1. Let $M > 0$ and $N > 0$ be constants. Define
\[\mathcal{F} = \{ f \in C^1([a, b]) \mid ||f||_\infty \leq M, ||f'||_\infty \leq N \}. \]
Show that \mathcal{F} is a precompact but not compact subset of $(C([a, b]), ||\cdot||_\infty)$.

2. Let $f \in C([a, b])$. Prove that
\[|\int_a^b f(x)dx| \leq |b - a|^{1/2} \left(\int_a^b f(x)^2 dx \right)^{1/2}. \]

3. For $M > 0$, define $\mathcal{F}_M \subset C([a, b])$ as follows:
\[\mathcal{F}_M := \{ f \in C([a, b]) \mid f' \in C([a, b]), f(a) = f(b) = 0, \text{ and } \int_a^b (f'(x))^2 dx \leq M \}. \]
Prove that \mathcal{F}_M is precompact in $(C([a, b]), ||\cdot||_\infty)$.

4. Suppose \mathcal{T}_1 and \mathcal{T}_2 are two topologies on a nonempty set X. Show that $\mathcal{T}_1 \cap \mathcal{T}_2$ is also a topology. Given an example to show that $\mathcal{T}_1 \cup \mathcal{T}_2$ may fail to be a topology on X.

5. Let \mathcal{B} be a collection of subsets of a nonempty set X. Then, \mathcal{B} is a base for some topology \mathcal{T} of X if and only if
 (a) $X = \bigcup_{B \in \mathcal{B}} B$;
 (b) For any $B_1, B_2 \in \mathcal{B}$, and any $x \in B_1 \cap B_2$, there exists $W_x \in \mathcal{B}$ such that $x \in W_x \subseteq B_1 \cap B_2$.

6. Suppose X is a metric space. If one of its base has only finitely many elements, show that X must be a metric space with only finitely many points.