In this homework, we regard μ-integrable as $\int |f| \, d\mu = \int f^+ \, d\mu + f^- \, d\mu < \infty$.

Problem 1.

Proof. Since f is μ-integrable, then $|f|$ is μ-integrable as well by definition.

Consider set $A_n = \{ x \in X : f(x) > n \}$ and define $f_n = |f|1_{A_n}$. Then $f_n \leq |f|$. Moreover, since $|f|$ is μ-integrable, then $f_n \to 0$ almost everywhere as $n \to \infty$. By dominated convergence theorem, we have:

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X \lim_{n \to \infty} f_n \, d\mu = 0.$$

That is, for every $\varepsilon > 0$, there exists an $N > 0$ such that $\int_X f_n \, d\mu \leq \frac{\varepsilon}{2}$ for any $n \geq N$.

Problem 2. L^1 convergence does not imply pointwise convergence.

Proof. Let’s define A_n as following measurable subsets of $[0, 1]$:

$$[0, 1], \quad [0, \frac{1}{2}], \quad \frac{1}{2}, 1], \quad [0, \frac{1}{3}], \quad \frac{1}{3}, \frac{2}{3}], \quad \frac{2}{3}, 1], \quad \cdots$$

Then we have

$$||1_{A_n} - 0||_1 = \mathcal{L}(A_n) \to 0.$$

However, for any $x \in [0, 1]$, x belongs infinitely many sets in $\{A_n\}$, which implies that $1_{A_n} \not\to 0$ for every $x \in [0, 1]$.

Problem 3.

Proof.

1. Let $\varepsilon > 0$ and M be such that $|g| \leq M$. Since $C^0_c(\mathbb{R})$ is dense in $L^1(\mathbb{R})$, that is, there exists a sequence $\{f_n\}$ in $C^0_c(\mathbb{R})$ such that $\int_{\mathbb{R}} |f_n - f| \, dx \to 0$ as $n \to \infty$. Assume for $n = N$, $\int_{\mathbb{R}} |f_N - f| \, dx \leq \frac{\varepsilon}{3M}$. Furthermore, since f_N is continuous and compactly supported, then f_N is uniformly continuous on $\text{supp}(f)$. That is, there exists $\delta > 0$ such that for every $|x - y| \leq \delta$, $|f_N(x) - f_N(y)| \leq \frac{\varepsilon}{3M\mathcal{L}(\text{supp}(f))}$.

\[|(f * g)(x) - (f * g)(y)| \]
\[= |(f * g)(x) - (f_N * g)(x) + (f_N * g)(x) - (f_N * g)(y) + (f_N * g)(y) - (f * g)(y)| \]
\[\leq \begin{align*}
I & |(f * g)(x) - (f_N * g)(x)| \\
II & |(f_N * g)(x) - (f_N * g)(y)| \\
III & |(f_N * g)(y) - (f * g)(y)| \\
\end{align*} \]

\[I = \int \limits_{\mathbb{R}} |(f(x) - f_N(x))g(y)|dy \leq M \int \limits_{\mathbb{R}} |f(x) - f_N(x)||dy \leq M \frac{\varepsilon}{3} M = \frac{\varepsilon}{3}; \]

Based on the same reason, \(III \leq \frac{\varepsilon}{3}. \)

\[II = \int \limits_{\mathbb{R}} |(f_N(x - z) - f_N(y - z))g(z)|dz \leq M \int \limits_{\mathbb{R}} |f_N(x - z) - f_N(y - z)|dz \]
\[\leq M \frac{\varepsilon}{3M \mathcal{L}(\text{supp}(f))} \mathcal{L}(\text{supp}(f)) = \frac{\varepsilon}{3}. \]

Combine the above estimations, we get the result.

2. Recall Problem 1 in Homework 2, if \(f \) is uniformly continuous and integrable, then \(f(x) \to 0 \) as \(x \to \infty \). In part 1, we prove \((f * g)(x) \) is uniformly continuous, once we prove \((f * g)(x) \) is integrable, then we complete the result. By Tonelli’s theorem,

\[\int \limits_{\mathbb{R}} |(f * g)(x)|dx = \int \limits_{\mathbb{R}} \int \limits_{\mathbb{R}} |f(x - y)g(y)|dydx \]
\[= \int \limits_{\mathbb{R}} \int \limits_{\mathbb{R}} |f(x - y)g(y)|dxdy \]
\[= \int \limits_{\mathbb{R}} |g(y)| \left(\int \limits_{\mathbb{R}} |f(x - y)|dx \right) dy \]
\[= \int \limits_{\mathbb{R}} |g(y)| \left(\int \limits_{\mathbb{R}} |f(x)|dx \right) dy \]
\[= \|g\|_1 \|f\|_1 < \infty. \]

\[\square \]

Problem 4.

Proof. Since \(|f_n| \leq g \) and \(f_n \) converges to \(f \) pointwise, then \(|f| \leq g \). By definition, \(f_n \) and \(f \) belong to \(L^p(X) \). Furthermore,

\[|f_n - f|^p \leq |g - (-g)|^p = (2g)^p. \]
Apply the dominated convergence theorem on the sequence \(h_n(x) = |f_n - f|^p \) and its upper bound \((2g)^p\), we have

\[
\lim_{n \to \infty} \|f_n - f\|_p = \lim_{n \to \infty} \left(\int_X |f_n - f|^p d\mu \right)^{1/p} = \left(\int_X \lim_{n \to \infty} |f_n - f|^p d\mu \right)^{1/p} = 0.
\]

Problem 5.

Proof. Given any \(L^p \) function \(f \), we may find a sequence of simple function \(f_n \) such that \(f_n \to f \) a.e. and \(|f_n| \leq |f| \). By definition, \(f_n \in L^p(X, \mu) \). Apply problem 4 for \(g = |f| \), we have \(f_n \to f \) in \(L^p(X, \mu) \). \(\square \)