map sending the charactgi™ of me P, N M to the monomial %P’
induces an isomorphism

I'(Xs;, Ox,, (D)) ~ S,.

Proof. Part (a) follows from the proof of Proposition 5.3.7. As farp(b), we use
the same proposition to conclude that

F(Xg, ﬁxz (D)) ~ F(Xg, ﬁxz (a)) ~ Sm
One easily sees that this isomorphism is given®y— x™DP) O

Here are some examples of homogenization.

Example 5.4.2.The fan forP" has ray generatony = — > ; & andu; = g for
i =1,...,n. This gives variables; and divisorsD; fori =0,...,n. SinceM = Z",
the character of= (by,...,by) € Z"is the Laurent monomial® = ], t™.

For a positive integed, the divisorD = d Dy has polyhedro®y = dA,,, where
Ay is the standard-simplex. Giverm= (by,...,by) € dA,, its homogenization is

m,D) (m,up)+d, (m,uy)+0 m,Un)+0

Sbubrtdyby by

=X Xn
by bn
(D)

which is the usual way to homogeniiZ® = ]_[inzltibi with respect tok.

This monomial has degree= [dDg| € CI(P") = Z, in agreement with Proposi-
tion 5.4.1. The proposition also implies the standard faat nonomials of degree
dinXg,...,X, correspond to lattice points ohA,. O

X

Example 5.4.3. For P! x P, we have ray generatons; = e;,Uuy = —€;,U3 =
&, Uy = —& with corresponding variables and divisorsD;. Given nonnegative
integersk, ¢, we get the divisoD = kD, + ¢/D4. The polyhedrorh is the rectan-
gle with vertices(0,0), (k,0), (0,¢), (k,£), and given(a,b) € Pb N Z?, the Laurent
monomialt?y homogenizes to
agk—ayb f—b _ koo (X1\3/X3\P

X1Xy XgX, = XoX, (X—z) <Z> ,
which is the usual way of turning a two-variable monomiabir@ bihomoge-
neous monomial of degred, ¢) (remember that deég;) = degx2) = (1,0) and
degxz) = degxs) = (0,1)). Thus monomials of degre, ¢) correspond to lattice
points in the rectanglBp. O

Example 5.4.4. The fan for BH(C?) is shown in Example 5.1.15, and its total
coordinate rindgS= C[t,x,y] is described in Example 5.2.3. If we pi€k= 0, then
the polyhedrorP, C R? is defined by the inequalities

(mu)>0, i=0,12.
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Sinceuy, U, form a basis oN = Z? andug = uy + Uy, P is the first quadrant iiR?.
Givenm= (a,b) € Pb N Z?, the monomiatt? homogenizes to

t(m,u())X(m,ul)y(m,uz) _ ta+bxayb _ (tx)a(ty)b.

where the ray generatous, Uz, U, correspond to the variablésx,y.

For example, the singular cubig —t2 = 0 homogenizes tétx)3 — (ty)2 =0,
which is the equation enountered in Example 5.2.11 whenviegathe singularity
of this curve. O

One thing to keep in mind when doing toric homogenizatior# tharacters
x™ (in general) or Laurent monomiat§' (in specific examples) are intrinsically
defined on the toru$y or (C*)". The homogenization process produces a “global
object” xX™P) relative to a divisoD that lives in the total coordinate ring or, via
Proposition 5.4.1, in the global sections®@,, (D).

We next study the isomorphisn® ~ I'(Xs, Ox (D)) from Proposition 5.4.1.
We will see that they are compatible with linear equivalead multiplication.

First suppose thd? andE are linearly equivalent torus-invariant divisors. This
means thaD = E + div(x™) for somem € M. Proposition 4.0.29 implies that
f — fxMinduces an isomorphism

(5.4.1) T'(Xy, Ox,, (D)) ~ T'(Xs, Ox,. (E)).

Turning to the associated polyhedra, we proed= By + min Exercise 4.3.2. An
easy calculation shows thatnf € Py, then

(m',D) (m +m,E)

X =X

(Exercise 5.4.1). Hence (5.4.1) fits into a commutative mdiagof isomorphisms

P(XE’ ﬁxz (D)) — P(XE7 ﬁxz} (E))

(5.4.2) > . =

Here,a = [D] = [E] € CI(Xx) and the “diagonal” maps are the isomorphisms from
Proposition 5.4.1. You will verify these claims in Exerck4.1.

It follows thatS, gives a “canonical model” fdr(Xs;, Ox,. (D)), since the latter
depends on the particular choice of divigoiin the classx. It is also possible to
give a “canonical model” for the polyhedrdty (Exercise 5.4.2).

Next consider multiplication. Leb andE be torus-invariant divisors oKy
and setx = [D], # = [E] in CI(Xy). Thenf @ g— fginduces a&C-linear map

['(Xs, ﬁXE(D)) ®c'(Xs, ﬁxz(E)) — I'(Xs, ﬁxz(D+ E))
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such that the isomorphisms of Proposition 5.4.1 give a cotatie diagram
F(sz ﬁxz (D)) ®c F(sz ﬁxz (E)) - F(X27 ﬁxz (D + E))

(5.4.3) l l
S ®c S Sh+p

where the bottom map is multiplication in the total coordénang (Exercise 5.4.3).
Thus homogenization turns multiplication of sections iotdinary multiplication.

Polytopes A full dimensional lattice polytopd® C My gives a toric varietyXp.
Recall thatXp can be constructed in two ways:

e As the toric varietyXy,, of the normal fartp of P (Chapter 3).

e As the projective toric varietXpnm Of the set of characterP) N M for
k> 0 (Chapter 2).

We will see that both descriptions relate nicely to homogens coordinates and
the total coordinate ring.

GivenP as above, sat = dimP and letP(i) denote the set afdimensional
faces ofP. ThusP(0) consists of vertices arfé(n— 1) consists of facets. The facet
presentation oP given in equation (2.2.2) can be written as
(5.4.4) P={meMg|(mug)>—ac forallF e P(n—1)}.

In terms of the normal fakp, we have bijections

P(0) «—— Xp(n) (vertices—— maximal cones)
P(n—1) «— X¥p(1) (facets—— rays)

When dealing with polytopes we index everything by facetisemthan rays. Thus
each faceF € P(n—1) gives:

e The facet normalir, which is the ray generator of the corresponding cone.

e The torus-invariant prime divisdg C Xp.

e The variablexs in the total coordinate rin@. We callxz afacet variable
We also have the divisor

DP:ZaFDF
F

from (4.2.5). The polytopés, of this divisor is the polytopd> we began with
(Exercise 4.3.1). Hence, if we set= [Dp] € CI(Xp), then we get isomorphisms

S ~T(Xp, Ox.(Dp)) ~ € C-x™

mePNM
In this situation, we write th®p-homogenization of™ as

x(mP) — Hxém7UF>+aF‘
F
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We callx™P) a P-monomial

The exponent of the variable: in xX{™P) gives thelattice distancefrom m
to the facet. To see this, note that lies in the supporting hyperplane defined
by (mug) +ar = 0. If the exponent okg is a > 0, then to get from the sup-
porting hyperplane tm, we must pass through tlaeparallel hyperplanes, namely
(mug)+ar=jfor j=1,...,a Hereis an example.

Example 5.4.5.Consider the toric varietip of the polygonP c R? with vertices

X5

X1 X4

X2

X3

Figure 2. A polygon with facets labeled by variables

(1,1),(-1,1),(—1,0),(0,-1),(1,—1), shown in Figure 2. In terms of (5.4.4), we
havea; = --- = as = 1, where the indices correspond to the facet variahles. , x5
indicated in Figure 2. The 8 points Bin Z? give P-monomials

XoX3X3  XiXoXSXa  XEX3X3
XgXZXs  X1XoXaXaXs — X2X3X3Xs
XXX XEXXE,
where the position of eadR-monomialx™P) corresponds to the position of the

lattice pointm € PN Z2. The exponents are easy to understand if you think in
terms of lattice distances to facets. O

The lattice-distance interpretation of the exponents'T”) shows that lattice
points in the interior intP) of P correspond to thosB-monomials divisible by
[ I X=. For example, the onl-monomial in Example 5.4.5 divisible by - - - x5
corresponds to the unigque interior lattice point.

We next relate the constructions of toric varieties giverChmpter 2 and in
85.1. In Chapter 2, we wrote the lattice pointsPfobAsPNM = {my,...,ms} and
considered the map

(5.4.5) ®: Ty — P L t— (x™(1),...,x™S(1)).

The projective (possibly nhon-normal) toric variety~y is the Zariski closure of
the image ofb.
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On the other hand, we have the quotient constructiaxeof
Xp~ (C"\Z(Zp))//G,
where we writeC" = C**(Y), Also, the exceptional s&(Xp) can be described in
terms of theé®”-monomials coming from the vertices of the polytope.
Lemma 5.4.6. The vertex monomials"P), v a vertex of P, have the following
properties:

(@) /(xVP) | ve P(0)) = B(Xp), where BXp) = (X | o € X(n)) is the irrelevant
ideal of S.

(b) Z(xp) = V(xX™P) | ve P(0)).

Proof. We saw above that verticesc P(0) correspond bijectively to cones, =
Condur | ve F) € ©p(n). Then the lattice-distance interpretationxdf” shows
the facet variablesr appearing inx\"P) are precisely the variables appearing in
x%. This implies part (a), and part (b) follows immediately. d

If we seta = [Dp] as above, then the-monomialsx(™") i =1,... s form a
basis ofS, and give a map
(5.46)  W:C'\Z(Sp) — P51 prs (pMP) . plmP))

wherep™-P) is the evaluation of the monomiz{™ " at the pointp € C"\ Z(Zp).
This map is well-defined since for eaphe C"\ Z(2p), Lemma 5.4.6 implies that
at least ond>-monomial (in fact, at least one vertex monomial) must bezeom

The maps (5.4.5) and (5.4.6) fit into a diagram
(C)'——C"\Z(Zp)

: PsL,
Here, the magC*)" — Ty is described in (5.1.2) and: C" \ Z(Xp) — Xp is the
quotient map. This diagram has the following properties.

Proposition 5.4.7. There is a morphism : Xp — PS~1 represented by the dotted
arrow in the above diagram that makes the entire diagram catant-urthermore,
the image of is precisely the projective toric varietypXu.

Proof. When we regard thee as characters ofC*)" = (C*)**(1), the exact se-
guence (5.1.1) tells us that

(5.4.7) "= T
F
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Multiplying each side by[ T X&F, we obtain
([152) =
F

If we letm=m;, i =1,...,sand apply this to a point ip € (C*)", we see that
®(p) and¥(p) give the same point in projective space sifi¢e p times vector
for W(p) equals the vector fob(p). It follows that, ignoringey for the moment,
the rest of the above diagram commutes.

We next show that is constant orG-orbits. This holds sinc®-monomials
are homogeneous of the same degree. In more detail, fix poiat§r) € G,
p=(pr) € C"\ Z(p) and aP-monomialx™P) = [T x™** % Then evaluating
xmD) att - p gives

(t . p) (m,D) _ H(tF Pe )<m,UF>+aF
F

_ (Htém,uw) (HtgF) p(mP) (Htgp) p(mb)

where the last equality follows from the description®fgiven in Lemma 5.1.1.
Arguing as in the previous paragraph, it follows thaft - p) and ¥(p) give the
same point inPS~1. This proves the existence ofsincer is a good categorical
guotient, and this choice of makes the entire diagram commute.

The final step is to show that the imagegof Xp — P51 is the Zariski closure
Xpnm Of the image ofd : Ty — PS~L. First observe that

P(Xp) = ¢(Tn) € ¢(Tn) = ©(Tn) = Xprm
sinceq is continuous in the Zariski topology ararpTN = & by commuitivity of the
diagram. However(Xp) is Zariski closed ifPS~! sinceXp is projective. You will
give two proofs of this in Exercise 5.4.4, one topologicaifg constructible sets

and compactness) and one algebraic (using completenegz@merness). Once
we know thatp(Xp) is Zariski closed®(Ty) C ¢(Xp) implies

Xprm = q)(TN) - ¢(XP)>
and¢(Xp) = Xpnm follows. O

In Chapter 2, we used the mép—construced from characters—to parametrize
a big chunk of the projective toric varieXp~y. In contrast, Proposition 5.4.7 uses
the map¥—constructed fronP-monomials—to parametrizal of Xpqv.

If the lattice polytopeP is very ample, then the results of Chapter 2 imply that
XpnM is the toric varietyXp. So in the very ample case, tRemonomials give an
explicit construction of the quotier{tC" \ Z(Zp)) //G by mappingC" \ Z(Zp) to
projective space via the-monomials. It follows that we have two ways to take the
quotient ofC' by G:
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e At the beginning of the chapter, we to@kinvariant polynomials—elements
of —to construct an affine quotient.

e Here, we usd®>-monomials—elements &,—to construct a projective quo-
tient, after removing a s&t(3p) of “bad” points.

TheP-monomials are ndB-invariant but instead transform tsameway underG.
This is why we map to projective space rather than affine spatewill explore
these ideas further in Chapter 14 when we disgeganetric invariant theory

WhenP is very ample, we have a projective embedditgC PS~1 given by
the P-monomials inS,. If y1,...,ys are homogeneous coordinatesPsf 2, then
thehomogeneous coordinate rird Xp is

CXp] =Clyn,...,ys|/1(Xp)
asin 82.0. We aIsAo have the affine cogeC C" of Xp, andC[Xp] is the ordinary
coordinate ring o¥p, i.e.,
C[Xp] = C[Xe].
Recall thatC[Xp] is anN-graded ring sincé(Xp) is a homogeneous ideal.
AnotherN-graded ring isP,~ (S« This relates t@C[Xp] as follows.
Theorem 5.4.8.Let P be a very ample lattice polytope with= [Dp] € CI(Xp).
Then:
(@) B2 Sk is normal.

(b) There is a natural inclusio©[Xp] C P2, S such thatP,” , S, is the nor-
malization ofC[Xp].

(c) The following are equivalent:
(1) Xp C PS~1is projectively normal.
(2) P is normal.
(3) Do S = ClXe].
(4) Do S is generated as &-algebra by its elements of degrée

Proof. Consider the cone
C(P) =Con€gP x {1}) C Mg x R.

This cone is pictured in Figure 4 of §2.2. Recall th&tis the “slice” of C(P)
at heightk. Since the divisoDyp associated t&P is kDp, homogenization with
respect tkP induces an isomorphism

o = F(Xp, ﬁxp kDp @ C- X
me (kP)NM

Now consider the dual cong> = C(P)" C Ng x R. The semigroup algebra
C[C(P)n (M x Z)] is the coordinate ring of the affine toric varidtl,,. Given
(m k) € C(P)N (M x Z), we write the corresponding charactengd&X.
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The algebr&C[C(P)N (M x Z)] is graded using the last coordinate, the “height.”
Since(m,k) € C(P)N (M x Z) if and only if m € kP (this is the “slice” observation
made above), we have

CCP)INMxZ)k= @ C-x™~
me (kP)NM

Using (5.4.3), we obtain a gradéttalgebra isomorphism
@ska ~ C[C(P)N (M x Z)].
k=0

This proves tha€d,° ; Sk, is normal.

We next claim that),, is the normalization of the affine cor)Aép. For this,
we letZ = (PNM) x {1} C M x Z. As noted in the proof of Theorem 2.4.1, the
affine cone ofXp = Xpwu is )/(\p =Y,. SinceP is very ample, one easily checks
thats generatedl x Z, i.e.,Zo/ = M x Z (Exercise 5.4.5). Itis also clear that
generates the cor®P) = o§. HenceU,, is the normalization oKp by Proposi-
tion 1.3.8. This immediately implies part (b).

For part (c), we observe that (& (2) follows from Theorem 2.4.1, and (1)
& (3) follows from parts (a) and (b) since the projective nditpaf Xp C PS~1
is equivalent to the normality df[Xp]. Also (3) = (4) is obvious sinc&[Xp] is
generated by the imagesyf,...,Ys, which have degree 1. Finally, you will show
in Exercise 5.4.6 that (4 (2), completing the proof. O

Further Examples We begin with an example of that illustrates how there can be
many different polytopes that give the same toric variety.

Example 5.4.9.The toric surface in Example 5.4.5 was defined using the polyg
shown in Figure 2. In Figure 3 we see four polygodhddA UB,AUC AUD, all

Figure 3. Four polygonsA, AUB,AUC, AU D with the same normal fan

of which have the same normal fan and hence give the samevamiigty. Since
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we are in dimension 2, these polygons are very ample (in famtnal), so that
Theorem 5.4.8 applies.

These four polygons give four different projective embeddij each of which
its own coordinate ring as a projective variety. By Theoreh& these coordi-
nate rings all live in the total coordinate ritf®) This explains the “total” in “total
coordinate ring.” O

Our next example involves torsion in the grading of the totadrdinate ring.

Example 5.4.10.The fanX for P4 has ray generatong = — Zi“zla andu = g
fori=1,...,4in N =Z* and is the normal fan of the standard simplex C R*.
Another polytope with the same normal fan is

P=5A4—(1,1,11) C Mg =R*,

so thatXp = P*. We saw thaP is reflexive in Example 2.4.5. One checks that
Dp = Do + --- + D4 has degree & 7Z ~ CI(P4). SinceP is a translate of Ay,
(5.4.2) implies that thé-monomials form € PN Z* coincide with the homoge-
nizations coming from A4, which are homogeneous polynomials of degree 5 in

S=Clxo,...,Xd].
SinceP is reflexive, its duaP® is also a lattice polytope. Furthermore ,

P° = COﬂV(Uo,.. .,U4) CNr= R4

since the ray generators of the normal farP®fare theverticesof P by duality for
reflexive polytopes (be sure you understand this—Exercié& % The vertices of
P are

vw=(-1-1-1-1), s =(4,-1,-1,-1), v, = (-1,4,-1,-1)

5.4.8
( ) vz=(-1,-14-1), vy=(—-1,—-1,-1,4).

Thev; generate a sublattidd; C M = Z*. In Exercise 5.4.7 you will show that the
mapM — Z° defined by

meM— (<m,U0>,...,<m,U4>) € ZS
induces an isomorphism
(5.4.9)  M/My~{(ao,a1,8,8s,8) € (Z/52)°: Y ga = 0} /(Z/5Z)

whereZ /57 C (7./55Z)° is the diagonal subgroup. Théw/M; ~ (Z/5Z)3, so
thatM is a lattice of index 125 i.

The dual toric varietyXp. is determined by the normal fan°® of P°. The
ray generators ok° are the vectorsy,...,v4 from (5.4.8). The only possible
complete fan irfR* with these ray generators is the fan whose cones are gemerate
by all proper subsets dfv,...,v4}. Sincevp+ - --+vs = 0 and thes; generateMy,
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the toric variety of:° relative toM; is P4, i.e., Xso m, = P4. (Remember that°
is a fan in(M1)r = Mg.) SinceM; C M has index 125, Proposition 3.3.7 implies

Xeo = Xpo.m = Xpo v /(M/M1) = B4/ (M /My ).

Hence the dual toric varietyp- is the quotient of?* by a group of order 125.

The total coordinate ring’ is the polynomial ringClyo,...,Ys], graded by
Cl(Xp-). The notation is challenging, since by dualityis the character lattice of
the torus ofXp-. Thus (5.1.1) becomes the short exact sequence

0— N— Z° — Cl(Xps) — 0,

whereN — Z° is u+ ((vo,U),...,{va,u)). If we let Ny = Homz(My,Z), then
My € M dualizes td\N C N; of index 125. Now consider the diagram

0

|

0——N—>75—CI(Xpo) — 0

O

0 Ny 75 Z 0

l

Nz/N

|

0

with exact rows and columns. In the middle row, we use<gd v, ) = CI(P4) = Z.
By the snake lemma, we obtain the exact sequence

0—> N3/N — Cl(Xpo) — Z — 0,

S0 C(Xpo) ~ Z & N/Njy. Thus the class group has torsion.

The polytopeP° has only six lattice points iN: the verticesl, ..., us and the
origin (Exercise 5.4.7). When we homogenize these, we gd&t°’simonomials

4
(01
j=0

4
y(Ui7D> _ Hy}vj‘,ui>+1 _ y|57 i = o,....,4
j=0

since(vj,u;) = 56;; — 1 (Exercise 5.4.7). O

The equation
CoYg + -+ Cays +CsYor+Ya=0
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defines a hypersurfacéC Xp. since it is built fromP°-monomials. If we want an
irreducible hypersurface, we must hayg...,c4 # 0, in which caser is isomor-
phic (via the torus action) to a hypersurface of the form

Yo+ +Ya+AYor e Ya=0.

This is thequintic mirror family, which played a crucial role in the development of
mirror symmetry. See3d] for an introduction to this astonishing subject.

Exercises for §5.4

5.4.1. Let D, E be linearly equivalent torus-invariant divisors with= div(x™) + E.
(@) If m € P, M, then prove thax(™:0) = x(m'+mE)_
(b) Prove (5.4.2).
5.4.2. Fix a torus-invariant divisob =} a,D,, and consider its associated polyhedron
Po={me Mg | (mu,) > —a, forall p}. Define
¢ : Mg — RV
by ¢o(m) = ((M,u,) +a,) € R¥M).

(a) Prove thathp embedsMir as an affine subspace BFF(Y. Hint: Remember thaXs,
has no torus factors.

(b) Prove thatpp induces a bijection
#plg, : P = dp (M) NRZY.

This realizes} as the polyhedron obtained by intersecting the positMearmﬂRigl)
of R*® with an affine subspace.

(c) LetD = div(x™) +E. Prove thaipp(Po) = ¢e(Pe). Thus the polyhedron ilR>®
constructed in part (b) depends only on the divisor clad3.of his is the “canonical
model” of Py.

5.4.3. Prove that the diagram (5.4.3) is commutative.

5.4.4. The proof of Proposition 5.4.7 claimed that the image oK — PS~! was Zariski

closed. This follows from the general fact thatif X — Y is a morphism of varieties and

X is complete, them(X) is Zariski closed irY. You will prove this two ways.

(a) Give a topological proof that uses constructible setsampactness. Hint: Remem-
ber that projective space is compact.

(b) Give an algebraic proof that uses completeness and pregefrom §3.4. Hint: Show
thatX x Y — Y is proper and use the graph&f

5.4.5. Let P C Mg be a very ample lattice polytope and let= (PNM) x {1} C M x Z.
Prove thaZ.«f = M x Z. Hint: First show thaZ'«” = M x {0}, whereZ'</ is defined in
the discussion preceding Proposition 2.1.6.

5.4.6. Prove of (4)=- (2) in part (c) of Theorem 5.4.8. Hint: (4) implies that thepna
S ®c Sa — Skt1)a is onto for allk > 0.

5.4.7. This exercise is concerned with Example 5.4.10.
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(a) Prove that ifP C R" is reflexive, then the vertices &f are the ray generators of the
normal fan ofP°.

(b) Prove (5.4.9).

(c) Prove(vj,u;) =58; — 1, wherevj,u; are defined in Example 5.4.10.

(d) LetG = Homy(Cl(Xp-),C*) C (C*)5. Use Proposition 1.3.18 to prove

G={(Xo,---,AG) |A€CT, G € ps, G0 Ca=1} ~C"©M/My.

(e) Use part (e) and the quotient constructionXpf to give another proof thaXp. =
P4/(M/My). Also give an explicit description of the action kff/M; on P4,

5.4.8. This exercise will give another way to think about homogation. Letey, ..., e,

be a basis oM, so that; = x®,i = 1,...,n, are coordinates for the tordg.

(a) Adapt the proof of (5.4.7) to show thiat= ]'[p x,ﬂa’up> when we think of thex, as
characters ofiC*)>(®,

(b) Givenme B, N M, part (a) tells us that the Laurent mononifdican be regarded as a
Laurent monomial in the,. Show that we can “clear denominators” by multiplying
by I, x5” to obtain a monomial in the polynomial rirgy= Clx, | p€ £(1)].

(c) Show that this monomial obtained in part (b) is the hormizgtionx™P)

5.4.9. Consider the toric varietyp of Example 5.4.5.

(a) Compute QIXp) and find the classes of the four polygons appearing in Figure 3
(b) Show thatX is the blowup ofP! x P! at one point.

5.4.10. Consider the reflexive polytoge= 4A3z — (1,1,1) C R3. Work out the analog of
Example 5.4.10 foP.

5.4.11. Fix an integera > 1 and consider the 3-simpldx= Con\(0,ae;,a&, e3) C R3.
In Exercise 2.2.13, we claimed that the toric varietyPas the weighted projective space
P(1,1,1,a). Prove this.



Chapter 6

Line Bundles on Toric
Varieties

86.0. Background: Sheaves and Line Bundles

Sheaves of/x-modules on a varietX were introduced in 84.0. Recall that for
an affine varietyv = Spe¢R), an R-module M gives a sheaM onV such that
M(Vf) = M; for all f £ 0 in R. Globalizing this leads to quasicoherent sheaves
on X. These include coherent sheaves, which locally come froielfirgenerated
modules. In this section we develop the language of sheafyfttaand discuss vector

bundles and line bundles.

The Stalk of a Sheaf at a PointSince sheaves are local in nature, we need a
method for inspecting a sheaf at a popn& X. This is provided by the notion of
direct limit over adirected set

Definition 6.0.1. A partially ordered sefl, <) is adirected setf
foralli,j €1, there existk € | such thai <kandj <k.

If {R;} is a family of rings indexed by a directed $&t=) such that wheneveér< j
there is a homomaorphism

wji - R — R;
satisfyingpii = 1r andpuij o pjk = pik, then theR; form adirected systemLet S

be the submodule @b, R generated by the relatioms— i (r;), for r € R and
i < j. Then thedirect limit is defined as

imR = (BicR)/S

i€l

243
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For simplicity, we often write the direct limit as liR. Note also that references
such as 3] write yjj instead ofj;.

For everyi € |, there is a natural maR;, — lim R, such that whenevar=< j,
the elements € R, andpji (r) € R; have the same image in liR). More generally,
two elements; € R andr; € R; are identified in linR if there is a diagram

R,

R Hkj

R«

such thapuq(ri) = p;(rj)-

Example 6.0.2.Given p € X, the definition of sheaf shows that the ringg(U),
indexed by neighborhoods of p, form a directed system under inclusion, and in
this case, the direct limit is the local rin@x ,. For a quasicoherent sheaf 0k-
modules, take an affine open subget Spe¢R) containingp so that# (V) = M,
whereM is anR-module. Ifm, =1(p) C Ris the corresponding maximal ideal,
thendx p is the localizatiorR,,,, and

lim .7 (U) = M,
peu
whereMy,, is the localization oM at the maximal ideat . O

The termsheafhas agrarian origins: farmers harvesting their wheat tiegha
around a big bundle, and left it standing to dry. Think of thetprint of the bundle
as an open set, so that increasingly smaller neighborhawds@ a point on the
ground pick out smaller and smaller bits of the bundle, neing to a single stalk.

Definition 6.0.3. Thestalk of a sheat” at a pointp € X is #p = lim .7 (U).

peu
Injective and Surjective A homomorphismy : % — ¢ of Ox-modules was de-
fined in 84.0. We can also define what it meansddo be injective or surjective.
The definition is a bit unexpected, since we need to take intount the fact that
sheaves are built to convey local data.

Definition 6.0.4. A sheaf homomorphism
0. F —Y

is injectiveif for any pointp € X and open subsét C X containingp, there exists
an open subsat C U containingp, with ¢y injective. Also,¢ is surjectiveif for
any pointp and open subsé! containingp and anyg € ¢(U), there is an open
subse¥ C U containingp and f € .% (V) such thaipy (f) = pu v(9).
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In Exercise 6.0.1 you will prove that for a sheaf homomomphis: .% — ¢,
Ur—ker(¢gy: #U)—4U))

defines a sheaf denoted kg@y. You will also show that is injective exactly when
the “naive” idea works, i.e., kép) = 0. On the other hand, surjectivity of a sheaf
homomorphism need not mean that the mapsare surjective for alU. Here is
an example.

Example 6.0.5.0nP! = C U {cc}, consider the Weil divisob = {0} C C C PL.
If we write of P! = UgUU; with Up = Sped¢C|t]) andU; = Spe¢C[t~1]), then
C(PY) = C(t). Since

T'(PY, 6p1(D)) = {f € C(t)* | div(f)+D >0} U {0},
it follows easily that we have global sections
1,t7 e (P, 0ps(D)).

For any f € T'(P!, 0p:(D)), multiplication by f gives a sheaf homomorphism
Op1(—D) — Op1. Doing this for 1t~ € T'(PY, 01 (D)) gives

ﬁ]}nl(_D) @ ﬁ]}nl(_D) — ﬁ]}nl.

(Direct sums of sheaves will be defined below.) In Exerci€e26you will check
that this sheaf homomorpism is surjective. However, takjlofpal sections gives

09 0=T(P}, Opsi(—D)) ®T'(PY, Op1(—D)) — T'(PL, Op1) = C,
which is clearly not surjective. O
There is an additional point to make here. Given# — ¢, the presheaf
U —im(dy : Z(U) —(U))

need not be a sheaf. Fortunately, this can be rectified. Giyasheaf”, there is
an associated she& T, thesheafificatiorof .#, which is defined by

FTU)={f:U — [IpeuZp [forall peU, f(p) € #p and there is
peVp CU andt € .7 (Vp) with f(x) =tp for all x € Vp}.

See ['7, 11.1] for a proof that# T is a sheaf with the same stalks.&g. Hence
U —im(du)

has a natural sheaf associated to it, denote@jm
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Exactness We define exact sequences of sheaves as follows.
Definition 6.0.6. A sequence of sheaves
Fi-197% i 4 gin
is exactat.#! if there is an equality of sheaves
ker(d') =im(d'?).
The local nature of sheaves is again highlighted by thevatig result, whose
proof may be found in{7, II.1].

Proposition 6.0.7. The sequence in Definition 6.0.6 is exact if and only if

is exact for all pe X. d

It follows from Example 6.0.5 that if

(6.0.1) 0— gt 9 g2 ¥ g3 g

is a short exact sequence of sheaves, the correspondingneegof global sections
may fail to be exact. However, we always have the followingiphexactness,
which you will prove in Exercise 6.0.3.

Proposition 6.0.8. Given a short exact sequence of shege8.1) taking global
sections gives the exact sequence

1y d? 2y d?
0—I'(X,.7%) —I'(X,#°) — I'(X,.2°).
In Chapter 9 we will ussheaf cohomologip extend this exact sequence.

Example 6.0.9.For an affine variety = Spe¢R), anR-moduleM gives a quasi-
coherent shedfl onV. This operation preserves exactness, i.e., an exact sggjuen
of R-modules

0—M —My,— M3z3—0
gives an exact sequence of sheaves
O—>M1—>Mg—>M3—>O

(see |7, Prop. 11.5.2]). O

Here is a toric generalization of this example.

Example 6.0.10.Let S= C[x, | p € 3(1)] is the total coordinate ring of a toric
variety Xs; without torus factors. We saw in 85.3 that a gradeahoduleM gives
the quasicoherent shelsf on X.



§6.0. Background: Sheaves and Line Bundles 247

Then an exact sequence-®M; — M, — M3 — 0 of gradedS-modules gives
an exact sequence
0— |\~/|1—>|\~/|2—>|\~/|3—>0
on Xs. To see why, note that far € X, the restriction oﬂ% toU, C Xs is the
sheaf associated {¢M;),s )o, the elements of degree 0 in the localizatiorvbfat
x? € S Localization preserves exactness, as does taking elermkdegree 0. The
desired exactness then follows from Example 6.0.9. O

Another example is the following exact sequence of sheawoes §3.0.

Example 6.0.11.A closed subvariety: Y — X gives two sheaves:

e The sheaf#, defined by (U) = {f € Ox(U) | f(p) =0forpe YNU}.

e The direct image sheafdy, defined byi. 0y (U) = 6y (YNU).
These are coherent sheavesXoand are related by the exact sequence

0— KA — Ox — i, 0y — 0. O

Operations on Quasicoherent Sheaves@f. Operations on modules over a ring
have natural analogs for quasicoherent sheaves. In gartigiven quasicoherent

sheaves”,¥, itis easy to show thdd — .7 (U) &% (U ) defines the quasicoherent
sheafZ ©¥. We can also definglomy, (#,%¥) via

U — Homg, ) (F(U),¥4(V)).
In Exercise 6.0.4 you will show thatomy, (.#,%) is a quasicoherent sheaf.

On the other hand) — 7 (U) ®4, ) ¥ (U) is only a presheaf, so the tensor
product.#7 ®4, ¥ is defined to be the sheaf associated to this presheaf. Téwd sh
is again quasicoherent and satisfies

wheneveld C X is an affine open set (seé7, Prop. 11.5.2]).
Global Generation For a moduleM over a ring, there is always a surjection from

a free module ont. This is true for a shea# of 0x-modules whed'(X,.7) is,
in a certain sense, large enough.

Definition 6.0.12. A sheaf.# of &x-modules isgenerated by global sectiorié
there exists a s€is } C I'(X,.#) such that at any poir € X, the images of the
generate the stalk?,.

Any global sections € T'(X,.%) gives a sheaf homomorphisy — .Z#. It
follows that if 7 is generated bys }ic|, there is a surjection of sheaves

@ﬁx — F.

In the next section we will see that whnis toric, there is a particularly nice way
of determining when the sheavék (D) are generated by global sections.
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Locally Free Sheaves and Vector BundlegVe begin with locally free sheaves.

Definition 6.0.13. A sheaf.# of 0x-modules islocally free of rank r if there
exists an open covel,, } of X such that for alky, 7|, ~ ) .

Locally free sheaves are closely related to vector bundles.

Definition 6.0.14. A varietyV is avector bundle of rank over a varietyX if there
is a morphism
m:V—X
and an open coveiU; } of X such that:
(&) For eveny, there is an isomorphism

oi 7T_1(Ui) AN U; x C'
such thatp; followed by projection ontdJ; is 7T|7r’1(Ui)'
(b) For every pait, j, there isg;; € GL,(I'(U; NUj, Ox)) such that the diagram

UiNU; x C'

¢i|nl<uy

(V) nu;j) 1xgij

¢J’|7rfl(UiﬁUj) U ﬂUJ % C'
commutes.

Data{(U;,¢i)} satisfying properties (a) and (b) is calledraialization. The
mapa; : 7 1(Uj) ~U; x C" gives achart, wherer—1(p) ~ C" for p € U;. We call
7~ 1(p) thefiber over p. See Figure 1 on the next page.

For p € UinUj, the isomorphisms

C' = {p} x C" = 7 }(p) = {p} x C" = C'

given by ¢; and ¢; are related by the linear magp; (p). Hence the fibery—1(p)
has a well-defined vector space structure. This shows thedtavbundle really is
a “bundle” of vector spaces.

On a vector bundle, thg; are calledransition functionsand can be regarded
as afamily of transition matrices that vary gsc U; varies. Just as there is no pre-
ferred basis for a vector space, there is no canonical clobicasis for a particular
fiber. Note also that the transition functions satisfy thepatibility conditions

Oik = Gij o Qjk onU; NU; NUK

(6.0.2) N
gij:gjil onU;NU;j.
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@: 1 p) Hpx € @i t(p) H{ppx €

Figure 1. Visualizing a vector bundle

Definition 6.0.15. A sectionof a vector bundl&/ overU C X open is a morphism
s:U —V
such thatros(p) = pforall pe U. A sections: X — V is aglobal section

A sections picks out a poins(p) in each fiberr—1(p), as shown in Figure 2.

n(p)
g
pas ~
s(¥
X
p

Figure 2. For a sectiors, s(p) € 7~ *(p)
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We can describe a vector bundle and its global sectionsypuréérms of the
transition functionsy;; as follows.

Proposition 6.0.16.Let X be a variety with an affine open cov&f; }, and assume

that for every jj, we have g € GL,(I'(U; NUj, 0x)) satisfying the compatibility

conditions(6.0.2) Then:

(a) There is a vector bundle : V — X of rank r, unigue up to isomorphism, whose
transition functions are the;g

(b) A global section s X — V is uniquely determined by a collection of r-tuples
S € Oy such that for all j j,

S|UiﬁUj = g'JSJ |UiﬂUj :

Proof. One easily checks that tkggl satisfy the gluing conditions from 83.0. It
follows that the affine varietiesj x C" glue together to give a variety. Fur-
thermore, the projection mapg x C" — U; glue together to give a morphism
m:V — X. It follows easily that the open set df corresponding tdJ; x C" is
7~1(U;), which gives an isomorphisi : 771(U;) ~ U; x C". HenceV is a vector
bundle with transition functiong;;.

Given a sectiors: X —V, ¢j os|, is a section obj x C" - U;. Thus

gios|y,(p) = (ps(p)) €U x C',

wheres € 0x(U;)". By Definition 6.0.14, thes satisfy the desired compatibility
condition, and since every global section arises this wayame done. a

Let.# (U) denote the set of all sections\dfoverU. One easily sees tha# is
a sheaf orX and in fact is a sheaf afx-modules since the fibers are vector spaces.
In fact, .# is an especially nice sheaf.

Proposition 6.0.17. The sheaf of sections of a vector bundle is locally free.

Proof. For a trivial vector bundlé&J x C" — U, the proof of Proposition 6.0.16
shows that a section is determined by a morphigm- C', i.e., an element of
Oy (U)". Thus the sheaf associated to a trivial vector bundle ovisrd,.

For a general vector bundie: V — X with trivialization {(U;, ¢i)}, eachy;
gives an isomorphism of vector bundles

L) —> U xC'
| 1(u\ /

Since isomorphic vector bundles have |somorphic sheavesgaiions, it follows
that if 7 is the sheaf of sections af:V — X, then7 |, ~ &, . O
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Line Bundles and Cartier Divisors Since a vector space of dimension one is a
line, a vector bundle of rank 1 is callediae bundle Despite the new terminology,
line bundles are actually familiar objects whens normal.

Theorem 6.0.18.The sheafZ = 0 (D) of a Cartier divisor D on a normal variety
X is the sheaf of sections of a line bundlg % X.

Proof. Recall from Chapter 4 that a Cartier divisor is locally pipad, so that
X has an affine open coveli}tie; with D|, = div(fi)|,, fi € C(X)*. Thus
{(Ui, fi) }iel is local data foD. Note also that
le( fi)’UiﬂUj = le( fj)’UiﬂUj’
which impliesf; /f; € Ox(UinU;)* by Proposition 4.0.16.
We use this data to construct a line bundle as follows. Since
GL1(Ox(UiNUj)) = Ox(UinU;)*,
the quotientsy;; = f;/ f; may be regarded as transition functions. These satisfy the
hypotheses of Proposition 6.0.16 and hence give a line bundVy — X.
A global sectionf € T'(X, 0x (D)) satisfies diyf)+ D > 0, so that ortJ;,
div(ffi)|,, = div(f)|, +div(fi)|,, = (div(f)+D)|, > 0.
This shows tha = fif € Ox(D)(U;). Then
giij = fi/fj-fjf = fif =95,
which by part (b) of Proposition 6.0.16 gives a global settd 7 : Vo — X.
Conversely, the proposition shows that a global sectionof—- X gives functions
s € O0x(D)(Ui) such thag;js; = s. It follows thatf = s/ f; € C(X) is independent
of i. One easily checks thdte I'(X, Ox(D)). The same argument works when we

restrict to any open subset ¥f It follows that.Z = 0x (D) is the sheaf of sections
of m: Vg — X. O

We will see shortly that this process is reversible, i.eere¢his a one-to-one
correspondence between line bundles and sheaves commgCestier divisors.
First, we give an important example.

Example 6.0.19.When we regard" as the set of lines through the originG@i+1,
each pointp € P" corresponds to a ling, C C™1 We assemble these lines into
a line bundle as follows. Leto,...,X, be homogeneous coordinates Bh and
Yo, .- .,Yn be coordinates ofi™!. Define

\V; gpnx(cn-i-l

as the locus where the matrix

<XO Xn>
Yo = Yn
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has rank one. Thug is defined by the vanishing ofy; — x;yi. Then define the
map~ :V — P" to be projection on the first factor &" x C"?1. To see thav
is a line bundle, consider the open sulb8Bt~ U; C P" wherex; is invertible. On
771(U;) the equations defining become

%yi —y;, forallj#i.

Thus(xo, ..., %n,Y0,---,Yn) — (Xo0,---,,%n, Vi) defines an isomorphism
oi 7T_1(Ui) Ui x C.

In other words)y; is a local coordinate for the lin€ over U;. Switching to the
coordinate system ovélj, we have the local coordinatg, which overU; NUj is
related toy; via
X
Xj
Hence the the transition function frddhNU; x C toU;NU; x C is given by

Yi =VYi.

X *
gij = X_J S ﬁ]pn(Ui ﬂUJ) .

This bundle is called theutological bundleonP". In Example 6.0.21 below, we
will describe the sheaf of sections of this bundle. O

Projective spaces are the simplest type of Grassmannianjuahas in this
example, the construction of the Grassmannian shows tbairies equipped with
a tautological vector bundle. In Exercise 6.0.5 you willedtgtine the transition
functions for the Grassmannidi(1, 3).

Invertible Sheaves and the Picard GrougPropositions 6.0.17 and 6.0.18 imply
that the sheat’x (D) of a Cartier divisor is locally free of rank 1. In general, a
locally free sheaf of rank 1 is called amvertible sheaf

The relation between Cartier divisors, line bundles anéiritiivle sheaves is
described in the following theorem.

Theorem 6.0.20.Let# be an invertible sheaf on a normal variety X. Then:
(a) There is a Cartier divisor D on X such th&t’ ~ 0x (D).
(b) There is a line bundle ¥ — X whose sheaf of sections is isomorphic£o

Proof. The part (b) of the theorem follows from part (a) and Propmsi6.0.18. It
remains to prove part (a).

SinceX is irreducible, any nonempty opéhC X gives a domair¥’x (U ) with
field of fractionsC(U). By Exercise 3.0.4C(U) = C(X), so thatU — C(U)
defines a constant sheaf ¥ndenoted#x. This sheaf is relevant sina@x (D) is
defined as a subsheaf of.
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First assume tha¥ is a subsheaf of#x. Pick an open covefU;} of X such
that.Z|, ~ Ox|, for everyi. OverU;, this gives homomorphisms

Ox (Up) ~ Z(U;) — C(X).

Let f,~! € C(X) be the image of & ¢x(U;). One can show without difficulty that
fi/fj € Ox(UinUj)*. Then{(U;, f;)} is local data for a Cartier divisdd on X
satisfying.Z = 0x (D).

For the general case, observe that on an irreducible vadegyy locally con-
stant sheaf is globally constant (Exercise 6.0.6). NouwAdbe any invertible sheaf
on X. On a small enough open 4t . (U) ~ 0x(U), so that

ZU) @gy ) #x(U) = Ox (V) @y ) Hx(U) =~ 2% (U) = C(X).
Thus.Z ®¢4, #% is locally constant and hence constant. This easily imphas
L gy Hx ~ Hx, and composing this with the inclusion

L — L R, Hx

expresses” as a subsheaf ofx. (]

We note without proof that the line bundle correspondingntaertible sheaf
is unique up to isomorphism. Because of this result, algelg@ometers tend to
use the termbBne bundleandinvertible sheafinterchangeably, even though strictly
speaking the latter is the sheaf of sections of the former.

We next discuss some properties of invertible sheaves gpifinim Cartier
divisors. A first result is that iD andE are Cartier divisors oiX, then

(6.0.3) Ox (D) ®4,Ox(E) ~ Ox(D+E).
This follows becausd ® g+— fginduces a sheaf homomorpism
Ox (D) ®4,Ox(E) — Ox(D+E)

which is clearly an isomorphism on any open set wh&g¢D) is trivial.
By standard properties of tensor product, the isomorph&f 3) induces an
isomorphism
Ox(E) ~Homg, (Ox(D),0x(D+E)).
In particular, wherE = —D, we obtain
Ox(D)®g, Ox(—D) ~ O0x and Ox(—D)~ 0x(D)",
wheredx (D)"Y = Homy, (Ox (D), Ox) is thedual of Ox (D).

More generally, the tensor product of invertible sheaveg&n invertible, and
if £ is invertible, thenZ = Homy, (.Z, Ox) is invertible and

g@ﬁxf\/ ~ 0.

This explains why locally free sheaves of rank 1 are callgdriible.
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Example 6.0.21.There is a nice relation between the tautological bundlé'dn
and the invertible sheafpn(1) introduced in Example 4.3.1. Recall that the-
invariant divisorsDy,...,D, onP" are all linearly equivalent, and so define iso-
morphic sheaves, usually denotégh(1). The local data for the Cartier divis@x

is easily seen to b&(U;, %)}, whereU; C P" is the open set wheng # 0. Thus
the transition functions fot’x (Do) are given by

X
Oj=x =
Xj

These are the inverses of the transition functions for thtagical bundle from
Example 6.0.19. It follows that the sheaf of sections of thédlogical bundle is
Opn(1)Y = Opn(-1). O

We can also explain when Catrtier divisors give isomorphieitible sheaves.

Proposition 6.0.22. Two Cartier divisors DE give isomorphic invertible sheaves
Ox(D) ~ Ox(E) ifand only if D~ E.

Proof. By Proposition 4.0.29, linearly equivalent Cartier divisgive isomorphic
sheaves. For the converse, we first prove thatD) = Ox impliesD = 0.

Assumerdx (D) = Ox. Then 1le T'(X, 0x) =T'(X,0x(D)),soD > 0. If D # 0,
then we can pick an irreducible divisby that appears i with positive coeffi-
cient. The local ring¥x p, is a DVR, so we can finth € 0 p, with vp,(h) = 1.
SetU = X\ W, whereW is the union of all irreducible divisor®’ # Zy with
vpr(h) # 0. There are only finitely many such divisors, so tbats a nonempty
open subset ok with U NDg # (. Thenh € T'(U, &%), andh~! ¢ T'(U, &) since
h vanishes ot N Dg. However,

(D+div(h™1)], = (D—div(h))|, = (D—Do)|, >0,

so thath~1 € I'(U, 6 (D)) = T'(U, &%). This contradiction prove® = 0.

Now suppose that Cartier divisoB, E satisfy 0x (D) ~ Ox(E). Tensoring
each side witho’x (—E) and applying (6.0.3), we see th&k (D —E) ~ 0x. If
1eT'(X,0x) maps tog € I'(X, Ox (D — E)) via this isomorphism, then

gox = Ox(D—E)
as subsheaves of%. Thus
Ox =g t0x(D—E)= 0(D—E+div(g)),
where the last equality follows from the proof of Propositi#.0.29. By the previ-
ous paragraph, we hai— E + div(g) = 0, which implies thaD ~ E. O
In Chapter 4, the Picard group was defined as the quotient
Pic(X) = CDiv(X)/Divg(X).
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We can interpret this in terms of invertible sheaves asWwdloGiven.Z invertible,
Theorem 6.0.20 tells us that’ ~ 0x (D) for some Cartier divisoD, which is
unique up to linear equivalence by Proposition 6.0.22. ldeme have a bijection

Pic(X) ~ {isomorphism classes of invertible sheavesgn

The right-hand side has a group structure coming from temsmtuct of invertible
sheaves. By (6.0.3), the above bijection is a group isomsmph

In more sophisticated treatments of algebraic geometyPtbard group of an
arbitrary variety is defined using invertible sheaves. AlSartier divisors can be
defined on anirreducible variety in terms of local data, aithassuming normality
(see 7, 11.6]), though one loses the connection with Weil diviso&ince most
of our applications involve toric varieties coming from $anwe will continue to
assume normality when discussing Cartier divisors.

Stalks, Fibers, and SectionsFrom here on, we will think of a line bundl&’ on
X as the sheaf of sections of a rank 1 vector bundié/» — X. Given a section
se Z(U) andp e U, we get the following:

e SinceVy is a vector bundle of rank 1, we have thieer 7~1(p) ~ C. Then
s:U — Vg givess(p) € 7 1(p).

e Since.Z is a locally free sheaf of rank 1, we have #talk £, ~ 0x . Then
sc Z(U) givess, € %,
In Exercise 6.0.7 you will show that these are related vieetiigivalences

s(p) #0in7 Y (p) <= sp ¢ mpL

(6.0.4)
<= Sp generates?), as andx p-module

A sections vanishesit p € X if s(p) =0in7~1(p), i.e., if sp € mpLp.
Basepoints It can happen that a collection of sections of a line bundiésiaat a
point p. This leads to the following definition.

Definition 6.0.23. A subspacaV C I'(X,.Z) has no basepoint®r is basepoint
freeif for every p € X, there iss € W with s(p) # 0.

As noted earlier, a global sectiae I'(X,.Z) gives a sheaf homomorphism
Ox — £. Thus a subspad¥f C I'(X,.Z) gives

WRe Ox — &
defined bys® h+— hs Then (6.0.4) and Proposition 6.0.7 imply the following.

Proposition 6.0.24. A subspace WC I'(X,.#) has no basepoints if and only if
WRc Ox — £ is surjective. O
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For a line bundle? = 0x (D) of a Cartier divisorD on a normal variety, the
vanishing locus of a global section has an especially niggpnetation. The local
data{(Uj, fi)} of D gives the rank 1 vector bundle: V¢ — X with transition
functionsg;; = fi/f;. Hence we can think of a nonzero global sectio@giD) in
two ways:

e Arational functionf € C(X)* satisfyingD +div(f) > 0.
e A morphisms: X — V¢ whose composition with is the identity onX.
The relation betweeaand f is given in the proof of Theorem 6.0.18: ovdy, the

sections looks like (p,s(p)) for s = fif € Ox(U;). It follows thats= 0 exactly
whens = 0. SinceD|Ui = div( fi)|ui’ the divisor ofs onU; is given by
div(fi )|y, = (D+div(f))],.
These patch together in the obvious way, so thatlithisor of zeroof sis
divp(s) = D+div(f).

Thus the divisor of zeros of a global section is an effectivisdr that is linearly
equivalent tdD. It is also easy to see thahy effective divisor linearly equivalent
to D is the divisor of zeros of a global section &% (D) (Exercise 6.0.8).

In terms of Cartier divisors, Proposition 6.0.24 has thfaing corollary.

Corollary 6.0.25. The following are equivalent for a Cartier divisor D:

(@) Ox(D) is generated by global sections in the sense of Definitiori 8.0

(b) D is basepoint freemeaning thal'(X, 0x (D)) is basepoint free.

(c) For every pe X there is s I'(X, Ox (D)) with p¢ Supgdivo(s)). O

The Pullback of a Line Bundle Let .Z be a line bundle oiX andV¢ — X the
associated rank 1 vector bundle. A morphi$§mZ — X gives the fibered product
f*Vo =Vy xx Z from 83.0 that fits into the commutative diagram

f*Vg — Vg

| b

Z—f>X.

It is easy to see thdt*V is a rank 1 vector bundle ovér.

Definition 6.0.26. The pullback f*.# of the sheat? is the sheaf of sections of
the rank 1 vector bundlé*V« defined above.

Thus the pullback of a line bundle is again a line bundle. trarrhore, there is
a natural map on global sections

*:0(X,.2) — [(Z,{*.2)
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defined as follows. A global sectiazn X — V¢ gives the commutative diagram:

f
Y4 X

f o ls
).

f*Vg —>Vg

| b

Z——X

The universal property of fibered products guarantees ftiseegice and uniqueness
of the dotted arrowf *(s) : Z — f*V ¢ that makes the diagram commute. It follows
that f*(s) e I'(Z, f*.2).

Example 6.0.27.Let X C P" be a projective variety. If we write the inclusion as
i : X — P", then the line bundl&pn (1) gives the line bundl& &pn (1) on X. When
the projective embedding of is fixed, this line bundle is often denotetk (1).

Thus a projective variety always comes equipped with a luredle. However,
it is not unique, since the same variety may have many piegetbeddings. You
will work out an example of this in Exercise 6.0.9. O

In general, given a shea¥ of &x-modules onX and a morphisnf : Z — X,
one gets a shedf.# of &z-modules orZ. The definition is more complicated, so
we refer the reader td@'J, 11.5] for the details.

Line Bundles and Maps to Projective Spac&Ve now reverse Example 6.0.27 by
using a line bundleZ on X to create a map to projective space.

Fix a finite-dimensional subspat¥ C I'(X,.#) with no basepoints and let

WY = Hom¢ (W, C) be its dual. The projective spaceWwt’ is
PWY) = (WY \{0})/C".

We define amap.»w : X — P(WV) as follows. Fixp € X and pick a nonzero
element, € 7~1(p) ~ C, wherer : V& — X is the rank 1 vector bundle associated
to.Z. For eachs € W, there is\s € C such thas(p) = Asvp. Then the map defined
by £p(s) = Asis linear and nonzero sind¥ has no base points. Thdse WY, and
sincevp is unique up to an element @f, the same is true faf,. Then

bz w(p)={p
defines the desired mapyw : X — P(WVY).
Lemma 6.0.28.The mapp.»w : X — P(W") is a morphism.

Proof. Letsy,...,snbe abasis dfV and letU; = {p € X | s(p) # 0}. These open
sets covek sinceW has no basepoints. Furthermore, the natural map

U xC —>7T_1(Ui), (p,/\) — /\s(p)
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is easily seen to be an isomorphism. Since all section efC — C are of the
form p— (p,h(p)) for h € Ox(U), it follows that for all 0< j < m, we can write
SJ']Ui = hiisfui- hij € Ox(U;).

The definition of¢ ¢ w uses a nonzero vectwp € 7~1(p). OverU;, we can
uses(p) € 7~ 1(p). Thens;j(p) = hij(p)s(p) implies ¢p(s;(p)) = hij(p). Since
£~ (U(0),---,¢(sm)) gives an isomorphis®(W") ~ P™, ¢ |, can be written
(6.0.5) Ui —>]P’m, pr— (hio(p),...,him(p)),
which is a morphism sinck;j = 1. O

WhenW has no basepoints aisgl .. ., sm spanW, ¢« w is often written
(6.0.6) X—P" p—(so(p),...,sm(p)) €P™
with the understanding that this means (6.0.5Mpr- {p € X | s(p) # 0}.
Furthermore, when? = 0x (D), we can think of the global sectiorss as
rational functiongy; such thaD +div(gi) > 0. Then¢ » w can be written
(6.0.7) X—P"™ p—(go(p).--,Om(p)) € P™
Sinceg;(p) may be undefined, this needs explanation. The local datga f;)} of
D implies thatfjgo,..., fjgm € Ox(U;). Then (6.0.7) means thaﬁcg’wbj is
Uj—)]P)m, p—>(fjgo(p),...,fjgm(p))E]P’m.

This is a morphism obJ; since the global sections correspondingdo . . ,gm have
no base points.

Exercises for 86.0
6.0.1. For a sheaf homomorphisi: .7 — ¢, show that
U — ker(éu)
defines a sheaf. Also prove that the following are equivalent
(8) The kernel sheaf is identically zero.
(b) ¢u is injective for every open subset
(c) ¢ is injective as defined in Definition 6.0.4.
6.0.2. In Example 6.0.5, prove tha@fp: (—D) & Opi(—D) — Op is surjective.
6.0.3. Prove Proposition 6.0.8.

6.0.4. Let.7,¥ be quasicoherent sheavesXnProve that +— Homg, ) (#(U),4(U))
defines a quasicoherent shéé&m, (#,9).

6.0.5. The GrassmanniaB (1, 3) is defined as the space of linesiA, or equivalently, of
2-dimensional subspaces\f= C*. This exercise will construct thwutological bundle
on G(1,3), which assembles these 2-dimensional subspaces into &raeétor bundle
overG(1,3). A point of G(1,3) corresponds to a full rank matrix

<04><Ozo a1 Q2 013>
P=\8) "\ 61 B Bs
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up to left multiplication by elements of GLC). Then define
V CG(1,3) xC*

to consist of all pairg( 3 ),v) such thav € Sparfa, 3).

(@) Apair((3),v) gives the 3x 4 matrix

\" Vo Vi Vo V3
A=|lal]l=|a a1 ar az].
B Bo B1 B2 B

Prove tha{(3),v) is a point ofV if and only if the maximal minors of vanish. This
shows thaV C G(1,3) x C* is a closed subvariety.

(b) Projection onto the first factor gives a morphismV — G(1,3). Explain why the
fiber overp € G(1,3) is the 2-dimensional subspace®f corresponding tg.

(c) Given0<i < j <3, define
Uij = {(3) € G(1,3) | ij — aj 3 # O}

Prove thatJ;; ~ C* and that théJ;; give an affine open cover @(1,3).
(d) Given 0<i < j <3, pickk < I such that{i, j,k,1} = {0,1,2,3}. Prove that the map

(p,Vv) — (p,Vk, Vi) gives an isomorphism

7 HU;;) =5 Ui x C2

(e) By part (d)V is a vector bundle ove(1,3). Determine its transition functions.
6.0.6. Prove that a locally constant sheaf on an irreducible warsetonstant.
6.0.7. Prove (6.0.4).

6.0.8. Prove that an effective divisor linearly equivalent to at@eadivisorD is the divisor
of zeros of a global section @fx (D).

6.0.9. Let 14 : P! — P9 be the Veronese mapping defined in Example 2.3.14. Prove that
1/3 ﬁ[pd(l) = ﬁpl(d)

6.0.10.Let f : Z — X be a morphism and le¥ be a line bundle oiX that is generated by
global sections. Prove that the pullback line bunifie is generated by global sections.
6.0.11.Let D be a Cartier divisor on a complete normal varigty

(@) f,geI'(X,0x(D))\ {0} give effective divisorD + div(f),D + div(g) on X. Prove
that these divisors are equal if and onlffi= A\g, A € C*.

(b) Thecomplete linear systewf D is defined to be
ID| = {E € CDiv(X) | E ~ D, E > 0}.
Thus the complete linear system Dfconsists of all effective Cartier divisors ofi

linearly equivalent toD. Use part (a) to show thaD| can be identified with the
projective space df (X, Ox (D)), i.e., there is a natural bijection

D] = P(T'(X, 0x(D))) = ('(X, 0x(D)) \{0})/C".
(c) Assume thaD has no basepoints and &&t= I'(X, Ox(D)). ThenP(W") can be

identified with the set hyperplanesliiW) = |D|. Prove that the morphisg, (o) w :
X — P(WV) is given by

boyo)w =1{E € |D|| p€ SupdE)} C [D|.
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86.1. Ample Divisors on Complete Toric Varieties

Our aim in this section is to determine when a Cartier divimora complete toric
variety gives a projective embedding. We will use the keyoepit ofampleness

Definition 6.1.1. Let D be a Catrtier divisor on a complete normal varigty As
we noted in 84.3\W =T'(X, Ox (D)) is finite-dimensional.

(@) The divisorD and the line bundi&@x (D) arevery amplewhenD has no base-
points andpp = ¢, (D)w : X — P(WV) is a closed embedding.

(b) D and&x (D) areamplewhenkD is very ample for some integé&r> 0.

Our discussion will tie together concepts from earlier isest, including:
e The very ample polytopes from Definition 2.2.16.
e The polyhedrd}, from Proposition 4.3.3.
e The support functions of Cartier divisors from Theorem 122.

We will see that support functions give a simple, elegantattarization of when
D is ample, as well as wheb is basepoint free.

Basepoint Free Divisors Consider the toric varietXs; of a complete far® in
Ng ~ R" and letD =} a,D, be a torus-invariant Cartier divisor of:. By
Propositions 4.3.3 and 4.3.8, we have the global sections

F(XzyﬁXE(D)): @ (C'Xm7
mePbNM
whereP; C My is the polytope defined by

Po={meMg|(mu,) > —a,forall pc 3(1)}.

We first study wherD = 3~ a,D,, is basepoint free. Recall from §4.2 that
being Cartier means that for everyc ¥, there ism, € M with

(6.1.1) (Mmy,uy) =—a,, peo(l).

FurthermoreD is uniquely determined by the Cartier ddt&, } ,c5 () sinceX is
complete. Then we have the following preliminary result.

Proposition 6.1.2. The following are equivalent:

(a) D has no basepoints, i.e/x,, (D) is generated by global sections.

(b) m, € B for all o € X(n).

Proof. First suppose thab is generated by global sections and take X (n).

The Ty-orbit corresponding t@ is a fixed pointp of the Ty-action, and by the
Orbit-Cone Correspondence,

{p}= ﬂ Dp.

pea(l)
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By Corollary 6.0.25, there is a global sectisrsuch thatp is not in the support
of the divisor of zeros diys) of s. Sincel'(Xs, Ox,, (D)) is spanned by ™ for
m e PbNM, we can assume thatis given by x™ for someme PbNM. The
discussion preceding Corollary 6.0.25 shows that the @ivi$ zeros ofs is

divo(s) = D+div(x™) =) (a,+ (mu,))D,.
P

The pointp is not in the support of di(s) yet lies inD, for everyp € o(1). This
forcesa, + (m,u,) = 0 for p € o(1). Sinceo is n-dimensional, we conclude that

For the converse, take € ¥(n). Sincem, € P, the characte™ gives a
global sectiors whose divisor of zeros is diys) = D +div(x™ ). Using (6.1.1),
one sees that the support of glis) missesU,,, so thats is nonvanishing otJ,.
Then we are done since thie coverXs. O

Later in the section we will improve this result by showingtttb) is equivalent
to the stronger condition that thm,, o € 3(n), are the vertices df. This will
imply in particular that?; is a lattice polytope wheD is basepoint free. We will
also relate Proposition 6.1.2 to the convexity of the cquoesling support function.

If D is generated by global sections, we can write the correspgndap to
projective space as follows. Suppose that

PbNM= {ml,...,ms}.
The characterg™ spanl’(Xs;, Ox,, (D)), so that we can writép as

(6.1.2) dpo(P) = (X™(P),- -, x"™(P))-

See (6.0.7) for a careful description of what this means. WMile restrict to the
torus Ty, ¢p is the map (2.1.2). Hence our general theory relates nicéty tive
more concrete approach used in Chapter 2.

Example 6.1.3. The fan for the Hirzebruch surfac#3 is shown in Figure 3. Let

Figure 3. A fan X, with Xs, = 7%
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D; be the divisor corresponding tp. We will study the divisors
D=D4s and D' =D>+Da.

Write the Cartier data fob andD’ with respect tary,...,04 as{m} and {m}
respectively. Figure 4 show, and m; (left) and Py and i (right) (see also

nt. m
1qmz T3 1€ P
I:,D I:>D
—— }
m, =m, 2 2
o, tm,

Figure 4. Py andm (left) andP,, andny (right)

Exercise 4.3.5). This figure and Proposition 6.1.2 makeestircthatD is basepoint
free whileD’ is not. O

Very Ample PolytopesLet P C Mr ~ R" a full dimensional lattice polytope with
facet presentation

P={me Mg | (mug) > —a for all facetsF }.
This gives the complete normal faip and the toric varietyp. Write
PAM = {my,...,ms}.
A vertexm; € P corresponds to a maximal cone
(6.1.3) oi = CongPNM—m)" € Zp(n).

Proposition 4.2.10 implies thddp = ) - azDf is Cartier since{m,ur) = —ar
whenm, € F.

Recall from Definition 2.2.16 tha is very ampleif for every vertexm € P,
the semigroupN(PNM — my) is saturated irM. The definition ofXp given in
Chapter 2 used very ample polytopes. This is no accident.

Proposition 6.1.4. Let X% and Ds be as above. Then:

(a) Dp is ample and basepoint free.

(b) If n > 2, then k@ is very ample for every k n— 1.

(c) Dpis very ample if and only if P is a very ample polytope.
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Proof. First observe that the polytope of the dividdp is the polytopeP we be-
gan with. ThusDp is basepoint free by Proposition 6.1.2, which proves thd fina
assertion of part (a). Furthemore, by (6.1.2), the mgp: Xp — P! factors

Xp — Xprm C P51,
whereXp~\ is the projective toric variety dPNM C M from 82.3. We need to
understand wheXp — Xpnm IS an isomorphism.

Fix coordinatesx,...,xs of PS~1 and letl C {1,...,s} be the set of indices
such thatnm is a vertex ofP. Hence eache | gives a vertexn; and a corresponding
maximal coneri in the normal fan oP.

If i €1, then{m,ur) = —ag for every facetF containingm. For all other
facetsF, (m,ur) > —ar. Hence, ifs is the global section corresponding X&',
then the support of di%)o = D + div(x™) consists of those divisors missing the
affine open toric variety),;, C Xp of o;. It follows thatU,, is the nonvanishing
locus ofs.

Under the mappp, this nonvanishing locus maps to the affine open subset
Ui C PS~ wherex; # 0. SinceXp = [J;; Us; @andXerm € Ui, Ui, it suffices to
study the maps
Ucri B XPﬂM ﬁUi
of affine toric varieties. By Proposition 2.1.8,
Xpam NU; = Spe¢CIN(PNM —my)]).
Sinces; = CongPNM —m;) by (6.1.3), we have an inclusion of semigroups
N(PNM—-m) C o NM.

This is an equality precisely whéd(PNM —m;) is saturated itM. SinceU,, =
Spe¢C[o;” NM]), we obtain the equivalences:

Dp is very ample<—=- Xp — Xpnwm is an isomorphism
<= U, — Xpam NU; is an isomorphism for all € |
<= CIN(PNM—-m)] — C[¢Y NM] is an
isomorphism for all € |
<= N(PNM —m) is saturated for alil € |
< Pisvery ample.

This proves part (c) of the proposition. For part (b), rechlit if n> 2 andP
is arbitrary, therkP is very ample wherk > n— 1 by Corollary 2.2.18. Hence
kDp = Dyp is very ample. This implies th&dp is ample (the case = 1 is trivial),
which completes the proof of part (a). O

Example 6.1.5.In Example 2.2.10, we showed that
P =Conv0,e;,&,€; + e+ 3e3) CR®
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is not normal. We show tha® is not very ample as follows. From Chapter 2
we know that the only lattice points &f are its vertices, so thatp, : Xp — P3,
SinceXp is singular (Exercise 6.1.1) of dimension 3, it follows thgt cannot be

a closed embedding. HenBeandDp are not very ample. HoweverPZand Dp
are very ample by Proposition 6.1.4. O

Support Functions and ConvexityLet D = Zp a,D, be a Cartier divisor on a
complete toric varietyXs;. As in Chapter 4, itsupport functionpp : Ng — R is
determined by the following properties:

e p is linear on each cone € .

e op(u,) =—a,forall p e X(1).
This is where thdm, } ,cx from (6.1.1) appear naturally, since the explicit formula
for pp|, is given bygp(u) = (m,,u) forallu e o.

WhenM = Z2, itis easy to visualize the graph of in Mg x R = R3: imagine
a tent, with centerpole extending fro0,0,0) down thez-axis, and tent stakes
placed at positiongu,, —a,). Here is an example.

Example 6.1.6. Take P! x P! and consider the divisdD = Dy + Dy + D3+ Da.
This gives the support function wheg,(u;) = —1 for the four ray generators
Uz, Up, U3, U Of the fan of P! x PL. The graph ofpp is shown in Figure 5. This

Figure 5. The graph ofsp

should be visualized as an infinite Egyptian pyramid, witlxagt the origin and
edges going througtu;, —1) for 1 <i < 4. O

The first key concept of this section was ampleness. The désaonvexity.
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Definition 6.1.7. Let SC Ng be convex. A functiorp : S— R is convexif
p(tu+ (1-t)v) > to(u) + (1 -t)p(v),

for all u,v € Sandt € [0,1].

Continuing with the tent analogy, a support functipp is convex exactly if
there are unimpeded lines of sight inside the tent. It israleat for Example 6.1.6,
the support function is convex.

The following lemma will help us understand what it meanssfsupport func-
tion to be convex. Given a fakl in Ng ~ R", a coner € 3¥(n—1) is called a
wall when it is the intersection of twme-dimensional cones, o’ € X(n), i.e, when
7= o No’ forms the wall separating ando’.

Lemma 6.1.8. For the support functiorpp, the following are equivalent:
(&) ¢p is convex.

(b) vp(u) < (m,,u) for allu € Ng ando € 3(n).

(¢) wp(U) = mingcsm (My, u) for all u € Ng.

(d) For every wallr =ono’, thereis g € o’ \ o with ¢p(ug) < (My, Up).

Proof. First assume (a) and fixin the interior ofo € 3(n). Givenu € Ng, we can
findt € (0,1) such thatu+ (1—t)v € 0. By convexity, we have

(Mg, tu+ (L—t)v) = pp(tu+ (1 —t)v)
> top(U) + (1—=t)gp (V) =tep(U) + (1 - t)(my, V).
This easily implies(m,,u) > ¢p(u), proving (b). The implication (b} (c) is

immediate sincepp(u) = (m,,u) for u € o, and (c)= (a) follows because the
minimum of a finite set of linear functions is always convex€gEise 6.1.2).

Since (b)=- (d) is obvious, it remains to prove the converse. Assumer{d) a
fixawall 7 = o No’. Theno' lies on one side of the wall. We claim that

(6.1.4) (m,s,u) < (m,,u), whenu,os’ are on the same side of

This is easy. The wall is defined Hyn, — m,-,u) = 0. Then (d) implies that the
halfspace containing’ is defined by(m, —m,,,u) > 0, and (6.1.4) follows.

Now takeu € Ng ando € ¥(n). We can pickv in the interior ofo so that the
line segmentv intersects every wall of: in a single point, as shown in Figure 6
on the next page. Using (6.1.4) repeatedly, we obtain

(Mg, U) > (Mg, u) > (M ) > -

When we arrive at the cone containing the pairing becomesp(u), so that
(m,,u) > ¢p(u). This proves (b). O
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wall wall wall
4 ! Loy
. . ° . °
O,// O’l o

Figure 6. Crossing walls fromuto v alonguv

In terms of the tent analogy, part (b) of the lemma means thatihave a
convex support function and extend one side of the tent idilttions, the rest of
the tent lies below the resulting hyperplane. Then part (@ams that it suffices to
check this locally where two sides of the tent meet.

The proof of our main result about convexity will use thedaling lemma that
describes the polyhedron of a Cartier divisor in terms o$itgport function.
Lemma 6.1.9.LetX be afan and D=} a,D, be a Cartier divisor on X. Then

Po={me Mg | pp(u) < (mu) foralluec |X|}.
Proof. Assumeypp(u) < (m,u) for all u € |X|. Applying this withu = u,, gives

—a, = SOD(UP) <(m, uP>7
so thatm € By by the definition ofy. For the opposite inclusion, take € P, and
ue |X[. Thusu€ o € 3, sothatu=3_ ;1) ApUp, Ay > 0. Then
<m7 U> = ZpEU(l)/\p<m7 up> > ZpEU(l)/\P(_ap)
= ZpEU(l)/\F’(pD(up) = QDD(U)>

where the inequality follows frorm € Py, and the last two equalities follow from
the defining properties afp. a

We now expand Proposition 6.1.2 to give a more complete cteization of
when a divisor is basepoint free.

Theorem 6.1.10.AssumeX is complete and lepp be the support function of a
Cartier divisor D=3 a,D, on Xs. Then the following are equivalent:

(a) D is basepoint free.

(b) m, € B for all o € X(n).

() P =Convym, | o € X(n)).

(d) {m, | 0 € ¥(n)} is the set of vertices o
(€) ¢p(u) = minmep, (M, u) for all u € Ng.

(f) ¢p(u) = min,cs ) (Mg, u) for all u € Ng.
(9) vp: Ng — R is convex.
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Proof. The equivalences (&> (b) and (f)< (g) were proved in Proposition 6.1.2
and Lemma 6.1.8. Furthermore, Lemmas 6.1.8 and 6.1.9 irhpty t
©p IS convex <= ¢p(u) < (m,,u) forall o € £(n), ue Ng
< m, e bforallo € ¥(n).
This proves (g)= (b), so that (a), (b), (f) and (g) are equivalent.
Assume (b). Them, € Py andypp(u) = Min,cx ) (M,,u). Combining these
with Lemma 6.1.9, we obtain

< mi < mi =
wo(u) < min(m,u) < ,min {m,. u) wo(U),
proving (e). The implication (e} (g) follows since the minimum of a compact
set of linear functions is convex (Exercise 6.1.2). Soafb) < (e) < (f) < ().

Consider (d). The implications (&} (c) = (b) are clear. For (b} (d), take
o € X(n). Letu be in the interior ofc and seta = ¢p(u). By Exercise 6.1.3,
Hya={me Mg | (mu) = a} is a supporting hyperplane 8 and

(6.1.5) HuaNPo ={m,}.

This implies thatm, is a vertex offy. Conversely, leH, ; be a supporting hy-
perplane of a vertex € P,. This meansm,u) > a for all m € Py, with equal-
ity if and only if m=v. Since (b) holds, we also have (e) and (f). By (e),
©p(U) = MiNyep, (M, u) = (M,v) = a. Combining this with (f), we obtain

u)= min u=a
po(W = min (m,.u)
Hence(m,,u) = a must occur for some € ¥(n), which forcesv = m,. O

Example 6.1.11.In Example 6.1.3 we showed that on the Hirzebruch surfgge
D = D, is basepoint free whil®’ = D, + D4 is not. Theorem 6.1.10 gives a
different proof using support functions. Figure 7 showsdhaph of the support

Figure 7. The graph ofpp = ¢p,
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function ¢p. Notice that the portion of the “roof” containing the pointg u,, us
and the origin lies in the plare= 0, and it is clear that fopp, there are unimpeded
lines of sight within the tent. In other wordgp is convex.

Figure 8. The graph ofpy: = ¢p,+0,

The support functionpp is shown in Figure 8. Here, the line of sight from
u; to us lies in the plane = 0, yet the ridgeline going from the origin to the point
(uz, —1) on the tent lies below the plarze= 0. Hence this line of sight does not lie
inside the tent, so thatp is not convex. O

WhenD is basepoint free, Theorem 6.1.10 implies that the verutd3, are
the lattice pointan,, o € ¥(n). One caution is that in general, the. need not
be distinct, i.e.o # ¢’ can havem, = m,.. An example is given by the divisor
D = D4 considered in Example 6.1.3—see Figure 4. As we will see, |ttés
behavior illustrates the difference between basepoietdral ample.

It can also happen th& has strictly smaller dimension than the dimension of
Xs;. You will work out a simple example of this in Exercise 6.1.4.

Ampleness and Strict ConvexityWe next determine when a Cartier dividor=
>_,aD, onXs is ample. The Cartier datan, },cxn of D satisfies

(M, u) = ¢p(u), forallueo.

Definition 6.1.12. The support functionyp of a Cartier divisor orXy; is strictly
convexif it is convex and for every € ¥(n) satisfies

(m,,u) = ¢p(U) <= u€co.

There are many ways to think about strict convexity.



§6.1. Ample Divisors on Complete Toric Varieties 269

Lemma 6.1.13. For the support functiorpp, the following are equivalent:
(a) ¢p is strictly convex.

(b) ¢p(u) < (m,,u) forallu ¢ o ando € X(n).

(c) Forevery wallr = ono’, there is y € o'\ o with ¢p(Up) < (M, Ug).
(d) ¢p is convex and ;# m,» wheno # ¢’ in ¥(n) andeNo’ is a wall.
(e) ¢p is convex and g# m,» wheno # o’ in X(n).

(f) (my,u,) > —a,forall pe ¥(1)\o(1) ando € X(n).

(@) ¢p(U+V) > ¢p(u)+¢p(v) for all u,v € Ng not in the same cone af.

Proof. You will prove this in Exercise 6.1.5. O

We now relate strict convexity to ampleness.

Theorem 6.1.14.Assume thabpp is the support function of a Cartier divisor B
>_,3,D, on acomplete toric variety X Then

D is ample <= ¢p Is strictly convex.
Furthermore, if > 2 and D is ample, then kD is very ample for albkn— 1.

Proof. First suppose thdd is very ample. Very ample divisors have no basepoints,
S0 pp is convex by Theorem 6.1.10. If strict convexity fails, tHeemma 6.1.13

implies that® has a wallr = o N ¢’ with m, =m,.. LetV(7) = O(7) C Xs..
LetPbNM = {my,...,ms}, so thatpp : Xz — PS~1 can be written

do(pP) = (x™(P),---,x™(P))

as in (6.1.2). In this enumeratiom, = m,. = mj, for someig. We will study ¢p
on the open subsél, UU, C Xs.

First considetJ,. Theorem 6.1.10 implies tham, € P, so that the section
corresponding tge™ is nonvanishing otJ,, by the proof of Proposition 6.1.2. It
follows that onU,,, ¢p is given by

¢o(p) = (x™ ™ (p),...,x™ ™ (p)) € Ujp = C*4,
whereU;, C PS~1 s the open subset whexg # 0.
Sincem, = m,-, the same argument works bly-. This gives a morphism
ooy, oy, Yo UUy — Ujg = C= 2.
The onlyn-dimensional cones df containingr areo, o’ sincer is a wall. Hence
V(1) CUsUU,
by the Orbit-Cone Correspondence. Note ale) ~ P! sincer is a wall. Since
PLis complete, Proposition 4.3.8 implies that all morphisrostP? to affine space

are constant. Thugp mapsV (7) to a point, which is impossible sind2 is very
ample. Hencep is strictly convex whet is very ample.
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If D is ample, therkD is very ample fork > 0. Thusykp = kep must be
strictly convex, which implies thapp is strictly convex.

For the converse, assumsg is strictly convex. We first show th& C My is
a full dimensional lattice polytope. LgMm, } ;<5 be the Cartier data d@. Since
@ is convex, Theorem 6.1.10 shows that theare the vertices dfy. HencePy is
a lattice polytope.

If P> is not full dimensional, then there ate# 0 in Ng andk € R such that
(my,u) = kfor all o € ¥(n). Then Theorem 6.1.10 implies

¢o(U) = (My,u) =k

for all o € ¥(n). Using strict convexity and Definition 6.1.12, we conclutatt
u € o for all o € ¥(n). Henceu = 0 sinceX is complete. This contradicts+# 0
and proves tha®, is full dimensional.

HenceP, gives the toric varietyXp, with normal fanXp,. FurthermoreXg,
has the ample divisdDp, from Proposition 6.1.4. We studied the support function
of this divisor in Proposition 4.2.14, where we showed that the function

omy (1) = min (m,u).
However, this is preciselyp by Theorem 6.1.10. Hencep, = ¢p is strictly
convex with respect t& (by hypothesis) an&p, (by the first part of the proof).

Definition 6.1.13 implies that the maximal cones of the fam thie maximal
subsets ofNr on which a strictly convex support function is linear. Thisserva-
tion, combined with the previous paragraph, implies that ¥p,. ThusDp, is
an ample divisor oiXy. = Xp,. We also havéd = Dp, since the divisors have the
same support function. It follows thBtis ample.

The final assertion of the theorem also follows from Propmsi6.1.4. O

Here is a corollary of the proof of Theorem 6.1.14.

Corollary 6.1.15. Let D be an ample divisor on a complete toric variety. Xhen
Py is a full dimensional lattice polytope, is the normal fan of B, and D is the
Cartier divisor associated to? O

We have the following nice result in the smooth case.

Theorem 6.1.16.0n a smooth complete toric variety-Xa divisor D is ample if
and only if it is very ample.

Proof. If D is ample, then Corollary 6.1.15 shows thais the normal fan ofp
andD is the divisor ofFy. SinceXsy is smooth Py is very ample by Theorem 2.4.3
and Proposition 2.4.4. Then we are done by Proposition 6.1.4 d
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Computing Ample Divisors Given a wallr € ¥(n—1), write 7 = o0 N o’ and pick
p' € 0’(1)\o(1). Then a Cartier divisoD =} a,D,, gives thewall inequality
(6.1.6) (Mg, uy) > —a,.

Lemma 6.1.13 and Theorem 6.1.14 impy tBais ample if and only if it satisfies
the wall inequality (6.1.6) for every wall of.

In terms of divisor classes, recall the map CHXsx,) — Pic(Xy) whose kernel
consists of divisors of characters. If we tiy € ¥(n), then we have an isomor-
phism

(6.1.7) {D=3,a,D, € CDivr(Xs)|a,=0forallpc oo(1)} = Pic(Xs)

(Exercise 6.1.6). Then (6.1.6) gives inequalities for datring when a divisor
class is ample. Here is a classic example.

Example 6.1.17.Let us determine the ample divisors on the Hirzebruch sarfac
4. The fan for.s# is shown in Figure 3 of Example 6.1.3, and this becomes
the fan for.7; by redefiningu; to beu; = (—1,r). Hence we have ray generators
Uy, Up, Uz, Us and maximal cones,, oo, 03,04.

In Examples 4.3.5 and 4.1.8, we udedandD, to give a basis of Pic#) =
Cl(s#). Here, it is more convenient to uk andD4. More precisely, applying
(6.1.7) for the cone 4, we obtain

Pic(s%) ~ {aD3+bD4 | a,b € Z}.
To determine wheaDs + bD4 is ample, we computey = m,, to be
m = (—a,0), m = (—a,b), mg = (rb,b), my = (0,0).
Then (6.1.6) gives four wall inequalities which reduceatb > 0. Thus
(6.1.8) aD3;+bD, is ample<—= a,b> 0.
For an arbitrary divisob = > , a,D;, the relations

0~div(x®) = —-D1+D3
0~div(x®)=rD;+D2—Dg4

show thatD ~ (a; —raz + az)D3 + (a2 + a4)D4. Hence
S \aDiis ample <= a; +a3 > rap, ay+ a4 > 0.

Sometimes ampleness is easier to check if we think georallyrio terms of
support functions. FdD = aDs + bDg, look back at Figure 6 and imagine moving
the vertex atiz downwards. This gives the graph @f, which is strictly convex
whena,b > 0. O

Here is an example of how to determine ampleness using sufpjpations.
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Example 6.1.18.The fan forP! x P! x P! has the eight orthants & as its maxi-
mal cones, and the ray generators-#gg, +&,, £e3. Take the positive orthamio
and subdivide further by adding the new ray generators B

a: (27 17 1)7 b: (17271)7 C: (17 172)7 d = (17171)'

We obtain a complete faR by filling the first orthant with the cones in Figure 9,
which shows the intersection &‘3;0 with the planex+y+z= 1. You will check
thatX is smooth in Exercise 6.1.7.

€

7\

Figure 9. Cones oft. lying in R,

LetD=3_ a,D, be a Cartier divisor oiXs. ReplacingD with D +div(x™)
for m= (—ae,, —ae,, —ae,), We can assume thap satisfies
vp(er) = ¢p(e2) = ¢p(e3) =0.
Now observe thag; + b= (2,2,1) = e, + a. Sincee; andb do not lie in a cone of
3, part (g) of Lemma 6.1.13 implies that
¢p(€e1+b) > vp(er) +wp(b) = ¢p(b).
However,e; anda generate a cone af, so that

¢p(a) = ¢p(€2) +¢p(d) = Yp(&2+a) = pp(er +b).
Together, these implyp(a) > ¢p(b). By symmetry, we obtain

¢p(a) > ¢p(b) > ¢p(c) > vp(a),

an impossibility. Hence there are no strictly convex supfiorctions. This proves
that Xy is a smooth complete nonprojective variety. O

The Toric Chow Lemma Recall from Chapter 3 that £’ is a refinement ok,
then there is a proper birational toric morphisty — Xs. We will now use the
methods of this section to prove theric Chow Lemmawhich asserts that fans
such as the one described in Example 6.1.18 always havemgfinie that give
projective toric varieties. Here is the precise result.
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Theorem 6.1.19.A complete fart has a refinemenf’ such that X% is projective.

Proof. Supposer is a fan inNg ~ R". Let X’ be obtained front by considering
the complete fan obtained from

lJ sparr).

TeX(n-1)

So for each wall-, we take the entire hyperplane spanned by the wall. Thidyiel
a subdivisor®’ with the property that

U = U spatn)

T'e¥’(n-1) T€X(n—-1)
i.e., each hyperplane Spar) is a union of walls ofx’, and all walls of%’ arise
this way.
Choosingm,. € M so that

{ueNg | (m;,u) = 0} = Sparir),

define the mag : Ng — R by
pU)=— Y [m,u.

T€X(n-1)

Note thaty takes integer values dw and is convex by the triangle inequality (this
explains the minus sign).

Let us show thap is piecewise linear with respect 3. Fix 7 € ¥X(n— 1) and
note that each cone &f is contained in one of the closed half-spaces bounded by
Sparir). This implies thau — |[(m.,u)| is linear on each cone a&i’. Hence the
same is true fop.

Finally, we prove thab is strictly convex. Suppose that= ¢} N o5 is a wall
of 3. Thent’ C Spar{rg), 70 € ¥(n—1). We labelo’} ando; so that

90|01(U) = —(Mp, W) = >y in s (- (Mr W), U € o1

(70|o'é(u) = (Mg, U) — 27—7&7—0 in E(n—1)|<mﬂu>|> ue oy
The sumy_, . in »n—1) |(M:, W] is linear ono’ U oy, soy is represented by dif-
ferent linear functions on each side of the wall Sincey is convex, it is strictly

convex by Lemma 6.1.13. TheX is projective sinced’ = —Zp, ¢(uy)D,y is
ample by Theorem 6.1.14. a

In Chapter 11 we will improve this result by showing thgt can be chosen
to be smooth and projective.
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Pulling Back by Toric Morphisms The final topic of this section is a study of
basepoint free divisors that are not ample. Our results maéd the following
description of pullbacks of torus-invariant Cartier dosis by toric morphisms.

Proposition 6.1.20. Assume thad : X5, — Xy, is the toric morphism induced by
¢ : N1 — Ny, and let D, be a torus-invariant Cartier divisor with support function
¢p, : |X2| — R. Then there is a unique torus-invariant Cartier divisof Bn X,
with the following properties:

(8) Ox.,(D1) ~ ¢" O, (D2).

(b) The support functiopp, is the composition

_ -
DAREIDARES S

Proof. Let the local data oD, be {(U,,x ™™ )}sex,, Whereo now refers to an
arbitrary cone ob,. Recall that the minus sign comes frgm,,u,) = —a, when
p € o(1). Then the proof of Theorem 6.0.18 shows ti&{, (D>) is the sheaf of
sections of a rank 1 vector bundle— Xs, with transition functions

Oor = er_mo'

Now takeo’ € ¥; and leto € X, be the smallest cone satisfying (') C 0.

Using the dual map " : M, — My, we set

My = @™ (my).
Since¢(U, ) C U,, one can show without difficulty that

Gz =x™' ™ € G (Up NU-)".

Then{(U,",x ™)}, ey, is the local data for a Cartier divis®; on Xs,. It is
straightforward to verify thab; has the required properties (Exercise 6.1.8)]

In the situation of Proposition 6.1.20, we cBl} is the pullback of D, via ¢
sincedx,, (Da) is the pullback 00, (D2) via ¢.

The Toric Variety of a Basepoint Free Divisorlf D = Zp a,D, has no basepoints,
thenPs is a lattice polytope with then,, o € 3(n), as vertices. In the ample case,
we know from Corollary 6.1.15 thads: is the toric variety oPy. WhenD is merely
basepoint free, the situation is more complicated but tlegkass quite lovely.

We begin with the normal fan ¢%. SinceP, C Mg may fail to be full dimen-
sional, we need to explain what “normal fan” means in thistext Consider
Mp = Spafm—m' |mm € BbNM)NM C M,
with dualNp = Homy(Mp, Z). The inclusionMp C M induces a surjective homo-
morphism¢ : N — Np sinceMp is saturated i.

TranslatingPy by a lattice point offb "M, we get a full dimensional lattice
polytopePs C (Mp)r. Hence we have:
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e The normal fan of in (Np)r, which we write asp = Xp,.
e The toric variety o, which we write as{p = Xp,.
The construction oEp andXp are independent of how we transl&s
We can relatep to the given fark as follows.

Proposition 6.1.21.Let D= }_ a,D, be a basepoint free Cartier divisor on:-X
with polytope B. If me By is a vertex andr, is the corresponding cone in the
normal fanXp, then

Proof. We first give an alternate description of; 1(0m). In the discussion of
normal fans in §2.3, we saw that the vertax P C (Mp)r gives the cone

Cm= CongPobNMp —m) C (Mp)r
whose dual inNp ) is o SinceMp € M andPo N"Mp = Bb N M, we also have
Cn=CongdPbNM —m) C Mg
whose dual ifNg is
(6.1.9) CY = CongPonM —m)¥ = g5 - (om).

This has some nice consequences. First, SBy¢és strongly convex, (6.1.9)

implies thataﬂgl(am) is a closed convex cone of dimensiom Ng. It follows that
the proposition is equivalent to the assertion

(6.1.10) for allo € £(n), Int(o) N Int(aﬂgl(am)) # () impliesm, = m,
where “Int” denotes the interior (Exercise 6.1.9).
A second consequence of (6.1.9) is that ary ¢y l(am) satisfies
(m —m,u) >0, forallm e PRbNM.
In particular, basepoint free implies, € P for o € 3(n), so that
(6.1.11) (Mmy,uy > (muy, foralloeX(n).

We now prove (6.1.10). Assume (at) N Int@ﬂgl(am)) # () and letu be an
element of the intersection. Sinoe= m,- for someos’ € X(n), we have

(m,u) > gp(u) = (My, u)

by convexity and part (b) of Lemma 6.1.8. Combining this wighl.11), we see
that

(M, u) = (mu), forallue Int(c) N Int(Bg (om)).
Since Info) N Int(Eﬂgl(o—m)) is open, this forcemm=m,, proving (6.1.10). O
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This proposition gives a nice way to think about the ¥, One begins with
the Cartier datdm, } ,¢x(n) Of D and then combines all conese ¥(n) whosem,'s
give the same vertex ¢f. As we range over the vertices Bf, these combined
cones and their faces satisfy the conditions for being adacept that they may
fail to be strongly convex. But they all contain the same mmatisubspace, namely
the kernel ofgg : Ng — (Np)r. This is an example of what is callecHagenerate
fan. Once we mod out by the kernel, we get the genuineann (Np )g.

Proposition 6.1.21 makes it clear that N — Np is compatible with the fans
> andXp. This gives a toric morphisnXy, — Xp. We now prove thabD is the
pullback an ample divisor oXp.

Theorem 6.1.22.Let D be a basepoint free Cartier divisor on a complete toric
variety, and let X be the toric variety of the polytope; = Mg. Then the above
toric morphismg : Xs; — Xp is proper and D is linearly equivalent to the pullback
of the ample divisor oncoming from B.

Proof. First note thatp is proper sinceXy, andXp are complete. Also recall that
the sublatticeVip C M is dual tog : N — Np and that we translaté, so that it lies
in (Mp)r. This changes our original divis@ by a linear equivalence.

The polytopeP; gives the ample divisdd = Dg, on Xp. SinceD is basepoint
free, Theorem 6.1.10 implies that

@D(u) = mmEIIDD<m’ U>.
UsingPp C (Mp)r, one sees thatp factors throughy : N — Np, and in fact,
¢D = P50 dr
(Exercise 6.1.10). By Proposition 6.1.2Djs the pullback oD = Dg,. O
This theorem implies that any Cartier divisor without basets on a complete

toric variety is linearly equivalent to the pullback (via @it morphism) of an
ample divisor on a projective toric variety of possibly staatlimension.

Here are two examples to illustrate what can happen in The6éré.22.

Example 6.1.23.While the toric varietyXy, of Example 6.1.18 has no ample divi-
sors, it does have basepoint free divisors. The ray genesrat® are

+e,+ey,+e3,a,b,c.d,
with corresponding toric divisors
Di, D5, D5, Da, Db, De, Dy.
Then one can show that
D =2D; +2D; +2D; —Dg—Dp— D¢ — Dy
is basepoint free (Exercise 6.1.7). Thus the support fangtp is convex.
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Figure 9 in Example 6.1.18 shows that C@mee,, d) is a union of three cones
of 3. Usingpp(er) = pp(e2) = 0 andpp(a) = ¢p(b) = ¢p(d) = 1, one sees that
these three cones all hawe, = e3 (Exercise 6.1.7). Hence we should combine
these three cones. The same thing happens in(@pmrg,d) and Conéey, e3,d).

€

€ €

Figure 10. Combined cones of lying in R%O

Thus, in the first orthant, the fan &% looks like Figure 10 when intersected
with x+y+z = 1. HenceXp is the blowup of(P)3 at the point corresponding to
the first orthant (Exercise 6.1.7). Note also thatXy; — Xp is a proper birational
toric morphism since: refines the fan oKp. O

Example 6.1.24. Consider the divisoD = D; on the Hirzebruch surface??,
where we are using the notation of Example 6.1.3. For thisalivthe four cones
01,02,03,04 Of this fan give

My, =My, =0, My, =M,, =€y,

so thatPy is a line segment. When we combiag, o, andos, o4, Figure 3 from
Example 6.1.3 shows that we get a degenerate fan. To get ingefam, we col-
lapse the vertical axis and obtain the fan ¥y = P1. Here, : X5, — Xp is the
toric morphism from Example 3.3.5. O

Exercises for §6.1

6.1.1. Show that the toric varietifp of the polytopeP in Example 6.1.5 is singular.

6.1.2. Let SC My be a compact set and defige: Ng — R by ¢(u) = minmes(m, u).
Explain carefully why the minimum exists and prove thas convex.

6.1.3. LetH, 4 be as in the proof of (b} (d). Prove that, 5 is a supporting hyperplane
of By that satisfies (6.1.5). Hint: Write=3_ ) A,U,, A, > 0. Then showm € B

implies (m,u) =3 1) Ap(M,U,) = ¢p(U).

6.1.4. As noted in the text, the polytop® of a basepoint free Cartier divisor on a complete
toric varietyXs; can have dimension strictly less than dign Here are some examples.
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(a) LetD be one of the four torus-invariant prime divisorsBhx P1. Show that is a
line segment.

(b) ConsiderP!)" and fix an integed with 0 < d < n. Find a basepoint free divis@ on
(P1)" such that dinf, = d. Hint: See Exercise 6.1.12 below.

6.1.5. This exercise is devoted to proving that the statement¢dppf Lemma 6.1.13 are
equivalent. Many of the implications use Lemma 6.1.8.

(a) Prove (a)= (b) and (c)< (d).
(b) Prove (b)= (e) and (b)= (f) = (¢).
(c) Prove (c)= (b) by adapting the proof of (d&}> (b) from Lemma 6.1.8.
(d) Prove (b)= (g) and use the obvious implication (&) (d) to complete the proof of
the lemma.
6.1.6. Let X5, be the toric variety of a fal in Ng ~ R" and fixo € X(n). Prove that the
natural map CDiy(Xs) — Pic(Xs) induces an isomorphism
{D=3,a,D, € CDivr(Xs) | &, = 0 forall p € oo(1) } ~ Pic(Xs).
6.1.7. This exercise deals with Examples 6.1.18 and 6.1.23.
(a) Prove that the toric varietfs, of Example 6.1.18 is smooth.
(b) LetD = 2D; +2D, +2D; — Day— Dy — D¢ — Dy be the divisor defined in Exam-
ple 6.1.23. Prove thd, is the polytope with 10 vertices
€1, €, €3,2€1, 26, 2€3,2€1 + 26, 261 + 263,26, + 263,261 + 26, + 263
and conclude thdD is basepoint free.

(c) In Example 6.1.23, we asserted that certain maximal€£ohE must be combined to
get the maximal cones &fp. Prove that this is correct.

(d) Show thatXp is the blowup of(P!)® at the point corresponding to the first orthant.
6.1.8. Complete the proof of Proposition 6.1.20.

6.1.9. Prove (6.1.10).

6.1.10. Complete the proof of Proposition 6.1.22.

6.1.11. For the following toric varietieXs,, compute Pi¢Xs) and describe which torus-
invariant divisors are ample and which are basepoint free.
(a) Xs is the toric variety of the smooth complete f&rin R? with
(1) = {te, ter,e1 + &}
(b) Xs is the blowup Bj(P") of P" at a fixed pointp of the torus action.
(c) Xs isthe toric variety of the fak from Exercise 3.3.10. See Figure 12 from Chapter 3.
(d) Xy is the toric variety of the fan obtained from the fan of FigiBfrom Chapter 3 by
combining the two upward pointing cones.
6.1.12. The toric variety(P!)" has ray generatorse,...,+e,. LetD;,...,DF denote
the corresponding torus-invariant divisors. Consider >, (aD;j" +a D;").
(@) Show thab is basepoint free if and only &" +a~ > 0 for all i.
(b) Show thaD is ample if and only ifa;" +a;~ > 0 for alli.
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6.1.13.LetD = Zp a,D, be an ample divisor on a complete toric varigy. Define
o =Cong(u,,—a,) | p€ X(1)) € Ng xR.

(a) Prove that is strongly convex.

(b) Prove that the boundary efis the graph of the support functigm.

(c) Prove that is the set of cones obtained by projecting proper facesaito M.

6.1.14. Let X be the fan from Example 4.2.13. Prove e is not projective.

6.1.15.Let P C Mg be a full dimensional lattice polytope. A fa€e=< P determines a cone
oq in the normal fan of. This gives the orbit closuré(og) C Xp, andV (oq) =~ Xg by
Proposition 3.2.9. This gives an inclusionXg — Xe which is not a toric morphism when
Q < P. Prove that* 0x,(Dp) ~ Ox,(Dq).

86.2. The Nef and Mori Cones

In the last section, we saw that there are simple criterieckwhklietermine when

a Cartier divisorD is basepoint free or ample. We now study the structure of
the set of basepoint free divisors and the set of ample dwisside Pi¢Xs)r =
PiC(Xg) Rz R.

The main concept of this section is that mfimerical effectivity Roughly
speaking, the goal is to define a pairing between divisorscamdes, such that
for a divisorD and curveC on a varietyX, the numbeD - C counts the number of
points of D NC, with appropriate multiplicity.

Example 6.2.1. SupposeX = P? with homogeneous coordinatesy,z, and let

D = V(y) andC = V(zy— x?). ThenD andC meet at the single poini = (0,0, 1),
where they share a common tangent. If we repRceith the linearly equivalent
divisor E = V(y — z), then clearlyE andC meet in two points. This suggests that
the point{p} = D NC should be counted twice, since it is a tangent point. Hence
we should hav® -C = 2. O

Despite this encouraging example, there are several wadhmirdles to over-
come in order to make this precise in a general setting. Nwatein C2, two lines
may or may not meet, so to get a reasonable theory, we will wittk complete
curves Con a normal varietX. We also need to restrict t@artier divisors Don X.
With these assumptions, the intersection produ«® should possess the following
properties:

e (D+E)-C=D-C+E-C.
e D.-C=E .-CwhenD ~ E.

e LetD be a prime divisor oiX such thaDNCiis finite. Assume eache DNC
is smooth inC, D, X and that the tangent spacggC) C T,(X) andTy(D) C
To(X) meet transversely. Théd-C = |DNC].

Note that these properties give a rigorous proof of the cdatjpin D - C = 2 from
Example 6.2.1.
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The Degree of a Line Bundle The key tool we will use is the notion of tlegree
of a divisor on an irreducible smooth complete cu@e Such a divisor can be
written as a finite sund = ) ", & p; whereg € Z andp; € C.

Definition 6.2.2. LetD = ), & p; be a divisor on an irreducible smooth complete
curveC. Then thedegreeof D is the integer

degD) =) a cZ.

Note the obvious property ddg + E) = degD) + dedg E). The following key
result is proved in77, Cor. 11.6.10].

Theorem 6.2.3. Every principal divisor on an irreducible smooth completeve
has degree zero. O

In other words, de@liv(f)) = 0 for all nonzero rational function§ on an
irreducible smooth complete cur@ Thus

degD) = degE) whenD ~ E onC,
and the degree map induces a surjective homomorphism
deg: Pic(C) — Z.
Note that all Weil divisors are Cartier sinGais smooth.

In §6.0 we showed that RIC) is the set of isomorphism classes of line bundles
onC. Hence we can define the degree [dg&Q of a line bundleZ onC. This leads
immediately to the following result.

Proposition 6.2.4. Let C be an irreducible smooth complete curve. Then a line
bundle.# has adegreedeq.?’) such that? — ded.¥) has the following prop-
erties:

(a) ded.¥ ® Z') =deq.Z) +deq.Z").

(b) ded.¥) =deq.¢’) when¥ ~ &'

(c) deq.¥) =degD) whenZ ~ 0¢(D). O
The Normalization of a Curve We defined the normalization of an affine variety
in 81.0, and by gluing together the normalizations of affiree@s, one can define

the normalization of any variety (seé7, Ex. 11.3.8]). In particular, an irreducible
curveC has a normalization map

¢:C—C,
whereC is an normal variety. Here are the key propetie€ of
Proposition 6.2.5. LetC be the normalization of an irreducible curve C. Then:
(a) C is smooth.
(b) C is complete whenever C is complete.
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Proof. SinceC is a curve, Proposition 4.0.17 implies tl@&ts smooth. Part (b) is
covered by 77, Ex. 11.5.8]. O

One can prove that every irreducible smooth complete cerpedjective. See
[77, Ex. 11.5.8].

The Intersection Product We now have the tools needed to define the intersec-
tion product. LetX be a normal variety. Given a Cartier divisbron X and an
irreducible complete curv@ C X, we have

e The line bundledx (D) on X.
e The normalizationy : C — C.
Theng*0x(D) is a line bundle on the irreducible smooth complete c@ve

Definition 6.2.6. Theintersection producbf D andC is D -C = deq ¢*0x(D)).

Here are some properties of the intersection product.

Proposition 6.2.7. Let C be an irreducible complete curve andBDCartier divi-
sors on a normal variety X. Then:

(@ (b+E)-C=D-C+E-C.
(b) D-C=E-CwhenD~E.

Proof. The pullback of line bundles is compatible with tensor pridiso that
part (a) follows from (6.0.3) and Proposition 6.2.4. Pajtigkan easy consequence
of Propositions 6.0.22 and 6.2.4. O

In Chapter 4, we defined a Weil divis@r to beQ-Cartier if ¢D is Cartier for
some integef > 0. Given an irreducible complete cur@eC X, let

(6.2.1) D-C= %(ED) .C.

In Exercise 6.2.1 you will show that this intersection proiis well-defined and
satisfies Propostion 6.2.7.

Intersection Products on Toric VarietiesIn the toric caseD -C is easy to compute
whenD andC are torus-invariant itXs;. In order forC to be torus-invariant and
complete, we must hav@=V (1) = O(7), wherer = oNo’ € £(n—1) is the wall
separating cones,¢’ € ¥(n), n = dimXsx. We do not assume is complete.

In this situation, we have the sublattie = Spar{—) "N C N and the quotient
N(7) = N/N,. Letz andd’ be the images of ando’ in N(7)r. Sincer is a wall,
N(7) ~ Z and@, & are rays that correspond to the rays in the usual fai®¥oin
particular,V (7) ~ P! is smooth, so no normalization is needed when computing
the intersection product.
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Proposition 6.2.8. Let C= V(1) be the complete torus-invariant curve in; X
coming from the wall- = o No’. Let D be a Cartier divisor with Cartier data
m,,m,» € M corresponding tar,o’ € 3(n). Also pick ue ¢’ NN that maps to the
minimal generator o' C N(7)r. Then

D-C={(m,—m,,u) € Z.

Proof. SinceV(r) C U, UU,/, we can assum&y, = U, UU, andX is the fan
consisting ofs, o’ and their faces. We also have

Dly, = div(x_m")\ug7 D’Ua/ =div(xy™™") U,
The proof of Proposition 6.1.20 shows that the line buri@lg (D) is determined
by the transition functio,, = x™ ™. Thus
D-C=dedi*0x, (D)),
wherei : V(1) — Xy is the inclusion map. The pullback bundle is determined by
the restriction ofy,, to

V(r)NU,NU, =V (7)NU, = O(7),
whereO(7) is the Ty-orbit corresponding te. This is also the torus of the toric

varietyV (1) = O(7). In Lemma 3.2.5, we showed that "M is the dual ofN(7)
and that

O(7) ~ Homz(MN7+,C*) ~ TNG)-
Now comes the key observation: since the linear functiomsrgbym,, m,. agree
on 7, we havem, —m, € 7-NM. Thusi*Ox, (D) is the line bundle oV (7)
whose transition function ig, , = x™ ™ form, —m, € 7-NM.

It follows thati* &, (D) ~ 6y (,)(D), whereD is the divisor oV () given by
the Cartier data
My =0, My =My —Mm,.
Let p,, p,- be the torus fixed points correspondingst@’. Sinceu € o’ NN maps
to the minimal generatar € 3 NN(7), we have

D = (=M, —T) Py + (—Mp, T) P = (M — My, ) P,
where the second equality follows from,, = m,, —m, € 7N M. Hence
D-C =dedi*0x, (D)) =degD) = (m, —m,, u). O
Example 6.2.9. Consider the toric surface whose f&rin R? has ray generators
Up =€y, Uz =€, Up = 2€1+3e
and maximal cones
o = Congug,Up), o' = Conguy, Up).

The support ok is the first quadrant and= o N o’ = Congup) gives the complete
torus-invariant curv€ =V (7) C Xs.
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If D1,D5,Dg are the divisors corresponding tg, U, Ug, then
D = aD; +bD,+cDg is Cartier <= 2a+3b=cmod 6

When this condition is satisfied, we have
2a—c 3b-c
m, = —ael+Tez, m, = Tel—bez

Also, u=e; +2e, € ¢’ maps to the minimal generator ®f sinceu, up form a basis
of Z2. (You will check these assertions in Exercise 6.2.2.) Thus

2a+3b—c
D-C=(m,—my,u) = 6
by Proposition 6.2.8. Sind® is Q-Cartier & is simplicial), (6.2.1) shows that the
formula forD - C holds for arbitrary integera, b, c. In particular,

1 1 1
D;:C==,D-C==,Dg-C=—=.
1 37 2 27 0 6
In the next section we will see that these intersection prtsdiollow directly from
the relation—ug + 2u; + 3u, = 0 and the fact thaZug = Sparfr) N Z2. O

Nef Divisors We now define an important class of Cartier divisors.

Definition 6.2.10. Let X be a normal variety. Then a Cartier dividoron X is nef
(short fornumerically effective if

D-C>0
for every irreducible complete cuné&C X.

A divisor linearly equivalent to a nef divisor is nef. Hereaisother result.

Proposition 6.2.11. Every basepoint free divisor is nef.

Proof. The pullback of a line bundle generated by global sectiomggigerated by
global sections (Exercise 6.0.10). Thus, givenC — C andD basepoint free,
the line bundleZ = ¢*(0x (D)) is generated by global sections. This allows us to
write # = 0(D’) for a basepoint free divisdd’ onC. A nonzero global section
of 0=(D’) gives an effective divisoE’ linearly equivalent td’. Then

D-C = deg(¢*(6%(D))) = deg 65(D')) = degD') = degE’) > 0,

where the last inequality follows sinég is effective. O

In the toric case, nef divisors are especially easy to utateis
Theorem 6.2.12.Let D be a Cartier divisor on a complete toric variety; XThe
following are equivalent:
(a) D is basepoint free, i.e¢x (D) is generated by global sections.
(b) D is nef.
(c) D-C > 0Ofor all torus-invariant irreducible curves € X.
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Proof. The first item implies the second by Proposition 6.2.11, dedsecond
item implies the third by the definition of nef. So supposd haC > 0 for all
torus-invariant irreducible curves. We can replac® with a linearly equivalent
torus-invariant divisor. Then, by Theorem 6.1.10, it s@ffico show thatp is
COnvex.

Take a wallr = o no’ of ¥ and setC =V(7). If we pickue€ ¢'NN as in
Proposition 6.2.8, then
(my —m,,u)=D-C=>0,
so that
(My,u) > (M, u) = pp(u).
Note thatu ¢ o since the image afi is nonzero irN(7) = N/(Spari7) "N). Then
Lemma 6.1.8 implies thatp is convex. O

A variant of the above proof leads to the following amplengggrion, which
you will prove in Exercise 6.2.3.

Theorem 6.2.13(Toric Kleiman Criterion) Let D be a Catrtier divisor on a com-
plete toric variety X. Then D is ample if and only if EC > O for all torus-invariant
irreducible curves GC Xs.. O

Note that one direction of the proof follows from the gendaalt that on any
complete normal variety, an ample dividdrsatisfiesD - C > 0 for all irreducible
curvesC C X (Exercise 6.2.4).

Theorems 6.2.12 and 6.2.13 were well-known in the smootb aad proved
more recently (and independently) 12, 120, 13Din the complete case.

Numerical Equivalence of Divisors The intersection product leads to an impor-
tant equivalence relation on Cartier divisors.

Definition 6.2.14. Let X be a normal variety.

(&) A Cartier divisorD on X is numerically equivalent to zerdf D -C = 0 for all
irreducible complete curves C X.

(b) Cartier divisordD andE arenumerically equivalentwrittenD =E, if D—E
is numerically equivalent to zero.

What does this say in the toric case?

Proposition 6.2.15. Let D be a Cartier divisor on a complete toric variety; X
Then D~ 0if and only if D= 0.

Proof. Clearly if D is principal thenD is numerically equivalent to zero. For the
converse, assunmi2 = 0 and letr = o N o’ be a wall ofX. If we picku € ¢’ as in
Proposition 6.2.8, then

0=D-C=(my —m,,u)
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for C = V(7). This forcesm, = m,, sincem, —m,. € 7+ andu ¢ o. From here,
one sees that, = m, for all 0,0’ € ¥(n), and it follows thaD is principal. [

Numerical Equivalence of CurvesWe also get an interesting equivalence relation
on curves. LeZ;(X) be the free abelian group generated by irreducible complete
curvesC C X. An element oZ; (X) is called aproper 1-cycle

Definition 6.2.16. Let X be a normal variety.

(a) A proper 1-cycleC on X is numerically equivalent to zerdf D-C = 0 for all
Cartier divisorsD on X.

(b) Proper 1-cycle€ andC’ arenumerically equivalentwrittenC=C',if C—C’

is numerically equivalent to zero.

The intersection produ¢D,C) — D -C extends naturally to a pairing

CDiv(X) x Z3(X) — Z.
between Cartier divisors and 1-cycles. In order to get a egederate pairing, we
work overR and mod out by numerical equivalence.
Definition 6.2.17. For a normal variety, define
N(X) = (CDiv(X)/=) ®z R and Ni(X) = (Z1(X)/=) @z R.
It follows easily that we get a well-defined nondegeneraliiadar pairing
N(X) x Ny(X) — R.

A deeper fact is thall*(X) andNy(X) have finite dimension ovék. ThusN(X)
andN;(X) are dual vector spaces via intersection product.

The Nef and Mori Cones The vector space!(X) andNy(X) contain some in-
teresting cones.
Definition 6.2.18. Let X be a normal variety.

(a) Nef(X) is the cone ilN%(X) generated by classes of nef Cartier divisors. We
call Nef(X) thenef cone

(b) NE(X) is the cone inN;(X) generated by classes of irreducible complete
curves.

(c) NE(X) is the closure oNE(X) in Ny (X). We callNE(X) the Mori cone.

Here are some easy observations about the nef and Mori cones.
Lemma6.2.19.
(@) Nef(X) andNE(X) are closed convex cones and are dual to each other, i.e.,
Nef(X) = NE(X)" and NE(X) = Nef(X)".
(b) NE(X) has maximal dimension inyiX).
(c) Nef(X) is strongly convex in N X).
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Proof. Itis obvious thafNef(X), NE(X) andNE(X) are convex cones, amef(X)
is closed since it is defined by inequalities of the fdomC > 0. In fact,
Nef(X) = NE(X)"

by the definition of nef. TheNef(X) = NE(X)" follows easily. In generalNE(X)
need not be closed. However, since the closure of a convexisats double dual,
we have

NE(X) = NE(X)"" = Nef(X)".
Note thatNE(X) has maximal dimension sindé (X) is spanned by the classes of
irreducible complete curves. Hence the same is true foldsuceNE(X). Then
Nef(X) is strongly convex since its the dual has maximal dimension. O

The toric case is especially nice. If we set(g)r = Pic(Xs) ®z R, then
Pic(Xs)r = N*(Xs)

since numerical and linear equivalence coincide by Prdpos6.2.15. Thus, in
the toric setting, we will write PicXs )r instead ofN*(Xy). WhenX is complete,
the inclusion
PiC(XE) - PiC(Xg)R

makes Pi¢Xy,) a lattice in the vector space P¥6;)r.
Theorem 6.2.20.Let X be a complete toric variety.
(@) Nef(Xy) is a rational polyhedral cone iRic(Xs )g.
(b) NE(Xx) = NE(Xx) is a rational polyhedral cone in NXx). Furthermore,

NE(Xs)= > RolV(7)],

TeX(n-1)
whereV(7)] € N1(Xs) is the class of V7).

Proof. Part (a) is an immediate consequence of part (b). For parti€b)’ =

>_rex(n-1)R>0[V(7)] and note thal" is a rational polyhedral cone contained in
NE(Xy). Furthermore, Theorem 6.2.12 easily implies

Nef(Xg) =TV.
Then
N_E(Xz) = Nef(Xg)v =TW=r - NE(XE) - _E(Xz),
where the third equality follows sindeis polyhedral. d

The formula from part (b) of Theorem 6.2.20

EXs)= ) ReolV(7)],

TeX(n-1)

is called theToric Cone TheoremAlthough the Mori cone equaNE(Xy) in this
case, we will continue to writBlE(Xs;) for consistency with the literature. Since
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every irreducible curve€ C Xy, gives a class ilNE(Xy), we get the following
corollary of the Toric Cone Theorem.

Corollary 6.2.21. An irreducible curve in a complete toric variety:Xs numeri-
cally equivalent to a non-negative combination of torugiant curves. O

WhenXs: is projective we can say more about the nef and Mori cones.

Theorem 6.2.22.Let X be a projective toric variety. Then:

(@) Nef(Xs) and NE(Xyx) are dual strongly convex rational polyhedral cones of
maximal dimension.

(b) A Cartier divisor D is ample if and only if its class iic(Xy)g lies in the
interior of Nef(Xy).

Proof. By hypothesis X5 has an ample divisob. ThenD -C > 0 for every ir-
reducible curve inXy. This easily implies that the class Dflies in the interior
of Nef(Xs). ThusNef(Xy) has maximal dimension and hence its dN&(Xsx:) is
strongly convex. When combined with Lemma 6.2.19, part@hiddvs easily.

The strict inequalityD - C > 0 also shows that every irreducible curve gives a
nonzero class itN;(Xs;). Now suppose that the class Bfis in the interior of the
nef cone. ThenD] defines a supporting hyperplane of the origin of the dual cone
NE(Xs). Since 0+ [C] € NE(Xs) for every irreducible curv€ C Xs;, we have
D-C > 0 for all suchC. HenceD is ample by Theorem 6.2.13. d

It follows that NE(Xyx) is strongly convex in the projective case. The rays of
NE(Xx) are callecextremal rayswhich by the Toric Cone Theorem are of the form
R>o[V(7)]. The corresponding walls are calledextremal walls

Here is an example of the conligf(Xys;) andNE(Xy).

Example 6.2.23.For the Hirzebruch surfaceH,, we showed in Example 6.1.17
that Pid.»#) = {a|D3] +b|D4] | a,b € Z}. Figure 11 showdlef(.%) andNE(7).

(0,1)¢[D,] (-r1) & [V(1,)] e[V(T)]
[DJ V()] = [V(1,)]
(1,0) (1,0)
nef cone Mori cone

Figure 11. The nef and Mori cones of#
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Here, 7 = Congu;), so thatD; =V (7). Using both notations helps distinguish
betweerNef(.7) (built from divisors) andNE(#) (built from curves).

The description of the nef cone follows from the charactiin of ample
divisors onz# given in Example 6.1.17. The Mori cone is generated by thescla
of theV () by the Toric Cone Theorem. Using the the basis giveDpy-V (73),

D4 =V(74) and the linear equivalences

Dy ~D3, Dy~ —rD3+Dy4

from Example 6.1.17, we get the pictureNE(.>7) shown in Figure 11. It follows
that [V (2)] and |V (73)] = [V (1)] generate extremal rays, whilé(74)] does not.
ThusTy, 7, 73 are extremal walls.

The explicit duality between the conbief(Xy) andNE(Xy) in Figure 11 will
be described in the next section.

Theorem 6.2.22 tells us that ample divisors correspondtticdgpoints in the
interior of Nef(.s#). Thus lattice points on the boundary correspond to divisors
that are basepoint free but not ample. We can see this vibglpoking at the
polytopesP, associated to divisof® whose classes lie iNef(.77).

Py=—

nef cone

Figure 12. Polytopes®, associated to diviso® in nef cone ot

Figure 12 shows that whdn is in the interior of the nef coné}, is a polygon
whose normal fan is the fan off. On the boundary of the nef cone, however.
things are differnt—F, is a triangle on the vertical ray and and a line segment on
the horizontal ray. You will verify these claims in ExerciBe.5. O

When Xy is not a projective variety, the ampleness criterion givepart (b)
of Theorem 6.2.22 can fail. Here is an example due to Fufsh [
Example 6.2.24.Consider the complete fan I&* with six minimal generators
u=(10,1), w=(0,11), uz=(-1,-11)
us=(1,0,—-1), us=(0,1,-1), us = (—1,-1,-1)
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and six maximal cones
Con€ug, Uy, uz), Conguy, Uz, Ug), Coneusy, Uy, Us)
Con€ug, Uz, Ug, Ug), Con€usy,us, Us,Us), Condug,Us, Ug).

You will draw a picture of this fan in Exercise 6.2.6 and shdwattthe resulting
complete toric variety satisfies

PiC(XE) ~ {a(D1+ D4) | ac 3Z} ~ 7.

The maximal cones = Conguy, Uz, us) ando’ = Conguy, Ug, Us) meet along

the wall
T=0Nc" = Conguy,Us).
However, any Cartier divisob = Zf’:la;Di satisfiesm, = m,- (Exercise 6.2.6),
so that the irreducible complete cu@e=V (7) satisfies
D-C=0

by Proposition 6.2.8. This holds for all Cartier divisorsX#, soC = 0. ThenXy

has no ample divisors by the Toric Kleiman Criterion, so #alis nonprojective.
The nef cone oKy is the half-line

Nef(Xg) = {a[Dl—l— D4] | a> 0}

(Exercise 6.2.6). It follows that the Cartier dividdr= 3(D1 + D4) gives a class in
the interior of the nef cone, y& is not ample. Hence part (b) of Theorem 6.2.22 is
false forXs,. The failure is due to the existence of irreducible curveXsirthat are
numerically equivalent to zero. This shows that numericpiivalence of curves
can be badly behaved in the nonprojective case. O

Exercises for §6.2

6.2.1. Let X be a normal variety. Prove that (6.2.1) gives a well-defingidmg between
Q-Cartier divisors and irreducible complete curves. Alsowslthat this pairing satisfies
Propostion 6.2.7.

6.2.2. Derive the formulas fom, andm,. given in Example 6.2.9.
6.2.3. Prove Theorem 6.2.13.

6.2.4. Prove that on a complete normal variety, an ample dividsatisfiesD - C > 0 for
allirreducible curveg C X.

6.2.5. Verify the claims made in Example 6.2.5. Hint: See Examplésand 6.1.24.

6.2.6. Consider the far from Example 6.2.24.
(a) Draw a picture of this fan i&®.

(b) Prove that PigXs) ~ {a(D1+ D,) | a € 3Z}.
(c) Prove that 8D1 + Dg) is nef.
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86.3. The Simplicial Case

Here we assume that is a simplicial fan inNg ~ R". Then Proposition 4.2.7
implies that every Weil divisor i§-Cartier. Since we will be working in P&y )r,
it follows that we can drop the adjective “Cartier” when dissing divisors.

Relations Among Minimal GeneratorsWe begin our discussion of the simplicial
case with another way to think of elementdNaf Xs;). Recall from Theorem 4.1.3
that we have an exact sequence
(6.3.1) M -2 2D 2, Cl(Xs) — 0
wherea(m) = ({(M,u,)),ex(1) and3 sends the standard basis elemene 2=
to [D,] € CI(Xy).
Proposition 6.3.1. Let Y be a simplicial fan in N ~ R". Then there are dual exact
seqguences
Mg LN Rz(l) i PiC(Xg)R —0
and
0— Ni(Xs) 25 RED 2% Ny

where

a*(e,) = u,, e, a standard basis vector &>

B*([C]) = (D, -C)ex1), C < Xs anirreducible complete curve

In particular, we may interpret NXx) as the space of linear relations among the
minimal generators of.

Proof. SinceX is simplicial, all Weil divisors ar€)-Cartier. Hence
Pic(Xs)r = Pic(Xy) @z R = Cl(Xy) @z R.

Tensoring withR preserves exactness, so exactness of the first sequermesfoll
from (6.3.1).

The dual of an exact sequence of finite-dimensional vectarespis still exact.
Then the perfect pairings

Mg x Ng — R : (m,u) — (m,u)

PIC(XX;)R X Nl(XE) —R: ([D] [ ]) —D-C

easily imply that form € Mg and[C] € N1(Xsx), we have
a(m) = ((MUy))exq) = a(&)=1U,

and
B(e,) = [Dp] = B°([C]) = (Dy-C)pex(n)- -
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The maps* : Ni(Xs;) — R*W in Proposition 6.3.1 implies that an irreducible
complete curvé&€ C Xy gives the relation

(6.3.2) >-p(Dp-C)u, =0in Ng.
This can be derived directly as follows. First observe tha M gives
> ,{mu,)D, = div(x™) ~ 0.
Taking the intersection product wit, we see that
> (M u,)(D,-C) =0

holds for allm € Mg. Writing this as(m, " (D, -C)u,) = 0, we obtain

>-p(Dp-C)u, =01in Ng.
Intersection Products Our next task is to comput®, -C whenC is a torus-
invariant complete curve iXy. This mean< =V(7), wherer € ¥(n—1) is a

wall, meaning that- is the intersection of two cones i(n). Since we are not
assuming thak is complete, not every element Bifn— 1) need be a wall.

We begin with a case whe®, -V (7) is easy to compute. Fix a wall
T=o0N0o'.
SinceX is simplicial, we can label the minimal generatorssafo that
o =Congu,,,U,,...,U,)
7 = Congu,,,...,U,,).

Thus is the facet ofr “opposite” top;. We will compute the intersection prod-
uct D,, -V(7) in terms of themultiplicity (also called théndex® of a simplicial
cone. This is defined as follows. 4fis a simplicial cone with minimal generators
ui,..., Uk, then mulf~) is the index of the sublattice

Zuy+---+Zug € N, = Sparfy) "N = (Rug + - - - +Rug) N N.

Lemma 6.3.2.If 7, o and p; are as above, then

~ mult(r)
Dpy V() = mult(s)

Proof. Since{u,,,...,u,,} is a basis oNg, we can findn e Mg such that
-1 i=1
mu, ) = _
(M, Uy {o i=2...,n

Pick a positive integef such thatm < M. OnU, UU,, /D, is the Cartier divisor
determined byn, = /mandm,- = 0. By (6.2.1) and Proposition 6.2.8,

Dy, V(r) = 5(1D,,) V(r) = 1 (fmu) = (),

whereu € ¢’ maps to a generator af "N(7). Recall thatN(7) = N/N;.
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When we combinel with a basis ofN,, we get a basis dN. Thus there is a
positive integer? such thajp; = —fu+v, v e N;.. The minus sign is becauseand
p1 lie on opposite sides af. By considering the sublattices

ZUy, +ZUy, + - -+ ZU,, € ZU,, + N € Zu+ N, = N,
one sees that = mult(o) /mult(r). Thus

1 mult(7)

u= —B(Um—V) = —W(Upl—V)-
Sincem e 7+, it follows that
_ (mu) — _ mult(z) _ multr)
DpyV(7) = (m.u) = mult(o) (m, U, = mult(o) =

Corollary 6.3.3. LetX be a smooth fan in N~ R" andr € 3(n—1) be awall. If
p € 3(1) and T generate a cone &€ (n), then

D,-V(r)=1 O
Given a wallr € ¥(n— 1), our next task is to compute,, -V (7) for the other
raysp € ¥(1). LetT = ono’ and write
o =Congu,,,...,U,,)
(6.3.3) o' =Congu,,,...,Up, )
7 =Conguy,,...,U,,).
This situation is pictured in Figure 13.

~ O
Upz Upn
T
Upl
« O

Figure 13. r=ono’
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Applying Lemma 6.3.2 t@ ando’, we obtain
mult(7) mult(7)
T multlc)” ()= mult(c”)’
To computeD,, -V (1) whenp # p1, pny1, NOte that then+ 1 minimal generators

Upys- - -5 Uy, , @re linearly dependent. Hence they satisfy a linear relatidich we
write as

(6.3.4) D,,-V(7)

n
(6.3.5) auy, + > bity, +Buy,,, =0.
i=2
We may assume, 3 > 0 sinceu,, andu,,., lie on opposite sides of the wail
Then (6.3.5) is unique up to multiplication by a positive stamt sinceu,,,, ..., U,
are linearly independent. We call (6.3.5)vall relation.

On the other hand, setti@= V() in (6.3.2) gives the linear relation
(6.3.6) > (D,-V(7))u, =0
p
As we now prove, the two relations are the same up to a positimstant.

Lemma 6.3.4. The relations given b{6.3.5)and (6.3.6)are equal after multipli-
cation by a positive constant. In particular,

DP.V(T) = 07 for a” p ¢ {P17---apn+1}

and
_ bimult(r)  bymult(7)

~amult(e)  Bmult(c”)

Dy, V(1)
fori=2,...,n.
Proof. First observe that ip ¢ {p1,...,pnt1}, thenp andr never lie in the same
cone of, so thatD, NV (7) = 0 by the Orbit-Cone Correspondence. This easily

impliesD, -V (7) = 0 (Exercise 6.3.1), which in turn implies that (6.3.6) regiic
to the equation

(Dpy V(7)) Uy, + Z(Dpi V(1)) Uy + (Dpyyy V(7)) Ugyyy, =0
i=2

The coefficients ofi,, andu, , are positive by (6.3.4), so up to a positive constant,
this must be the wall relation (6.3.5). The first assertiotheflemma follows.

Since the above relation equals (6.3.5) up to a nonzeroatste obtain
bi(Dp, -V (7)) = a(Dy -V (7)),  bi(Dp,,, -V (7)) = B(Dy -V (7)),
fori=2,...,n. Then the desired formulas far, -V () follow from (6.3.4). [

For a simplicial toric variety, Lemmas 6.3.2 and 6.3.4 pdeveverything we
need to comput® -V (7) whenr is a wall of ¥.
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Example 6.3.5.Consider the fart in R? from Example 6.2.9. We have the wall
7= Con€ug) = c N’ = Conduy, ug) N Conduy, Up),
whereu; = 1, U = & andug = 2e; + 3e,. Computing multiplicities gives
mult(7) = 1, mult(o) = 3, mult(c’) = 2.

Then Lemma 6.3.2 implies
1 1
D]_‘V(T) = é, DZV(T) = E,
and the relation
2-U1—|—(—1)-Uo—|—3'U2 =0

implies
-1.1 -1-1 1
PV =53 =32 "%
by Lemma 6.3.4. Hence we recover the calculations of Exa®2le. O

WhenXsy; is smooth, all multiplicities are 1. Hence the wall relat{@n3.5) can
be written uniquely as

n
(6.3.7) Upy + Y bty +Up,,, =0,
i=2
and then the intersection formula of Lemma 6.3.4 reduces to
Dy -V(7) =b
fori=2,...,n.

Example 6.3.6.For the Hirzebruch surface?, the four curves coming from walls
are also divisors. Recall that the minimal generators are

ulz_el+r627 u22627 u3:el7u4:_627

arranged clockwise around the origin (see Figure 3 from Epteu®. 1.3 for the case
r = 2). Hence the wall generated hy gives the relation

Up—0-uz+u =0,

which implies
D:-D1=0

by Lemma 6.3.4. On the other hand, the wall generatedlyves the relation

Up—r-up+uz=_0.
Then the lemma implies

Dy-Dy = —r.
Similarly, one can check that
D3-D3=0,D4-Ds=r,
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and by Corollary 6.3.3 we also have

D1-Dy=D;-D3=D3-Ds=D4-D;=1.
These computations give an explicit description of the iubetween the nef and
Mori cones shown in Figure 11 of Example 6.2.23 (Exercise2}.3 O

In general, a divisob on a complete surface haslf-intersection DD = D2,
Self-intersections will play a prominent role in ChapterwbBen we study toric
surfaces.

Primitive Collections In the projective case, there is a beautiful criterion for a
Cartier divisor to be nef or ample in terms of themitive collectionsintroduced
in Definition 5.1.5. Recall that

P={p1,....ox} CX(1)

is a primitive collection ifP is not contained i (1) for someo € 3 but any proper
subset is. Sinc& is simplicial, primitive means th& does not generate a cone of
3 but every proper subset does. This is the definition givendtyBv in [6].

Example 6.3.7.Consider the complete fan in R3 shown in Figure 14.

z

P4
pl / p3

P2

y
X
Po
Figure 14. A fan inR®
One can check that
{p17 03}7 {P07P27P4}
are the only primitive collections df. O

Here is the promised characterization, due to Baty&in[the smooth case.
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Theorem 6.3.8.Let Xz be a projective simplicial toric variety.
(a) A Cartier divisor D is nef if and only if its support functigrp satisfies

©p(Up, + -+ Up) > op(Uy, ) + -+ ¢p(Up,)
for all primitive collections P={ps,...,pk} of .
(b) A Cartier divisor D is ample if and only if its support funatipp satisfies
00 (Upy + -+ Upg) > 2D (Up) + - + 2 (Upy)

for all primitive collections P={ps,...,pk} of .

Before we discuss the proof of Theorem 6.3.8, we need to shalyelations
that come from primitive collections.

Definition 6.3.9. Let P = {p1,...,p} C X(1) be a primitive collection for the
complete simplicial fart. HenceZ!‘:1 u, lies in the relative interior of a cone
~ € X. Thus there is a unique expression

Upy -+ Up =D ey Colp,  Cp € Qo

Thenu,, + -+ Uy, — >~ . 1) Cplp = O is theprimitive relation of P.

The coefficient vector of this relation i$P) = (b,) ,cx(1) € R*Y, where

1 peP, pg(1)
1-c, pePn~(1)
¢, peV),pgP
0 otherwise

(6.3.8) b, =

Then}_ b,u, =0, so thatr(P) gives an element df;(Xs) by Proposition 6.3.1.
In Exercise 6.3.3, you will prove tha}, < 1 whenp € PN ~(1). This means tha®
is determined by the positive entries in the coefficient medtP).

The Mori cone forXs, has a nice description in terms of primitive relations.

Theorem 6.3.10.For a projective simplicial toric variety X,

NE(Xz) =) Rsor(P),
p
where the sum is over all primitive collections PXf

Proof. Given a Cartier divisoD =} a,D, and a relatiory  ,b,u, = 0, the in-
tersection pairing ofD] € Pic(Xs)r andR = (b,) ,exy(1) € N1(Xx) is

(6.3.9) [D]-R=> a,[D,]-R=> a,b,
p p
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(Exercise 6.3.4). In particular, whéd= r(P), we can rearrange terms to obtain

k
[D] : r(P) = Zapi - Z a,Cp.
i=1 pe(1)

Since the support function @ satisfiespp(u,) = —a, and is linear ony, we can
rewrite this as

(6.3.10)  [D]-r(P)=—9p(Up) — -~ 9D (Up.) +¢D(Upy + -+ Up,).
If D is nef, then it is basepoint free (Theorem 6.2.12), so ¢hais convex. It
follows that[D] - r(P) > 0, which proves (P) € NE(Xs;). Note also that(P) is
nonzero.

To finish the proof, we need to show thdE(Xyx) is generated by the(P).
In the discussion following the proof of Theorem 6.2.22, vaged thatNE(Xs;)
is generated by its extremal rays, each of which is of the fyg[V (7)] for an
extremal wallr. It suffices to show thalV ()] is a positive multiple of (P) for
some primitive collectiorP.

We first make a useful observation about nef divisors. Giveorges ¢ X2, we
claim that any nef divisor is linearly equivalent to a divisd the form

(6.3.11) D=) aD, a=0 pco(l) anda,>0, p¢o(l).
P

To prove this, first recall that any nef divisor is linearlyuaglent to a torus-
invariant nef divisoD = a,D,. Then we haven, € M with (m,,u,) = —a,
for p € o(1). SinceD is nef, it is also basepoint free, so that

<mmup> > @D(up) = _ap> pE Z(l)v
by Theorem 6.1.10. Replacimgwith D + div(x™ ), we obtain (6.3.11).
Now assume we have an extremal waknd letC =V (7). Consider the set

P={p|D,-C> 0}

We will prove thatP is a primitive collection whose primitive relation is theask
of C, up to a positive constant. Our argument is taken fr8if, which is based on
ideas of Kresch]09.

We first prove by contradiction th&Z o (1) for all o € 3. Supposé® C (1)
and take an ample divis@ (remember thaXy is projective). Then in particuldd
is nef, so we may assume tHais of the form (6.3.11). Sinca, = 0 for p € ¥(1),
we have

D-C= > aD,C
p¢a(l)
However,a, > 0 by (6.3.11), and® C o(1) impliesD,-C <0 for p ¢ o(1). It
follows thatD - C < 0, which is impossible sincB is ample. Thus no cone af
contains all rays irP.
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It follows that some subse C P is a primitive collection. This gives the
primitive relation with coefficient vector(Q) € Ni(Xx), and we also have the
class|C] € Ni(Xyx). Let

B =[C]—Ar(Q) € Ni(Xs),
where) > 0. We claim that ifA is sufficiently small, then
(6.3.12) {p1[D,]-8<0}C{p|D,-C<O}.
To prove this, first observe that the definitionm®implies

Dy-C=A[D,]-r(Q)+[Dy] - .

Suppose thaD,| - 5 < 0 andD,-C > 0. This forcesD,] - r(Q) > 0. By (6.3.9),
[D,]-r(Q) is the coefficent ofi, in the primitive relation 0fQ, which by (6.3.8) is
positive only wherp € Q. ThenQ C P impliesD, -C > 0 by the definition ofP.
But we can clearly choosk sufficiently small so that

D,-C>AD,]-r(Q) wheneveD,-C > 0.

This inequality and the above equation imfy,| - 3 > 0, which is a contradiction.
We next claim that3 € NE(Xx). By (6.3.12), we have

{p|[Dy]-8<0} C{p|D,-C<0} C7(1),

where the second inclusion follows fro@&= V(r), (6.3.4), and Lemma 6.3.4.
Now letD be nef, and by (6.3.11) with = 7, we may assume that

D= Za,,Dp, a,=0,per(l) anda, >0, p¢ (1)
p

Then
[D] B= Z ap[Dp] -B82>0,
pgr(1)
where the final inequality follows sinag, > 0 and[D,] - 5 < 0 can happen only
whenp € 7(1). This proves that € NE(Xy).
We showed earlier thaf{Q) € NE(Xx;). Thus the equation

Cl=Ar(Q+5

expressedC] as a sum of elements &fE(Xy). But [C] is extremal, i.e., it lies in
a 1-dimensional face dfIE(Xys). By Lemma 1.2.7, this forceg Q) and 3 to lie
in the face. Since(Q) is nonzero, it generates the face, so f@tis a positive
multiple of r(Q).

The relation corresponding © has coefficient§D, - C) jcx(1), andP is the
set ofp’s whereD,, -C > 0. But this relation is a positive multiple ofQ), whose
positive entries correspond @ ThusP = Q and the proof is complete. a
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It is now straightforward to prove Theorem 6.3.8 using Tke016.3.10 and
(6.3.10) (Exercise 6.3.5). We should also mention thatetlresults hold more
generally for any projective toric variety (Se&7]).

Example 6.3.11.Let X be the fan shown in Figure 14 of Example 6.3.7. The
minimal generators gdo, . .., p4 are

Up = (07 07 _1)7 Up = (07 _17 1)7 Uz = (17 07 1)7 Uz = (Oa 17 1)7 Ug = (_17 Oa 1)
The computations you did for part (c) of Exercise 6.1.11 yrtpht X is pro-
jective. Since the only primitive collections afes, p3} and{po, p2,p4}, Theo-
rem 6.3.8 implies that a Cartier divisBris nef if and only if
@b (U1 +U3) > op(U1) +¢p(Us)
¢p(Uo + Uz + Us) = ¢p(Uo) + ¢p(Uz) + D (Ua)
and ample if and only if these inequalities are strict. Onealao check that
Pic(Xs) ~ {a[D1] +b[Dy] | a,b € 2Z}
andaD; + bD, is nef (resp. ample) if and only & > b > 0 (resp.a > b > 0).
Exercise 6.3.6 will relate this example to the proof of Thesnr6.3.10.

Besidesy, the minimal generatong, ..., Us support two other complete fans
in R3: first, the fan¥’ obtained by replacing Col,uz) with Conguy,u3) in
Figure 14, and second, the falg obtained by removing this wall to create the cone
Congug, Uy, Uz, Us). SinceX (1) = 3'(1) = 3p(1), the toric varietiesXs;, Xs, Xs3,
have the same class group, thougk has strictly smaller Picard group since it is
not simplicial. Thus

Pic(Xs,)r C Pic(Xs))r = Pic(Xsy )r ~ R?.

This allows us to draw all three nef cones in the same cofR?ofn Exercise 6.3.6
you show that we get the cones shown in Figure 15. The idedad#fis figure

N ef(Xzo)

Nef(Xs)

Nef(Xs)

Figure 15. The nef cones oKs, X5/, Xs,

will be developed in Chapters 14 and 15 when we study geotrigt@riant theory
and the minimal model program for toric varieties. O
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Exercises for §6.3

6.3.1. This exercise will describe a situation whéeC is guaranteed to be zero.

(a) LetX be normal and assume thats a complete irreducible curve disjoint from the
support of a Cartier divisdD. Prove thaD -C = 0. Hint: UseU = X\ SupgD).

(b) Letr be a wall of a far: and pickp € ¥(1) such thatp andr never lie in the same
cone ofX. Use the Cone-Orbit Correspondence to prove biatV(r) = ), and
conclude thab, -V(r) =0.

6.3.2. As in Example 6.3.2, the classf33], [D4] give a basis of Pic/# ). Since is a
smooth complete surface, the intersection pro@yeV (7;) is writtenD; - D;.

(a) Give an explicit formula fofa[D3] 4 b[D4]) - (a[D3] + b[D4]) using the computations
of Example 6.3.2.

(b) Use part (a) to show that the cones shown in Figure 11 imipk@6.2.23 are dual to
each other.

6.3.3. In the primitive relation defined in Definition 6.3.9, proye< 1 whenp € PN~(1).
Hint: If p, € v(1) andc,, > 1, then cancel,, and show thati,,,...,u, €.

6.3.4. Let Xz be a simplicial toric variety and fix a Cartier divisbr=}_ a,D, and
a relation} b,u, = 0. Prove that the intersection pairing [@f] € Pic(Xs)r andR =
(bp)peZ(l) S Nl(XE) is [D] ‘R= Zp apbp.

6.3.5. Prove Theorem 6.3.8 using Theorem 6.3.10 and (6.3.10).

6.3.6. Consider the fart from Examples 6.3.7 and 6.3.11. Every wall Xfis of the

form 7;; = Congu;, u;) for suitablei < j. Letr(n;) € R® denote the wall relation of;; .
Normalize by a positive constant so that the entriegaf) are integers with gcek 1.

(a) Show the nine walls give the three distinct wall relasiofro), r (7o), (724).

(b) Show thatr(7o3) + r(724) = r(702) and conclude thatyz and »4 are extremal walls
whose classes generate the Mori con&of

(c) For each extremal wall of part (b), determine the comesiing primitive collection.
You should be able to read the primitive collection direétym the wall relation.

(d) Show that the nef cones ¥f;, X5, X5, give the cones shown in Figure 15.

6.3.7. Let X5, be the blowup oP" at a fixed point of the torus action. Thus Pig;) ~ Z2.

(@) Compute the nef and Mori cones X and draw pictures similar to Figure 11 in
Example 6.2.23.

(b) Determine the primitive relations and extremal wallXgf

6.3.8. Let P; be the toric surface obtained by changing theugain the fan of the Hirze-
bruch surface’ from (—1,r) to (—r,1). Assumer > 1.

(a) Prove thaf is singular. How many singular points are there?

(b) Determine which divisora;D; + a;D, + asD3+ asD4 are Cartier and compui; - D;
foralli, j.

(c) Determine the primitive relations and extremal wall§Ppf
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Appendix: Quasicoherent Sheaves on Toric Varieties

Now that we know more about sheaves (specifically, tensatymts and exactness), we
can complete the discussion of quasicoherent sheavesiowvanieties begun in §85.3. In
this appendixXs, will denote a toric variety with no torus factors. The totabedinate
ring of Xs. is S= C[x, | p € £(1)], which is graded by CKs).

Recall from 85.3 that forx € Cl(Xy), the shiftedSmodule S(«) gives the sheaf
Oxs (o) satisfyingOx,, (a)) ~ Ox. (D) for any Weil divisor witha: = [D]. In §6.0 we con-
structed a sheaf homomorphisfix (D) ® g, Ox (E) — Ox(D + E). In a similar way, one
can define

(6.A.1) Oxs (@) @y, O (B) — Oxs(a+ ).
for o, B € Cl(Xy) such that ifa = [D] andg = [E], then the diagram

ﬁXE(D)) ®ﬁx2 ﬁXE(E)) — Oxs, (D+ E))

! |

Oxs. (@) @y, Oxs, (B) —— Oxy, (e +3)

commutes, where the vertical maps are isomorphisms.

From Sheaves to ModulesThe main construction of 85.3 takes a gra@adoduleM and
produces a quasicoherent shigbabn Xs;. We now go in the reverse direction and show that
everyguasicoherent sheaf of; arises in this way. We will use the following construction.

Definition 6.A.1. For a sheaf# of &x,,-modules orXsy; anda € Cl(Xy), define
j(a) =7 ®ﬁx2 Oxs, (a)
and then set

[(F)= P T, F(a)).

a€CI(Xs)

For example['.(0x,) = Ssincel (Xs, Ox, () ~ S, by Proposition 5.3.7. Using
this and (6.A.1), we see thBf. (%) is a gradedmodule.

We want to show that” is isomorphic to the sheaf associated'td.#) when.% is
guasicoherent. We will need the following lemma due to Migsfa3(. Recall that for
o € 3, we have the monomial = [I,¢01) % €S Letas = degx?) € Cl(Xs).

Lemma 6.A.2. Let.# be a quasicoherent sheaf og X

(@) IfveI'(U,, %), then there ard > 0 and ue I'(Xsz,.# (Yo, )) such that u restricts to
x°)'ve Tl (U,,Z (lay)).

(b) Ifu e T(Xs,.F) restricts to0 in T'(U,,,.%), then there ig > 0 such that(x? )’u= 0in
I'(Xs, 7 (lay)).

Proof. For part (a), fixo € ¥ and takev € I'(U,,,.%). Givenr € ¥, letv, be the restriction
ofvtoU,NU,. By (3.1.3), we canfindhe (—¢¥)N7¥ NM such thatl, NU, = (U, ),m =
Spe¢C[rY NM],m). In terms of the total coordinate rir§y we haveC[r" NM] ~ (S )o
by (5.3.1). Hence the coordinate ringf NU, is the localization

((S<+)O)x<m> ’
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wherex(™ =TJ, x\™) € (S )o sinceme ¥ NM. This enables us to write

U,NU, = (U.,-)X<m> .

Since.% is quasicoherent%UT is determined by its sectiorG =I'(U.,.#), and then
I'(U,NU,, %) is the localizatiorG, ) .

It follows thatv, € T'(U,,.Z) equalst, /(xX™ )X, wherek > 0 and, € I'(U,,.%).
Henced, restricts to(x™ kv € T'(U,,,.%). Sinceme (—¢"), we see that

(6.A.2) x2 = (x") (xM)~kes

for £ > 0. This monomial has degrée,,. Thenu, = x?0, € T'(U,,.% (fa,)) restricts
to (x%)*v, € I'(U, NU,,.Z (fa,)). By making/ sufficiently large, we can find onkthat
works for allT € X.

To study whether tha, patch to give a global section of (¢« ), taker,, 7 € ¥ and
sety =1 N 7. ThusU, =U, NU,,, and

(6.A.3) W=Un|, —Un|y € I'U,, # (o))

restricts to 0= I'(U, NU,,.# (¢a,)). Arguing as above, this group of sections is the lo-
calizationI'(U.,,.Z (favs ) )xom , Wherem e vV N (—o¥) NM such thatd, NU, = (U,,),m.
Sincew gives the zero element in this localization, theréis 0 with (x™)w =0 in
I'(U,,.7 (lay)). If we multiply by x? = (x7)¢ (x(™ )~k for ¢/ > 0, we obtain(x?)* w=0
inT(Uy,.Z((¢' 4+ ¢)a,)). Another way to think of this is that if we maden (6.A.2) big
enough to begin with, then in fast= 0 in I'(U,,.Z (Yo, )) for all 7,7". Given the defini-
tion (6.A.3) ofw, it follows that theu, patch to give a global sectiane I'( Xy, % (Yo ))
with the desired properties.

The proof of part (b) is similar and is left to the reader. O

Proposition 6.A.3. Let.# be a quasicoherent sheaf og XThen.# is isomorphic to the
sheaf associated to the graded S-module%).

Proof. LetM =TI, (.#) and recall from §5.3 that for every < %, the restriction oM to
U, is the sheaf associated to tf®s )o-module(M,s )o.

We first construct a sheaf homomorphisi— .%. Elements of My )o areu/(x? )
forue I'(Xs, Z (fa,)). Since(x?)~* is a section 0¥, (—{a,, ) overU,, the map
T(Uy, O, (—tag)) @c T(Uq, F (0)) — D (Uy, F)
induces a homomorphism 68, )o-modules
(6.A.4) (Mys)o — I'(U,, .%).

This gives compatible sheaf homomorphisi%@v — 9|UU that patch to givef/l — ZF.

Since.# is quasicoherent, it suffices to show that (6.A.4) is an isquinism for every
o € . First suppose that/(x?)* € (Mys)o maps to 0= I'(U,,,.%). It follows easily that
u restricts to zero if'(U,,,.% (ka,,)). By Lemma 6.A.2 applied t¢# (ka,, ), there isf > 0
such tha(x?)‘u=0inT'(Xs,.Z(({+K)a,)). Then
u (x7)fu

(X&)k = W =0 in (an)o,
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which shows that (6.A.4) is injective. To prove surjeciyilakev € I'(U,,.#) and apply
Lemma 6.A.2 to find/ > 0 andu € I'(Xg,.Z (fa,)) such thatu restricts to(x?)‘v. It
follows immediately thati/ (x?)¢ € (Mys )o maps tov. O

This result proves part (a) of Proposition 5.3.9. We now turnattention to part (b)
of the proposition, which applies to coherent sheaves.

Proposition 6.A.4. Every coherent sheaf on Xz is isomorphic to the sheaf associated
to a finitely generated graded S-module.

Proof. On the affine open subsét,, we can find finitely many sectiorfs,, € I'(U,, . %)
which generateZ overU,,. By Lemma 6.A.2, we can find> 0 such thatx?)* fi,- comes
from a global sectiow; , of .%(¢a,). Now consider the grade8moduleM C ', (%)
generated by thg . Proposition 6.A.3 gives an isomorphism

HenceM C T'.(.%) gives a sheaf homomorphislﬁh—> Z which is injective by the exact-
ness proved in Example 6.0.10. Oy, we havef; , = g, /(x%)¢ € (Mys)o, and since

these sections generafe overU,, it follows thatM ~ .%. Then we are done sindé is
clearly finitely generated. O

The proof of Proposition 6.A.4 used a submodul&'of.#) because the full module
need not be finitely generated whénis coherent. Here is an easy example.

Example 6.A.5. A point p € P" gives a subvariety: {p} — P". The sheaf’ =i.0y
can be thought of as a copy Gfsitting over the poinp. The line bundleZgn(a) is free in
a neighborhood op, so that#(a) ~ .% for all a € Z. Thus

I.(7)=EPre",.#@) =c.
aczZ aczZ
This module is not finitely generated ov@since it is nonzero in all negative degrees:

Subschemes and Homogeneous Idealor readers who know about schemes, we can

apply the above results to describe subschemes of a toratywas; with no torus factors.
Letl C She a homogeneous ideal. By Proposition 6.0.10, this giveeafof ideals

J C Ox,, whose quotient is the structure sheaf of closed subschenieoKy. This

differs from the subvarieties considered in the rest of thaksince the structure she&§

may have nilpotents.

Proposition 6.A.6. Every subscheme ¥ Xy is defined by a homogeneous ideal 5.

Proof. Given an ideal shea¥ C 0x,,, we get a homomorphism &modules
I.(4) —T.(0x;,)=S

If I C Sis the image of this map, then the map factbrg.#) — | — S, where the first
arrow is surjective and the second injective. By Examplel®.@nd Proposition 6.A.3, the
inclusion.# C 0Ox,, factors asy — | — 0Ox,,. It follows immediately that? = 1. [l

In the case oP", it is well-known that different graded ideals can give theng ideall
sheaf. The same happens in the toric situation, and as in &8.8et the best answer in
the smooth case. Not surprisingly, the irrelevant id&al) C Splays a key role.
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Proposition 6.A.7. Homogeneous idealsd C S in the total coordinate of a smooth toric
variety X% give the same ideal sheaf 6. if and only if |: B(X)>° = J: B(X)°°.

Proof. Sincel is homogeneous, the same is truelfoB(X)>°, and in the exact sequence
0— I —1:B(X)* —1:B(X)*/I — 0,
the quotient : B(X)>°/I is annihilated by a power d8(X) sincel is finitely generated.

The sheaf associated to this quotient is trivial by Propmsi.3.10. Then andl : B(X)*°
give the same ideal sheaf by Example 6.0.10. This provesioeetidn of the proposition.

For the converse, suppose thandJ give the same ideal sheaf. This means that

(Ix#)o = (Jxa)o
forall o0 € 3. Takef €1, for a € Cl(Xy) and fixo € ¥. Arguing as in the proof of
Proposition 5.3.10, we can find a monomidlinvolving only x, for p ¢ (1) such that
XPf /(x7)* € (Iys)o. This impliesx?f/(x?)k € (s )o, Which in turn easily implies that
(x?)f € Jfor £>> 0. Thusl C J:B(X)>°, and from here the rest of the proof is straight-
forward. O

There is a less elegant version of this result that applissriplicial toric varieties. See
[33] for a proof and more details about the relation betweenepadodules and sheaves.
See also123 for more on multigraded commutative algebra.



Chapter 7

Projective Toric
Morphisms

87.0. Background: Quasiprojective Varieties and Projectre
Morphisms

Many results of Chapter 6 can be generalized, but in ordeotead we need to
learn aboutjuasiprojective varietieandprojective morphisms

Quasiprojective Varieties Besides affine and projective varieties, we also have the
following important class of varieties.

Definition 7.0.1. A variety isquasiprojectiveif it is isomorphic to an open subset
of a projective variety.

Here are some easy properties of quasiprojective varieties

Proposition 7.0.2.

(a) Affine varieties and projective varieties are quasipradjeet

(b) Every closed subvariety of a quasiprojective variety issijajective.
(c) A product of quasiprojective varieties is quasiprojective

Proof. You will prove this in Exercise 7.0.1. a

Projective Morphisms In algebraic geometry, concepts that apply to varieties
sometimes have relative versions that apply to morphismadsm varieties. For
example, in §3.4, we definembmpletenesandpropernesswhere the former ap-
plies to varieties and the latter applies to morphisms. Siomes we say that the

305
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relative versionof a complete variety is a proper morphism. In the same way, th
relative version of grojective varietyis aprojective morphism

We begin with a special case. Lét: X — Y be a morphism andZ a line
bundle onX with a basepoint free finite-dimensional subspate I'(X,.%). Then
combining f : X — Y with the morphismp.¢ w : X — P(W") from §6.0 gives a
morphismX — Y x P(WV) that fits into a commutative diagram

fxpe,
X — Iy P(WY)

(7.0.1) lpl

f
Y

If fx¢ew is aclosed embeddingmeaning that its imag& C Y x P(WV) is
closed and the induced map— Z is an isomorphism), then you will show in
Exercise 7.0.2 that has the following nice properties:

e f is proper.

e For everyp c Y, the fiber f~1(p) is isomorphic to a closed subvariety of
P(WVY) and hence is projective.
The general definition of projective morphism must inclukis special case.
In fact, going from the special case to the general case ithabhard.

Definition 7.0.3. A morphismf : X — Y is projectiveif there is a line bundle?
on X and an affine open covél);} of Y with the property that for each there is
a basepoint free finite-dimensional subspate I'(f~1(U;),.#) such that

fixoez w

(V) Ui x P(WY)

is a closed embedding, whefe= f|; ., and.Z = .Z|; ). We say that
f : X — Y is projective with respect t¢Z.

The general case has the properties noted above in the lspessa

Proposition 7.0.4. Let f: X — Y be projective. Then:
(a) f is proper.
(b) For every pc Y, the fiber f1(p) is a projective variety. O

Here are some further properties.

Proposition 7.0.5.

(a) The composition of projective morphisms is projective.

(b) A closed embedding is a projective morphism.

(c) A variety X is projective if and only if X> {pt} is a projective morphism.
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Proof. Parts (a) and (b) are proved i3, (5.5.5)]. For part (c), one direction
follows immediately from the previous proposition. Corsady, leti : X — P" be
projective, and assume thdtis nondegeneratemeaning thak is not contained in
any hyperplane dP". Now let.Z = 0x (1) =i*0pn(1). Then
i*: F(Pn, ﬁ]pn(l)) — F(X,j)
is injective sinceX is nondegenerate. In Exercise 7.0.3 you will show that
['(P", Opn(1)) = Sparixo, . .., Xn)

and that it C I'(X,.Z) is the image of*, then¢ » \ is the embedding we began
with. Hence Definition 7.0.3 is satisfied fér— {pt} and.Z. O

When the domain is quasiprojective, the relation betweepgarand projective
is especially easy to understand.

Proposition 7.0.6.Let f: X — Y be a morphism where X is quasiprojective. Then:

f is proper < f is projective

Proof. One direction is obvious since projective implies propesr fhe opposite
direction, X is quasiprojective, which implies that there is a morphism

g: X—Z

such thatZ is projective,g(X) C Z is open, andX ~ g(X) via g. Then one can
prove without difficulty that the product map

(7.0.2) fxg:X—YxZ

induces an isomorphisi¥ ~ (f x g)(X).

Sincef : X — Y is proper,f xg: X — Y x Z is also proper (Exercise 7.0.4).
Hence the image of x gis closed inX x Z since proper morphisms are universally
closed. ThuX ~ (f x g)(X) and(f x g)(X) is closed inY x Z. This proves that
(7.0.2) is a closed embedding.

Now take a closed embeddinf— PS. Arguing as above, we get a closed
embedding ofX into Y x PS. From here, it is straightforward to show thhtis
projective (Exercise 7.0.4). O

To complicate matters, there are two definitions of projecthorphism used
in the literature. InT7, 11.4], a projective morphism is defined as the special case
considered in (7.0.1), whilerB, (5.5.2)] and 171, 5.3] give a much more general
definition. Theorem 7.A.5 of the appendix to this chapterghthat the more
general definition is equivalent to Definition 7.0.3.

Projective Bundles Vector bundles give rise to an interesting class of projecti
morphisms.
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Let 7 :V — X be a vector bundle of rank> 1. Recall from 86.0 tha¥ has
a trivialization { (Uj, #) } with ¢; : 7~1(U;) ~ U; x C". Furthermore, the transition
functionsgi; € GLn(I'(Ui NUj, Ox)) that make the diagram
Ui ﬂUj x C"

o ’Wl(Uy

=~ HUinu;)) 1xgj

?j wal(UiﬂUj) U, ﬁUJ < CN
commute. Note that & g;; induces an isomorphism
Ix G :UinUpx Pt~ UinUj x P

This gives gluing data for a varief§(V). It is clear thatr induces a morphism
7 : P(V) — X and thatp; induces the trivialization

& T HUp) ~ Uy x P
The discussion following Theorem 7.A.5 in the appendix te tihapter shows that
7 :P(V) — X is a projective morphism. We cdl(V) the projective bundlefV.

Example 7.0.7. Let W be a finite-dimensional vector space o¥erof positive
dimension. Then, for any variely, the trivial bundleX x W — X gives the trivial
projective bundleX x P(W) — X. O

There is also a version of this construction for locally fetmaves. 16 is
locally free of rankn, then&’ is the sheaf of sections of a vector bundle— X of
rankn. Whenn = 1, we proved this in Theorem 6.0.20. Then define
(7.0.3) P(&) =P(V)),
whereV,/ is the dual vector bundle &f;. Here are some properties Bf£’).

Lemma 7.0.8.
(@) P(¥) =X whenZ is locally free of rankl.
(b) P(& ®4 L) =P(&) whend is locally free andZ is a line bundle.

(c) If a homomorphism$ — % of locally free sheaves is surjective, then the in-
duced maP(.#) — P(&) of projective bundles is injective.

Proof. You will prove this in Exercise 7.0.5. The dual in (7.0.3) ips why
& — F givesP(.¥) — P(&). O

The appearance of the dual in (7.0.3) can be explained asvillLet.Z be a
line bundle withw C I'(X,.Z’) basepoint free of finite dimension. As in §6.0, this
gives a morphism

pyrw:X— P(WY).
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Let & =W ®¢ Ox. The corresponding vector bundlevg = X x W, so
(7.0.4) P(&) =P(Vy) =X x P(WY).

By Proposition 6.0.24, the natural m&p— . is surjective sinc®V has no base-
points. By Lemma 7.0.8, we get an injection of projectivedias

P(Z) — P(&).
The lemma also implieB(.¢") = X. Using this and (7.0.4), we get an injection
X — X x P(WY).

Projection onto the second factor gives a morphsm- P(W"), which is the
morphism¢ « v from 86.0 (Exercise 7.0.6).

We should mention that one can define the “projective buné(&’) for any
coherent sheaf” on X. See 7, 11.7].
Exercises for §7.0
7.0.1. Prove Proposition 7.0.2.

7.0.2. Prove Proposition 7.0.4. Hint: First prove the special gagen by (7.0.1). Recall
from §3.4 thafP" is complete, so th&" — {pt} is proper.

7.0.3. Complete the proof of Proposition 7.0.5.

7.0.4.Leta: X —Y andg:Y — Z be morphisms such thgto o« : X — Z is proper. Prove
thata : X — Y is also proper. Hint: As noted in the comments following Glary 3.4.8,
being proper is equivalent to being topologically propeefibition 3.4.2). Also,T CY
impliesa~%(T) C (Boa)~X(B(T)).

7.0.5. Prove Lemma 7.0.8. Hint: Work on an open covetXofvhere all of the bundles
involved are trivial.

7.0.6. In the discussion following (7.0.4), we constructed a maphX — P(WV) using
the surjections’ =W ®@¢ O0x — .. Prove that this coincides with the morphisig .

7.0.7. Show thatC?\ {0,0} is quasiprojective but neither affine nor projective.

87.1. Polyhedra and Toric Varieties

This section and the next will study quasiprojective toricisties and projective
toric morphisms. Our starting point is the observation jhat as polytopes give
projective toric varieties, polyhedra give projectiveicanorphisms.

Polyhedra Recall that a polyhedroR C My is the intersection of finitely many
closed half-spaces
P={meMg|(mu)>—-a,i=1,...,s}
A basic structure theorem tells us thais a Minkowski sum
P=Q+C,
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whereQ is a polytope and is a polyhedral cone (se&q5 Thm. 1.2]). IfP is
presented as above, then the cone paR isf

(7.1.1) C={meMg|{muy)>0i=1,...,s}
(Exercise 7.1.1). Followingl]75], we callC therecession conef P.

Similar to polytopes, polyhedra have supporting hypemsarfaces, facets,
vertices, edges, etc. One difference is that some polyhetano vertices.
Lemma 7.1.1. Let PC Mg be a polyhedron with recession cone C.

(@) The setV={ve P|vis averte} is finite and is nonempty if and only if C is
strongly convex.

(b) If C is strongly convex, then £ Con\V) +C.

Proof. You will prove this in Exercises 7.1.2-7.1.5. O
Example 7.1.2.The polyhedrorP® = {(a,...,a,) € R"| & > 0,5 ;& > 1} has
verticesey, ..., €, and recession cor@= Congey,...,&,). O

Lattice Polyhedra We now generalize the notion of lattice polytope.
Definition 7.1.3. A polyhedronP C My, is alattice polyhedrorwith respect to the
latticeM C Mg if

(a) The recession cone Bfis a strongly convex rational polyhedral cone.

(b) The vertices oP lie in the latticeM.

A full dimensional lattice polyhedron has a unique facespraation
(7.1.2) P={me Mg | (mug) > —ag for all facetsF },

whereur € N is a primitive inward pointing facet normal. This was defiriad
Chapter 2 for full dimensional lattice polytopes but applegually well to full
dimensional lattice polyhedra. Then defi@g?) C Mg x R by

C(P)={(mX) e Mg xR | (mug) > —Xag forall F, A > 0}.

WhenP is a polytope, this reduces to the cdd@) = CongP x {1}) considered
in §2.2.

Example 7.1.4. The blowup ofC? at the origin is given by the faR in R? with
minimal generatorsy = €; + €, Uy = €1, U = €, and maximal cones Cofi, u; ),
Condup, uy). For the divisorD = Do+ D1 + D,, we computed in Figure 5 from
Example 4.3.4 that the polyhedr®y is a 2-dimensional lattice polyhedron whose
recession con€ is the first quadrant.

Figure 1 on the next page shows the 3-dimensional i) with Py at
height 1. Notice how the cor@of Py appears naturally at height 0 in Figure 1)

Some of the properties suggested by Figure 1 hold in general.
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Figure 1. The coneC(Py)

Lemma 7.1.5. Let P be a full dimensional lattice polyhedron inMvith recession
cone C. Then (P) is a strongly convex cone infvk R and

C(P)N (Mg x {0}) =C.

Proof. The final assertion of the lemma follows from (7.1.1) and tb@rition of
C(P). For strong convexity, note th&{(P) C Mg x R>q implies

C(P)N(—C(P)) € Mg x {0}.

Then we are done sincgis strongly convex. O

We say that a poinfm, \) € C(P) hasheight\. Furthermore, when > 0, the
“slice” of C(P) at height) is AP. If we write P = Q+C, whereQ is a polytope,
then for\ > 0,

AP=XQ+C

sinceC is a cone. It follows that as — 0, the polytope shrinks to a point so that at
height 0, only the con€ remains, as in Lemma 7.1.5. You can see how this works
in Figure 1.

The Toric Variety of a Polyhedron In Chapter 2, we constructed the normal fan
of a full dimensional lattice polytope. We now do the sameddull dimensional
lattice polyhedrorP. Given a vertex € P, we get the cone

C,=CondPNM —v) C Mg.
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Note thatv € M sinceP is a lattice polyhedron. It follows easily th@j is a strongly
convex rational polyhedral cone of maximal dimension, st the same is true for
its dual

oy=C) = CondPNM —V)" C Ng.
These cones fit together nicely.

Theorem 7.1.6.Let PC Mg be a full dimensional lattice polyhedron with reces-
sion cone C. Then the coneg, v a vertex of P, and their faces form a fan ig N
whose support is C

Proof. The proof that we get a fan is similar to the proof for the pobg case (see
§2.3) and hence is omitted. To complete the proof, we needdw s

Jov=c,
veVv

whereV is the set of vertices dP. Now takeveV andme CNM. Thenm=

(Vv+m)—ve PNM —v, which easily implie€C C CongPNM —v). Taking duals,
we obtaino, C CV. For the opposite inclusion, takec CV and pickv € V such
that (v, u) < (w,u) for allwe V. We showu € oy as follows. Anyme PNM can
be writtenm= ) .\, \ww+m wherey >0, .y Aw= 1 andm € C. Then

<ma U> = ZWGV)\W<W’ u> + (rrf,u> > ZWGV)\W<V7 u> = <V7 U>.
Thus{m—v,u) > 0 for allm—ve PNM —v, which provess € o. O

The fan of Theorem 7.1.6 is thermal fanof P, denoted>p. We defineXp to
be the toric varietys,, of the normal farXp. Here is an example.

Example 7.1.7. The polyhedrorP = {(a,...,a,) € R"| & > 0,> ;& > 1} of
Example 7.1.2 has vertices, ..., e,. The facet ofP defined by} ;a = 1 has
e+ ---+ €, as inward normal. Then the vertexgives the cone

og =Conde; +---+ey,e1,...,8,...,6en).
These cones form the fan of the blowupf at the origin, soXp = Blg(C"). ¢

Note thatXp is not complete in this example. In general, the normal faa ha
support|3p| = CV. We measure the deviation from completeness as follows.

The supportXp| is a rational polyhedral cone but need not be strongly canvex
Recall thatW = |Xp| N (—|Xp|) is the largest subspace containedp|. Hence
|Xp| gives the following:

e The sublatticdV NN C N and the quotient lattichlp = N/(WNN).
e The strongly convex congpr = |Xp|/W C Ng /W = (Np)R.
e The affine toric varietyp of op.
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The projection mag : N — Np is compatible with the fans ofp andUp since
¢r(|Xp|) = op. Hence we get a toric morphism

¢2Xp—>Up.

Since|¥p| = Eﬂgl(ap) (Exercise 7.1.6), Theorem 3.4.7 implies thids proper.

The key result of this section is that: Xp — Up is a projective morphism.
From a sophisticated point of view, this is easy to see. Tme €gP) gives the
semigroup algebra

(7.1.3) S =C[C(P)N(M x Z)],

where the character associatedtak) € C(P) N (M x Z) is written x"tK. This
algebra is graded by height, i.e, dgdt*) = k. The Proj construction in algebraic
geometry associates a variety P&j) to the graded ring». In the appendix to
this chapter, we will discuss Proj and show that

Xp = Proj(S).
Then standard properties of Proj easily imply thatXp — Up is projective (see
Proposition 7.A.1 in the appendix). A more elementary ptbet ¢ is projective
will be given in Theorem 7.1.10.

The Divisor of a Polyhedron Let P be a full dimensional lattice polyhedron. Asin
the polytope case, facets Bfcorrespond to rays in the normal fal, so that each
facetF gives a prime torus-invariant divis@= C Xp. Thus the facet presentation
(7.1.2) ofP gives the divisor

Dp=> aeDr,
F

where the sum is over all facets Bf Results from Chapter 4 (Proposition 4.2.10
and Example 4.3.7) easily adapt to the polyhedral case to gt Dp is Cartier
(with m,, = v for every vertex) and the polyhedronDp is P, i.e.,P = Py,. Then
Proposition 4.3.3 implies that

(7.1.4) T'(Xp, 0% (Dp)) = € C-x™
mePNM
The definition of projective morphism given in §7.0 invohe$ine bundle?
and a finite-dimensional subspadeof global sections. The line bundle will be
Ox.(Dp) (actually a multiplekP) andW will be determined by certain carefully
chosen lattice points &P. The reason we need a multiple is tRatnight not have
enough lattice points.

Normal and Very Ample Polyhedraln Chapter 2, we defined normal and very
ample polytopes, which are different ways of saying thatetee enough lattice
points. For a lattice polyhedrdp, the definitions are the same.
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Definition 7.1.8. Let P C Mg be a lattice polyhedron. Then:

(a) P is normal if for all integersk > 1, every lattice point okP is a sum ofk
lattice points ofP.

(b) Pisvery amplef for every vertexv € P, the semigroupN(PNM —v) generated
by PNM —vis saturated iM.

We have the following result about normal and very ample ipediya.

Proposition 7.1.9. Let PC Mg be a lattice polyhedron. Then:
(@) If P is normal, then P is very ample.
(b) If dimP = n > 2, then kP is normal and hence very ample for alt k— 1.

Proof. Part (a) follows from the proof of Proposition 2.2.17. Fortggh), letQ be
the convex hull of the vertices &, so thatP = Q+ C, whereC is the recession
cone ofP. Itis easy to see th& is normal wheneveQ is (Exercise 7.1.7). Note
also that

kP=kQ+C.
Now supposek > n— 1. If dimQ = 1, thenkQ and hencekP are normal. If
dimQ > 2, thenkQ is normal by Theorem 2.2.11, so th& is normal. TherkPis
very ample by part (a). O

The Projective Morphism Let P be a full dimensional lattice polyhedron Mg,
and assume tha is very ample. Then pick a finite se¥ C PN M with the
following properties:

e o/ contains the vertices ¢1.
e For every vertex € P, & — v generates CoifeNM —v)NM = oy NM.

We can always satsify the first condition, and the secondssipke sinceP is very
ample. Using (7.1.4), we get the subspace

W = Sparf{x™ | me &) C I'(Xp, Ox,(Dp)).
We claim thatW/ has no basepoints sineg contains the vertices d&@. To prove
this, letv be a vertex. Recall th&p + div(x") is the divisor of zeros of the global
section given byyY. One computes that
Dp +div(x") = > ¢ (@ + (v, Ur)) D

Since (v,ur) = —ar for all facets containings and (v,ur) > —ag for all other
facets, the support dDp + div(y") is the complement of the affine open subset
U,, C Xp, i.e., the nonvanishing set of the section is preciggy. Then we are
done since th&,, coverXp.

It follows that we get a morphism
bow: Xp — P(WY)
for £ = Ox.(Dp). Here is our result.
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Theorem 7.1.10.Let P be a full dimensional lattice polyhedron. Then:
(a) The toric variety X is quasiprojective.
(b) ¢: Xp — Up is a projective morphism.

Proof. First suppose thaP is very ample. The proof of part (a) is similar to
the proof of Proposition 6.1.4. Le¥, W and .« be as above and write/ =
{my,...,ms}. Consider the projective toric variety

Xy CPSt=PWY).

Letl C {1,...,s} be the set of indices corresponding to verticeR.0boi € | gives
a vertexmy and a corresponding core = o, in Xp. Also letU; C PS—1 be the
affine open subset where tith coordinate is nonzero. By our choice .of, the
proof of Proposition 6.1.4 shows that, \y induces an isomorphism

Uy >~ Xy NU;.
SinceXp is the union of théJ,, fori €1, it follows that
(7.1.5) drw:Xp L»Xtofmuielui.

SinceX,, is projective, this shows thade is quasiprojective. Part (b) now follows
immediately from Proposition 7.0.6 singe Xp — Up is proper.

WhenP is not very ample, we know that a positive multi@ is. SinceP
and kP have the same normal fan and same recession cone, theXpapdJp
andXyp — Ugp are identical. Hence the general case follows immediately the
very ample case. O

Example 7.1.11. The polytopeP from Example 7.1.7 is very ample (in fact, it
is normal), and the set used in the proof of Theorem 7.1.10 can be chosen to
be.o = {ey,... e, 26,...,26,} (Exercise 7.1.8). This gives,, C P?"~1, where
P?"~1 has variablesy, . .., X, Wi, ..., W, corresponding to the elemerds ..., e,
2ey,...,26, of o7. ThenX, C P?-1 s defined by the equationgw; = szwi
for 1 <i < j < n (Exercise 7.1.8). Sinc¥p = Blo(C") by Example 7.1.7, the

isomorphism (7.1.5) implies
Blo(C") =~ {(X1, ..., Xn, W1, ..., Wp) € P21 | (xq,...,%1) # (0,...,0)
andx?w; = xfw; for 1<i < j <n}.
We get a better description of &IC") using the vertices# = {ey,...,ey} of P.
This gives a mape — P"~! which, when combined witkp — Up = C", gives
a morphism
d:Xp — P CN.

Let P"~1 andC" have variables, ..., x, andys, ...,y respectively. The is an
embedding onto the subvariety®f~1 x C" defined byxy; = xjy; for L<i < j<n
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(Exercise 7.1.8). Hence
Blo(C") =~ {(X1,-- -, X, Y1,---,¥n) €P" X C" [ xy; = xjyi,1<i< j<n}

This description of the blowup B{C") can be found in many books on algebraic
geometry and appeared earlier in this book as Exercise.3Nb& also that the
projective morphism of Theorem 7.1.10 is the blowdown mag®!) — C". ¢

Here is an example to illustrate the ideas of this section.

Example 7.1.12.Consider the full dimensional lattice polyhedrBrC R? defined
by the inequalities

X<2,0<y<2y>x+1
This polyhedron has vertices = (1,0),v» = (2,1),v3 = (2,2) shown in Figure 2.
The left side of the figure also shows the recession €baad the decompostion
P = Q+C, whereQ is the convex hull of the vertices.

< < V3
A 4 0-1
O, 1
.V <
? O34
P 2p
(0,0 V1
P=Q+C V. !
= 3 oo
\Z
C Q
—
(0,0) V1

Figure 2. The polyhedrorP = Q+ C, the normal fartp, and the conep

The normal vectors at each vertexare reassembled on the right to give the
maximal coness; of normal fanXp. Note also thatXp| is not strictly convex,
so we mod out by its maximal subspace to get the strictly conemeop. The
projection map on the right of Figure 2 gives the projectiverphismXp — Up,
whereUp ~ C is the toric variety obrp. O
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Exercises for §7.1

7.1.1. Prove (7.1.1). Hint: Fixiny € P and take anyn e C. Show thatmy+ Am e P for
A >0, so{mp+ Am,u;) > —g;. Then divide by\ and letA — cc.

7.1.2. Let P = Q+C be a polyhedron itMg whereQ is a polytope an€ is a polyhedral

cone. Definepp(u) = minpep(m,u) forue CV.

(@) Show thatpp(u) = minmeg(m,u) for ue C” and conclude thape : C¥ — R is well-
defined.

(b) Show thatpp(u) = minyey, (v, u) for ue C”, whereVq be the set of vertices @.

(c) Show that = {me Mg | pp(u) < (m,u) for allu € CV}. Hint: For the non-obvious
direction, represemR as the intersection of closed half-spaces coming from stipgo
hyperplanes.

7.1.3. Let P be a polyhedron itMg with recession con€ and letW = CN (—C) be the
largest subspace containeddn Prove that every face ¢f contains a translate & and
conclude thaP has no vertices whe@ is not strongly convex.

7.1.4. Let P = Q+C be a polyhedron itMg whereQ is a polytope an€ be a strongly
convex polyhedral cone. L& be the set of vertices @. Assume that there s € Vg

andu in the interior ofC¥ such that(v,u) < (w,u) for all w# v in V. Prove that is a
vertex of P. Hint: Show thatH, ,, a = (v,u), is a supporting hyperplane &f such that
Hu,aNP = v. Also show ifv andu satisfy the hypothesis of the problem, then sovdmd
U’ for anyu’ sufficiently close tai. Finally, Exercise 7.1.2 will be useful.

7.1.5. Let P = Q+C be a polyhedron itMg whereQ is a polytope and be a strongly
convex polyhedral cone. L¥&, be the set of vertices @ and let

Uo = {u e Int(CY) | (v,u) # (w,u) whenever # win Vg}.
(a) Show thatJg is open and dense . Hint: dimCV = dimNg.

(b) Use Exercise 7.1.4 to show that for everg U, there is a vertex of P such that
wp(Uu) = (v,u). Conclude that the s&b of vertices ofP is nonempty and finite.

(c) Show thatpp(u) = minyey, (v,u) forue CV.

(d) Conclude thaP = ConVVp) +C. Hint: The first step is to show that = ¢p/, where
P’ = Con\Vp) +C. Then use part (c) of Exercise 7.1.2.

7.1.6. Let C C Nr be a polyhedral cone with maximal subsp&¢e= CN (—C) and let
o C Ng/W be the image o€ under the projection map: Ng — Ng/W. Prove that is
strongly convex and th& = v~ 1(o).

7.1.7. Let P be a lattice polytope and |1€ be the convex hull of the vertices Bf Prove
that if Q is normal therP is normal.

7.1.8. Prove the claims made in Example 7.1.11.

7.1.9. In this exercise, you will prove a stronger version of pajtqbrheorem 7.1.10. Let
Xz andW be as in the proof of the theorem. Prove that there is a contiveitiagram

Xo —02N L o x P(WY)
(7.1.6) o
¢

Up
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such thatp x 2w : Xp — Up x P(WV) is a closed embedding. Hint: See the proof of
Proposition 7.0.6.

7.1.10. Let 0 C Ng be a strongly convex rational polyhedral cone. This givessmi-
group algebr&[S,| = C[¢¥ NM]. Given a monomial ideal = (x™,...,x™) C C[S,],
we get the polyhedron

P=ConvmeM | x" € a),
Prove thaP = Conv(my,...,m) + o V.

§7.2. Projective Morphisms and Toric Varieties
We now study when a toric morphisKy; — Xy is projective.

Full Dimensional Convex Support We first consider fanX in Ng ~ R" that sat-
isfy the following conditions:

e |X| C Ng is convex.
e dim|X| =n=dimNg.
We say that: hasconvex support of full dimensiouch fans satisfy
(7.2.1) S| =Condu, [ pex(1)= |J o
oex(n)
(Exercise 7.2.1). In particular, the maximal conesoiave dimensiom, so we
can focus orr € X(n), just as in the complete case considered in §6.1.

The rational polyhedral cong:| may fail to be strongly convex. The largest
subspace contained jB| isW = |X| N (—|X|). Hence we get the following:

e The sublatticdV NN C N and the quotient lattichly, = N/(WNN).

e The strongly convex coney, = |X|/W C Ng /W = (Ng)r.

e The affine toric varietyJy, = U,,.
The projection map : N — Ny, is compatible with the fans ofy; andUsy, since
¢g(|2|) = ox. This gives a toric morphism
(7.2.2) ¢: Xy — Us.
which as in 87.1 is easily seen to be proper. The differentedmn here and §7.1
is thato : Xs; — Uy, may fail to be projective. Our first goal is to understand when

¢ is projective. As you might suspect, the answer involvegetpfunctions and
convexity.

The Polyhedron of a Divisar A Weil divisor D = Zp a,D, on Xy, gives the poly-
hedron

Po={me Mg | (mu,) > —a, forall p}.
When X is complete, this is a polytope, but as we learned in 87.1eimecal we
have

Fb = Q+C7
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whereQ is a polytope an€ is the recession cone 6p.

Lemma 7.2.1. AssumgX| is convex of full dimension and let® 3 a,D, be a
Weil divisor on X%. If Py # (), then:

(@) The recession cone op s [X]V.
(b) The setV={ve R | vis a vertex is nonempty and finite.
(c) Pb =ConuV) +|X]V.

Proof. Combining (7.1.1) with the definition d%, we see that the recession cone
of B is

{me Mg | (mu,) >0forallp} =|%|Y
since|X| = Congu, | p € (1)) by (7.2.1). This proves part (a). The recession

cone is strongly convex sin¢E| has full dimension, so that parts (b) and (c) follow
from Lemma 7.1.1. O

Divisors and Convexity The definition of convex function given in 86.1 applies
to any convex domain ilNg. Thus, whenX| is convex, we know what it means
for the support function of a Cartier divisor to be convexeTonvexity results of
86.1 adapt nicely to fans with full dimensional convex suppo

Theorem 7.2.2.Assuméy:| is convex of full dimension n and lgp be the support
function of a Cartier divisor D on X. Then the following are equivalent:

(a) D is basepoint free.

(b) m, € By for all o € X(n).

(c) Pb =Conv(im, | o € 3(n)) +|X|V.

(d) {m, | o € ¥(n)} is the set of vertices ofpP
(€) vp(u) = Minpep, (M, u) for allu € X

(M) ¢p(u) =min,cs ) (M, u) forall u € 3.
(9) ¢p : |X| — R is convex.

Proof. This theorem generalizes Theorem 6.1.10. We begin by nittisigPropo-
sition 6.1.2 and Lemma 6.1.8 remain valid wheh is convex of full dimension.
Since Lemma 6.1.9 applies to arbitrary fans, the equivaleifa)= (b) < (e) &
() < (g) follow as in the proof of Theorem 6.1.10. The implicati@@) = (c)
follows from Lemma 7.2.1, and (e} (b) is obvious. Finally, (b} (d) follows by
the argument given the proof of Theorem 6.1.10. O

As a corollary, we see thd is a lattice polyhedron wheb is a basepoint
free Cartier divisor.
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Strict Convexity Our next task is to show thét: Xy, — Uy, is projective if and only

if X5 has a Catrtier divisor with strictly convex support functioWe continue to
assume thak has full dimensional convex support. As in §87.1, a suppartfion

¢p Is strictly convex if it is convex and for eaehe ¥ (n), the equationpp (u) =
(m,,u) holds only ono. One can check that Lemma 6.1.13 remains valid in this
situation.

Suppose thab = Zp a,D,, has a strictly convex support function. Then The-
orem 7.2.2 and Lemma 6.1.13 imply that tmg, o € 3(n), are distinct and give
the vertices of the polyhedrd®,. This polyhedron has an especially nice relation
to the fan.

Proposition 7.2.3. Assume tha>| is convex of full dimension and® 3 a,D,
has a strictly convex support function. Then:

(&) Py is a full dimensional lattice polyhedron.

(b) X is the normal fan of p.

Proof. As in 87.1, a vertexm, € Py gives the con&€,,, = CondPb "M —m,).
We claim that
o= C,\T/b.
This easily implies thal®y has full dimension and that is the normal fan oPp.
Fix o € ¥(n) and letp € o(1). Thenm e Po N M implies

(723) <m’ up> 2 QOD(UP) = <rnO'7uP>7

where the inequality holds by Lemma 6.1.9 and the equalitgshsinceu, < o.
Thus(m—m,,u,) > 0 for allme BbNM, so thatu, € Cy,_forall p € o(1). Hence

o C Cr¥,0.
Since|X|V is the recession cone 86, the proof of Theorem 7.1.6 implies
Cn CIZI= | o
oex(n)
Now takeu € Int(Cy,_). Henceu € o' for somes’ € X(n). Thenu e C;_ and
m, — M, € Cy, imply
(my: —my,u) >0, so (M, u) > (M, u).

On the other hand, if we apply (7.2.3) to the casfeand m = m,, we obtain
(My,U,) > (M,,U,). We conclude that

<rncrau> = <m0/7u>7
and the same equality holds for all elements of@jf ) N o’. This easily implies
thatm, = m,-. Theno = ¢’ by strict convexity, so that € o. O

Here is the first major result of this section.
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Theorem 7.2.4.Let¢o : X5 — U, be the proper toric morphism where; Uik affine.
Then|X| is convex. Furthermore, the following are equivalent:

(a) Xy is quasiprojective.
(b) ¢ is a projective morphism.
(c) Xy has a torus-invariant Cartier divisor with strictly convexpport function.

Proof. Since¢ is proper, Theorem 3.4.7 implies that| = Zﬂgl(a). Thus|X| is
convex. To prove (&) (b) < (c), first assume thak| has full dimension.

If () is true, thenX is the normal fan of the full dimensional lattice polyhedron
Po by Proposition 7.2.3. 1t follows thaXy, = Xp,, which is quasiprojective by
Theorem 7.1.10, proving (a). Furthermore, £a)Xb) by Proposition 7.0.6.

If (b) is true, we will use the theory of ampleness developed7B]. The
essential facts we need are summarized in the appendixstahiipter. Since
is projective, there is a line bundl® on Xy, that satisfies Definition 7.0.3. Then,
sincel,, is affine, Theorem 7.A.5 and Proposition 7.A.7 imply that

o K Z @0y Poy L (ktimes) is generated by global sections for some
integerk > 0.

e The nonvanishing set of a global section®fis an affine open subset &§;.

We know from §7.0 that? ~ Ox, (D) for some Cartier divisor oiX, and
since linearly equivalent Cartier divisors give isomorphine bundles, we may
assume thdD is torus-invariant (this follows from Theorem 4.2.1). Thex, (kD)
is generated by global sections for sokne 0. This implies thatpxp = k¢p is
convex by Theorem 7.2.2, so thap is convex as well. We will show thatp is
strictly convex by contradiction.

If strict convexity fails, then Lemma 6.1.13 implies thaeta is a wallr =
oNo’in 3 with m, =m,. Thenm= m, = m, corresponds to a global section
s, which by the proof of Proposition 6.1.2 is nonvanishinglgn(sincem=m,)
and onU, (sincem= m,-). Thus the nonvanishing set contalds UU,, which
contains the complete cur¥&(r) C U, UU,-. But being affine, the nonvanishing
set cannot contain a complete curve (Exercise 7.2.2). Tgptetes the proof of
the theorem whef| has full dimension.

It remains to consider what happens whEhfails to have full dimension. Let
N; = Spar{|2]) NN and pickNg C N such thatN = Np@® N;. The cones ok lie in
(N7)r and hence give a faR; in (N3)r. If No has rankr, then Proposition 3.3.11
implies that

(7.2.4) Xs; ~ (C*)" X Xy,

It follows thatpp : |X| = |X1] — R is the support function of a Cartier divisbr
on Xy,. Note also that¥4| is convex of full dimension ir{N;)g. Since(C*)" is
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guasiprojective, this allows us to reduce to the case ofdutiensional support.
You will supply the omitted details in Exercise 7.2.3. O

f-Ample and f-Very Ample Divisors The definitions of ample and very ample
from 86.1 generalize to the relative setting as follows. &aldoom Definition 7.0.3
that a morphisnf : X — Y is projective with respect to the line bundi when for

a suitable open coveiJ;} of Y, we can find global sectiors, ... s of . over
f~1(U;) that give a closed embedding

f_l(Ui) — Ui x Pk,
Then we have the following definition.
Definition 7.2.5. Suppose thab is a Cartier divisor on a normal variety and
f: X — Y is a proper morphism.

(a) The divisorD and the line bundl&x (D) are f-very ampleif f is projective
with respect to the line bundl&’ = 0 (D).

(b) D and0x (D) are f-amplewhenkD is f-very ample for some integér> 0.

Hencef : X — Y is projective if and only ifX has anf-ample line bundle.
Theorem 7.2.6.Let ¢ : X5, — U, be a proper toric morphism where,Us affine,
and let D=7} a,D, be a Cartier divisor on X. Then:

(a) D is ¢p-ample if and only ifpp is stricly convex.
(b) If dimXy, =n> 2and D is¢-ample, then kD ig-very ample for all K> n— 1.

Proof. This follows from Proposition 7.1.9 and Theorem 7.2.4. d

Here is an example to illustrate

Example 7.2.7.Consider the blowdown morphisth: Blo(C") — C". The fan for
Blo(C") has minimal generatong = €, +--- + e, andu; = g for 1 <i < n. Let
Do be the divisor corresponding tg. The support functiop_p, of —Dg is easily
seen to be strictly convex (Exercise 7.2.4). Thus:

e —Dgis ¢g-ample by Theorem 7.2.6.

e ¢ is projective by Theorem 7.2.4.
Note also that the polyhedrd®.p, is the polyhedrorP from Example 7.1.7. ¢
Projective Toric Morphisms Suppose we have faisin Nr andX’ in Ng. Recall
from 8§3.3 that a toric morphism

¢ Xy — Ky
is induced from a map of lattices
¢:N—N

compatible with™ andy’, i.e., for eachr € X there iso’ € ¥’ with ¢y (c) C o’.
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We first determine when a torus-invariant Cartier divisor>gnis ¢-ample.
Since projective morphisms are proper, we can assumebtisaproper, which by
Theorem 3.4.7 is equivalent to

__1 ’
(7.2.5) X = or " (I1X']).
Here is our result.

Theorem 7.2.8.Let¢ : Xs; — Xy be a proper toric morphism and let-B Zp a,D,
be a Cartier divisor on X.

(@) D is ¢p-ample if and only if for every’ € ¥/, pp is stricly convex oriﬂgl(a’).
(b) If dimXy =n> 2and D isg-ample, then kD ig-very ample for all k> n— 1.

Proof. The idea is to study what happens over the affine open subsets Xs
for o/ € ¥'. Observe thap—1(U, ) is the toric variety corresponding to the fan

S = {0 € 2| Fgl0) C o).
Thusp™ (U, ) =Xg_,. Letg, = ¢l 4-1u_,) and consider the diagram

Xs —2— Xy

J J

Gor
¢_1(UU’ ) B UU’

I I
o
Xy, ———U,.

Also letD, be the restriction ob to ¢~1(U,/) = Xy,
By Proposition 7.A.6D is ¢-ample if and only if the restrictioli)|¢,1(U ) is
¢|¢*1(u ,)-ample for allo’ € 3. Using the above notation, this becomes

D is ¢g-ample < D, is ¢, -ample for allo’ € X'.
However, Theorem 7.2.6 implies that
D is ¢o-ample <= ¢p_, is strictly convex
This completes the proof of the theorem. O
It is now easy to characterize when a toric morphism is ptivjec

Theorem 7.2.9.Let ¢ : Xy, — Xy be a toric morphism. Then the following are

equivalent:

(a) ¢ is projective.

(b) ¢ is proper and X has a torus-invariant Cartier divisor D whose support
functionyp is strictly convex oriﬂgl(a’) forall o’ € ¥'. O
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You will prove Theorem 7.2.9 in Exercise 7.2.5. The first graichis theorem
was given in 103 Thm. 13 of Ch. I]. In Chapter 11 we will use this result to
construct interesting examples of projective toric mospis.

Exercises for §7.2
7.2.1. Prove (7.2.1).

7.2.2. Prove that an affine variety cannot contain a complete yenigtositive dimension.
Hint: If X is complete and irreducible, théi{X, &x) = C.

7.2.3. This exercise will complete the proof of Theorem 7.2.4. ketXs, — U, satisfy
the hypothesis of the theorem and wiXg as in (7.2.4). We also have the Cartier divisors
D on Xy andD; on Xy, as in the proof of the theorem.

(&) Assume that is projective. Prove thaXs, is quasiprojective and conclude thé, is
quasiprojective. Now use the first part of the proof to shoat ¢, is strictly convex.
Hint: See Exercise 7.0.1.

(b) Assume thapp is strictly convex. Prove thafs, is quasiprojective and conclude that
Xs is quasiprojective. Then use Proposition 7.0.6.

7.2.4. Prove that the support functiagp_p, in Example 7.2.7 is strictly convex. We will
generalize this result considerably in Chapter 11.

7.2.5. Prove Theorem 7.2.9.

§7.3. Projective Bundles and Toric Varieties

Given a vector bundle or projective bundle over a toric \Wgrithe nicest case is
when the bundle is also a toric variety. This will lead to sdmesly examples of
toric varieties.

Toric Vector Bundles and Cartier DivisorsA Cartier divisorD = a,D, on a
toric variety Xy, gives the line bundleZ = 0. (D), which is the sheaf of sections
of the rank 1 vector bundle : Vo — Xs..

We will show thatV ¢ is a toric variety andr is a toric morphism by construct-
ing the fan oV« in terms ofX andD. To motivate our construction, recall that for
me M, we have

XM €T (Xg, Ox. (D)) < meP
<= (mu) > pp(u) forallu e |X|
<= the graph ol — (m,u) lies
abovethe graph ofpp.
The first equivalence follows from Proposition 4.3.3 andggeond from Propos-

tion 6.1.9. The key word is “above”: it tells us to focus on et of Ng x R that
lies above the graph aofp.
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We define the fart x D in Ng x R as follows. Giverv € ¥, set

c={(uA)|ueo, A>ep(u)}
= COI’]Q(O, 1)7 (uP7_aP) ‘ pEe U(l))7

where the second equality follows singg(u,,) = —a, andyp is linear ons. Note
thato is a strongly convex rational polyhedral coneNg x R. Then let> x D be
the set consisting of the conédor o € ¥ and their faces. This is a fan Mg x R,
and the projectiorr : N x Z — N is clearly compatible witlE x D andX. Hence
we get a toric morphism

7 Xeuxp — Xs.

Proposition 7.3.1. 7 : Xs;«xp — Xy is a rank1 vector bundle whose sheaf of sec-
tions isOx,, (D).

Proof. We first show thatr is a toric fibration as in Theorem 3.3.19. The kernel
of T:NxZ — NisNg= {0} xZ, and the fart g = {c € ¥ x D | ¢ C (No)r } has
oo = Cond(0,1)) as its unique maximal cone. Also, ferc ¥ let

5 = Cond(u,,~2,) | p€ o (1)).

This is the face o0& consisting of pointgu, \) wherepp(u) = A. Thuso € ¥ x D
and in factS = {5 | o € £} is a subfan ofS x D. Sinced = & + 0o and 7
mapsao bijectively to o, we see thak x D is split by 3 and X in the sense of
Definition 3.3.18. Sinc&sx, n, = C, Theorem 3.3.19 implies that

7 HUy) ~U, x C.
To see that this gives the desired vector bundle, we studyrdinsition func-
tions. First note that—1(U, ) = Uz, so that the above isomorphism is
Ug ~U, X (C,

which by projection induces a mdyy — C. It is easy to check that this map is
x ™1 wherepp (u) = (m,,u) for u € o (Exercise 7.3.1). Note that

(—my,1) €5V N(MxZ),

follows directly from the definition otr. Then, given another cone € 3, the
transition map front,n, x C CU, x CtoU,n, x C C U, x Cis given by(u,t) —
(U,9,- (U)t), whereg,, = x™ ~™ (Exercise 7.3.1).

We are now done, since the proof of Proposition 6.1.20 shbatxix, (D) is
the sheaf of sections of a rank 1 vector bundle o¢emhose transition functions
areg,, = ™M, O

This construction is easy but leads to some surprising sielmgles.
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Example 7.3.2. ConsiderP" with its usual fan and lebg correspond to the min-
imal generatoy = —e; —--- — e,. Recall thatdpn(—Dyg) is denoteddpn(—1).
This gives the rank 1 vector bundle— P" described in Proposition 7.3.1 whose
fan ¥ in R" x R = R™?! has minimal generators

€1,...,6nt1, =€ — - — 6+ Eny1.
You will check this in Exercise 7.3.2.

We can also describe this vector bundle geometrically &asl Consider the
lattice polyhedron iR"+1 given by

P=Conv0,ey,...,e,)+Con€enr1,e1+€ni1,---,6n+ ens1)-

The normal fan ofP is the fanX (Exercise 7.3.2), so tha¢r is the above vector
bundleV. Note also that>| is dual to the recession cone Rf

It is easy to see thak:| is a smooth cone of dimensiori 1, so that the pro-
jective toric morphismXp — Up constructed in §7.1 becom&s — C™1. When
combined with the vector bundle m&p =V — P", we get a morphism

Xp — P"x CM1L.

When the coordinates & andC"* are ordered correctly, the image is precisely
the variety defined by;y; = x;y; (Exercise 7.3.2). In this way, we recover the
description oV — P" given in Example 6.0.19. O

Proposition 7.3.1 extends easily to decomposable toritovdindles. Sup-
pose we have Cartier divisorsD; = Zpaipr, i=1,...,r. This gives the locally
free sheaf

(7.3.1) Oxs,(D1) & --- & Oy, (Dy)

of rankr. To construct the fan of the corresponding vector bundle woek in
Nr x R". Letey,...,& be the standard basis Bf and write elements dflr x R’
asu+ A\ie1+---+ Ar&. Then, givers € 33, we get the cone

= Congu, —ap,e — - —a,& | pco(l)) +Condey,...,&).

One can show without difficulty that the set consisting of thaesc for o € &
and their faces is a fan g x R" such that the toric variety of this fan is the vector
bundle oveiXy; whose sheaf of sections is (7.3.1) (Exercise 7.3.3).

Besides decomposable vector bundles, one can also dedirie @ector bundle
7 :V — Xs. Here, rather than assume tWais a toric variety, one makes the weaker
assumption the torus of: acts orlvV such that the action is linear on the fibers and
7 is equivariant. Toric vector bundles have been classifielIpsichko [106 and
others—seel3§ for the historical background. Oda noted &8p, p. 41] that if a
toric vector bundle is a toric variety in its own right, thémetbundle is a direct sum
of line bundles, as above. This can be proved using Klyashigsults.

o={u+Me+---+X e |ucao, A\i>ep(ufori=1,....r}
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Toric Projective Bundles The decomposable toric vector bundles have associated
toric projective bundles. Cartier divisoBy, . ..,D; give the locally free sheaf

& = Ox5(Do) @ -+ & O, (Dr),
of rankr +1. ThenP (&) — Xy, is a projective bundle whose fibers look liRé.

To describe the fan df(&’), we first give a new description of the fan®f. In
R™*1, we use the standard basis. .., . The “first orthant” Conéesy, ..., &) has
r + 1 facets

F =Con€dep,....68,...,&), i=0,....r.
Now setN = Z'*1/Z(eg + - -- +&). Then the imageg of g sum to zero ifN and
the images-; of F, give the fan forP" in Ng.

The construction oP(&’) given in §7.0 involves taking the dual vector bundle.
ThusP(&) =P(Ve), whereVy is the vector bundle whose sheaf of sections is

Ox,(—Do) & - -+ @ Ox,,(—Dy).
The fan ofV, is built from cones

Congu, +ag,&+--+a,& | peo(l))+Condey,....&)

and their faces, asranges over the conesc X. To get the fan fol?(&£) = P (Vs ),
takeo € ¥ and letF be a facet of Coney, ...,€ ). This gives the cone

Con€u, + 3,80+ -+ a6 | p€ (1)) +F C Ng x R
and one sees that C Nr x N is the image of this cone under the projection map
Ng x R™*1 — Ng x Ng.
Proposition 7.3.3. The coneqo; | 0 € ¥,i =0,...,r} and their faces form a fan
Y ¢ in Ng x Ng whose toric variety X is the projective bundI&(&).

Proof. Consider the faig in Ng given by theF; and their faces. Also, for € X,
let 5 be the image of Corfe, +ag,e0+ - +ar,& | p € 0(1)) in Nr x Ng. Then
one easily adapts the proof of Proposition 7.3.1 to showttie@toric varietyXs
of X, is a fibration oveiXs; with fiber P'. Furthermore, working over an affine
open subset oKy, one sees thals is obtained fronV, by the process described
in §7.0. We leave the details as Exercise 7.3.4. O

In practice, one usually replacéé= Z'+1/Z(ey + --- + &) with Z" and the
basisey,...,&. Then segpg = —e; — - -- — g and we redefing as
(7.3.2) F = Condey,...,8,...,&) CR'
and for a coner € X, redefines; as
(7.3.3)  oi=Condu,+ (a1, —ag,)er+ -+ (&, —ao,)& | p € 0(1)) + F
in Ng x R". This way,X ¢ is a fan inNg x R". Here is a classic example.
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Example 7.3.4.The fan forP! has minimal generatong, andup = —u;. Also let
Op1(1) = Op1(Do), whereDg be the divisor corresponding t®. Fix an integer
a> 0 and consider
& = Op1 @ Opa(a).

As above, we get afaBs in R x R = R2. The minimal generatons, u; live in the
first factor. In the second factor, the vectegs= — Z{zla,el, ...,& in the above
construction reduce tey = —ej,e;. Thusky = Conge;) andF; = Condep). We
will use uy, e as the basis dR?.

The maximal cones for the fan &' arec = Condu;) ando’ = Congu).
ThenX ¢ has four cones:

oo = Conguy + (0—0)ey) + Fo = Conguy, &)
1= Condu; + (0—0)e) + F1 = Conguy, —ey)
5o = Coneuo -+ (a—0)er) + Fo = Cone —us + aey, 1)
1= ConeUo + (a—0)ey) +F1 = Cone—uy +aey, —€y).
This is the fan for the Hirzebruch surfagé,. Thus
Ha=P(Op ® Opr(3)).

Note also that the toric morphis#z — P! constructed earlier is the projection
map for the projective bundle. O

This example generalizes as follows.

Example 7.3.5.Given integers,r > 1 and 0< g < --- < &, consider the projec-
tive bundle
P(&) =P(Ops © Ops(a1) &+ © Ops(&)).
The fanX s of P(&£’) has a nice description. We will work RS x R", whereR®
has basisiy, ..., us andR" has basi®y,...,&. Also setug = — Z?Zl uj andeg =
— Zis:la. As usual,up corresponds to the divisdg of P° such thatops(a) =
ﬁ]ps(ai Do).
The description (7.3.3) of the conesihuses generators of the form

(7.3.4) Uy + (a1, —agp)er + - + (&, — agy) &,

where theu, are minimal generators of the fan of the base of the projedtiindle.
Here, theu,’s areup, ..., Us. Since we are using the divisorsedDo, . .., a Do, the
formula (7.3.4) simplifies dramatically, giving minimalmggrators

Up=Up: Vo=Up+ &€+ + &
U,=Uuj: vj=uj, j=1....s

Since the maximal cones Bf are Conéuy, ..., Uj,...,Us), (7.3.2) and (7.3.3) im-
ply that the maximal cones &f are

Condvy,...,Vj,...,Vs) + Condey, ....&,...,&)
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forall j=0,...,sandi=0,...,r. Itis also easy to see that the minimal generators
Vo, ..., Vs, €0,...,& have the following properties:

® Vi,...,Vs,€,...,6 form a basis ofZ° x Z'.
® Vo+ - +Vs=ae + -+ a6

The first two bullets are clear, and the third follows fro@?zo uj = 0 and the
definition of thev;.

One also sees that;, = P(&) is smooth of dimensios+r. SinceXs has
(s+1)+(r+1) = s+r+2 minimal generators, the description of the Picard group
given in 84.2 implies that

Pic(P(&)) ~ Z2.
(Exercise 7.3.5). Also observe thal, ...,vs} and{ey,...,& } give primitive col-
lections of¥,. We will see below that these are the only primitive collect
of ¥,. Furthermore, they are extremal in the sense of §6.3 and phignitive
relations generate the Mori coneBf&’).

This is a very rich example! O

A Classification Theorem Kleinschmidt [LO5 classified all smooth projective
toric varieties with Picard number 2, i.e., with P¥s;) ~ Z2. The rough idea is
that they are the toric projective bundles described in Eptard.3.5. Following

ideas of Batyrev§], we will use primitive collections to obtain the classifiice.

We begin with some results frond][about primitive collections. Recall from
86.3 that a primitive collectioR = {p1,...,px} C X(1) gives the primitive relation

(7.3.5) Up, + -+ Uy — sz'y(l) Coly, = 0, Cp € Q>o0,

wherey € ¥ is the minimal cone containing,, -+ - -- + U,. WhenXs is smooth
and projective, these primitive relations have some niopgities.

Proposition 7.3.6. Let X, be a smooth projective toric variety. Then:
(a) In the primitive relation(7.3.5) PN~(1) =0 and ¢, € Zq for all p € o(1).
(b) There is a primitive collection P with primitive relation,t4-- - - 4 u,, = 0.
Proof. Thec, are integral sinc& is smooth. Let the minimal generatorspbe
up,...,Us, SO the primitive relation becomes
Up, + -+ Up = CrU1 + - -+ 4 Cylp.
To prove part (a), suppose for example thgt= u;. Then
Up, -+ Uy = (Cl— 1)U1—|—C2U2'-'—|—C4Ug.

Note thatu,,, ..., U, generate a cone af sinceP is a primitive collection. So the
above equation expresses an element of a cohdmterms of minimal generators
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in two different ways. Sincé& is smooth, these must coincide. To see what this
means, we consider two cases:

e C; > 1. Then{u,,,...,u, } = {u,u,...,us}, so thatu, = uy for somei > 1.
This is impossible sinca,,, = u;.

e c;=1. Then{u,,,... U, } = {uz,..., U }. Sinceu,, = uy, we obtainP C v(1),
which is impossible sincP is a primitive collection.

Sincec; must be positive, we conclude that = u; leads to a contradiction. From
here, it is easy to see thet~(1) = 0.

Turning to part (b), letp be the support function of an ample divisor ¥§.
Thusy is strictly convex. Sinc& is complete, we can find an expression

(7.3.6) biu,, + - +bsu,, =0

such thaby, ..., bs are positive integers. Note thay ,...,u,, cannot lie in a cone
of 3. By strict convexity and Lemma 6.1.13, it follows that

(7.3.7) 0= ¢(0) = p(byu,, + - +bsu,,) > brp(uy,) + - -+ bsp(Up,).

Pick a relation (7.3.6) so that the right-hand side is as bigassible.

The set{u,,,...,u,} is not contained in a cone &f and hence has a subset
that is a primitive collection. By relabeling, we may assutiat {u,,,...,U,},
k <'s, is a primitive collection. Using (7.3.6) and the primitikeation (7.3.5), we
obtain the nonnegative relation

Z cpup+z 1), + Z biu,, = 0.

pev(1 i=k+1

Sincey is linear oryy and strictly convex,

Z Coo(Uy) = 90< Z Cpup) = ‘P(Ek:upi) > i@(upi)>
i=1 i=1

pe(1) pe(1)
which implies that

Z Cp%p(up)+2( e(Uy) + Z bio(Uy)

pev(1) i=1 i=k+1
k k
> Z‘P(upi) + Z( Uy ) + Z bip(u,,)
i=1 i=1 i=k+1

i=1
This contradicts the maximality of the right-hand side aB(7), unlesk = sand
by =--- =bx =1, in which case we get the desired primitive collection. O
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We now prove Kleinschmidt’s classification theorem.

Theorem 7.3.7.Let X% be a smooth projective toric variety witic(Xs) ~ Z2.
Then there are integersis> 1, s+r =dimXg and0 < a; <--- < a with

X~ P(ﬁﬂms & ﬁﬂms(al) D---D ﬁ]ps(a;)) .

Proof. Let n = dimXy. Then Pi¢Xs;) ~ Z? and Theorem 4.2.1 imply that(1)
hasn+ 2 elements. We recall two facts about divisbBren Xsx::

e If D is nef ando € X(n), thenD ~ 3 a,D, wherea, = 0 for p € o(1) and
a,>0forp¢o(l).
e If D> 0andD ~ 0, thenD = 0 sinceXy. is complete.

The first bullet was proved in (6.3.11), and the second is ag eansequence of
Propositions 4.0.16 and 4.3.8.

By assumption Xy, has an ample divisob which lies in the interior of the
nef cone NefXy). ChangingD if necessary, we can assume tlais effective
and [D] € Pic(Xy)r is not a scalar multiple of aniD,] for p € ¥(1). The line
determined by[D] divides Pi¢Xs)r ~ R? gives closed half-planed* andH .
Then define the sets

P={peX(1)|[D,] eHT}

Q={pex(D) D] eH"}.
Note thatPuQ = (1), andP N Q = () by our choice oD. We claim that
¥(n)={o,, | pP,p €Q}, where
00 = CONEU, | 5 € S(1)\ {p,'})-
To prove this, first take € ¥(n). Since|o(1)| = nand|X(1)| = n+ 2, we have
(7.3.9) Y1) =o0()U{p,p'}.
Applying the first bullet above t® and o, we get[D] = a[D,] + b[D,/] where
a,b > 0 since[D] is a multiple of neithefD,] nor [D,]. It follows that[D,] and

[D,/] lie on opposite sides of the line determined [BY. We can relabel so that
p € Pandy’ € Q, and therns has the desired form by (7.3.9).

For the converse, takec P andp’ € Q. Since Pi¢Xy)r ~ R2, we can find a
linear dependence

(7.3.8)

ag[D,] +bo[D,/] +co[D] =0, ag,bp,Co € Z not all Q

We can assume thak,bp > 0 since[D,] and [D,] lie on opposite sides of the
line determined byD]. Note also thaty < 0 by the second bullet above, and then
ap,bp > 0 by our choice oD. It follows thatD" = ayD, + bgD, is ample. In
Exercise 7.3.6 you will show that

X5\ SupgD’) = X5\ (D,UD,)
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is the nonvanishing set of a global section/{, (D’) and hence is affine. This set
is also torus-invariant and hence is an affine toric varigtyus it must beJ,, for
someg € Y. In other words,

X5 =U,UD,UD,.

SinceU, N (D,UD,) = 0, the Orbit-Cone correspondence (Theorem 3.2.6) im-
plies thato satsisfies (7.3.9) and hence gives an elemedi(af. This completes
the proof of (7.3.8).

An immediate consequence of this description31§h) is thatP and Q are
primitive collections. Be sure you understand why. It isoaisie thatP and Q
are theonly primitive collections of¥. To prove this, suppose that we had a third
primitive collectionR. ThenP ¢ R, so there is» € P\ R, and similarly there is
p' € Q\RsinceQ ¢ P. By (7.3.8), the rays oR all lie in o, , € ¥(n), which
contradicts the definition of primitive collection.

SinceXy is projective and smooth, Proposition 7.3.6 guaranteds’haas a
primitive collection whose elements sum to zero. We may rassthatP is this
primitive collection. Let|P| =r+1 and|Q| = s+ 1, sor,s> 1 since primitive
collections have at least two elements, ards= nsince|P|+ |Q| =n+ 2.

Now rename the minimal generators of the rayP iasey, . ..,€. Thus
e+ +e=0.

The next step is to rename the minimal generators of the rafsasvy, ..., Vs.
Proposition 7.3.6 implies th@?zovj lies in a coney € X whose rays lie in the
complement ofQ, which isP. SinceP is a primitive collection,y must omit at
least one element &, which we may assume to be the ray generatedybyfhen
the primitive relation ofQ can be written

Vot +Vs=aier+ - +ae,

and by further relabeling, we may assumg @; < --- < a,. Finally, observe that
V1,...,Vs,€1,...,6 generate a maximal cone Bfby (7.3.8). Sincex is smooth,
it follows that theser + s vectors form a basis dl. Comparing all of this to
Example 7.3.5, we conclude that the toric variety>bis the projective bundle
]P’(ﬁPS@ﬁ[ps(al)@"'@ﬁw(ar)). O

The classification result proved itQ5 is more general than the one given in
Theorem 7.3.7. By using a result frorhl[5 on sphere triangulations with few
vertices, Kleinschmidt does not need assume Xigits projective. Another proof
of Theorem 7.3.7 that does not assume projective can be fiouf Thm. 4.3].
We should also mention that our proof of (7.3.8) can be redmieg theGale
transformsdiscussed ing0, 11.4—6] and [L75, Ch. 6].
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Exercises for §7.3

7.3.1. Here you will supply some details needed to prove Theorem 7.3

(@) In the proof we constructed a malg — C. Show that this map ig (—™ %, where
¢p(U) = (M,,u) foru e o.

(b) Given cones, T € X, the transition map frold,n, x C CU, x C to U, x C C
UU x Cis given by(uat) = (Uvgar(u)t). Prove thaga‘r = mefmﬂ_

7.3.2.In Example 7.3.2, we study the rank 1 vector bundle: P" whose sheaf of sections
is Opn(—1). Let Y be the fan of/ in R™1,

(a) Provethae,... ,enr1,—€1— - - — €y + €41 are the minimal generators bf
(b) Prove thats is the normal fan of

P=ConV0,ey,...,e))+Conge, 1,61+ €ny1,...,E6n+ Ent1).

(c) The example constructs a morphigm- P" x C"1. Prove that the image of this map
is defined byky; = x;y; and explain how this relates to Example 6.0.19.

7.3.3. Consider the locally free sheaf (7.3.1) and the cangsNg x R" defined in the
discussion following (7.3.1). Prove that these cones aail faces give a fan iflg x R"
whose toric variety is the vector bundle with (7.3.1) as §bé&aections.

7.3.4. Complete the proof of Proposition 7.3.3.

7.3.5. Let P(&) — IP® be the toric projective bundle constructed in Example 7.Brove
that PidP(&)) ~ Z2.

7.3.6. Let D be an ample effective divisor on a complete normal varietyThe goal of
this exercise is to prove that\ SupgD) is affine.

(a) Assume thaD is very ample. Lets e I'(X,0x(D)) be nonzero and consider the
nonvanishing sebf s defined byU = {se€ X | s(x) # 0}. Prove thatU is affine.
Hint: SinceD is ample, a basis= 5,51, ...,5n of I'(X, Ox (D)) gives the morphism
X — P™described in (6.0.6), which is a closed embedding sihéevery ample. Let
P™ have homogeneous coordinatgs. . ., xm and regard as a subset dP™. Prove
thatU = XN U, whereUp C P™is wherexg # 0.

(b) Explain why part (a) remains true whé&nis ample but not necessarily very ample.
Hint: sk € T'(X, 0% (kD)).

(c) SinceD is effective, 1€ T'(X, €x(D)) is a global section. Prove that the nonvanish-
ing set of this global section X\ SupdD). Hint: Fors e I'(X, 0x (D)), recall the
definition of diw(s) given in 84.0.

Parts (b) and (c) imply thaX \ SupfD) is affine wherD is ample, as desired. Note also

that part (b) is a special case of Proposition 7.A.7.

7.3.7. In Example 2.3.15, we defined thational normal scroll §, to be the toric variety
of the polygon

Pab = Conv0,ae;, &, be + &) C R?,
wherea,b € N satisfy 1< a < b, and in Example 3.1.16, we showed ti8a}, ~ % _a,
i.e., every rational normal scroll is a Hirzebruch surfadéis exercise will explore an
n-dimensional analog d#, p,.
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Take integers KX dg < dj <--- <dy_1. ThenPy, . 4, , is the lattice polytope ifR"
having the 2 lattice points

0, doe1, &, €+ di€1, €3, €3+ 0hey,...,6n, En+dn_161

as vertices. The toric variety &, .. g, , is denotedsy,,. g, ;-
(@) ExplainwhyPy, 4., isa“truncated prism” whose basefid} x R"1is the standard

simplexAn_3, and above the vertices df,_; there are edges of lengtllg, ..., dn_1.
Here, “above” means thg direction. Draw a picture whem= 3.

(b) Provetha&y, . 4, , ~P(Op(do) DB Opr(dn-1)).
(¢) S....,d., is sSmooth by part (b), so th&, . 4, , iS very ample and hence gives a
projective embedding d&,,... 4, ,. Explain how this embedding consistsroémbed-

dings of P! such that for each poir € P!, the resultingn points in projective space
are connected by am— 1)-dimensional plane that lies By, g4, ,.

.....

(d) Explain how part (c) relates to the scroll discussionxaim@ple 2.3.15.
(e) Show that thén— 1)-dimensional plane associatedge P! in part (c) is the fiber of
the projective bundI®(p: (do) @ - - - ® Opa (dn_1)) — P™.

7.3.8. Consider the toric varietl(£’) constructed in Example 7.3.5.
(a) Prove thalP(&) is projective. Hint: Proposition 7.0.5.

(b) Show thatP(&) ~ P(Ops(1) ® Ops(ar + 1) ® --- @ Ops(a + 1)). Hint: Part (b) of
Lemma7.0.8.

(c) Find a lattice polytope ifR® x R" whose toric variety i€(£). Hint: In the polytope
of Exercise 7.3.7, each vertex fi} x A,_; C R x R"1 s attached to a line segment
in the normal direction. Also observe that a line segmentrisuétiple of A;. Adapt
this by using{0} x A; CR®x R" as “base” and then, at each vertex/f, attach a
positive mutliple ofAg in the normal direction.

7.3.9. Let X5 be a projective toric variety and B, ..., D, be torus-invariant ample divi-
sors onXy,. EachD; gives a lattice polytop& = Dp whose normal fan i&. Prove that
the projective bundle

P(Ox, (Do) ® -+ & Ox(Dr))
is the toric variety of the polytope iNg x R
Con Py x {O}UPLx{e1}U---UR x {&}).
Hint: If you get stuck, seedl, Sec. 3]. Do you see how this relates to Exercise 7.3.8?

7.3.10.Use primitive collections to show th&t' is the only smooth projective toric variety
with Picard number 1.

Appendix: More on Projective Morphisms

In this appendix, we discuss some technical details retatpdojective morphisms.
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Proj of a Graded Ring As described in48, 111.2] and [77, 11.2], a graded ring
s=Ps
d=0
gives the scheme P1(@) such that for every non-nilpotefite &, we have the affine open
subseD (f) C Proj(S) with

D, (f) ~ Spe¢Sy)),
whereS ) is the homogenous localization 8at f, i.e.,

S ={=lges deN}.
Furthermore, if homogeneous elemefits. ., fs € Ssatisfy
(fr.. T =S, =P,

d>0

then the affine open subsdis (f),...,D4(fs) cover ProfS). Thus we can construct
Proj(S) by gluing together the affine varieti€, (f;), just as we construd" by gluing
together copies of".

The scheme Pr¢§) comes equipped with a projective morphism P8pj— SpecSy)
induced by the inclusion§ C S for all f. For example, iU = Spe¢R) is an affine
variety, then we get the graded ring

S=RIXg, ..., X
such that eack; has degree 1. Then
Proj(S) =U x P",
where the map Pré§) — Sped¢S) = SpedR) = U is projection onto the first factor.

Here is a toric example. L& C Mg be a full dimensional lattice polyhedron. As in
87.1, this gives:

e The toric morphisna : Xp — Up.
e The coneC(P) C Mg x R.
Recall from (7.1.3) thaE(P) gives the semigroup algebra
S =C[C(P)N (M x Z)],
where the character associated(itak) € C(P) N (M x Z) is written xy"tk. We use the
height grading given by setting deg™*) = k. Then
Theorem 7.A.1. Xp ~ Proj(Ss). Furthermore, if P is normal, then there is a commutative
diagram
Xp % Up x ]P’Sjl
P1
x l
Up
such thatx is a closed embedding.
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Proof. We will sketch the argument and leave the details as an ee=rthe slice o€(P)
at height 0 is the recession coBeof P. Recall thatNp = N/(WNN), whereW C CV is
the largest subspace containedi and thalJp is the affine toric variety ofp, which is
the image o2V in (Np)g. Then the inclusioMp C M dual toN — Np gives

0'|\;/ =C g (MP)R g MR.

It follows that (S5)o, the degree 0 part of the graded rifg = C[C(P) N (M x Z)], is
Cl|CNM] = Clog NM]. This implies SpedS-)o) = Up, so that we get a natural map
Proj(S>) — Up.

If P is normal, one sees easily thatP) N (M x Z) is generated by its elements of
height< 1. If # is a Hilbert basis oE(P) N (M x Z), thens#’ = s% U .74, where elements
of J# have height. If we write 74 = {(m,1),...,(ms,1)}, thenSs is generated as an
(Sp)o-algebra byy™t, ..., x™t. In other words, we have a surjective homomorphism of
graded rings

(S:)o[xl,...,xs] —>S>, Xi |—>th.
This surjection makes Pr@p) a closed subvariety of Pr@jS)o[X1, . . ., Xs|) = Up x P51
by [77, Ex. 111.3.12]. This gives the commutative diagram in thatsment of the theorem,
except thap is replaced with Pr¢fe). Hence PrajSs) — Up is projective.

It remains to proveXe ~ Proj(Sp). For this, letv be the set of vertices &f. Then one
can prove:

o VIXt|VEV) = ()t = Dy=0o(S)a-

e IfveV, then(S) ) = Cloy NM], wheres, = CondPNM —v)".
The first bullet implies that Pr¢p) is covered by the affine open subsets $&9 ,v)),
and the second shows that S&),«)) is the affine toric variety of the cong,. These
patch together in the correct way to gi¥e ~ Proj(S,). O

For an arbitrary full dimensional lattice polyhedron, sgpositive multiple is normal.
Hence Theorem 7.A.1 gives a second proof of Theorem 7.1.10.

Ampleness A comprehensive treatment of ampleness appears in VolumgHlements
de ¢eonttrie alggbrique(EGA) by Grothendieck and Dieudonn&3. The results we
need from EGA are spread out over several sections. Here Meetcthe definitions and
theorems we will use in our discusion of amplenkss.

Definition 7.A.2. Aline bundle.Z on a varietyX is absolutely ampléf for every coherent
sheafZ on X, there is an integeg such thatZ @4, £ is generated by global sections
for all k > ko.

By [73, (4.5.5)], this is equivalent to what EGA calls “ample” in3 (4.5.3)]. We use
the name “absolutely ample” to prevent confusion with Dé&fini6.1.1, where “ample” is
defined for line bundles on complete normal varieties.

Here is another definition from EGA.

The theory developed in EGA applies to very general scheiffrtesyvarieties and morphisms appearing in
this book are nicely behaved—the varieties are quasi-cohgral noetherian, the morphisms are of finite type,
and coherent is equivalent to quasicoherent of finite typdd most of the special hypotheses needed for some
of the results in T3] are automatically true in our situation.
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Definition 7.A.3. Let f : X — Y be a morphism. A line bundl¢’ on X is relatively ample
with respect tof if Y has an affine open covgt;} such that for every, .Z|,-.(Uj) is

absolutely ample ofi—1(U;).

This is [73, (4.6.1)]. When mapping to an affine variety, relatively dengnd abso-
lutely ample coincide. More precisely, we have the follogwasult from [f3, (4.6.6)].

Proposition 7.A.4. Let f: X — Y be a morphism, where Y is affine, and$étbe a line
bundle on X. Then:

Z is relatively ample with respect to £ .Z is absolutely ample.

The reader should be warned that in EGA, “relatively ampléhwespect tof” and
“f-ample” are synonyms. In this text, they are slightly diffiet, since “relatively ample
with respect tof” refers to Definition 7.A.3 while f-ample” refers to Definition 7.2.5.
Fortunately, they coincide when the méjs proper.

Theorem 7.A.5. Let f: X — Y be a proper morphism an& a line bundle on X. Then
the following are equivalent:

(a) Z is relatively ample with respect to f in the sense of DefinifioA.3.
(b) 2 is f-ample in the sense of Definition 7.2.5.

(c) There is an integer k- 0 such that f is projective with respect 8 in the sense of
Definition 7.0.3.

Proof. First observe that (b) and (c) are equivalent by Definitich%..Now suppose that
f is projective with respect t&#®k. Then there is an affine open coverifig} of Y such
that for each, there is a finite-dimensional subspatleC T'(U;, £ ®K) that gives a closed
embedding off ~1(U;) into U; x P(W") for eachi.

The locally free shea#” = WY ®¢ 0y, is the sheaf of sections of the trivial vector
bundleU; x WY — U;. This gives the projective bundi&(&’) = U; x P(WV), so that we
have a closed embedding

f1U) — P(&).
By definition [73, (4.4.2)],$®k|f71(ui) is very ample forf|f71(ui). Then [73, (4.6.9)]
implies thati”|f71(ui) is relatively ample with respect tb|f*1(ui)' and hence absolutely
ample by Proposition 7.A.4. The®’ is relatively ample with respect tdé by Defini-
tion 7.A.3.

Finally, suppose tha¥ is relatively ample with respect tband let{U;} be an affine
open covering ofY. Then [73, (4.6.4)] implies thaLi”|f71(Ui) is relatively ample with
respect t0f|f’1(Ui)' Using [73, (4.6.9)] again, we see thfﬂ”®k|rl(ui) is very ample for
f|f’1(Ui)’ which by definition 3, (4.4.2)] means that—1(U;) can be embedded i(&")
for a coherent sheaf” on U;. Then the proof of 171, Thm. 5.44] shows how to find
finitely many sections ofZ®* over f~1(U;) give a suitable embedding df-(U;) into
Ui x P(WY). O

In EGA [73, (5.5.2)], the definition of when a morphisi: X — Y is projective in-
volves two equivalent conditions stated irg[ (5.5.1)]. The first condition uses the pro-
jective bundleP(&’) of a coherent sheaf” onY, and the second uses Rt&f), where
. is a quasicoherent graded -algebra such tha#; is coherent and generates. By
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[73, (5.5.3)], projective is equivalent to proper and quaggutive, and by the defintion
of quasiprojective {3, (5.5.1)], this means that has a line bundle relatively ample with
respect tof . Hence Theorem 7.A.5 shows that the definition of projeatieephism given
in EGA is equivalent to Definition 7.0.3.

We close with two further results about projective morptism
Proposition 7.A.6. Let f: X — Y be a proper morphism an# a line bundle on X. Given
an affine open covefU;} of Y, the following are equivalent:
(a) Zis f-ample.
(b) For every i’$|f*1(ui) is f|f71(ui)-ample.

Proof. Sincef is proper, so isf|f71(ui) : f=1(Uj) — U; by the universal property of proper-
ness. But for a proper morphisgy beingg-ample is equivalent to being relatively ample
with respect t@. Then we are done by'B, (4.6.4)]. O
Proposition 7.A.7. Let f : X — Y be a projective morphism with Y affine and{the an
f-ample line bundle on X. Then:

(a) Given a global sections I'(X, %), let X% C X be the open subset where s is nonvan-
ishing. Then Xis an affine open subset of X.

(b) There is an integergsuch thatZ®K is generated by global sections for albkko.

Proof. Thisis provedint3, (5.5.7)]. O
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absolutely ample, 336
abstract variety, 97, 99
affine
piece of a variety, 51, 52
scheme, 4, 104
toric variety, 12, 18
of a cone, 30
variety, 3
affine cone
of a projective toric variety, 56
of a projective variety, 50
affine hyperplane, 63
affine semigroup, 16
algebraic action, 12, 106
ample,seeCartier divisor, ample
absolutely, 336
relatively with respect td, 337

basepoint freesee alssheaf, generated by global
sections
Cartier divisor,seeCartier divisor, basepoint
free
subspace of global sections, 255
basic simplex, 68
binomial, 16
Birkhoff polytope, 64
blowup, 98, 105, 111, 130, 131, 172, 174, 186,
188, 278, 310

cancellative semigroup, 22

Carathéodory’s theorem, 69

Cartier data, 179, 191

Cartier divisor, 158
ample, 260, 262, 269, 296
basepoint free, 256, 260, 262, 266, 283, 319
f-ample, 322

f-very ample, 322
local data of, 158
nef, 283, 296
numerical equivalence of, 284
numerically equivalent to zero, 284
of a polyhedron, 313
of a polytope, 180
on an irreducible variety, 255
torus-invariantseetorus-invariant, Cartier
divisor
very ample, 260, 262
character, 11
Chevalley's Theorem, 143
class group, 159
classical topology, 4, 50, 102, 113, 139, 146
closed half-space, 25, 63
codimension of a prime ideal, 155
coherent sheaf, 164
combinatorially equivalent polytopes, 65
compact, 113, 139, 146
compatibility conditions, 97, 250
compatible map of lattices, 125
complete fan, 113, 139, 146, 191
complete linear system, 259
complete variety, 141, 146
cone
convex polyhedralseepolyhedral cone
of a polyhedron, 335
of a polyhedron, 310
of a polytope, 24, 69, 86
polyhedral,seepolyhedral cone
rational polyhedralseerational polyhedral cone
simplicial, seesimplicial cone
smooth,seesmooth cone
strongly convexseestrongly convex cone
constructible set, 123
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convex presentation, 66
function, 265 fan, 77, 106
hull, 24 complete seecomplete fan
polyhedral coneseepolyhedral cone normal,seenormal fan
convex function, 319 refinement ofseerefinement of a fan
convex support of full dimension, 318 simplicial, seesimplicial fan
coordinate ring, 3, 4 smooth,seesmooth fan
fiber bundle, 133
degenerate fan, 276 fiber product of varieties, 102
degree Fibonacci number, 22
of a divisor on a curve, 280 finite quotient singularities, 113
of a line bundle on a curve, 280 finitely generated semigroup, 16
determinantal variety, 13 formal power series, 10
diagonal map, 102 fractional ideal, 168
dimension at a point, 6, 101 full dimensional
dimension of a cone, 24 polytope, 64
dimension of a polytope, 63 full dimesional
dimension of aring, 154 convex support, 318
direct image, 164 polyhedron, 311
direct limit, 100, 243 function field, 100
directed set, 180, 243
directed system, 243 GAGA, 142,143
discrete valuation, 153 generated by global sectiorsgesheaf, generated
discrete valuation ring (DVR), 153 by global sections
distinguished point, 116, 118, 130, 135 global sections, 187
divisor of a sheaf, 164, 246
Cartier,seeCartier divisor of a toric sheaf, 188, 191
linear equivalence of, 158 of a vector bundle, 249
locally principal,seelocally principal divisor gluing data, 97, 250
nef, seeCartier divisor, nef Gordan’s Lemma, 30
numerically effectiveseeCartier divisor, nef graded module, 225, 246, 301
of a character, 169 shift of, 225
of a rational function, 157 Grassmannian, 252, 258
of poles, 158
of zeros, 158 ‘Homsheaf, 247, 253
principal, 157 Hausdorff topological space, 102
Weil, seeWeil divisor height of a prime ideal, 155
doubly-stochastic matrix, 64 Hilbert basis, 32, 33
dual cone, 24 Hilbert Basis Theorem, 3
dual face, 26 Hirzebruch surface, 112, 173, 189, 261, 267, 271,
dual polytope, 65 294, 328
dual sheaf, 253 homogeneous coordinate ring, 49
homogeneous coordinates, 49
edge, 25, 63 homogenization, 190
effective divisor, 157 homomorphism of sheaves, 164, 244
equivariant map, 41, 126 injective, 244
exact sequence of sheaves, 246 sujective, 244
extremal wall seewall, extremal
extremal ray, 287, 297 image sheaf, 245
extremal walls, 287 index of a simplicial cone, 291
inner normal fanseenormal fan
f-ample,seeCartier divisor,f-ample integral closure, 5
f-very ample seeCartier divisor, f-very ample integrally closed ring, 5
4ti2, 72 intersection product, 281
face, 25, 63 on a toric variety, 282, 291
facet, 25, 63 inverse limit, 180

normal, 26, 64 inverse system, 180
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invertible sheaf, 166, 252, 253
inward-pointing facet normakeefacet, normal
irreducible components, 97

irreducible variety, 97

irrelevant ideal, 205

isomorphism of varieties, 96

Jacobian matrix, 7

kernel sheaf, 245
Kleinschmidt's classification theorem, 331
Krull Principal Ideal Theorem, 159, 167

lattice, 13
lattice ideal, 16
lattice polyhedron, 310
lattice polytope, 66
Laurent polynomial, 5
limit of one-parameter subgroup, 115, 116, 139,
142, 146
line bundle, 251, 253
ample, 260
f-ample, 322
f-very ample, 322
pullback of, 256
very ample, 260
linear equivalenceseedivisor, linear equivalence
of
linearly equivalent divisors, 254
local data, 158, 251, 255
toric, 179
local ring, 6, 154
at a point, 6, 9, 94, 99
at a prime divisor, 155
localization, 5, 9
homogeneous, 335
locally principal divisor, 158
locally trival fiber bundle, 134

maximal spectrum, 4

minimal generator, 30

Minkowski sum, 65, 190, 309

Mori cone, 285
of a toric variety, 286, 296

morphism of varieties, 3, 95
projective,seeprojective morphism
proper,seeproper morphism

multipliciative subset, 9

multiplicity of a simplicial cone, 291

Nakayama’s Lemma, 167
nef cone, 285

of a toric variety, 286
nef divisor,seeCartier divisor, nef
Newton polytope, 186
nilpotents, 4, 8, 9, 48, 103, 105
Noetherian, 154

nonnormal toric variety, 149
nonsingular point, 6
normal
affine toric variety, 37
polyhedron, 314
polytope, 67, 85
toric variety, 85, 107
variety, 5, 100
normal fan
of a polyhedron, 312
of a polytope, 75, 77, 108, 274
normal ring, 5, 154, 155
normalization, 5, 150
of a projective toric variety, 152
of an affine toric variety, 39, 151
of an irreducible curve, 280
Nullstellensatz, 3
numerically effective divisorseeCartier divisor,
nef
numerically equivalent
divisors,seeCartier divisor, numerical
equivalence of
proper 1-cyclesseeproper 1-cycle, numerical
equivalence of
to zero,seeCartier divisor, numerically
equivalent to zer@and proper 1-cycle,
numerically equivalent to zero

one-parameter subgroup, 11

orbifold, 46, 113

orbit closure, 121, 135

Orbit-Cone Correspondence, 119
nonnormal case, 152

order of vanishing, 156

perfect field, 48

permutation matrix, 55

Picard group, 159, 254

pointed affine semigroup, 36

polar polytope, 65

pole, 157

polyhedral cone, 23

polyhedron, 188, 309
full dimensional seefull dimensional,

polyhedron

lattice, seelattice polyhedron
normal,seenormal, polyhedron
of a torus-invariant divisor, 188, 266, 318
very ample seevery ample, polyhedron

polytope, 24, 63
combinatorially equivalentseecombinatorially

equivalent polytopes

full dimensional seefull dimensional, polytope
lattice, seelattice polytope
normal,seenormal, polytope
simple,seesimple polytope
simplicial, seesimplicial polytope
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smooth,seesmooth polytope

very ampleseevery ample, polytope
pre-variety, 102
presheaf, 163, 245
primary decomposition, 159
prime divisor, 155
primitive collection, 295, 329
primitive relation, 296, 329
principal divisor,seedivisor, principal
principal ideal domain (PID), 154, 155
product variety, 7, 53, 101, 305

class group of, 173

toric, 47, 89, 111
Proj, 313, 335
projective bundle

of a coherent sheaf, 309

of a locally free sheaf, 308

of a vector bundle, 308

toric, 327
projective morphism, 306, 307, 337, 338
projective space, 49
projective toric variety, 55
projective variety, 49
projective with respect to a line bundle, 306, 337
projectively normal variety, 61, 85
proper 1-cycle

numerical equivalence of, 285
proper 1-cycle, 285

numerically equivalent to zero, 285
proper continuous map, 140, 142
proper face, 25
proper morphism, 141, 142, 307
Puiseux series, 186
pullback,seeline bundle, pullback of
pullback of a torus-invariant Cartier divisor, 274

Q-Cartier divisor, 178
Q-factorial, 46

quasicoherent sheaf, 164
quasicompact, 104
quasiprojective toric variety, 321
quasiprojective variety, 305, 307

rational normal cone, 50
rational function, 51, 100
rational normal cone, 13, 32, 38, 40, 46, 176
rational normal curve, 50, 57
rational normal scroll, 83, 112
rational polyhedral cone, 29
ray generator, 29

real projective plane, 71
recession cone, 310
refinement of a fan, 130
reflexive polytope, 80, 87
reflexive sheaf, 166

regular coneseesmooth cone
regular fan, 113

regular local ring, 7, 155

regular map, 93, 98

relative interior, 27

relatively ample with respect tb, 337
restriction of a divisor, 158

ring of invariants, 44

ringed space, 95, 99

saturated affine semigroup, 37
section
of a sheaf, 163
of a vector bundle, 249
Segre embedding, 52
self-intersection, 295
semigroup, 16
semigroup algebra, 17
of a cone, 30
semigroup homomorphism, 35, 116
separated variety, 102
separating transcendence basis, 48
Separation Lemma, 28, 107
set-theoretic complete intersection, 22
sheaf, 95
constant, 253
generated by global sections, 247, 256, 338
locally constant, 253
locally free, 248
of Ox-modules, 163, 243
of a torus-invariant divisor, 187
of a graded module, 226, 246, 301
of a torus-invariant divisor
global sections of, 187, 188, 191
of sections of a vector bundle, 250
sheafification, 245
simple polytope, 64
simplex, 64
simplicial cone, 30
multiplicity of, 291
simplicial fan, 113
simplicial polytope, 64
simplicial toric variety, 178
singular point, 6
singular locus, 161
of a normal variety, 161
Smith normal form, 171
smooth cone, 30, 40
smooth fan, 113
smooth point, 6, 101
smooth polytope, 86
smooth toric variety, 40, 86, 113, 177
smooth variety, 6, 101
span of a cone, 24
Spec, 4, 335
splitting fan, 133
stalk of a sheaf, 244, 255
standarch-simplexAnp, 66
star subdivision, 130, 132
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strictly convex,seesupport function, of a Cartier
divisor, strictly convex
strongly convex cone, 28
structure sheaf, 95, 99
sublattice of finite index, 44
subvariety, 97
Sumihiro’s Theorem, 108, 149
support function, 181
integral with respect to a lattice, 181
of a Cartier divisor, 182, 264
convex, 265, 266, 319
strictly convex, 268, 269, 320-323
of a polytope, 184
support of a divisor, 157
support of a fan, 106, 113
supporting affine hyperplane, 63
supporting half-space, 25
supporting hyperplane, 25
Sylvester sequence, 92

2-neighborly polytope, 72
tautological bundle, 252, 254, 258
tensor product, 8, 48
of sheaves, 247, 253
tent analogy, 264, 265, 268
Toric Cone Theorem, 286, 287
toric fibration, 134
toric ideal, 16
Toric Kleiman Criterion, 284
toric morphism, 41, 42, 125, 135
projective, 321, 323
proper, 142
toric set, 21
toric variety, 106
affine, seeaffine, toric variety
normal,seenormal, toric variety
of afan, 107
of a polyhedron, 312
of a polytope, 82, 108
projective,seeprojective toric variety
quasiprojectiveseequasiprojective toric variety
torsion-free semigroup, 22
torus, 5, 10
embedding, 108
of a projective toric variety, 58
of an affine toric variety, 13
orbit, 118
torus-invariant
Cartier divisor, 174
prime divisor, 168
Weil divisor, 170, 173
total coordinate ring, 246, 301
transportation polytope, 64
tropical polynomial, 186
tropical variety, 186
tropicalization, 186

unique factorization domain (UFD), 7
universally closed, 141

valuative criterion for properness, 147
variety
abstractseeabstract variety
affine, seeaffine, variety
complete seecomplete variety
irreducible,seeirreducible variety
normal,seenormal, variety
projective,seeprojective variety
projectively normalseeprojectively normal
variety
quasiprojectiveseequasiprojective variety
separatedseeseparated variety
toric, seetoric variety
vector bundle, 248
chart of, 248
decomposable, 326
fiber above a point, 248, 255
sheaf of sections of, 250
toric, 324, 326
transition functions of, 248, 250
trivialization of, 248
vertex, 63
very ample
divisor, seeCartier divisor, very ample
polyhedron, 314
polytope, 71, 75, 87, 262

wall, 265, 292
extremal, 297
wall relation, 293
weighted homogeneous polynomial, 53
weighted projective space, 53, 112, 174, 186
Weil divisor, 157
torus-invariantseetorus-invariant, Weil divisor

Zariski closure, 4

Zariski tangent space, 101
Zariski tangent space, 6
Zariski topology, 4, 50, 97



