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EQUIVARIANT BUNDLES ON TORAL VARIETIES
UDC 512.7

A. A. KLYACHKO

ABSTRACT. Equivariant bundles on toral varieties are described in terms of nitrations
which arise canonically in the fiber over a fixed point. The cohomology groups and
characteristic classes are computed in terms of these nitrations, and problems of linear
algebra which arise from them are discussed.

Bibliography: 20 titles.

§0. Introduction

0.1. Let X be a nonsingular toral variety. This means that an action of an alge-
braic torus Τ is defined on X and X contains an open orbit on which this action
is free. We call a vector bundle ρ: §* —• X an equivariant or toral bundle on X if it
has an equivariant Γ-structure, i.e. an action of the torus T: f which is linear on
the fibers and makes the following diagram commute:

r Λ r
ΡΪ Ρ I V? e Τ.
χ Λ χ

The starting point of this paper is the following description of equivariant bundles
given in the language of linear algebra. We recall (see §1) that a toral variety X is
determined by a fan Σ = Σ(Χ) in a lattice Τ dual to the character lattice Τ =
Hom(r, G ) . The cones σ e Σ correspond bijectively to orbits Οσ of the torus
Τ in X, and τ c σ <=> Οσ c OT; dim σ = codim Οσ . We denote by |Σ| the set of

primitive vectors of the lattice f° which generate one-dimensional cones in Σ. For
a cone σ e Σ we shall put |σ| — σ Π |Σ .

0.1.1. THEOREM. The category of toral bundles on a variety X = Χ(Σ) is equivalent
to the category of vector spaces Ε with a family of decreasing Z-filtrations Ea(i)
(a e |Σ | , / e Ζ) which satisfy the following compatibility condition:

(C) For any σ e Σ the filiations Ea(i), a e \σ\, consist of coordinate subspaces
of some basis of the space Ε.

EQUIVALENT FORMULATION. The subspaces E"{i), a e \σ\, i e Z, generate a
distributive lattice.

In this theorem, and henceforth, the nitrations are assumed to be full: E"(i) = 0,
/ » 0 , and E'\i) = Ε , / < 0 .
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338 Α. Α. KLYACHKO

The equivalence of categories is established by assigning to a bundle If the fiber
Ε = S?(xQ) over a fixed point x0 of the open orbit. The filtrations on Ε arise in the
following way. For each orbit Oa, a G |Σ | , of codimension one we choose a point
xa G Oa and put

Εα{χ) = {e€E = ^(xo)\3 lim x~\t){te)\ t e Τ}, xef.

It turns out that the spaces Εα(χ) depend only on the number / = (χ, a) and
determine a family of nitrations Ea(i) which satisfy the compatibility condition of
Theorem 0.1.1.

A major part of this paper is of a linguistic character; its aim is to translate geo-
metric notions related to bundles, cohomology groups, and characteristic classes into
the language of filtrations. In preparing this paper we were helped by the hope that a
new ecological niche would appear in which the geometry of bundles could exist and
which would serve as a source of deep examples.

0.2. A short summary of the results. In § 1 we give an account of basic facts about
the construction of toral varieties and bundles. Note Theorem 1.2.3, which says that
an equivariant bundle J? is torally indecomposable if and only if it is indecomposable
in the usual sense; if indecomposable toral bundles I? and SF are isomorphic as
ordinary bundles, then f is torally isomorphic to &®χ for some character xef.

In §2 a modified version of the above mentioned theorem which is suitable for
singular varieties (Theorem 2.2.1) is proved. This theorem is applied to describe
bundles on varieties of dimension < 2, and bundles of rank < 2 on arbitrary
varieties.

In §3 for an equivariant bundle f on a complete nonsingular toral variety X,
dim X = η , a canonical resolution

—• & —• <y^r\ —* ^\ —* ' ' ' —* ^ —* V >

is constructed, which consists of splittable bundles (Theorem 3.1.1). It is applied to
compute the total Chern class of the bundle (Theorem 3.2.1):

Υ ^ α σ (0.1)
σ€Σ γ J

where χσ e Οσ , Χα = Οα is the closure of the orbit of codimension 1, and the vector

a G \σ\ c 7^ is considered as an element of the Lie algebra 3teTa = T̂ 1 ® C of the

stabilizer Ta of the point χσ e Οσ .
In §4 the cohomology groups of toral bundles c? are computed in terms of the

filtrations Ea , a e | Σ | . We will denote by HP(X, W) the isotypical component of

the cohomology group which corresponds to the character χ € Τ. It can be computed
with the help of some complex C*(^, χ) constructed from the spaces

E"(X)= Π Εα(χ), Ea(x) = Ea((x,a)), a e | Σ |
α€|σ|

(Theorem 4.1.1). The result for the projective space takes the simplest form:

η Σ Ek{X) Ι Σ E°(x) n---nEp \ x ) n Ek{X),
k>p ' k>p
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where the Ea , a = 0 , . . . , « , are the filtrations which determine the bundle If , and
0 < ρ < η.

In the general case we have the formulas

2) H"{X, W)x = Ε Ι Σ α € | Σ | Εα{χ), η = dim X, Χ complete;

3) E p ( - l ) " d i m / / p ( X , f )χ =
The last formula for the Euler characteristic has a useful interpretation in the form

of a trace formula (Theorem 4.2.1):

Σ(-\)ρΤτ(ί\Ηρ(Χ, %)) = ΣΤτ(ί\^(χΑ)) Ι Π (Ι -χ~\ή),
Ρ Δ ' χΕΑ"

where Δ € Σ ( η ) runs over cones of maximal dimension η — dimX, xA € XT is the
fixed point corresponding to Δ, and Δ* is the basis of the group of characters Τ
dual to the basis |Δ| of the lattice Τ .

As an application of the trace formula, in §5 the intersection index of cycles is
calculated (Theorem 5.1.1):

( V * , ) = Σ Γ Κ I K / ' U a l (O·2)
η6|σ| α€|τ| ' «€|Δ|

where Χσ — Οσ , dim Χσ + dim Χχ — dim Χ , and a*A, a 6 |Δ|, denotes elements
of the dual basis Δ* . The right-hand side of this formula is viewed as a rational
function on Γ ®C which is in fact constant. Therefore formulas of type (0.2) may
serve as a source of various algebraic identities including many classical ones.

A combination of (0.1) and (0.2) leads to explicit formulas for Chern numbers
(Theorem 5.2.1). In the same section we construct canonical bases of the additive
groups of the Chow ring CH(X) and the Grothendieck ring K(X) (Theorem 5.3.1).

The final section, §6, is devoted to the analysis of the compatibility condition of
Theorem 0.1.1. We call the family of filtrations En(i), a e A, i e Z, of the space
Ε splittable if the subspaces Ea(I) generate a distributive lattice. Splittable families
of filtrations can be represented in the form of a direct sum of filtered spaces of
dimension one. It is convenient to write the splittability condition of filtrations in
the language of parabolic subgroups P" = {g e GL(E)\g(Ea(i)) = Ea(i)}:

{E"\a e A} splittable ο ("Ί Ρ" contains a maximal torus (0.3)

Formula (0.3) together with Theorem 0.1.1 shows that the study of toral bundles
with fiber Ε on nonsingular varieties X — Χ(Σ) is essentially equivalent to describ-
ing simplicial maps of the fan Σ to the complex 3°{E), the vertices of which are
parabolic subgroups Ρ c GL(£), and the simplices form families P" c GL(E),
a € A , which contain a common maximal torus. The complex 3P{E) plays the role
of a classifying space for toral bundles.

We prove for £P(E) the following analog of Helly's theorem concerning convex
sets (Theorem 6.1.2): for a family of parabolic subgroups P" c GL(m), to have
a common maximal torus it is necessary and sufficient that any m + 1 subgroups
of this family contain a common maximal torus. Asd a corollary we get that toral
bundles on P" of rank r < η split. A more subtle criterion for splittability is proved
in Proposition 6.3.2.
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For a family of Borel subgroups Ba c GL(w) more can be proved (Theorem
6.2.1): the intersection f\QBa contains a maximal torus if any triple of subgroups
contains a common maximal torus. This condition can also be expressed in the
language of permutations π,β e Sm of subgroups Ba and Ββ : Ι , , · Ι . , -π , = 1,

να,β,γ.

In the same section the restrictions of toral bundles to the closures of orbits Χσ c
X (Theorem 6.3.1) are studied, and the following classification result is proved. We
call a filtration Ea(i), i e Z, short if it contains at most one nontrivial subspace
Ea{i) φ 0, Ε. It turns out (Theorem 6.4.1) that a toral bundle % on P" defined by
a family of short nitrations decomposes into a direct sum of line bundles and twisted
bundles of /?-forms Of ® O(f). This result leads to restrictions on the ranks of the
cohomology groups of an arbitrary toral bundle on P" :

from which it follows, for example, that Hp{Pn, J?) = 0 for toral bundles f of
rank less than (n

p) .
0.3. Acknowledgements. I am grateful to A. Khovanskii for discussions which were

helpful in elucidating the geometric meaning of nitrations in Theorem 0.1.1, and also
to the participants of A. N. Tyurin's seminar and to A. N. Rudakov for stimulating
interest in this work.

0.4. Permanent notation. X = Χ(Σ) is a toral variety defined by a fan Σ together

with the action of a torus Τ; f = Hom(7\ Gm) is the character lattice; T° =

Hom(f ,Z) is its dual lattice of one-dimensional subtori; Γ° = f° <g> R; and |Σ| is
the set of primitive vectors of the lattice 7° , which generate one-dimensional cones
in Σ. If σ e Σ, then \σ\ = σ Π | Σ | .

Captial greek letters Δ, Γ € Σ will denote cones of maximal dimension η = dim X
of the fan Σ. Οσ is the orbit corresponding to the cone σ e Σ, dim σ = codim Οσ ;
Τσ c Τ is the stabilizer of the point x0 € Oa ; and Χσ = Οσ . In particular, XA or
xA is the fixed point corresponding to the maximal cone Δ e Σ.

In the paper the decreasing Z-filtrations Ea(i), / € Z , parametrized by vectors
a € |Σ| will often appear. In this case we put

Ε \ χ ) = Ε α ( ( χ , a)) a n d Εσ (χ) = f ] Ε α ( χ ) , ael,Xef.
ae\a\

§1. General facts about toral varieties and bundles

1.1. Let X bz & toral variety. This means that X is normal, an action of an
algebraic torus Τ is defined on it, and X contains an open orbit on which this
action is free.

For example the projective space "P{V) is a toral variety with respect to the action
of the maximal torus Τ c PGL( V).

We will recall some facts about the construction of toral varieties (see [l]-[3]). Let
X = JJCT Oa be an orbit decomposition (the number of orbits is always finite). We
shall identify the open orbit O0 with the torus Τ and we shall consider characters
χ e Τ as rational functions on X . Then for each orbit Oa a subgroup of characters
σ c Τ regular on Οσ is defined and also a cone dual to it
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The set of cones σ c 7^ is called the fan associated to X and is denoted by Σ =
Σ(Χ). There is a one-to-one correspondence between cones σ e Σ and orbits Οσ c
X ; moreover, σ c τ **· Οσ D Οτ and dim Οσ - codim σ .

A variety X = Λ"(Σ) is uniquely determined by its fan Σ. In fact, X is con-
structed from affine pieces Ua = Speck[d] by identifying UanUT with £/ σ η τ . Here
σ = {χ € Γ|(^ , α) > 0, VQ € σ} . A fan can be an arbitrary finite collection of
convex cones in the space TR which satisfy the following conditions:

i) The cones in Σ are generated by a finite number of vectors in the lattice Γ 0

and do not contain straight lines.
ii) The faces of a cone contained in a fan are also contained in the fan.
iii) Any two cones in Σ intersect along a common face.
All the geometric properties of the variety X = Χ(Σ) can be expressed in terms

of the fan Σ. For example:
X is nonsingular ο every cone σ s i is generated by part of the basis of the

lattice Τ ; in particular, a fan of a nonsingular variety is simplicial.
X is complete <=> the union of the cones σ e Σ coincides with the whole space

iR ·

1.1.1. EXAMPLE. We shall consider the projective space PM . Let (xQ: x{: ...:xn)
be homogeneous coordinates on which the action of the maximal torus Τ c
PGL(« + 1) is diagonal. We shall identify the torus Τ with the orbit of the point
(1: 1: . . . : 1). Then the ratios xJXj = xu can be viewed as characters of the torus
Τ. For a given j these form a basis of the semigroup of characters σ which are
regular at the fixed point p. with coordinates xt = δΐ}. The fan Σ(Ρ") consists of
dual cones σ , j — 0, ... , η, and their faces. Each cone σ is generated by the

basis (a 0 , a, , . . . , a ., ... , an) of the lattice Τ , where the ak are defined by the
conditions (ak , χ^) — 5kj for k Φ j . Moreover, aQ + al -\ h an = 0.

1.2. Let p: £? —> X be a vector bundle over a toral variety X. We shall say that
% is an equivariant or toral bundle if an action, linear on the fibers, of the torus
T: & is given, making the following diagram commute for all t e Τ:

r Λ r
Ρ Ι Ρ I (1.0)
Χ Λ X.

For example, all the canonical bundles over X are toral (they depend on X
functorially and therefore diagram (1.0) is defined for an arbitrary morphism
X —> X). As another example consider rigid bundles W, i.e. bundles for which



342 Α. Α. KLYACHKO

Ext (Ι?, £f) = Η (Χ, iT/m/i?) = Ο. This follows from the following characterization,
of toral bundles in the moduli space of all bundles.

1.2.1. PROPOSITION. A bundle & on a complete toral variety X can be endowed
with a toral structure if and only if if ~ t*^, W € Τ {i.e. & is a fixed point in the
moduli space for the action of the torus T).

PROOF. Let the bundle f satisfy the assumption of the proposition. Then for
each t e Τ there exists an automorphism gt: if -> f of the variety f which maps
fibers to fibers, is linear on the fibers, and induces translations by t on the base.
We denote the group of such automorphisms by G. The bundle if is consequently
endowed with an equivariant G-structure. Moreover, there is a short exact sequence

1-+Aut j r - > G-* Γ-> 1, (1.1)

where Aut^ if is the group of automorphisms of the bundle W (it is finite dimen-
sional since X is complete). Let S c G be a maximal torus. Since for surjective
homomorphisms of linear groups maximal tori map to maximal tori, (1.1) induces
an exact sequence

1 -+.So-> S-> Τ ^ 1.

By construction, the bundle if is endowed with an equivariant ^-structure. More-
over, So acts trivially on the base X and therefore we have a decomposition of the
bundle if into isotypical components if = 0 ~ if . Every character χ of the

diagonalizable group So c S can be prolonged to a character χ of the torus S.

Then the group So acts trivially on the ^-bundle φχ ^χ®χ~ι which, consequently,

admits a toral structure (and is isomorphic to J? as an ordinary bundle).

1.2.2. COROLLARY. Rigid bundles on a complete toral variety can be endowed with
a toral structure.

Indeed, a rigid bundle & cannot be included in a continuous family, and therefore
f g ' - f for all teT.

One would like to extend this corollary to noncomplete varieties. In the affine
case the results of Gubeladze [20] concerning the freeness of projective modules over
rings generated by monomials would easily follow.

A toral structure on a bundle s? is, generally speaking, not uniquely defined. The
following theorem and its corollary allow us to examine this arbitrariness.

1.2.3. THEOREM. Let I? and SF be equivariant bundles on a complete toral variety
X. Then:

i) // % is torally indecomposable then it is indecomposable in the usual sense.
ii) // £? is indecomposable and is a direct summand of &~ as an ordinary bundle,

then g* ® χ is a toral direct summand of the bundle SF for some character χ e f.

1.2.4. COROLLARY. If indecomposable toral bundles & and & are isomorphic as
ordinary bundles, then % is torally isomorphic to SF ® χ for some character χ .

PROOF OF THE THEOREM, i) The indecomposability of the bundle W is equivalent
to the absence of nontrivial idempotents in the algebra End f . This means that the
semisimple rank of the algebra End W equals one. In the case of a toral bundle we
have a grading of this algebra

xef
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where ( ) is an isotypical component corresponding to the character χ e Τ. The
toral indecomposability implies the absence of idempotents in the component of the
neutral element ( E n d f ) 0 = End^S*. The result we want now follows from the
following fact.

1.2.5. PROPOSITION. Let A — φ,Λ, be a finite-dimensional Z"-graded algebra
over a field k . Then the semisimple rank of the algebra A equals the semisimple
rank of the algebra Ao.

PROOF. It suffices to analyze the case of Z-graded algebras.
STEP 1. Reduction to the case of a semisimple algebra.
The radical R of the algebra A coincides with the kernel of the trace form Tr^ xy

and therefore is a homogeneous ideal. It is enough to prove the theorem for the
semisimple algebra A/R.

STEP 2. // A is semisimple, so is Ao .
Since At and A, are orthogonal with respect to the trace form for i + j ψ 0, the

trace form induces a nondegenerate pairing between At and A_r In particular, its
restriction to Ao is nondegenerate.

STEP 3. Reduction to the case d i m ^ 0 = 1 .
Let Co c AQ be a maximal commutative semisimple subalgebra in AQ and C =

φ ( C( its centralizer in A . It suffices to prove the theorem for the algebra C, the
center of which coincides with Co . Moreover, using idempotents from Co , one can
decompose C into a sum of graded algebras with one-dimensional center, i.e. to a
sum of matrix algebras with a grading in which the center has degree zero (here the
field k is assumed to be algebraically closed).

STEP 4. The full matrix algebra A = Mn{k) does not admit a grading with Ao = k
for n> 1.

Indeed, Ν = φ , > 0 Λ , is a nilpotent subalgebra of A of dimension j (dim A- 1) =

(n - l)/2. But every nilpotent subalgebra of Mn{k) is conjugate to a subalgebra of
triangular matrices, which have dimension n(n - l)/2 . Consequently η = 1 .

Proposition 1.2.5 together with the first assertion of Theorem 1.2.3. are proved.
We now prove the second assertion of the theorem. As in case i) the action of the
torus on Hom(8', &~) induces gradings

\%,9-%yC) (1.2)

^^X,^) (1.3)

x
Let f be a direct summand of SF, with φ:^^9Γ, ψ; !F -*% , and ψ ο ψ -

\% . We shall decompose ψ = φ ^ φχ and ψ = φ ^ ψ corresponding to (1.2) and
(1.3). Then the identity map decomposes into lg- — ψ ο φ: W —<• φ ^ . ^ ® Χ —* <? ,
where the sum is taken over the characters χ for which φ Φ Ο. Thus % is a
toral component of the bundle φ ^ & <g> χ . Our assertion which says that «f is a
component of some summand !?'®χ follows now from the Remak-Schmidt theorem
for toral bundles:

1.2.6. PROPOSITION. Indecomposable components ê  of the toral bundle !F =
φ ( ^ on a variety X are uniquely determined up to an isomorphism and up to order.

PROOF. The proof follows from the finite dimensionality of the algebra of toral
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endomorphisms E n d r ^ " in which, by well-known structure theorems, all decompo-
sitions of unity into orthogonal sums of minimal idempotents are conjugate.

§2. Moduli of toral bundles

2.1. First we shall describe the construction of toral bundles over affine varieties
Χ(σ) = Speck[<7], where σ is a semigroup of characters dual to the rational cone
σ c TR (see §1.1). All affine toral varieties take this form. Each of them contains a
unique closed orbit Οσ c X. We denote by Τ the stabilizer of an arbitrary point

2.1.1. PROPOSITION, i) All toral bundles on an affine variety X - Χ(σ) take the
form W = Ε χ Χ, where Ε is a linear representation space of the torus Τ.

ii) Two toral bundles & = Ε χ X and SF = F χ Χ are isomorphic if and only if
the restrictions of the representations are isomorphic: E\T =; F\T .

iii) Define decreasing Z-filtrations on the space Ε

Εχ, ae\a\,

(X,a)>i

where Ε c Ε is the isotypical component of the character χ e Τ. Then the space of
toral homomorphisms Hom r ( 1 i ' , 9r), W = Ε x X, SF — F χ Χ, is canonically iso-
morphic to the space of the linear operators φ: Ε —> F, compatible with the filtrations:
<p(Ea(i)) c Fa(i), Va e \σ\, ι e Ζ.

Note that every representation Τσ: Ε of a subgroup Ta c Τ can be extended to a
representation of the torus Τ. This follows from the complete reducibility of Ε and
the surjectivity of the character map f - t f s . The restriction E\T , as oposed to
the whole representation Τ: Ε, has a simple geometrical meaning: E\T a <o{xa).

PROOF, i) Consider the canonical projection

which maps a section s to its value s(xa).
STEP 1. There exists a T-invariant subspace Ε c T(X, W) on which ρ induces

an isomorphism ρ: Ε ~ £?(χσ) •
Indeed, let Ε c Γ(Χ, §?) be a maximal Γ-module on which ρ is injective. If

p(E) Φ &{xa), then there exists an eigenvector γ e T{X, %>), ty = x{t)y, t e Τ,
for which ρ(γ) φ ρ(Ε). Then ρ is injective on Ε + (γ). This contradicts the
maximality of Ε. Consequently p\E is surjective.

STEP 2. Let s( € Ε, i e / , be a basis of eigenvectors of the torus Τ. Then the
sections si are linearly independent at every point χ e X.

Indeed, if the sections st were not independent at χ e X, then they would not be
independent at every point of the orbit Ox and also at every point of the closure Οχ ,
due to the semicontinuity of rank. But the closure of every orbit contains a closed
orbit on which sections are independent because of Step 1. From Step 2 we get that
? ~ £ x l , which proves i).

iii) It follows from i) that toral bundles on affine varieties decompose into a sum
of line bundles. Therefore, without loss of generality we can assume that dim Ε =
dimF = 1 .

A bundle morphism f: ExX^FxX is a family of linear maps φχ: Ε —> F,
χ £ X. The equivariance condition means that (ptx{te) = tq>x{e), i.e. XE(t)(plx(e) =
XF{t)<Px{e).
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Now fix a point xn in an open orbit, and let φ = <pr . Then the formula

f(e χ txQ) = (x~E

lXF{t)(p{e) χ tx0) (2.1)

determines a rational equivariant map f:ExX-+FxX. It is regular everywhere
provided either φ = 0 or the character χ^ιχρ , considered as a rational function, is
regular everywhere on X = SpecA:[<7]; here σ = {χ\(χ, α) > 0, Va s σ} . The latter
condition means that

(XF,a)>(xE,a), Va€|ff | .

In both cases the map φ: Ε —> F respects the filtrations Ea and Fa .
Conversely, if φ: Ε —> F , $0 ̂  0, is compatible with the filtrations Ea and Fa ,

then the character χΕ xF extends to X , and (2.1) determines a bundle morphism
f:ExX -^ F xX .

ii) If the bundles W and 9~ are isomorphic then E\T = ^(Λ: ( 7) ~ ^(xa) =

F\T . Conversely, if E\T ~ i 7 ^ then the filtered spaces (E; Ea ,a e |σ|) and
(Ζ7; F a , a e |σ|) are isomorphic. Consequently, by iii), the bundles £? and £F are
isomoφhic.

2.1.2. REMARK. In the case of the complex number field we can give the filtrations
Ea(i), α e |σ | , the following geometric interpretation. We fix a point xQ e X of
the open orbit, and put Ε = B"(x0). Let Oa, a e \σ\, be an orbit of codimension
1, and take an xa e Oa . For each character χ e Τ we define subspaces

Jĵ im ^- '(0(^); ie

Here we consider te as an element of the fiber ^{tx0) •
It follows from Proposition 2.1.1. that the spaces Εα(χ) depend only on the

number i = {χ, a) and determine Z-filtrations £"*(/) - Εα(χ), i = {χ, a).
2.2. We now describe the bundles on an arbitrary toral variety X = Χ(Σ). We

denote by |Σ| the set of primitive vectors of the lattice Γ° , which generate one-
dimensional cones in Σ. Then an arbitrary cone σ e Σ is generated by the set
\σ\ = σ Π |Σ| = {α,, . . . , am) . In this case we write σ = (α, , ... , am). As usual,
Τσ is the stabilizer of the point xa € Οσ .

2.2.1. THEOREM. The category of toral bundles over the variety X = Χ(Σ) is
equivalent to the category of vector spaces Ε with a family of decreasing Z-filtrations
En(i), a e |Σ | , which satisfy the following compatibility condition:

C) For any σ e Σ there exists a f -grading Ε - φ ψ Ε[σ](χ) for which

£°(ι)= £ Ε[σ\χ), VaeM.

In this theorem and in what follows the filtrations are assumed to be full: Ea(i) —
0, ι » 0, and Ea{i) = E, i < 0.

The equivalence of categories is established by assigning to a bundle §* its fiber
Ε = ^(XQ) at a fixed point x0 of the open orbit. The filtrations on Ε arise in
the following way (see §2.1.2). For each orbit On , a e | Σ | , of codimension one we
choose a point xa e Oa and put

E"(x) = leeE\3 lim x~\t){te); / e Λ .
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The spaces Εα{χ) depend only on the number i = (χ , a) and determine a compat-
ible family Ea(i) of nitrations.

2.2.2. REMARK. If the variety X is nonsingular, then every cone σ 6 X is gener-
ated by a basis of the lattice f^ . In this case, the compatibility condition C) depends
only on the combinatorial structure of the fan Σ, and is equivalent to the statement
that one of the following equivalent assertions is satisfied for all σ e Σ:

i) The nitrations Ea{i), a e |σ | , are composed of coordinate subspaces of some
basis of the space Ε.

ii) The subspaces Ea(i), a 6 |σ | , / e Ζ , generate a distributive lattice.
iii) For arbitrary faces ρ, r c σ and numbers ia e Ζ, α € \σ\,

The equivalence of conditions i) and ii) is well known. That they are equivalent
to iii) follows from results of Johnson ([4], Chapter III, §7, Exercise 9).

2.2.3. COROLLARY. A toral bundle on a nonsingular variety splits if and only if the
filiations Ea(i), α Ε |Σ | , generate a distributive lattice.

The proof consists in constructing compatible nitrations from the bundle and,
conversely, in reconstructing the bundle from the nitrations. Since these constructions
are all canonical, they are functorial.

I. CONSTRUCTION OF THE FILTRATIONS. Each cone σ e Σ determines an affine
toral variety Ua = SpecA:[<7] and an equivariant open embedding Ua Ο Χ • They
form an affine covering X = \Ja Ua . Let Oa c Ua be the unique closed orbit in Uo ,
let xa e Oa , and let Τσ be the stabilizer of the point χσ .

According to Proposition 2.1.1, for an arbitrary toral bundle % we have

where the toral structure on £?{χσ) χ Ua is determined by some extension of the
action of the stabilizer Τσ in the fiber &{χσ) to a representation of the torus

σ { χ ο ) . (2.2)

The bundle & is uniquely determined by its restrictions £*L, and its transition func-

tions Λ : Ua Π UT —• H o m ^ x J , %>{χσ)), which satisfy the usual cocycle relations

fa\xfx\pfp\a = 1 a n d h\Jx\a = x ' a n d t h e r equivariance condition

11τ(ίχ) = φσ(ί)11τ(χ)φτ(ί)-1. (2.3)

This shows that for given representations φσ , σ € Σ, it suffices to define the
cocycle f. at an arbitrary point x0 of the open orbit. Moreover, the isomorphisms
/ , (x0): f (χτ) —·· &(χσ) allow one to identify all the spaces £?(χσ) with the fiber
Ε = &{xQ). In other words, one can assume that all the representations φσ act on
the same space Ε = <f (x 0), and / σ ] τ (χ 0 ) = \E . In this case /CT|r(/x0) = φσ(ήφτ{ή~ι ,

and the map φσ(ί)φτ(ή~1 can be extended from the torus Τ, which we identify with
the orbit Tx0 , to the affine neighborhood

υσηυτ = υσητ = Speck[X e ΐ\(χ,α) > 0, Va G σ Π τ].
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2.2.4. ASSERTION. Consider, for each α € | σ | , the following filtration of the space

E:

Εα'σ(ί)= ^

where Είσ\χ) is an isotypical component corresponding to the character χ of the

representation φσ (2.2). In order for the function fa^(tx0) = φσ{ήφτ(ί)"[ to extend

from the open orbit to Ua Π Ux it is necessary and sufficient that Ea'T(i) c Ea'"(i)
for all a G \σ Π τ\ and i e Z .

Indeed, let en i 6 /, be a diagonalizing basis of the representation φσ ; φσ(ήβί =

Xj(t)ei'» Xi e Τ; and let fj, j e J, be a diagonalizing basis of the representation

φτ; <Ρτ(% = ^ ( 0 / 7 , ¥jef. Let f. = Ε , α , / , · Then

In order for the character χι ψ~' to extend to Ua Π Ur = Uailr, it is necessary and

sufficient that x^J1 € (σΤΤτ), i.e. (χί, a) > {ψ] , a) for all a € |σΠτ | . In this way
the extendibility of f,z to Uar\UT means that for α. Φ 0 we have (/-, α) > {ψ-, a)
for all a e |σ Π τ | . In other words,

ElT\W)c Σ £ [ σ 1 Μ' να€|σητ|,
(Χ,α)>(ψ,α)

or, equivalently, Ea'\i) c £·α 'σ(0 , for all a e \σ Π τ| and t e Ζ.

2.2.5. COROLLARY. For a system of representations φσ, σ &Σ (2.2), associated
to a toral bundle % the filiations

Ea{i):=Ea'\i), ae\a\, (2.5)

do not depend on the choice of the cone σ containing a and satisfy the compatibility
condition of Theorem 2.2 A .

Indeed, in this case both functions f. and f, have to be regular on Ua Π UT,
and therefore Ea'a{i) = Ea'x(i) for all α e \σ Π τ | . The compatibility condition
is satisfied since the nitrations E"(i) = Ea'"(i), a e \σ\, correspond to the grading
Ε - φχ Είσ](χ) associated to the isotypical decomposition of the representation φσ ,
or its restriction to Ta .

II. THE CONSTRUCTION OF THE BUNDLES. We shall show that an arbitrary system
of compatible nitrations Ea(i), a e |Σ | , of the space Ε canonically determines
a bundle W with fiber Ε = έ"(χ0). Indeed, let the filtrations Ea(i), a e \σ\,
correspond to the grading

Ε = ($Ε1σ\χ), (2.6)
x

which determines a representation of the torus Ta : Ε with isotypical decomposition
(2.6). We shall extend it to a representation φσ of the torus Τ and, in order not to
complicate our notation, we shall assume that (2.6) is the isotypical decomposition of
φσ . Then by Assertion 2.2.4 the function f^T(tx0) = φσ(ί)φτ{ί)~ι can be extended
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from the torus Γ to UanUT. The cocycle f, determines the required toral bundle
f over X.

It remains to check that the bundle W does not depend on the choice of grad-

ings Ε . Let Ε = 0 Ε (χ), σ € Σ, be other gradings which induce the same

nitrations Ea(i), and let φσ be the representations of the torus Τ constructed

from them. Since the nitrations corresponding to the gradings Ε[σ] and Είσ] coin-

cide, by Assertion 2.2.4 the functions ασ = φσφ~[ and a~[ = φσφ~1 are regular

on Ua. Consequently, the cocyle f. — φσψ~ is cohomologous to the cocycle

2.2.6 REMARK. It can be seen from the proof that the gradings Ε = 0 Ε1σ](χ)
in the compatibility condition have an obvious geometric interpretation. Namely, if
one identifies the grading Ε[σ] with the representation of the torus Tg for which it
is an isotypical decomposition, then

E[a] ~ %{xa). (2.7)

Note also that the representations in the fibers &{xa) cannot be arbitrary. They
are related to each other by

^(χσ)\τ^^(χτ), τα σ. (2.8)

Formally, this follows from (2.7) and Corollary 2.2.5. Here is a more direct geometric
explanation: the character of the representation of the torus Ττ in the fiber W{x^),
because of continuity, does not depend on the choice of the point χτ in the closure
of the orbit Ότ. If τ c σ then xa e Οσ c Ο τ .

In the case of a complete variety X, (2.8) shows that all representations Τσ: %(χσ)
can be constructed from representations of the torus Τ in the fixed fibers £?(xA) •

The compatibility conditions (2.8) do not guarantee the existence of a bundle If
with the given representations in the fibers. Finding necessary and sufficient condi-
tions for this is an interesting problem closely related to the question of which values
of Chern classes of toral bundles determined by representations %(xa) (see Theorem
3.2.1) are possible.

When describing the moduli of bundles it is sensible to fix the representations
Τσ: §*(χσ) · We say that bundles I? and if have the same spectrum if the represen-
tations of the tori Ta in the fibers %?{χσ) and £?(χσ) are isomorphic. If the variety
X is complete, then it suffices to check this condition for the representations of the
torus Τ in the fixed fibers &{x&) and £?(xA).

The following description of the moduli of toral bundles with a given spectrum
will be useful for us.

2.2.7. PROPOSITION. Let If be an equivariant bundle on a nonsingular toral variety
X = Χ(Σ) with fiber Ε = g*(x0) defined by a system of filiations Ea, a e |Σ| Set

P" = {ge GL(E)\gEa = Ea , Va € \σ\} , a e Σ.

Then equivariant bundles on X with fiber Ε over the point x0 which all have the
same spectrum as % are parametrized by collections of elements Sa € Gh{E)IPc

such that Sa = ST (mod ΡσΠτ).

Here we consider bundles with a fixed fiber Ε = £?(x0). If one is interested in
bundles up to isomorphism, then one needs to factor out the action of the group
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PROOF. Let Ea , a e | Σ | , be a system of nitrations which determines the bundle
i? . Then the fact that the spectra of the bundles S? and W coincide means that for
an arbitrary σ € Σ there exists an automorphism Sa 6 GL(E) such that Ea = SaE

a

for all a 6 |σ | . The elements of Sa are determined uniquely modulo P" and

SaE
a = Ea = STE

a , VQ e |σ η τ | . Therefore S~lST e Ρσητ.
Conversely, every such collection of elements Sa determines a compatible system

of filtrations Ea = SaE
a, and hence a bundle §? with the same spectrum as I? .

2.3. EXAMPLES. 1. Line bundles. In this case the filtrations Ea are determined
by numbers na for which Ea{na) = Ε and Ea(na 4- 1) = 0, and the entire bundle
is determined by the function / : |Σ| —> Ζ, α —> na, and denoted <f{f). For
a nonsingular variety the compatibility condition is automatically satisfied and the
function / can be arbitrary. In the general case one needs that / extends over each
cone σ e Σ to a linear function, integral-valued on σ nf° (cf. [l]-[3]).

2. Bundles of rank two. For simplicity we assume that the variety X = Χ(Σ)
is nonsingular. For a rank two toral bundle W we denote by Σ(Ι?) c Σ the
subcomplex consisting of the cones σ e Σ for which all the filtrations Ea(i),
a G \σ\, contain a one-dimensional subspace. We identify this subspace with the
point pa € f(E) = P1 . The compatibility condition in Theorem 2.2.1 implies that
the correspondence f: a *-* pa determines a simplicial map of the fan Σ(Ι?) to a

one-dimensional complex in Ρ (i.e. for all σ € Σ(^) the image /(|σ|) consists
of no more than two points). The bundle S* splits if and only if the whole image
/(|Σ(£Ρ)|) contains no more than two points. In particular, for a nonsplittable rank
two bundle over X to exist it is necessary and sufficient that one can find three ver-
tices α, β , γ e |Σ| which do not belong to the same cone. An analogous statement
holds for bundles of arbitrary rank (see 6.1.4).

3. Bundles on the line P1 . In this case a bundle £ is determined by a pair of
filtrations Ea and Ε . It is well known that two filtrations are always generated by
the same bigrading. Consequently, any toral bundle on P1 splits (toral version of
Grothendieck's theorem).

4. Smooth toral surfaces. The distinguishing feature of this case consists of the fact
that the compatibility condition is automatically satisfied (see the previous example).
Therefore toral bundles can be described by an arbitrary collection of filtrations Ea ,
a e | Σ | . One can view such filtrations as representations of quivers consisting of
TV = #|Σ| chains which meet at one point (in Figure 2 the quiver for the plane
Ρ is shown). The complete classification of the representations of such quivers is
a very difficult problem. However, interesting information on their construction is
contained in Kac's theorem [5], which we now recall.

FIGURE 2
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Let Γ be a connected oriented graph with no cycles, with vertex set Π which are
called simple roots. We introduce on the free abelian group Z n the inner product

where ba» is the number of arrows a —> β . For a simple root a G Π we define

a fundamental reflection ra: Z n —> Z n , ra{k) = λ - 2{λ, a)a, and call the group
generated by them the Weyl group W(T).

PT-images of simple roots are called real roots ΔΚ ε(Γ). Imaginary roots ΔΐΓη(Γ)
are defined as the PF-images of elements of the set Mu-M, where Μ consists of
vectors γ EZ with connected support for which (y, α) < 0, Vet e Π.

The root λ e Δ(Γ) = ΔΚε(Γ) υ ΔΙπι(Γ) is called positive if all of its coordinates are

nonnegative. The set of positive roots will be denoted by Δ+(Γ) - Δ^ε υ Δ1^ .

A representation of the graph Γ over a field A: is a collection of vector spaces Ea ,

a G Π, over k together with morphisms φα_^ „: Ea —* Ε for every arrow a —> β .

We call the vector λ = X Q e n (dim£' a )a the dimension of the representation.

THEOREM (Kac [5]). Assume that the ground field is algebraically closed. Then:
i) There exists an irreducible representation of a quiver Γ of dimension l e Z n is

unique if and only if λ G Δ (Γ).

ii) An irreducible representation of dimension λ is unique if and only ifλ 6 Δ+

ε(Γ).

iii) If λ& ΔΗ"1(Γ), then the maximal number of parameters on which an irreducible
representation of dimension λ can depend is equal to 1 - (λ, λ) > 0.

For (semi-) definite forms (a, β) this theorem is due to Gabriel [6] and Nazarova
[7]. For example, it makes it possible to describe explicitly all irreducible bundles
over P 2 determined by three nitrations Ea , Εβ , and Ε7, the number of nonzero
terms of which equals a, b, and c, and satisfies the inequality a~l + b~l +c~l > 1.
If a~l +b~[ +c~[ > 1, then the dimensions of the terms of the nitrations Ea , Εβ ,
and Ey coincide with the coordinates of the positive roots of one of the systems A ,
D, or Ε. If a~ + b~ + c~ = 1 , then the dimensions are equal to the coordinates
of the affine roots of the system Ε.

For the graph Γ described above, consisting of TV chains which meet in a com-
mon vertex a, not all irreducible representations of dimension λ can be realized
by nitrations. For this it is necessary and sufficient that the support of the root λ
contains the vertex a.

5. As a last example we give for reference a description of the tangent and cotangent
bundles. They are defined by nitrations of the spaces !T = Τ ®k and Ω = Τ ® k
given by the formulas

i < 0, ( Ω, / < 0,

I ,a)^0}, i = O,
1. I 0, / > 0 .

§3. The canonical resolution and characteristic classes

3.1. Let f be an equivariant bundle on a complete nonsingular toral variety X =
Χ(Σ) of dimension η , and Ε" , a e \Σ\, the corresponding system of compatible
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filtrations of the space Ε = %?{xQ). At this point we shall construct a canonical
resolution of the bundle £? which consists of splittable bundles

TOJ . υ —> e —* ^rQ —> ^ , —• • · • —> <^η —• υ . (i. ι j

The resolution ^ , depends on the function / : |Σ| —* Ζ which bounds the filtra-
tions Ea ; Ea(i) = 0 for / > / ( a ) . Geometrically, this condition means that the
bundle W ®@{f) is generated at the generic point by Γ-invariant global sections.

Consider an exact sequence associated to the chain complex of the fan Σ with
coefficients in Ε:

Cf:0^E-+ 0 σ®Ε^ 0 σ® Ε
codimCT=0 codimCT=l

σ®£^0®£^Ο. (3.2)
1

We assume that all the cones σ e Σ are oriented and that d(a) equals the sum of
the faces of codimension 1 with the induced orientation. We shall define filtrations
( ) a , a e | Σ | , on the terms in the resolution (3.2) by putting

{ Ea(i), if α e |σ|,

σ® Ε, ifa$\a\,i<f(a), (3.3)

These filtrations satisfy the compatibility condition in Theorem 2.2.1 and are com-
patible with the differentials of the complex Cf. Consequently, by Theorem 2.2.1,
Cj- determines a complex of equivariant bundles gy with first term £*.

3.1.1. THEOREM. WJ- is a resolution of the bundle & consisting of splittable bun-

dles.

PROOF. Let X = \JS Us be an invariant affine covering and Us = Spec[<J]. We
need to verify the exactness of the complexes of global sections F(US, Ψ λ . Consider

their isotypical components CAx) = Y{US, ^ ) :

CJU): 0 - Εδ(χ) - F%{x) - Ff(X) - • · - - F*n{X) - 0, (3.4)

where Fk is the fcth term of the resolution (3.2) and Ε%{χ) = C]ae\o\ Fk^ > α )) =

r ( { 7 j , ^ ) (see §4). The complex CAx) depends only on the filtrations with indices
a e\S\. Since these filtrations are compatible on Ε , the filtered space (E; Ea , a €
\δ\) can be decomposed into a sum of one-dimensional filtered spaces. This allows
one to assume that dimis = 1 when checking the exactness of the complex (3.4).
We put τ = (α 6 \δ\\Εα(χ) = 0). Then

F!(x)= Π Fk(x)= Θ

and the complex (3.4) can be interpreted as an augmented complex of homology
groups of the simplicial scheme {σ e Σ|σ η τ = 0} . Consequently it is acyclic.

The splittability of the bundles «^ is equivalent to the splittability of the filtrations
(3.3) and follows immediately from the compatibility condition of Theorem 2.2.1.
We shall note for reference the explicit formula.
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Let the nitrations Ea , a e |<J|, be generated by the grading Ε = 0 9 Ε[δ](χ)

in Theorem 2.2.1. We define functions y : |Σ| —> Ζ by the formulas

and denote the one-dimensional filtered space associated to the line bundle &

by O(f%) ( s e e Example 2.3.1). Then there is an isomorphism of filtered spaces

x

In other words, the terms of the canonical resolution (3.1) take the form

φ χ (3.6)
Χ=Τδ ;c

3.2. We apply the canonical resolution (3.1) to calculate the characteristic classes
of toral bundles. _

Denote the closure of the orbit Οδ in X by Χδ = Οδ. The variety Χδ is non-
singular and can be represented in the form of a complete intersection of divisors
Χδ = Xa • • • Xa , δ — (α,, . . . , ak). We shall reserve the notation X& for the class

of the variety Χδ in the Chow ring CH(^T) or in the cohomology ring H*(X, Z).
Let f be a toral bundle over X, Tg c Τ the stabilizerr of an arbitrary point

x& e Οδ, and m(x, 2?{χδ)) the multiplicity of the character χ 6 f& in the fiber

If (Xj). This multiplicity can be calculated by considering the multigradings Ε (χ)
from the compatibility condition in Theorem 2.2.1:

m(X,g(xf)) = dimEli](X). (3.7)

Recall that if τ c δ then £(xx) ^ ^(xs)\T (see §2.2.6). Therefore, in the case of a
complete variety the entire information about the representations £?(χδ) is contained
in the fixed fibers of ^(xA).

3.2.1. THEOREM. The total Chern class of a toral bundle & over a complete non-
singular variety X = Χ(Σ) equals

ηβ\δ\

where in the last formula, true over the complex number field, we consider the vector
a e \δ\ c f ° ® R as an element of the Lie algebra 3ϊβΤδ = Τδ ® C acting on the
fiber %(xs).

PROOF. From formula (3.6) for terms of the canonical resolution (3.1) and from
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the multiplicativity property of characteristic classes we get
pum* d j m Em {χ)

where / : |Σ| —> Ζ is an arbitrary function which bounds the nitrations Ea deter-
mining the bundle I? , Ea(i) = 0 for / > / ( α ) , and the functions f^: \Σ\ —> Ζ are
given by (3.5). Formally, in (3.8), the total Chern class is written as a polynomial in
f(a), a e |Σ | , and for sufficiently large f{a) (such that Ea{i) = 0 for / > f{a)) it
should be the constant function. This implies that the right-hand side of (3.8) does
not depend at all on the choice of / . By putting / = 0 and using (3.7) we get the
theorem.

3.2.2. COROLLARY. Characteristic classes of a toral variety W depend only on the
spectrum of the representation of the torus at the fixed fibers ^{x), χ e X .

3.2.3. EXAMPLE. In the case of the tangent bundle !T, the spectrum of a repre-
sentation at a fixed point ^(xA) consists of characters which belong to the basis Δ*
of the lattice Τ dual to |Δ|. In this case Theorem 2.2.1 gives

, , ..codim S V"~* ( ι \codim 6 _ _ _

n i K 1 + *J ( } = Π( 1 + * ο ) Σ ' - ( = Π( 1 + *->
ί€Σα€|<5| α€|Σ| α€|Σ|

^ α = 1 i s t h e E u l e r characteristic).
Since the divisors Xn and Xg do not intersect if (α, β) £ Σ and Χδ = Υ\αΕ\$\Χα,

from the previous formula we get

ck(X)= Σ Xs-
dimS=k

3.2.4. REMARK. For practical purposes it is convenient to write the formula for
the Chern class in the form

σ€Σ

where
, . vdim σ —dim τ

a g | T |

It follows from the definition that Pa = 1 (mod degdima). This allows one to
shorten calculations when computing the first Chern class. For example

= *, Π Ρη&) = Κι Π
«€|Σ| «€|Σ|

where El"\i) = E"(i)/En(i + 1).

§4. Cohomology groups and the trace formula

4.1. In this section we shall calculate the cohomology groups of equivariant bun-
dles on a nonsingular toral variety X = Χ(Σ). Let the bundle % be determined by
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the filtrations Ea , α 6 |Σ | , of the space Ε. For each cone σ e Σ and character
χ e Τ we put

Εσ{χ)= η Εα((χ,α)), Εσ(χ) = Ε / ^ Εα {{χ , α)) (4.1)
αΕ\σ\ α€|σ|

and consider the complex

Εσ(χ)^Ο (4.2)
dimCT=l dimff=2 dimcr=n

with t h e differential d{aa) = Στ3σ;άί{ητ=άίΐΏσ+ι(α

σ)τ'
 α

σ

 e EaW > w h e r e ( ) r :

Ea{x) —·· Ετ(χ) is the canonical projection. We assume all the cones from the fan Σ
are oriented and in the formula for the differential the orientations of σ and τ are
compatible.

The torus Τ acts canonically on the cohomology groups H*(X, <§*) of equivariant
bundles. We denote the isotypical component corresponding to the character χ by

4.1.1. THEOREM. Cohomology groups of the complex C*(i?,x) are canonically
isomorphic to the χ-component of cohomology groups of the bundle %:

PROOF. We shall calculate the cohomology groups of the bundle §* using the open
cover

Since all the intersections Us Π · · · Π Us = Ug n...n<5 are acyclic, the cohomology

groups H{X, &) coincide with the cohomology groups of the complex

ηυσηυτ,^)Χ-*··· (4.3)
δ δ,σ δ,σ,τ

with standard differentials. One can view (4.3) as a cohomology complex for the
nerve Σ* = {(£,, . . . , δΙί)\δι € Σ} of the cover ^ with a system of coefficients

1 ' ' k dt dk ' χ

(see [8], 1.3.3). Thus H(X, &)χ = Η{Σ*, %*{χ)).

On the other hand the complex C*{%?, χ) can be considered as a complex of alter-
nating cochains of the simplicial scheme Σ with a system of coefficients f Of): δ >-+
Εδ(χ). Therefore the theorem reduces to proving the equality

which follows from the following result of Leray ([8], Chapter II, 5.2.4).
Let 971 = {M(} be a family of subcomplexes of the simplicial complex Κ = U, M,·,

and £? be the coefficient system on Κ . Consider the coefficient system β^9{^) on
the nerve of the covering 9Jt denned by (M,, ... , Mk) i-> H"{M{r\- • -nMk , If), and
let HP(M, J%*q(<o)) be the cohomology groups of this system. Then there is a spectral
sequence with second term Η"(ΰη, Xq{%)) which converges to Hp+q{K,g).

In our situation the complex Σ* can be considered as the nerve of the covering
of the fan Σ by cones i s ! on which the coefficient system £?(χ) is acyclic in all
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dimensions save zero, and <%*°(&(χ)) = £**(#) • This follows from the compatibility
condition of the nitrations Ea, a e \Σ\, which allows one to reduce to the case
dim£ = 1. Here we consider Σ as a simplicial scheme with the set of vertices |Σ|
whose simplices form subsets \σ\, σ e Σ.

The Leray spectral sequence degenerates and gives the necessary isomorphism

{
4.1.2. REMARK. In some cases the dual complex for the dual Serre bundle if*®Q"

is more convenient. The filtration on the space E* for the dual bundle f * is given
by the formula E*a(i) = {E/Ea{\ - /))*. For the Serre dual bundle g7* ® Ω" we get
(E* <g> a")a{i) = {E/Ea(-i))*. Finally, the "homology" complex of the bundle g7,
dual to C*(f* ® Ω" , χ~Χ), takes the form

£ β (*)«-0. (4.5)
dim <5=1 dim <5=2 dim<5=n

The differential is given by the usual formula

δ = (α, , ... , ak), Si = (α, , . . . , άί, ... , ak),

where {αδ)ι is an image of the element αδ e Εδ(χ) in the space Εδ·{χ).
From Serre duality the cohomology groups of the bundle £? can be expressed in

terms of the cohomology groups of the complex CJg*, χ):

x n p (4.6)

This equality is satisfied for complete varieties.

4.1.3. COROLLARY. The following equalities hold:
i) Η°(Χ,£)χ = ηα€ΐΣΙΕ

α(χ).

ii) Hn(X, %>)χ = Ε/Σα€ΐΣΙΕ"(χ); η = dimX, X complete.

iii) £(-l'

V~V ,>codim<5 .· ^δ, .

= 2 J - 1 ) dim£· (/).

In order to prove i) and the first equality in iii) it suffices to use the complex
C*{%, χ), and for ii) and the second equality in iii) the complex CJjg, χ).

4.2. Formula iii) for the Euler characteristic has another useful interpretation.

4.2.1. THEOREM (the trace formula). Let W be an equivariant bundle on a com-
plete nonsingular toral variety X = Χ(Σ). Then, for all t e Τ,

1 - * - ' ( ? ) ) , (4.7)

where A is taken over cones of maximal dimension η = dim X in the fan Σ, x& e XT

is the fixed point corresponding to A, and A* is the basis of the character group Τ
dual to \A\.

PROOF. Let V mA(x) χ be the formal character of a representation of the torus

Τ in the fixed fiber If (x.). The multiplicities ηιΛχ) are related to the nitrations
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Εα by the following formula (see §2.2.6):

i / ) = Σ ηιΑ{ψ),
(ψ,δ)<{χ,δ)

where Δ is an arbitrary cone of maximal dimension containing δ and (ψ, δ) <
(χ, δ) is an abbreviation for (ψ, a) < (χ, α), Va € \δ\.

Substituting this value into the formula for the Euler characteristic 4.1.3.iii), we
get

Tr(t\H*(X, %)) = J2(-lfmSdimEs(X) • χ
xJ

= Σ (-l)dim<Wv)*= Σ (-lfmSmA(w)we (4.8)
{ψ,δ)<(χ,δ) (θ,δ)>0

(in the last equality we hae substituted θ = χψ~ι).

If δ is a proper face of the cone Δ, then the polynomial Π ^ Δ ' Ο ~ Χ"') a n n i -
hilates the Laurent series Σιβ δ)>ο @ · Therefore, multiplying both sides of (4.8) by

θ
Α,φ (β,Δ)>0

Δ, ψ

which is equivalent to the statement of the theorem.

4.2.2. COROLLARY. Under the assumptions of the theorem the Poincare polynomial
of the variety X is given by

Formally the right-hand side of (4.9) is a rational function on the torus, which is
actually constant! It is interesting to compare (4.9) to the more customary

k=0

PROOF. It is known that the cohomology ring H*(X, C) is generated by the al-
gebraic cycles Χδ . Therefore, the Hodge structure in the cohomology groups is
diagonal:

° Φ

H2q(X,C), p = q.

We apply Theorem 4.2.1 to the bundle Ω9 (see Example 2.3.5):

Tr{t\H\X, Ω9)) = (-1)*axmH2\X, C) = £ ^ }

where σ is the elementary symmetric function. We get
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In the last equation we have used Poincare duality P(s) = s"P(s~ ).
4.2.3. EXAMPLE. Formula (4.9) leads to a sequence of exotic identities related to

toral varieties. Consider the simplest case of projective space P" (Example 1.1.1).
For PM the Poincare polynomial is well known:

In the case when xt = q ' for η -* oo leads to Cauchy's identity

known for 5 - 0 as Euler's identity.
4.2.4. REMARK. Formula (4.7) in Theorem 4.2.1 can also be written in the form

where XT is the set of fixed points of the torus Τ and ^{x) is the tangent space
at the point χ. In this form the theorem still makes sense, and remains valid for a
wide class of varieties on which a torus acts with isolated fixed points [9].

The trace formula (4.7) allows us to express a virtual representation of the torus
in the cohomology groups H*(X, §*) by its representation in fixed fibers £?{χδ).
Conversely, it is not difficult to express the representations ^(xA) by cohomology
groups.

4.2.5. PROPOSITION. Let & be an equivariant bundle on a complete nonsingular
toral variety X. Then, in the representation ring of the torus,

OCA

where £(-δ) = £ ®ά?(-Σα€ΐδ1

χ

α)-

PROOF. Denote the class of the point x& in KT(X) by [xA]. Then F(JCA)

H*{X, r ® [xA]). On the other hand, [XJ = 1 - <?(-a), and so

[*J = Π [*J = Π 0 - °(-«)) =
α€|Δ| α€|Δ|

The trace formula can be understood as a version of the simpler formula (4.10).
4.3. One can obtain explicit formulas for the cohomology groups of equivarient

bundles over projective spaces.
From the description of the fan Σ(Ρ") (Example 1.1.1) and Theorem 2.2.1 it

follows that toral bundles over P" are parametrized by collections of nitrations Ε" ,
a = 0 , . . . , « , any η of which are splittable (i.e. satisfy conditions i)-iii) of 2.2.2).
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4.3.1 THEOREM. Let W be a toral bundle over P" determined by a family of
filiations Ea, a = 0, . . . , η . Then

k>p

+ Ek(x))/(E°(x) + --- + Ep-\x) +
k>p

where Εα{χ) is determined by (4.1).

PROOF. Consider the exact sequence of complexes in which C(x) = C*(W, χ):
0
I

C' (X) :O-+O - Ε/Ε°(χ) - ® Ε/Ε°(χ) + Εβ(χ) - φ Ε/Ε°(χ) + Εβ (χ) + Εγ(χ) - , · • ·

Ι I I Ι

α α,β α,β,γ

Ι Ι Ι Ι Ι
C" (χ):0-+Ε -^ ® Ε/Εα(χ) -, φ Ε/Εα(χ) + Εβ(χ)^ φ Ε/Εα(χ) + Εβ(χ) + Εγ(χ) -> • · •

Ι
0

According to Theorem 4.1.1, Η*(C(χ)) = Η*(Ρη , &)χ .

The complex C"(x) is acyclic in all dimensions save zero and η - 1, since the
nitrations Ea , α φ 0, split due to the compatibility condition of Theorem 2.2.1.

Finally, the complex C'(x) can be considered as the standard complex of Theorem
4.1.1 associated to a bundle with fiber Ε/Ε {χ) over p"~ ' and grading increased
by one. By induction one can assume that the cohomology groups of the complex
C\x) are given by the formulas of our theorem. Then from the exact cohomology
sequence

· · · - Hk-\C"{X)) -.Hk(C'(x))^Hk(C(x))-+ Hk(C"(x)) -^ · · •

II II
0 0

we obtain the necessary formulas for Hk(C{x)) = Hk{Pn , %)χ .

4.3.2 REMARK. If we use the homology complex CJ&, χ) from §4.1.2 instead
of the cohomology complex C*{W, χ), then by a similar computation we can prove
that

Note also that the dependence of these formulas on the ordering of the nitrations
is only illusory. For example, it is well known that the ratios

Ε" Π Εβ + Ε" Π Εγ
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are canonically isomorphic for an arbitrary permutation α, β, γ of the indices
1 , 2 , 3 . Nevertheless, one can write down a symmetric formula for the double
cohomology groups:

ΕαΠΕμ + ΕμηΕγ + ΕγΠΕα

For similar relations for ("p)Hp(Pn, W), see §6.4.3.

4.3.3. COROLLARY (Horrock's criterion). A toral bundle & over Pn splits if and
onlyifHp{P",g'(k)) = 0, keZ, 0<p<n.

Indeed, according to condition iii) of §2.2.2 all the cohomology groups
Hp(Pn, %{k)) are equal to zero if and only if the nitrations Ea , a = 0, ... ,n,
generate a distributive lattice. From this it follows that the bundle f splits (Corol-
lary 2.2.3).

4.3.4. COROLLARY. For an arbitrary character χ,

with equality only in the case Εα{χ) = Εβ{χ), Va, β . Moreover, H'(P" ,&)χ = 0,

0<i <n, and % has a subbundle of rank r = d imi/^P" , %)χ .

PROOF. The inequality follows from the fact that every subsequent term in (4.11)
lies higher than the previous one:

Ε\χ) + ••• + Ε"(χ) + f ) Ε'{χ) D f](E°(X) + · · · + Ερ~\χ) + Ε\χ)). (4.12)

Equality in (4.12) can happen for all ρ only if all the spaces Ε\χ), / = 0, . . . , « ,

coincide. Then the subspace Ε = Ε'(χ) c Ε with the induced nitrations defines a

subbundle of rank r = dim Ε = dimfl,Ε ι{χ) = dim//°(P" , &)χ .
The inequality in Corollary 4.3.4 can be significantly strengthened (see Corollary

6.4.3).

4.3.5. EXAMPLE. The cohomology groups of general bundles over Ρ .

Consider a bundle W of rank over Ρ defined by three nitrations E" , FJ , and
Ey which are in general position. We shall denote the sum of dimensions of the
spaces Ε'\χ), Εβ{χ), and Ε'\χ) by d{%?, χ). Then by Theorem 4.3.1 we have

' ( P 2 ^ ) =dim rWnjEM + Eix)) = < / ( g > J c ) _ r >
x Ε"(χ)ηΕβ(χ) + Ε'\χ)ηΕ''(χ)

2r> d{% , χ) > r.

dim H2(P2, &')χ = dimE/E"(x) + Εβ'(χ) + Εγ(χ) = r - d(g , χ), r>d(e, χ).

The remaining cohomology groups vanish.
In particular, the representations of a torus on the cohomology groups // ' (Ρ 2 , I?),

; = 0, 1,2, are pairwise disjoint, and each character with d{&, χ) Φ r , 2r appears
in some space H'(P , &).
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§5. Intersection indices and the Chow ring

5.1. An as application of the technique developed above we shall obtain explicit
formulas for the intersection index of cycles and for the Chern numbers of toral
bundles.

Let X = Χ(Σ) be a complete nonsingular toral variety and Ζ = ^2dim3=d msX5

an invariant cycle on X of codimension d. We shall associate to Ζ a collection of
polynomial functions ΖΔ(Λ), Δ e Σ ( / ! ) , of degree d on the space 7^ :

]J(a,h), hefl, (5.1)
aE\S\

where a*, a e |Δ|, are elements of the basis Δ* of the character lattice f dual to

the basis |Δ| of the lattice Τ .
Note that the polynomials ZA(h), considered as functions on the cones Δ, are

compatible on common faces and patch together to give a single continuous function
Z(h) on f°.

5.1.1. THEOREM. Let Z \ / = \,...,m, be invariant cycles on X and

][V codimZ' = dimX. Then their intersection index equals

l /' <*.*>· (5-2)

where the summation is taken over simplices Δ of maximal dimension η - dimX,
Δ* is a basis of the character lattice Τ dual to |Δ|, and the polynomials Z^{h) are
defined by (5.1).

In the theorem the intersection index is written in the form of a rational function
on 7"R which is actually constant (see 4.2.2).

PROOF. Since both sides of (5.2) are multilinear, it suffices to prove it for the
closures of orbits Xg — Og. Now X& is a normal intersection of divisors Xs —
Πα€ι,$| Xa · Therefore, it suffices to consider the case of codimension one orbits. Let
Ja , a € |Σ | , denote the ideal of functions which vanish on Xa . It is isomorphic to
the invertible sheaf (f(-Xa). Consequently, we have the resolution

In order to find the intersection index we should, by Serre [10], tensor the resolutions
@x <— <f(-Xa) <— 0 together and take the Euler characteristic:

In order to calculate the Euler characteristic we use the trace formula (§4.2.1):

(-ι>|7|Σ Π "Jr'/lK1-*-1)
Δ /6/;α,
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where, for an element a e |Δ| we let a*A = a*A(t), t e Τ, denote the corresponding
element of the dual basis Δ* of the character lattice Τ. If in the last formula we
pass to the limit along h e f̂  , then we get

This equality coincides, in the case we are considering, with the conclusion of the
theorem.

5.2. We shall apply the formula for the intersection index to calculate the Chern
numbers of toral bundles.

We consider the graded equivariant bundle £? = g7, θ · · • θ Wm . We shall call the
following polynomials its kth Chern class

For conciseness, we denote the product Π,det(l + hz^^x)), χ e XT , Z i e J ^ c
3ieT, by det( 1 +hz\$?{x)). We shall prove the following formula for the top Chern
class.

5.2.1. THEOREM. Let & be a graded equivariant bundle on a complete nonsingular
toral variety X = Χ(Σ) of dimension η . Then

Δ

where κη ( ) is the component of total degree η with respect to ζ.

For the proof we use the graded version of the formula for the total Chern class
(§3.2.1):

z) = n ^ . ^ ) = I I E d e t ( 1 + z / E
r*€|<5|

a s (5.4)
α€\δ\ J

(the last term is just an abbreviation for the preceeding one).
The top Chern class can be derived from (5.4) using the formula for multiplying

cycles (5.2). In this formula we need to replace every Xa by (a*&, h) if a e |Δ| and
by zero if α φ |Δ|, divide by Πν£Δ* (% > n) > a n d s u m o v e r aU cones in Δ of maximal
dimension:

(
(-i)

\ \

| | J X
(5.5)

If one fixes τ = δ Π Δ in the product, then the power of the term
det( 1 + ζ Σ α € | τ | α{α*& , A)|r(*T)) will be equal to

< 5 Π Δ = Γ
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This and the equality h = J2ae\A\a(al' h) show that the numerator in (5.5) is
det(l + zh\<£{xA)). This proves the theorem.

5.2.2. COROLLARY. Let P(ci, ... ,cn) be a weighted homogeneous polynomial

of degree η = d imZ of the characteristic classes ci = c ( . ( f), degc(- — i, of an
equivariant bundle f . Then

P{cx ,...,cn) = £ > ( c I A , ... , cnA)/ Y[{X,h), (5.7)
Δ ' χ€Α·

where the cj& — ciA{t) are the coefficients of the characteristic polynomial

det(l + zh\%(xA)) =

The proof reduces to applying the theorem to a graded bundle all components of
which are isomorphic to %? .

5.2.3. REMARK. Formulas similar to (5.7) can also be obtained from the Bott
residue formulas ([11], Chapter 3, §4).

5.2.4. EXAMPLE. Since toral varieties are rational, their Todd genus equals one:
Td(c,, ... ,cn) = χ{@Χ) = 1 · For a toral surface X this gives c\ + c, = 12, from
which, applying (5.7), we obtain

where (χ,, y() are the coordinates of an arbitrary vector h e 7^ in the ith basis
of the fan Σ(Χ) and Ν is the number of bases. For three-dimensional varieties it
follows from the relation c,c2 = 24 that

5.3. To conclude this section we consider the construction of the Chow ring
CH(.Y) and the Grothendieck ring K{X) of a toral variety X. We would like
to construct a "canonical" basis of the additive groups of these rings. Along with all
formulas of this subsection it will depend on a choice of an element h e TR which
is in general position with respect to the fan Σ = Σ(Χ); this means that all the coor-
dinates of the vector h in an arbitrary basis |Δ|, Δ e Σ, are nonzero. We shall call
such an element h a polarization vector. We shall let Δ(Λ) c Δ denote the face of the
cone Δ spanned by vectors of the basis |Δ| for which the corresponding coordinates
of the vector h are negative. We shall call cones of the form A(h) together with
cycles XA,h) and divisors DA,h) = J2ae\A(h)\ ^,, corresponding to them distinguished
(with respect to the polarization h).

5.3.1. THEOREM. Let X be a smooth projective toral variety. Then for an arbitrary
polarization h e TR the following conditions are satisfied.

i) The distinguished cycles form a basis of the additive group of the Chow ring
CH{X).

ii) The invertible sheaves (f{-5) = (f(—D0) corresponding to distinguished divisors
Ds , δ €Σ, form a basis of the group K{X).
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5.3.2. COROLLARY. The rank of the group CHd{X)'" equals the number of bases
\A\, Δ e Σ, in which the polarization vector has exactly d negative coordinates.

It is interesting to compare this corollary with the formula for the Poincare poly-
nomial (4.2.2). The theorem is consistent with the general philosophy of this section:
in order to obtain explicit formulas for the intersection index, Chern numbers, etc.,
it is necessary to fix a polarization or, equivalently, an invariant vector field on X .

PROOF OF THE THEOREM, i) We first introduce some useful definitions and nota-
tion. Let Xf = J2a f{a)Xa be an ample divisor on X. By the Demazure criterion

[1], [3], this is equivalent to saying that the convex polyhedron Γ = {χ e TR\(x, α) <
f(a)} generates a fan Σ, i.e. the map δ ι-+ Γ5 = {x e Γ|(χ, a) — f(a), Va e |<J|}
defines a one-to-one correspondence between the cones δ e Σ and the faces Γδ c Γ;
dim δ = codim Γ5 . Corresponding to the polarization vector h there is a linear form
Η on the space fR which takes different values on an arbitrary pair of adjacent ver-
tices of Γ. We call Η the height function. Each face Γ^ has a unique vertex νδ e Τδ

of maximal height. Define the height of a face Η(Τδ) to be Η(νδ). Amongst the
faces with a given maximal vertex ν there is a largest one Γ5 . It corresponds to the
distinguished simplex δ and will also be called the distinguished vertex.

STEP 1. It suffices to prove that distinguished cycles generate the group CH(X).

Indeed, it is well known that rkCH(X) = | £ ( n ) I (cf. §4.2.2). This coincides with
the number of distinguished cycles.

STEP 2. The faces Γδ c Γ of a fixed dimension d which have minimal height are
distinguished.

Indeed, let Γτ 3 Γ^ be a distinguished face with the maximal vertex νδ. If
Γτ ψ Γδ then Γτ has a face of dimension d which does not contain the maximal
vertex υδ. It has a smaller height than Υδ , which is impossible by assumption.
Consequently, the face Γ^ = F r is distinguished.

STEP 3. For any face Γτ c Γ and vertex υ e Γ Γ the cycles Xs which correspond
to the faces Γδ c Γτ containing ν can be expressed linearly, in the Chow ring, by the
cycles Xp corresponding to the faces Γ' c Γτ not containing ν .

Dually, the basis cone A D I corresponds to the vertex ν e Γ τ . We need to prove
that the cycles Χδ , τ c δ c A, are linear combinations of the cycles Χ , τ c ρ <t Δ.

Consider the case δ - {τ, α), α € |Σ | . Choose a character χ € f, for which
(χ, α) = 1 and (χ , β) = 0 for α φ β e |Δ|. In the Chow ring we have the relation
Σ) 7 6 |Σ | (* ' y)Xy = ° ( s e e t1))· By multiplying this by Xr and using the relation
XaXx = X,a T\ = Χδ we obtain the required representation of the cycle Χδ . The
general case reduces to this if in the argument one replaces the element τ by an
arbitrary face T ' D I of codimension 1 in δ.

STEP 4. Any cycle is a linear combination of distinguished cycles.
We fix the dimension of the cycles Xg and argue by induction on the height

Η(Τδ). Step 2 provides the initial step of the induction.
If the face Γδ is distinguished, then there is nothing to prove. For the opposite

case let Γτ 3 Γ { be a distinguished face and vs a general maximal vertex of the
faces Γ5 and Γ τ . By Step 3, Χδ can be expressed in the Chow ring by cycles
Xp corresponding to faces Γ^ c Γτ which do not contain νδ. These faces have
a smaller height. Therefore, by the induction hypothesis, the cycles X are linear
combinations of distinguished cycles.

Assertion i) of the theorem is now proved. In order to prove the second assertion
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it is sufficient to express the classes of the distinguished cycles X& in K{X) by the
distinguished invertible sheaves <f{-d) [18]. It is easy to do this by induction on
dim δ using the formulas

xs=Uxa= π (*-*"(-<*)) = i

a€|<5| ae|<5|

5.3.3. REMARK. Another proof of this theorem with the Chow ring replaced by
homology groups can be obtained by using Atiyah's arguments in [19] (cf. [15] and
[16]). To a polarization vector h one associates a Hamiltonian vector field on X
whose zeros coincide with the fixed points x& e X of the torus. The Hamitonian
function of this field is an exact Morse function, and the index of the critical point
χΔ equals twice the number of negative coordinates of the vector h in the basis |Δ|.
Morse theory, in this situation, allows one to find the Betti numbers and to construct
a basis of the homology groups. The proof presented in the main text makes use of
a combinatorial version of these ideas.

§6. Structure results

6.1. In this section we shall prove several general results on construction of toral
bundles based on their description in terms of nitrations given in §2. The central role
in this description is played by the compatibility condition of Theorem 2.2.1. We
shall deal with nonsingular varieties and therefore shall adopt the following definition
(see §2.2.2, i)-iii)).

6.1.1. DEFINITION. We shall call the family of subspaces Ea c Ε, a e A , split-
table if it generates a distributive lattice. A family of nitrations Ea(i), a e A , is
splittable if the family of subspaces E'\i), α Ε A, i e Ζ, is splittable.

Splitable systems can be represented in the form of a direct sum of systems of
rank one (= dim E).

It is convenient to write the splittability condition of the nitrations E"{i) in terms
of the parabolic subgroups Pa = {g e GL(E)\gE"(i) = E"(i)}:

{Ea\a e A} is splittable -o· ("] Pa contains a maximal torus. (6.1)

Relation (6.1) together with Theorem 2.2.1 show that the study of toral bundles
with fiber Ε on a nonsingular variety X = Χ{Σ) is essentially equivalent to describ-
ing simplicial maps from the fan Σ to the complex &>{E) whose vertices are the
parabolic subgroups Ρ c GL(E) and whose simplices form families Pa c GL(E),
a e A , containing a common maximal torus. In this way the complex £P{E) plays
the role of a classifying space for toral bundles. Its study is the principal aim of this
section.

We note the formal analogy between 3°(E) and the Brauer-Tits complex in which
the incidence relation between parabolic subgroups is defined by the presence of a
general Borel subgroup.

We start from the following analog for £P(E) of Helly's theorem about convex
sets.

6.1.2. THEOREM. A family of subspaces Ε" , aeA,ofanm m-dimensional space
Ε is splittable if and only if each (m + \)-element subfamily is splittable.
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AN EQUIVALENT FORMULATION. For a family of parabolic subgroups Pa c GL(m)
to have a common maximal torus it is necessary and sufficient that any m + 1 sub-
groups of this family contain a maximal torus.

6.1.3. COROLLARY. Let & be an equivariant bundle on an open Τ-invariant subset
Υ of a smooth toral variety X, and let rkg" < codim(X\r). Then f extends to a
toral bundle on X.

The corollary follows from the fact that under our assumptions the fan Σ(Υ)
contains an (m + l)-dimensional skeleton of the fan Σ(Χ), m = rki* . Therefore the
nitrations Ea , a e \Σ{Υ)\ = \Σ{Χ)\, which define the bundle If will be compatible
on Σ{Χ) and so determine an extension of £? over X.

The proof of the theorem is based on the following criterion of Johnson distribu-
tivity (cf. §2.2.2, i)-iii)):

(Ea\a e A) is splittable ο VB, C c A I Σ Ep ] f| Ey = Σ Ι Εβ f) Εγ ] .
\β€Β ) y€C β€Β \ y€C )

(6.2)
We need to check that if the equality on the right-hand side of (6.2) is satisfied

for \B\ + \C\ < m + 1 , then it is satisfied for all B,C cA.
We argue by induction on m = dim Ε .
STEP 1. For all Β c A and a e A

EpnEa. (6.3)
β€Β

Indeed, the inclusion D is obvious. Conversely, since dim Ε = m , there exists a

subset B' C Β , \B'\ < m , for which ΣβΕΒ'
 £β = Σβ€Β

 Ε& • T h e n

/ λ
Γ\Εα= [Υ Εβ \nEa = Υ ΕβηΕ^ΥΕβηΕα.

\ * \ (6.2) ^ ^
β€Β' β€Β

STEP 2. For any eigensubspace Ea c Ε the family Ε C\Ea , β € A, is splittable
in Ea .

Indeed, for \B\ + \C\ < m by the assumption of the theorem we have

Σ £β Π Α Π Ε^Ε" = [Σ Εβ) Π Ε'ΠΕ* = Σ Εβ Π Ε^Εα. (6.4)
κβ€Β ) 7&C y · ' \βΕΒ J yeC K ' '

Since dim E" < dim Ε - m, the inductive hypothesis implies that the splittability
of the family Εβ η Ε" , fie A, follows from (6.4).

STEP 3. The equality on the right-hand side of the Johnson criterion (6.2) is satisfied
for any Β, C c A .

Indeed, let E" c Ε , a e C, be an eigenspace in Ε (if there is no such a, (6.2)
is obviously satisfied). Then

ΣΕβ f]Er.
fiee yec
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For the last equality we used the splittability of the family Εβ Π Εα , β e A (Step
2). The theorem is proved.

6.1.4. COROLLARY. The following conditions on a nonsingular toral variety X —
Χ(Σ) are equivalent:

i) All toral bundles of rank m over X split.
ii) Any m + 1 vectors in |Σ| generate a cone in Σ.

PROOF, ii) => i). Let Ea , a e |Σ | , be a family of nitrations of the space Ε defin-
ing a bundle ^ of rank m . Then, by the compatibility condition of Theorem 2.2.1,
any m + 1 nitrations of this family are splittable. Consequently, by Theorem 6.1.2,
the whole family Ea , a e |Σ | , is splittable. This is equivalent to the splittability of
the bundle f (Corollary 2.2.3).

i) => ii). Assume that the vectors a e A c |Σ | , \A\ — m + 1, do not generate a
cone in Σ. Consider a family of nitrations Ea , a e | Σ | , such that

1. £•"(/) = 0, or Ε, if α φ Α , and
2. Ea(i) = 0, La, or E, if a e A, where the La c Ε, a e A, are one-

dimensional subspaces in general position in the space Ε.
According to Theorem 2.2.1 the nitrations Ea , a e |Σ | , determine a nonsplittable

bundle of rank m .

6.1.5. COROLLARY. Let X be a nonsingular toral variety of dimension n. Then:
i) All equivariant bundles of rank η on X are splittable if and only if X is affine.
ii) All equivariant bundles of rank η - 1 split if and only if X = P" or X is affine.

The proof follows immediately from 6.1.4.
6.2. In the case where for each a e A the subspaces E"(i), i € Z , form a

full flag, Theorem 6.1.2 can be considerably strengthened. Since the order is of no
importance in this context, we shall assume that codimEa(i) — i, i = 0, . . . , m .
Recall that the configuration of a pair of full flags E" and Εβ can be characterized
by the permutation π α ^ € Sm , where the index j = nn^{i) is determined from the

condition that Ea(i - 1) c Ep{j - 1) + E'\i) and Ea{i - 1) £ Efi(j) + En(i).

6.2.1. THEOREM. Let Ε", a e A, be a family of full flags on an m-dimensional
space E. Then the following conditions are equivalent:

i) The family En , aeA, is splittable.

ii) The permutations πα^ of flags Ea and Εβ form a cocycle: πα^πβ^πγ^η — 1,
VQ , β, γ e A .

iii) This cocycle is principal: π,η = s~ ί» , sn € Sm, a e A .

6.2.2. COROLLARY. A necessary and sufficient condition for a family of full flags
Ea, a € A, to be splittable is that any triple of flags in this family is splittable.

AN EQUIVALENT FORMULATION. A family of Borel subgroups Ba c GL(is), a e A ,
contains a common maximal torus if and only if an intersection of any three subgroups
of this family contains a maximal torus.

PROOF, i) => iii). The splittability of the family of full flags Ea , a e A , means
that they are generaed by different orderings of the same basis (el , ... , em), i.e.
£•"(/) = (e \sa{j) > i), sn e Sm. In this case the permutation of the flags Ea and

E" is *,,|/i=J« V



EQUIVARIANT BUNDLES ON TORAL VARIETIES 367

iii) ο ii). Obviously, iii) => ii). For the proof of the reverse implication one just

has to fix γ and put sa = π ? | ο . Then πη]β = πα{γ • πγ{β = s~lsfi.

iii) => i). Unfortunately no simple proof of this implication is known to the
author. First we shall check it for a family of three flags, and then we shall reduce
everything to this case, independently proving Corollary 6.2.2.

STEP 1. Let Ba , Ββ , BY c GL(E) be three Borel subgroups containing a common
maximal torus. Then

ΒαηΒβΒγ = {ΒαΓ)Ββ)(ΒαΓ\Βγ). (6.5)

It suffices to prove that ΒαΓ\ΒβΒγ c {ΒαΓ\Ββ)(Β"ηΒγ), since the reverse inclusion
is obvious.

Let Ba be the group of lower triangular matrices X = (xpq) with χ = 0 for
ρ <q.

Let Ββ be the group matrices Υ — (ypq) with ypq — 0 for ip < iq .

Let By be the group of matrices Ζ = (zpq) with zpq — 0 for j p < j q .
Here (/,, . . . , im) and (j{, ... , jm) are premutations of the indices 1, . . . , m .

Consider a matrix X e Bn Π ΒβΒγ. Then X e Ba and YX e Br for some
Υ € Ββ , or, on the level of matrix elements,

W = ° f<>r ;,<Λ· (6-6)

We shall assume in (6.6) that / > / , since y = 0 in the other cases. Then (6.6)
is equivalent to the fact that in the matrix

Ρ ~ { Qr>ill<il,;jr>jp

the pth row is a combination of the remaining rows.
We claim that the pth row of this matrix is, in fact, a combination of rows with

indices k < ρ . This implies that YX = Ζ e By for some Υ e Ba Π Ββ . This leads
us to the desired result: X = Y~lZ e (Ba Π Ββ){Βα Π Β7).

We prove the claim by induction on the number of rows of the matrix X (= / ).
Consider the /cth row for k > ρ. Then ik < i , and so the matrix Xk has fewer
rows than the matrix X and does not contain its pth row.

We consider two cases.
1) Jk < jp • Then Xk has more columns than Xp . By the induction hypothesis

the A:th row of Xk is a combination of the preceding rows. Therefore, this is true
for the fcth row of Xp . In this way we can exclude from the decomposition of the
pth row all the rows whose indices satisfy 1) and write it down in the form of a
linear combination of rows with index less than ρ and rows whose indices satisfy
the inequality

2) j k > j p ' , k > ρ. This inequality means that the diagonal element xkk Φ 0
of the fcth row belongs to the matrix Xp . An arbitrary nontrivial combination of
such rows contains a nonzero element in a column of index k > ρ . Therefore, they
cannot be included in our decomposition of the pth row of Xp .

STEP 2. If the triple of maximal flags £"', a — 1 , 2 , 3 , satisfies condition iii),
then it is splittable.

Indeed, it follows from iii) that there exists a triple of splittable flags Fn , a =
1 , 2 , 3 , which are in the same configuration as the corresponding E" . Let B" be
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t h e s t a b i l i z e r o f Fa . T h e n f o r a n y p e r m u t a t i o n α, β , γ o f t h e i n d i c e s 1 , 2 , 3 w e
h a v e

Εβ = 5αΕ
β, EY = SaF

y, SaeGL(E)/Bfi ί)Βγ, Sa = Sp (mod BY)

(see Proposition 2.2.5). From this we get

S ' 1 S i = ( 5 ' l S e ) ( s ; 1 S . ) e 5 ° n f i V = (ΒαηΒβ)(ΒαηΒγ).

Since the elements Sfi and S are determined modulo Β" π Β7 and Ba η Ββ , we

can assume that S~lSp = 1, i.e. Sp = S?. Then S~lSy = S^Sp e Ββ η BY and
again, without loss of generality, one can put Sa = S^ = S? = S. Hence the triple
Ea = SFa , a = 1, 2, 3 , is adjoint to the splittable triple Fa , and, consequently, is
itself splittable.

STEP 3. The family of flags Ea , a e A , of the space Ε is splittable if and only
if any triple of flags Ea , Εβ , Εγ, α, β , γ € Α , is splittable.

We argue by induction on \A\. Let \A\ — η + 1 and suppose any subfamily of
η flags is splittable. Then, by Theorem 2.2.1, the family of nitrations Ea , a e A,
determines an equivariant bundle on P" . We need to prove that this bundle splits
(see Corollary 2.2.3). We use Horrocks' theorem ([12], Chapter 1, 2.3.2) on the
splittability of the bundle % on P" when its restriction to some subspace Ρ c P " ,
k > 2, is splittable. Consider a coordinate hyperplane P " " 1 c P" . The stabilizer
of a general point xn e P"~ is a one-dimensional torus Τ c Τ. The fullness
of the flag Ea is equivalent to the simplicity of the spectrum of the representation
of the torus Ta in the fiber f (χ), χ e P"" 1 . Therefore the restriction ^ | ρ Γ '
decomposes into one-dimensional isotypical components. From Horrocks' theorem
it follows that the bundle W also splits, which is equivalent to the splittability of the
family of nitrations Ε" , a e A .

6.2.3. COROLLARY. Let Υ c X be an open T-invariant subset of a smooth toral
variety X, codim(.Y\y) > 3, and I? an equivariant bundle with simple spectrum on
Υ {this means that the representation of the stabilizer of the point Ty in the fiber S\y)
has a simple spectrum if dim Τ > 0). Then & extends to an equivariant bundle on
X.

The proof is word for word the same as the arguments in §6.1.3.
It follows from Theorem 6.2.1 that the splittability of the family of full flags Ea ,

a G A , is determined by their configuration. However, in the general case this does
not happen. For example, three subspaces of codimension 1 which are in general
position in a three-dimensional space Ε form a splittable system, and three different
subspaces containing a common straight line are not splittable although they have the
same configuration of pairs. Nevertheless, the following local version of Theorem
6.2.1 is true.

6.2.4. THEOREM. Let IP = (Ε", a & A) be a splittable system of filiations of
the space Ε and <B = £(§") the set of systems 5F = (F", a e A) with the same
configurations as £f. Then the systems which are conjugate to I? form an open
subset in <£.

This theorem means that the simplices of the complex 3°{E) are rigid: a small
deformation of the simplex {Ρ" , a €. A) which maps every face (Ρ" , Ρ ) to a
congruent one (Ρ" , Ρ ) is a translation by some element g e GL(E).
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PROOF. We argue by induction on the number of elements of A . Let \A\ = η + 1 ,
and assume that for all proper subfamilies of the family W = (Ea, a G A) the
theorem holds. Then there exists a neighborhood U 3 I? consisting of systems
y = (Fa, a G A) any proper subsystem (Fa, a G Α\β) of which is conjugate to
the family {Ea , a G Α\β).

We shall interpret families of nitrations y G il as bundles on P" . Since the
bundle & is splittable, we have // ' (P" , W/it/%?) = 0, i.e. I? is rigid. Consequently,
it cannot arise in a nonconstant family. Therefore, all bundles y G il0 c Η in some
neighborhood 1 ^ 3 ? are isomorphic to %. This means that the corresponding
nitrations y = (F", a G A) are conjugate to %(Εα , a e A). This implies that the
orbit GL(£)3* = GL(£)it0 is open in <£.

6.2.5. REMARK. For any group G ,\tX ^{G) denote the simplicial complex whose
vertices are the parabolic subgroups Ρ c G and whose simplices form families of
subgroups containing a common maximal torus. Then simplicial maps of a nonsingu-
lar fan Σ in ^P(G) can be interpreted in the language of toral bundles on Χ{Σ) with
structure group G. From this point of view it is interesting to generalize statements
of type 6.1.3 or 6.2.1 to arbitrary semisimple groups.

6.3. In this subsection we prove a general fact about constructing restrictions of
toral bundles to closures of orbits.

Let X = Χ(Σ) be a nonsingular toral variety. Then the closure of an orbit Χσ =
Οσ is also a smooth toral variety with respect to the action of the torus Τσ — Τ/Τσ ,
where Τσ is the stabilizer of the point Xc G Οσ. Its fan Σσ = Σ(Χσ) consists of

images of cones τ D σ in TK/Ra, where Ra is the subspace spanned by σ. We
shall identify the set of generators of one-dimensional cones \Σσ\ with their inverse
images a G |Σ | ; ( α , υ ) ε Σ .

Consider an equivariant bundle IP on X defined by a family of nitrations Ea ,
α G |Σ| . The restriction &\Xa has a canonical Γ-structure but has no canonical
toral structure with respect to the action of the torus Τσ = Τ/Τσ . It can be defined
by choosing a splitting π: Τ —> Τσ of the inclusion ;: Τσ —> Τ, π • ι = 1 , and
identifying Τσ with ker7r. Let ^ denote the restriction ^\Xa with the given toral
structure.

Define on the group of characters Ta the partial ordering

X < Ψ ο (Χ, α) < ( ψ , a ) , V a G | σ | , (6.7)

and put

ψ>χ

The space Ε is canonically identified with the isotypical component of the
character χ of the fiber %?{xa) via the map

Εσ{χ)-^%{χα) e-+ lim x~\t)(te), t G Ta

(see Remark 2.1.2 and the comment after Theorem 2.2.1). From its definition it is

obvious that f (χ) annihilates all the subspaces Εσ(ψ), ψ > χ, and induces an

isomorphism /σ]{χ): Ε[σ\χ) -> ^{χσ)χ • In this way the fiber ^(χσ) is identified

with the graded space Ε[σ] = 0 Ε[σ](χ).
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In the following theorem V c Ε[σ\χ) will denote the projection of a subspace

V c Ε onto the factor Ε•I"]

6.3.1. THEOREM. The restriction ^\Χσ = %> is determined by the collection of

filiations of the graded space Είσ] = @χΕ
[σ\χ), (6.8), induced by the filiations

Ea, {α, σ) e Σ , of the space Ε translated by ηαχ = (χ, π°(α)>: Ε[σ]'α(ί) =

Θ ΓΓ01 ( i Ι_ γ% \

Here the map ft : Τ —• Τσ is constructed from the splitting π: Τ —> Τσ of the
canonical embedding /: Ta —• Τ.

PROOF. We use the identification ^(χσ) ^ Ε described above and put Vy e Τ

^(χσ)
α(ψ) = {ee«?(xCT)|3 Hm ψ~\ή(ίβ)}

tXn—*X/(j \

= (projections of the space Εα{ψ) to ^(χσ)}{ψ)) = Εα{ψί(ψ)).

Then by decomposing the character ψ = ψσ + ψσ , ψ" Ε kerf, ψσ = πΐ(ψ) e Ιτηπ ,
we have

&{χ ) (ψ) = r-}3 £ ( ( ^ , α))-,

£ · " ( / + (π'ιψ, α)).ιψ

c(i + (πχ , α))= ($ Ea(i + (χ , n°(a)))y

As an application of the results of this section we shall prove the following fact.

6.3.2. PROPOSITION. Let W be a toral bundle on P" . Assume that for some point
x e P " the representation of the stabilizer Τχ in the fiber f ( x ) satisfies one of the
following conditions:

i) the dimensions of isotypical components are smaller than codim Τχ ;
ii) the number of isotypical components is at most dim Τχ .
Then the bundle % splits.

PROOF, i) Consider the restriction of the bundle f to the closure of the orbit
Όχ = P m , m = codim Tx . By the previous theorem J?|Pm decomposes into a sum
of bundles whose dimensions equal the multiplicities of the irreducible characters
of the representation Τχ: &(x). By the assumption these multiplicities are smaller
than m and therefore the restriction g*|Pm splits (Corollary 6.1.4 or 6.1.5). By
Horrocks' theorem ([12], Chapter 1, 2.3.2), this implies that the bundle % itself
splits if m > 2 . The case m — \ is possible only for the zero bundle.

ii) Let χ e Oa , Τχ = Ta , and σ € Σ(Ρ"). If the number of components of the
representation Τσ: <?{x) is at most dim Ta = dim σ, then for two different faces
χ Q. δ <z a the representations Τχ: if (χ) and Ts: f ( x ) will have the same number
of isotypical components. Then isotypical decomposition of these representations
coincide. In the language of nitrations this means that the spaces Εβ{ί), β G \δ\,
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can be expressed by sums of intersections of the spaces Ea(j), a e | τ | . Since any
proper subfamily of the family of nitrations Ea , a e |Σ(Ρ") |, is splittable, it follows
that the whole family Ea , a e |Σ | , and the bundle i? are splittable.

6.3.3. EXAMPLE. It follows from the proposition that toral bundles of rank < η
over P" split (see also §6.1.5). Consider a bundle If of rank η determined by a
family of nitrations Ea , a e 0, ... , η . The proposition implies that if it does not
split then one of the spaces E[a\i) = E"(i)/Ea(i+l) should have dimension > n-1 .
It follows from this that nontrivial spaces of nitrations E"(i) have dimension 1 or
η - 1 and form a configuration of η + 1 straight lines or η + 1 hypersurfaces in
general position which pass through the origin. With a suitable numbering of the
members of the nitration the tangent and cotangent bundles of P" correspond to
these configurations. These configurations also play a central role in the classification
theorem of the following section.

6.4. Let En , a € A , be a family of subspaces of a vector space Ε. We say that
this family is indecomposable if it cannot be represented in the form Ε = Ε{® E2,
E" = Ε" φ Ej , with dim Ε. > 0. Any system of subspaces decomposes into a direct
sum of indecomposable systems which are uniquely determined up to isomorphism
and order.

Indecomposable systems containing no more than four subspaces were described
by Gel'fand and Ponomarev [13]. In the general case the classification of indecom-
posable systems is a complex problem.

In this subsection we describe all indecomposable families of subspaces any proper
subfamily of which splits. As an example of such a family there is the configuration of
n +1 hypersurfaces in general position in an «-dimensional space which pass through
the origin. We shall denote this configuration by Ωι

η = (Ε; Ε", a eO, ... , η), and
we shall set Ω* = (AkE; AkΕ" , a = 0 , . . . , « ) . The configuration Ω^ is associated
to the bundle of ^-forms on P " .

6.4.1. THEOREM. An indecomposable family of subspaces E" c Ε, a e 0 , . . . , « ,
all proper subfamilies of which are splittable, either has rank one (= dim£) or is
isomorphic to one of the systems Ω η , k = 0, ... , η .

6.4.2. COMMENT. Here is a typical situation in which the configurations in The-
orem 6.4.1 arise. Consider a toral bundle I? over P" determined by a family of
nitrations E"(i), a e {0, . . . , « } . Then by Theorem 2.2.1, for any set of indices
in e Ζ, the family of subspaces E"(ia), a e {0 , . . . ,« } , satisfies the conditions of

Theorem 6.4.1. In particular, for any character χ e f these conditions are satisfied
for the family of subspaces

By Theorem 6.4.1 it decomposes into the sum

kA (6.9)

where F is a sum of rank 1 systems not including Ωη = (L; L, ... , L) or Ω."η =
(L; 0, ... , 0), dim L = 1 . The multiplicities mk can be expressed in terms of the

χ-components of the cohomology groups Η (Ρ" , I?) :

mk - dim Hk' {Vn , g")x , (6.10)
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which, as we know from §4.1.3, is completely determined by the configuration Ε (χ).
Furthermore, the splittable component F does not contribute to the cohomology
groups, and therefore (6.10) follows from the classical equality dimHp(Pn , Ω") =

V
From (6.9) and (6.10) we get
6.4.3. COROLLARY. For a toral bundle I? over P" and any character χ,

In particular, if r k f < {n

k) then Hk(Pn ,£)χ = 0.

There is one more method for picking out the components in the decomposition
(6.9):

|/|=fc+la€/ ' \J\ = n-k+la€J

which also gives a symmetrical formula for calculating cohomology groups (cf. §§4.3.1
and 4.3.2). The proof reduces to checking this relation for splittable bundles and for

Ω*.
PROOF OF THE THEOREM. It will be convenient for us to convert to the language

of bundles. We call a filtration Ea(i) of the space Ε short if it contains no more
than one subspace different from 0 and Ε . Let I? be a toral bundle over P" defined
by a family of short nitrations Ea , a = 0 , . . . , « . We say that the bundle £? is
standard if it decomposes into a direct sum of line bundles and twisted bundles of
p-forms £V ®(f{f). We need to prove that every bundle defined by short nitrations
is standard.

6.4.5. ASSERTION. A toral bundle W over P" determined by short filiations ad-
mits a decompositon W = If0 θ f', where IT0 is standard and Exl\3r, f 1 ) =
Hl(Pn,B'l®&") = 0 0<p<n,for ι > 0 it follows that //"~'(Ρ" , WM ®&) = 0
for any splittable bundle &.

We shall prove the theorem from this proposition.
STEP 1. i). For any bundle & over Pn there exists an exact sequence of bundles

in which & is splittable and Ext1 (.5^ ,&') = 0 for any splittable bundle &'.
ii) The bundle W' is uniquely determined by % up to splittable components.
iii) If % is standard, so is f'.
PROOF, i) Let st: & -+ ?(/«,.) generate the module ® m //°(P" , £{m)) over the

ring 0 m H°(P" , (9{m)). Then the corresponding sequence 0 — %' -> 0 , ^ ( - w ; )
—> f —»• 0 has the necessary properties.

ii) Suppose we have two exact sequences
0 ^ g * ' ^ j r - * g r ^ 0

T l U II (6.H)
0 -> ^ " -^ &' -> f -> 0

The condition Ext ' (^\ f " ) = 0 = E x t ' ( ^ ' , ^ ' ) implies the existence of the
vertical morphisms making diagram (6.11) commute. Then standard arguments from
Schanuel's lemma show that f' θ &' - %" θ & .
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iii) One can restrict to the case If = Ωρ , 0 < ρ < η. Then there is an exact
sequence ([12], Chapter 1, §1)

0 _ i/+ 1 ^ (n + | V(-/> - 1) ̂  Ω" ^ 0,

from which it follows that f = Ω ρ + 1 .

Consider now the canonical resolution (3.1) of the bundle £*

—• © —> ^ / Q —> ^ —• • · · —> ^ n —> υ

and split it into short exact sequences

It follows from the definition of the canonical resolution that, along with If, all
the bundles J^ and ^ are also determined by short nitrations.

STEP 2. All the bundles Wt, i > 0, are standard.
The proof proceeds by inverse induction on i. Suppose that the bundle J?/+1 is

standard. We write the sequence (6.13) in the form

Ο-^θ^-^-^,-0, (6.14)

where If = f f θ ^ ' is the decomposition in Proposition 6.4.5.
From the canonical resolution (6.12) and the acyclicity of splittable bundles

HP(P", 9~) = 0, 0 < ρ < η, for / > 0 it follows that Hn~l(P, ^i+l ® &) = 0
for any splittable bundle &. Therefore, from part ii) of Step 1 applied to the se-
quence dual to (6.14) it follows that the bundle S^+1 is uniquely determined by <̂
up to splittable components. Therefore, one can replace the resolution (6.14) by a
direct sum of resolutions

Moreover, ^ + 1 differs from ^ ( 8 ^ ( by a splittable component. Since £?i+l is

standard by the induction hypothesis, © |̂, is also standard. Then, from (iii) of Step

1, If1 is also standard; consequently the sum ^ θ ^ = If is standard.
h bdl & ddSTEP 3. The bundle & is standard.

Indeed, according to Proposition 6.
any splittable bundle &. Consider the start of the canonical resolution (6.12)

Indeed, according to Proposition 6.4.5 one can assume that Ext'(«?", I?) = 0 for

The bundle f, here is splittable by Step 2. Therefore, from Step 1 it follows that %
is standard.

PROOF OF PROPOSITION 6.4.5. This requires a quite different technique, for which
the language of nitrations is more suited. In this language the acyclicity of the bundles
If (g)^ (J?" splittable) in dimension one or codimension one is equivalent to verifying
the conditions

Εη+Γ)Εβ = η (Εα + Εβ) (6.15)
βία β,βϊη

or

ΕαηΣεβ= Ε r n £ ' ' (6-1 6)
βφη β: /? Α



374 Α. Α. K.LYACHKO

where we let Ε1, γ = Ο, ... , η , denote an arbitrary term of the filtration Ey(i)
defining the bundle I? (see §4.3.1).

Now let Ea , a = 0, ... , η , be a family of subspaces of which any proper sub-
family is splittable. Put

STEP 1. The system {E; Ea) decomposes into the direct sum

{E; Ea) ~ {Η; Ηα) φ m£f~l θ F,

where F is a splittable system of subspaces.
This is precisely the decomposition of the system (E; Ea) by using the top cube

of Gel'fand and Ponomarev B+(2) [13]. Note that under our assumptions on the
spaces Ea , the higher cubes B+(m), m > 2, do not give any new components.

We shall show that the system (H; H") is acyclic in codimension 1.
STEP 2.

Hr = Σ Ε7ηΕβ. (6.17)

β:β¥?

Indeed,

Ε7ΠΕβ+Εγη ]Γ ΕαΓ\Εβ.
αφβ β;β?7 αψίβ-α,β^γ

We shall check that the second summand of this sum is contained in the first one. It
is obvious that, for all δ = 0 , . . . , « ,

Ε" Π Εβ C
αίβ-,α,βίγ β^γ,δ

since amongst pairs of indices α φ β one differs from δ . As the system Ε" , α Φ δ ,
is splittable, we get

E7n Σ Ε"ηΕβ cE'n Σ £β = Σ ΕγηΕβ c Σ Ε"ηεβ>
ηίβ,η,βφγ βφγ,δ β;β*7,δ β;β&

which proves (6.17).
STEP 3.

/ / " Π ^ / / " = //"= Σ ΗηηΗΡ. (6.18)
β Φ» β\βί»

The first of these equalities follows from the fact that

ΥΗβ = ΥΕβΓ\Ε7 = HDHa.
^ (6.17) ^-^
β** βψί

The second can be obtained by using the formula

Hn η Hp = Ε" Π Εβ Π Σ Ε? η E' = Ε" π Εβ '
Ίφδ

from which we get

Υ Η"ηΗβ= Υ Ε"ηΕβ = Η".
ζ — ' *—' (6 .17)

ββ¥ β\β¥



EQUIVARIANT BUNDLES ON TORAL VARIETIES 375

Formula (6.18) means that the bundle ^ defined by the system of subspaces
Ha c Η, a = 0, ... , η, is acyclic in codimension 1 (see (6.16)). Together with
Step 1 this proves the proposition dual to 6.4.5. Proposition 6.4.5 itself is obtained
by passing to the dual bundles.
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