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Preface

These notes contain material to support and complement the lecture series at the CBMS
Summer School 2025 “Legendrian Links and the Microlocal Theory of Sheaves” (June 9-13
2025) at the Department of Mathematics of the Georgia Institute of Technology. This event
was organized by J. Etnyre (Georgia Inst. Tech.), Lenhard Ng (Duke U), Bulent Tosun (U
Alabama) Lisa Traynor (Bryn Mawr) and the author.

Through these lectures, we aim at presenting key foundational results in the microlocal theory
of sheaves and selected applications to the study of Legendrian links to a broad audience
of contact and symplectic topologists. We have leaned towards an accessible presentation,
highlighting the crucial examples and discussing in detail the most enlightening cases of an
argument. Through the notes, the reader is referred to the appropriate references for details
on general cases and possible generalizations of results. The content of each lecture aligns
with these notes as follows:

1. Lecture 1: “Lagrangian fillings of Legendrian links”

2. Lecture 2: “Sheaves and their singular support”

3. Recitation 1: “Examples of sheaves and their singular supports”

4. Group work: “Problem Set 1”

5. Lecture 3: “Exodromy description and singular support”

6. Recitation 2: “Details on Exodromy Equivalence and examples of singular support”

7. Lecture 4: “Invariance and Sheaf Quantization”

8. Group work: “Problem Set 2”

9. Lecture 5: “A Case Study: Legendrians and positive braids”

10. Recitation 3: “Braid varieties as moduli of sheaves”

11. Lecture 6: “Weaves, L-compressible systems and sheaves”

12. Lecture 7: “Cluster theory and contact topology”

13. Recitation 4: “Cluster mutation and Lagrangian disk surgery”

14. Lecture 8: “Cluster structures on moduli of Lagrangian fillings”

15. Lecture 9: “Applications to symplectic topology and cluster algebras”

16. Recitation 5: “Infinitely many fillings and surjectivity”

17. Lecture 10: “Progress and conjectures on the classification of Lagrangian fillings”

18. Group work: “Problem Set 3”

3



4

Recitations 1, 3 & 5 led by H. Gao (Tsinghua U), and Recitations 2&4 by J. Hughes (Duke
U). Group work supervised by A.M. Rodríguez (UC Davis) and A. Wong (UC Davis).

The notes comment on scientific context, providing due references and citations to mathe-
maticians who have developed work in this area. In this preface, we highlight the outstanding
contributions of M. Kashiwara and P. Schapira to the microlocal theory of sheaves, especially
[KS90], and subsequently S. Guillermou, with [GKS12, Gui23]. Along with many others,
including C. Viterbo, D. Tamarkin, D. Nadler, D. Treumann, E. Zaslow and their students
and collaborators, they have helped shaped key aspects of the microlocal theory of sheaves
as it currently applies to contact and symplectic topology.

Recommended prerequisites
On contact and symplectic topology, familiarity with the following concepts will be helpful:

1. Canonical symplectic structure in T ∗M and contact structure in its ideal contact bound-
ary T∞M . Contact and symplectic Darboux balls. See [AG01, Chapters 2,4], [Gei08,
Chapter 2] or [CdS01, Parts I-IV].

2. Legendrian and Lagrangian submanifolds and fronts, e.g. [AG01, Chapter 5].

Specific focus will be devoted on Legendrian links in the contact Darboux 3-ball and exact
embedded Lagrangian surfaces in the symplectic 4-ball. See [Etn05, Chapter 2] for a fantastic
resource on Legendrian links, and also [Gei08, Chapter 3].

On Morse theory and stratifications, it will be helpful to absorb the material to have seen the
starting steps in finite-dimensional Morse theory:

1. Morse functions and properties, e.g. [Mil63, Chapter 1] or [GP10, Chapter 1.7].

2. Stratified spaces, with Whitney stratifications in M = R2,R3, e.g. [GM88, Chapter 1].

Another reference on Morse theory is [AD14, Part I], e.g. Chapter 1 and Appendix A.

In addition, there are some preliminary readings that will be helpful for the lectures. On
the microlocal theory of sheaves, the texts [Gui23, Parts 1,2,10,12] and [KS90, Chapter V]
provide a first introduction to the microlocal aspects of sheaf theory. There are a number of
additional introductory surveys on the microlocal theory of sheaves (many by P. Schapira)
that can be found online and C. Viterbo’s 2011 Eilenberg Lectures are worth reading. Other
resources are the notes from the “Groupe de travail” at Orsay in 2015, available online.1 The
algebraic structure of a “cluster algebra” will naturally appear from the study of Lagrangian
fillings of Legendrian links. It might be helpful to have a quick read at Chapters 2&3 of the
book “Introduction to Cluster Algebras” by S. Fomin, L. Williams and A. Zelevinsky.2

1Currently active url is https://www.imo.universite-paris-saclay.fr/∼ patrick.massot/en/gdtSS/gdt2013.html.
2This book is available at “https://people.math.harvard.edu/∼williams/book.html”.



Chapter 1: Introduction

The object of these lectures is to study Legendrian submanifolds and their Lagrangian fillings
via the microlocal theory of sheaves. The notes are focused on exact Lagrangian surfaces and
their boundary Legendrian links, often in standard Darboux balls. There are two pillars in
the way we present such study:

1. The construction of Legendrian links and Lagrangian fillings. An important
ingredient is the construction of L-compressing systems, which allow for Lagrangian
disk surgeries to be performed, thus obtaining potentially new Lagrangian fillings from
given ones. From this viewpoint, the contact and symplectic topology of Lagrangian
fillings hints towards having interesting wall-crossing phenomena.

2. Invariants of Legendrian links and Lagrangian fillings via sheaves.The study of
sheaves and their singular supports allow for the construction of invariants. Specifically,
they can sometimes be used to distinguish Legendrian submanifolds, up to contact
isotopy, and Lagrangian fillings, up to Hamiltonian isotopy.

Contact and symplectic topology is the study of smooth functions and their first derivatives,
broadly understood. In (2) above, sheaves can be seen as an incarnation of families of smooth
functions, and their singular supports record information related to first derivatives. By com-
bining (1) and (2) in the case of Legendrian links and their Lagrangian fillings, the concept
of a cluster algebra arises naturally. In addition to the two aspects above, these notes provide
a few key ingredients explaining the relation between the study of cluster algebras and that
of Lagrangian surfaces.

1.1. Legendrian submanifolds: a first goal
The classification of Legendrian links Λ ⊆ (R3, ξst) is a foundational and subtle problem.

Whereas any smooth link can be represented by a Legendrian link, there are many non-
isotopic such representatives. In certain cases, such as the smooth type of the knots with
small crossings or certain families1, there exists a complete classification of all Legendrian
representatives. In general, such classification remains wide open. Precise definitions on the
concept of Legendrians and contact manifolds, with examples and more details, are provided
in Chapter 2.

The classification of Lagrangian fillings of a given Legendrian link is also a foundational
problem. While it relates to the classification of Legendrian links, there are many results
connecting this problem to several different branches of mathematics: variational calculus, via
Lagrangian and Hamiltonian mechanics, the study of differential equations, via the Riemann-
Hilbert correspondence, or the study of cluster algebras, via weaves and plabic graphs, to name
some. For specificity, we center the discussion on the following geometric goal:

Goal 1.1.1. Given a Legendrian link Λ ⊆ (R3, ξst), classify the embedded exact La-
grangian fillings L ⊆ (R4, λst) of Λ, up to Hamiltonian isotopy.

1E.g. the unknot, the figure-eight, the trefoil and, more generally, twist knots, or also certain cables.
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Goal 1.1.1 is one of the simplest versions of the more ambitious goal of classifying Hamiltonian
isotopy classes of Lagrangian submanifolds in a symplectic manifold, a problem at the core of
modern symplectic topology. It is the case that progress towards Goal 1.1.1 has itself enlight-
ened our understanding of Weinstein manifolds and also contributed significantly towards the
computation of well-used invariants, such as various variants of Fukaya categories. To ease
notation, we use the words Lagrangian filling to mean embedded exact Lagrangian filling.

Let us fix a Legendrian link Λ ⊆ (R3, ξst) and think about Goal 1.1.1. As with any
classification, natural steps are:

1. Construct as many Lagrangian fillings of Λ as possible. This often employs techniques
with flavors from geometric topology.

2. Obstruct any isomorphisms between the fillings we constructed, i.e. distinguish as
many of the Lagrangian fillings we built as possible. This often requires a certain degree
of algebra, may it be commutative, non-commutative, homological or categorical.2

3. Show that we are done, i.e. any Lagrangian filling must have been already obtained
in (1) and any two Lagrangian fillings that could not be distinguished by (2) must be
Hamiltonian isotopic.

In a nutshell, the recent developments in low-dimensional contact topology regarding La-
grangian fillings address (1) and (2). To date, there is essentially no technique I know that
can address (3), even in relatively simple instances, e.g. the (2, 5)-torus knot; methods from
geometric analysis, such as studying PDEs that deform smooth maps to harmonic or holo-
morphic ones, might be the ones closest to achieving (3).

The focus of these lectures is on (1) and (2) above. For (1), we use Lagrangian disk surgery
as our main ingredient. For (2), we employ the microlocal theory of sheaves. These are not
the only choices, and it has certainly been beneficial for Goal 1.1.1 to approach (1) and (2)
with different techniques, as well as relating such different approaches to each other.

Remark 1.1.2 (Higher dimensions). Many results presented here have direct analogues for
higher-dimensional Legendrians Λ ⊆ (T∞M, ξst) and their Lagrangian fillings in (T ∗M,λst).
We often present arguments in general dimension, so the reader can use the tools if needed,
while focusing on dimensions 3 and 4 when it comes to examples and applications. □

1.2. Microlocal theory of sheaves: a first toolkit
The microlocal theory of sheaves can be used in fruitful ways to understand Legendrian

submanifolds. For instance, it can:

1. Achieve the obstruction part of Goal 1.1.1. That is, sheaves can be employed to distin-
guish Lagrangian fillings of a given Legendrian link, cf. Section 1.1.

2. Help understand the set of Lagrangian fillings and its geometric properties. This is a
crucial aspect in these notes, when trying to build a moduli space of Lagrangian fillings.

3. Distinguish Legendrian submanifolds, up to contact isotopy.
2More broadly, it often requires a flavor of homotopy theory, understood contemporarily, e.g. including the

study of higher algebra and higher topoi, or its dg and A∞ variants.
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We now provide a condensed version of the key aspects that we will discuss when developing
the microlocal theory of sheaves with Goal 1.1.1 in mind.

Let M be a real analytic manifold, Λ ⊆ (T∞M, ξst) a Legendrian submanifold of the
ideal contact boundary of the cotangent bundle (T ∗M,λst), and K a compactly-generated
dg-category, which serves as the category of coefficients for sheaves. The core results from
the microlocal theory of sheaves that we discuss are:

1. The construction of a dg-derived category ShΛ(M ;K) such that a contact isotopy φt ∈
Cont(T∞M, ξst), t ∈ [0, 1], induces an equivalence of dg-categories

F (φt) : Shφ0(Λ)(M ;K) −→ Shφt(Λ)(M ;K), ∀t ∈ [0, 1].

In particular, the dg-equivalence type of ShΛ(M ;K) is a Legendrian isotopy invariant
of Λ. This category ShΛ(M ;K) is referred to as the dg-category of K-valued sheaves on
M with singular support on Λ.

2. Properties of ShΛ(M ;K), its variants, and their associated derived moduli stacks of
pseudoperfect objects, that are helpful in the study of Legendrian submanifolds. For
instance, given a Legendrian link Λ ⊆ (T∞R2, ξst), there exists a functor of dg-categories

mΛ : ShΛ(M ;K) −→ Loc(Λ;K) (1.2.1)

to the dg-category Loc(Λ;K) of K-valued local systems on Λ. Such functor mΛ is re-
ferred to as the microlocal functor, and it is crucial in the microlocal study of Λ. To
wit, it is necessary to perform sheaf quantization, it is used in the construction of clus-
ter structures associated to Λ, it carries a relative Calabi-Yau structure (generalizing
Poincaré duality in the context of contact topology), and its left adjoint can be used to
provide generators for ShΛ(M ;K).

For Part 1 above, we use two fundamental ideas in the microlocal theory of sheaves:

1. The notion of singular support and its properties. The singular support µsupp(F ) of
a sheaf F ∈ Sh(M ; C) will be a closed conical coisotropic subset µsupp(F ) ⊆ (T ∗M,ωst)
of the cotangent bundle. The sheaf F is (real) constructible if and only if µsupp(F )
is Lagrangian, and this case will be our focus. For a Legendrian Λ ⊆ (T∞M, ξst), the
constructibility is manifested through the stratification of M given by the wavefront
π(Λ) ⊆ M of the given Legendrian Λ, with respect to which elements in ShΛ(M ;K)
will be locally constant.

2. The technique of sheaf quantization which, coarsely put, aims at constructing a sheaf
with a specified singular support. In effect, it studies whether the functor (1.2.1) is
essentially surjective. For us, there are two important cases of sheaf quantization: that
of a graph of a contact isotopy, and that of a Lagrangian filling. The former is used to
show that ShΛ(M ;K) is a Legendrian invariant of Λ, under contact isotopies, and the
latter will allow us to study Lagrangian fillings of Λ through the dg-category ShΛ(M ;K).

This table highlights concepts relating contact topology and microlocal sheaf theory that will
be discussed in Part 1:
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Contact Topology in (T∞M, ξst) Category of sheaves on M

Legendrian Link Λ ⊆ (T∞M, ξst) ShΛ(M ;K)

Microlocal monodromy along Λ mΛ : ShΛ(M ;K) −→ µSh(Λ;K)

Contact isotopy φt ∈ Cont(T∞M, ξst) F (φt) : Shφ0(Λ)(M ;K)
∼−→ Shφt(Λ)(M ;K)

Lagrangian filling L ⊆ (T ∗M,λst), ∂L = Λ, object FL in ShΛ(M ;K)
endowed with K-local system constructed via ShL↑(M × R;K)

Intersections of Lagrangian fillings morphisms in ShΛ(M ;K)

Table 1.1: Table summary of notions from contact topology in (T∞M, ξst) and the corre-
sponding concepts induced in the microlocal study of sheaves in M .

In the case of Legendrian links and their Lagrangian fillings, i.e. M a surface, the category
µSh(Λ;K) in the codomain of mΛ in Table 1.2 is equivalent to Loc(Λ;K). The microlocal
monodromy along Λ thus assigns a K-local system in Λ to a sheaf in ShΛ(M ;K). The nota-
tion L↑ ⊆ (J1M, ξst) in Table 1.2 stands for the Legendrian lift of L ⊆ (T ∗M,λst).

1.3. A conjecture: Lagrangian fillings and cluster seeds
As we develop our understanding of Legendrian links and their Lagrangian fillings, we

keep Goal 1.1.1 as a running motivation. In doing so, it might be helpful to suggest a possible
answer to such classification of Lagrangian fillings. The necessary concepts, evidence and
motivation for the following statement are provided throughout the notes:

Conjecture 1.3.1 (Lagrangian fillings classified by cluster seeds). Let (Λ, t) ⊆ (R3, ξst)
be a pointed Legendrian link, and M(Λ, t) the derived stack of pseudoperfect objects of the
category ShcΛ,t(Λ,Perf(Z)). Then

1. Γ(M(Λ, t),OM(Λ, t)) is a cluster algebra,

2. Any Lagrangian filling L ⊆ (R4, λst) induces a cluster seed,

3. Any cluster seed is induced by an Lagrangian filling L ⊆ (R4, λst),

4. Two Lagrangian fillings inducing the same cluster seed are Hamiltonian isotopic.

In consequence, the classification of the embedded exact Lagrangian fillings L ⊆ (R4, λst)
of Λ, up to Hamiltonian isotopy, is given by the cluster seeds of a cluster algebra structure
on the ring of functions of M(Λ).

The conceptual message of Conjecture 1.3.1, were it be proven to be true, is that the
classification of exact Lagrangian fillings, up to Hamiltonian isotopy, can be reduced to a
problem in commutative algebra. The algebraic problem is itself interesting and subtle but,
in a way, entirely stripped of symplectic topology.3 Conjecture 1.3.1 contains many implicit
statements, some of which are:

1. Γ(M(Λ),OM(Λ)) is a commutative dg-algebra. The current notion of cluster algebra
in the literature is typically reserved for commutative algebras, concentrated in de-
gree 0, and there is not yet an analogous notion for the dg-setting. Similarly, M(Λ, t)

3“In a way” here because insights from symplectic topology have been proven useful in studying such
algebraic problem. Thus there is a case for studying geometry, even if the problem can be reduced to algebra!
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has (infinitely) many connected components, e.g. labeled by microlocal rank. The cur-
rent notion of cluster algebras should be modified to fit the mutation formulas for
higher microlocal rank. Therefore Conjecture 1.3.1.(1) can either be understood as first
needing to develop these more general notions of cluster algebras – to fit dg-algebras
and higher microlocal rank – or just taken to mean that the commutative algebra
H0(M1(Λ, t),OM1(Λ,t)) is a cluster algebra, in the current sense of the notion, where
M1(Λ, t) denotes the component corresponding to microlocal rank 1.

2. In my view, Conjecture 1.3.1.(2) could specifically be understood as saying that any
Lagrangian filling L ⊆ (R4, λst) admits an L-compressing system, unique in an ap-
propriately understood sense, whose intersection quiver and microlocal merodromies
provide a cluster seed for the cluster algebra in Conjecture 1.3.1.(1).

3. Conjecture 1.3.1.(4) is, in a sense, a generalization of the nearby Lagrangian conjecture
for surfaces. The nearby Lagrangian conjecture states that, up to Hamiltonian isotopy,
the only embedded exact Lagrangian surface in (T ∗Σ, λst) is the zero section Σ ⊆ T ∗Σ,
where Σ is a closed surface. It is known to be true for genus g(Σ) = 0, 1 and it remains
open for any other case g(Σ) ≥ 2.

A natural way to generalize this is to consider a Lagrangian skeleton

L := Σ ∪ (D1 ∪ . . . ∪Dn)

given by a smooth surface Σ and a collection of smooth disks Di attached to Σ along
a smooth simple curve. There is a sense in which this defines a Weinstein 4-manifold
T ∗L, possibly with a stop if ∂Σ ̸= ∅. In the particular case where the ∂Di are linearly
independent in H1(Σ,Z), Conjecture 1.3.1.(4) states that, up to Hamiltonian isotopy,
the only embedded exact Lagrangian surfaces in (T ∗L, λst) are given either by the zero
section Σ ⊆ T ∗Σ or by applying a sequence of Lagrangian disk surgeries to that zero
section by using the disks D1, . . . , Dn.

Evidence for Conjecture 1.3.1 is provided by the class of Legendrian links Λβ ⊆ (R3, ξst).
This is the case study presented in Chapter 6. Throughout these notes, we shall explain how
to prove some of the statements in Conjecture 1.3.1 for these Legendrian links.

Remark 1.3.2. Following comment (3) above, Conjecture 1.3.1 can be naturally stated in
more generality for the classification of embedded exact Lagrangian surfaces in a Weinstein
4-manifold of the form T ∗L, possibly with a stop at its boundary. The statement would
then conjecture that embedded exact Lagrangian surfaces in such Weinstein 4-manifolds are
Hamiltonian isotopic to Σ or equivalent to it via Lagrangian disk surgeries along a fixed
collection of Lagrangian disks. □

1.4. Other developments via the microlocal theory of sheaves
The focus of these notes is the study of Legendrian and Lagrangian submanifolds, and we

use the microlocal theory of sheaves as a technique to help us in this endeavor. That said, the
techniques developed within the microlocal theory of sheaves apply more broadly to contact
and symplectic topology. The foundations of the microlocal theory of sheaves are developed in
the book [KS90]. Since then, the works [GKS12, Gui23, Nad09, NZ09, Tam18, Vit10, Vit19]
brought forth new results and applications, reinvigorating research activity in this area. By
now, the microlocal theory of sheaves has been successfully used to prove many new results
in contact and symplectic topology, as well as give new proofs of known theorems in the field.
A short selection of references is:



10

1. The monograph [Gui23] contains an encouraging number of such applications, includ-
ing C0-rigidity of symplectic geometry, cf. [Gui23, Part VII], the 3-cusp conjecture in
[Gui23, Part VIII], and the fact that the projection of a nearby Lagrangian onto the zero
section is a homotopy equivalence, in [Gui23, Part XIII]. See also [GV24] for further
relations to C0-symplectic geometry and spectral invariants.

2. Non-displaceability results for Lagrangian submanifolds via the microlocal theory of
sheaves can be found in [GKS12, Tam18, Vic13].

3. Distinguishing Hamiltonian isotopy classes of embedded exact Lagrangians, e.g. as in
[CG22, STWZ19]. In particular, [CG22] established that (many) Legendrian links admit
infinitely many Lagrangian fillings.

4. Connections between Legendrian knots and smooth knot homologies, e.g. triply-graded
Khovanov–Rozansky homology and HOMFLY polynomials, are developed in [STZ17],
see also [CGGS20, CGGS21].

5. Symplectic and contact non-squeezing have also been established via microlocal sheaf
techniques, cf. [Gui23, Part VI] and [Chi17, Zha24], as well as estimates on the number
of Reeb chords of a Legendrian submanifold, cf. [Li21].

6. The construction of a relative Calabi-Yau structure for the functor (1.2.1) is provided
in [KL24b], see also [KL24a, KL22].

7. A proof that microlocalization yields the Voros–Iwaki–Nakanishi coordinates in WKB
analysis is established in [Kuw24]. The microlocal theory of sheaves also directly
relates to the Betti side of the irregular Riemann-Hilbert correspondence and non-
abelianization, cf. [CL23] and also [CN25].

8. More recently, the construction of cluster algebra structures, cf. [CW24, CGG+22], in-
cluding the proof that Richardson varieties are cluster in [CGG+22]. In addition, a
proof that the Muller-Speyer twist on positroids equals the Donaldson-Thomas trans-
formation, cf. [CLSBW23].

Further developments in the microlocal theory of sheaves are [GPS24, Kuo23, NS20].



Chapter 2: Legendrian and Lagrangian submanifolds

This chapter introduces Legendrian submanifolds and their Lagrangian fillings, the ge-
ometric objects that we study throughout the notes. The focus is on Legendrian links
Λ ⊆ (T∞R2, ξst) and their (unobstructed) exact Lagrangian fillings in (T ∗R2, λst).

2.1. Contact and symplectic manifolds
Legendrian submanifolds Λ ⊆ Y are certain types of smooth (n−1)-dimensional subman-

ifolds of a smooth (2n − 1)-dimensional manifold Y , where Y is equipped with a geometric
structure. This geometric piece of information on Y is a contact structure:

Definition 2.1.1 (Contact structures). Let Y be a smooth manifold and ξ ⊆ TY a
hyperplane distribution. By definition, ξ is said to be a contact structure on Y if ξ is
maximally non-integrable.

By a result of G. Frobenius [Fro77], see also [Gei08, Section 1.1], the condition of being
maximally non-integrable is equivalent to the local existence of a 1-form α ∈ Y such that
ξ = kerα and the top form α(dα)n−1 ̸= 0 being non-zero. That is, ξ is a contact structure
on Y if ξ = kerα where α(dα)n−1 ∈ Ω2n−1(Y ) is a local volume form in Y . A hyperplane
distribution ξ ⊆ TY is always locally of the form ξ = kerα for a 1-form α ∈ Ω1(Y ), the
meaningful condition is α(dα)n−1 ̸= 0. For more information on contact structures, see
e.g. [AG01, Chapter 4], [McD90, Section 3.5] or [Etn03, Gei08], and references therein. In
particular, a diffeomorphism φ : (Y, ξ) −→ (Y ′, ξ′) is said to be a contactomorphism if
φ∗ξ = ξ′.

Example 2.1.2. (1) The manifold (Y, ξ) = (R2n−1, ξst) with

ξst = ker{dz − y1dx1 − . . .− yn−1dxn−1} (2.1.1)

is a contact manifold. It is a result of G. Darboux that every contact manifold is locally,
around any point, of this form, cf. [Arn89, Appendix 4.H], [AG01, Section 4.1.1], [MS98,
Exercise 3.5.20] or [Gei08, Theorem 2.5.1]. In other words, any point in a contact manifold
admits a neighborhood contactomorphic to (R2n−1, ξst), as given by Equation (2.1.1).

(2) Let M be a smooth manifold, T ∗M its cotangent bundle and λst the canonical Liouville
1-form. This is the unique 1-form λst ∈ Ω such that η∗(λst) = η for every η ∈ Ω1(M),
cf. [MS98, Prop. 3.1.18] or [Gei08, Section 1.4]. Let g be a Riemannian metric on M and
T gM ⊆ T ∗M the g-unit cotangent bundle. Then

(T gM, ξst) := (T gM, ker{λst|T gM})

is a contact manifold. The contactomorphism type of T gM is independent of g, and a more
intrinsic description of such contact structure is via the notion of ideal contact boundary,
cf. [Gir17, Prop. 2]. To emphasize the independence on g, we often denote such contact
manifold by (T∞M, ξst).

(3) Let Q be a smooth manifold, T ∗Q its cotangent bundle and λst the canonical Liouville
1-form. Then the smooth manifold T ∗Q× R admits the following contact structure

(J1Q, ξst) := (T ∗Q× Rz, ker{dz − λst}).

11
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This is known as a 1-jet space: it carries the information of germs of smooth functions
f : Q −→ R and their 1st derivatives, with T ∗Q keeping track of the graph of df and the
choice of contact structure forces Rz to record the value of f . As an example, there is a
contactomorphism (T∞Rn, ξst) ∼= (J1Sn−1, ξst). This type of contactomorphisms, between
unit cotangent bundles and 1-jet spaces, are scarce: typically J1M , resp. T∞M , is not even
diffeomorphic to T∞Q, resp. J1Q, for a smooth manifold Q. □

Remark 2.1.3. For context on Example 2.1.2.(1), the classification of regular k-plane distri-
butions in dimension n that admit a discrete normal form is quick to state: non-zero vector
fields, where k = 1, contact-type structures, where k = n−1, and Engel structures, which are
(k, n) = (2, 4). These are all the possible distributions that around a point have no functional
moduli, and in fact a unique normal form. In this sense, the study of contact structures,
along with the dynamics of non-zero vector fields, is the simplest and most generic type of
distribution one can study. See [VG88, Section 1] or [AN94, Section 2.7] and note that this
problem was first studied by G. Darboux [Dar82, Section 5.(17)] and É. Cartan [Car01]. □

Lagrangian submanifolds L ⊆ X are certain types of smooth n-dimensional submanifolds
of a smooth 2n-dimensional manifold X, where X is equipped with a certain geometric
structure. This geometric piece of information on X is a symplectic structure:

Definition 2.1.4 (Symplectic structures). Let X be a smooth manifold and ω ∈ Ω2(X)
a 2-form. By definition, ω is said to be a symplectic structure on X if ω is closed and
maximally non-degenerate, i.e. dω = 0 and ωn ∈ Ω2n(X) is non-vanishing.

By definition, a symplectic manifold (X,ω) is exact if ω = dλ for some λ ∈ Ω1(X).

A diffeomorphism ϕ : (X,ω) −→ (X ′, ω′) is said to be a symplectomorphism if ϕ∗ω′ = ω.
All symplectic manifolds discussed in these notes will be exact.

Example 2.1.5. (1) The manifold (X,ω) = (R2n, ωst) with

ωst = dx1dy1 + . . .+ dxndyn

is a symplectic manifold. Notice the similarity with Example 2.1.2.(1). The same result of
G. Darboux implies that every symplectic manifold is locally, around any point, of this form,
cf. [AG01, Section 2.1.1] or [MS98, Theorem 3.2.2]. In other words, any point in a contact
manifold admits a neighborhood contactomorphic to (R2n−1, ξst), as given by Equation (2.1.1).

(2) Let M be a smooth manifold, T ∗M its cotangent bundle and λst the canonical Liouville
1-form, as in Example 2.1.2.(2). Then

(T ∗M, ξst) := (T ∗M,dλst)

is a symplectic manifold. By construction, it is an exact symplectic manifold as we can take
λ = λst as the primitive. The previous example (1) corresponds to the case M = Rn. □

A recurring theme in contact and symplectic topology is that many interesting interactions
occur when a contact manifold (Y, ξ) is, in the appropriate sense, the boundary of a symplectic
manifold (X,ω). For these notes, the main instance of this is the contact manifold (T∞M, ξst)
in Example 2.1.2.(2) thought of as the boundary of the exact symplectic manifold (T ∗M,λst)
in Example 2.1.5.(2). The intuition is that the contact structure ξst = kerλst is given by
the kernel of the restriction of the primitive of the symplectic structure to the boundary. In
general, and more rigorously, if (X,λ) is an ideal Liouville domain, we denote by (Y, ξ) =
∂(X,λ) its ideal contact boundary, cf. [Gir17, Section A] and [EKP06, Section 1.5].
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Remark 2.1.6. The infinitesimal study of symplectic structures appears as the type C family
in the classification of simple Lie algebras. Intuitively, type A infinitesimally studies geome-
tries that preserve volume, types B and D geometries that preserve inner products, which is
a symmetric tensor, and type C covers geometries that preserve skew-symmetric forms, which
are skew-symmetric tensors. In this sense, symplectic geometry is one of the building blocks
for any type of geometry, in the spirit of the Erlangen program. □

2.2. Legendrian and Lagrangian submanifolds
Let (Y, ξ) be a (2n− 1)-dimensional contact manifold. There are different ways in which

an embedded submanifold Σ ⊆ Y can interact with ξ. An important one is being tangent to
it, i.e. TΣ ⊆ ξ. The maximal non-integrability of ξ, as in Definition 2.1.1, implies that any
such submanifold must have dim(Σ) ≤ n− 1. This leads to the following:

Definition 2.2.1 (Legendrian submanifolds). Let (Y, ξ) be a (2n−1)-dimensional contact
manifold. An embedded submanifold Λ ⊆ (Y, ξ) is said to be Legendrian if TΛ ⊆ ξ and
its dimension is dimΛ = n−1. Two Legendrians Λ0,Λ1 ⊆ (Y, ξ) are said to be Legendrian
isotopic if there exists a 1-parametric family {Λt}t∈[0,1] of Legendrians in (Y, ξ).

This is the maximal possible dimension of a smooth submanifold satisfying TΛ ⊆ ξ.
A current goal of contact topology is the classification of Legendrian submanifolds, up to
Legendrian isotopy, of a given contact manifold (Y, ξ). A first example of a Legendrian
submanifold is the 1-jet

j1(f) := {(x, ξ; z) ∈ J1M : ξ = dfx, z = f(x)} ⊆ (J1M, ξst) (2.2.1)

of a smooth function f : M −→ R. Such Legendrians are Legendrian isotopic to the zero
section via the family j1(tf) for t ∈ [0, 1]. We will often construct and manipulate Legendrian
submanifolds via fronts, as introduced in Section 2.4 below, but here are some first comments
and examples:

Example 2.2.2. (i) Consider a Legendrian knot Λ ⊆ (R3, ξst) whose underlying smooth iso-
topy class is that of the unknot. Then its Legendrian isotopy type is uniquely determined
by a pair of integer numbers (rot(Λ), tb(Λ)) ∈ Z2, known respectively as the rotation and
Thurston-Bennequin numbers of Λ. See e.g. [Etn05, Section 2.6.1] or [Gei08, Section 3.5].
More generally, the Legendrian isotopy class of any Legendrian knot Λ ⊆ (R3, ξst) whose un-
derlying smooth type is an algebraic knot is uniquely determined by these two such numbers.
See [Etn05, Section 5] and references therein.

(ii) There exist exactly two Legendrian isotopy classes in (R3, ξst) of Legendrian knots whose
underlying smooth type is m(52) and have maximal tb, cf. Example 2.4.2.(1) and Figure 2.2
below. This is proven in [Che02, Section 4], where these Legendrian knots are shown to be
non-isotopic, and [ENV13, Theorem 1.1.(4)], where it is proven that these are the only two
ones. In fact, given any number k ∈ N, there exist smooth knots K ⊆ R3 which admit at least
k distinct Legendrian isotopy classes of Legendrian knots whose underlying smooth type is K,
cf. [EFM01, Theorem 4.1].

(iii) Let S ⊆ M be a cooriented immersed submanifold. Its conormal lift ν(S) ⊆ (T∞M, ξst)
is a Legendrian submanifold. In particular, any oriented immersed curve in the plane R2

determines a Legendrian link in (T∞R2, ξst).
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(iv) A central equation in thermodynamics, which follows from the 1st and 2nd laws, is that

dU = TdS − PdV,

where the local variables (U, S, T, V, P ) ∈ R5 measure internal energy, entropy, temperature,
volume and pressure. A key problem in thermodynamics is to determine the equilibrium states,
i.e. states for which the equation above holds, corresponding to a critical point of the Gibbs
free energy. Thus, the subset Λ ⊆ R5 of equilibrium states is a Legendrian surface in

(R5, ker{dU − TdS + PdV }).

As V. Arnol’d opens in [Arn90a]: “Every mathematician knows it is impossible to understand
an elementary course in thermodynamics. The reason is that thermodynamics is based – as
Gibbs has explicitly proclaimed – on a rather complicated mathematical theory, on contact
geometry.”. Ibid is a much recommended survey for graduate students and see also [EPR25]
for a more modern account in relation to thermodynamics. □

The classification of Legendrian isotopy classes in (R3, ξst) has been an active subject of
study, including salient results such as [EH05, ELT12, ENV13]. The classification of (non-
loose) Legendrians in (R2n−1, ξst) is yet to be successful explored. Note that in higher di-
mensions there are typically (infinitely) many Legendrian spheres smoothly isotopic to the
Legendrian unknot but not Legendrian isotopic to it, as being smoothly isotopic in higher
codimension is not much of a smooth constraint.

In the symplectic context, part of the tangency condition in Definition 2.2.1 translates to
differential forms as the vanishing of ω upon restriction. Specifically, a submanifold L ⊆ (X,ω)
of a symplectic manifold (X,ω) is said to be Lagrangian if ω|L ≡ 0 vanishes identically and
dim(L) = n. In these notes, we study the following specific class of Lagrangian submanifolds
in exact symplectic manifolds:

Definition 2.2.3 (Exact Lagrangian submanifolds). Let (X,λ) be an exact symplectic
manifold. An embedded submanifold L ⊆ (X,λ) is said to be an exact Lagrangian if the
deRham class [λ|L] ∈ H1(L,R) vanishes, i.e. if there exists a function f : L −→ R such
that df = λ|L. Two exact Lagrangians L0, L1 ⊆ (X,λ) are said to be exact Lagrangian
isotopic if there exists a 1-parametric family {Lt}t∈[0,1] of exact Lagrangians in (X,λ).

As above, a current goal of symplectic topology is the classification of exact Lagrangian
submanifolds, up to exact Lagrangian isotopy, of a given exact symplectic manifold (Y, λ).
For the reader familiar with Hamiltonian isotopies, note that two exact Lagrangians are exact
Lagrangian isotopic if and only if they are Hamiltonian isotopic, see e.g. [MS98, Section 9.3]
and [Oh15, Theorem 3.6.7].

Example 2.2.4. (i) Let f : M −→ R be a smooth function, then the graph gr(df) ⊆
(T ∗M,λst) of its differential df ∈ Ω1(M) is an embedded exact Lagrangian submanifold. Any
such Lagrangian is exact Lagrangian isotopic to the zero section, e.g. by considering the family
gr(d(tf)) for t ∈ [0, 1]. Compare these examples with Equation (2.2.1).

(i′) Let S be a closed smooth surface and (T ∗S, λst) its cotangent bundle. For genus g(S) =
0, 1, any exact Lagrangian L ⊆ (T ∗S, λst) is exact Lagrangian isotopic to the zero section
S. More generally, it is conjectured that any exact Lagrangian in (T ∗M,λst) is exact La-
grangian isotopic to the zero section, for any closed smooth manifold M . This is known as
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the nearby Lagrangian conjecture and has been a driving motif for modern symplectic topology.

(ii) Let (WΛ, λΛ) be the Weinstein 4-fold obtained by attaching a Weinstein handle along a
Legendrian knot Λ ⊆ (S3, ξ), seen as the ideal contact boundary of (R4, λst). If Λ is the
(unique) max-tb representative of a (k, n)-torus knot, (k, n) = 1 and k, n ≥ 2, then (WΛ, λΛ)
contains more than one isotopy class of embedded exact Lagrangians. There are infinitely
many such exact Lagrangian isotopy classes if k ≥ 4 and n ≥ 5.1

(iii) In line with Example 2.2.2.(iii), let S ⊆ M be a cooriented immersed submanifold. Its
full conormal lift νc(S) ⊆ (T ∗M,λst), with scalars in the direction included, is an exact La-
grangian submanifold, with corners along the zero section. The intersection of νc(S) with the
unit cotangent bundle is the Legendrian ν(S) ⊆ (T∞M, ξst).

(iv) There are exact symplectic manifolds with no embedded exact Lagrangians: the Wein-
stein manifold (WΛ, λΛ) obtained by attaching a Weinstein handle along a stabilized Legen-
drian sphere Λ ⊆ (S2n−1, ξ) at the ideal boundary of (R2n, λst) contains no embedded exact
Lagrangian.

(v) Let f : Cn −→ C be a multivariate polynomial with an isolated singularity at the ori-
gin 0 ∈ Cn. This complex algebraic singularity can be analyzed via the Milnor fibration,
cf. [Mil68]. This is a Lefschetz fibration F : Bε(0) −→ D2 from a neighborhood Bε(0) ⊆ Cn

of the singularity to a disk D2 ⊆ C, and its regular fiber (F−1(δ), ωF−1(δ)) inherits a natural
symplectic structure from Cn. Once certain paths are chosen in D2, connecting the regular
value δ to the critical values, there is a collection of (exact) Lagrangian spheres in the reg-
ular fiber F−1(δ), known as the vanishing cycles. Historically, via [Arn95, Section 2], these
types of examples lead to the study of the symplectic aspects of Dehn twists, which sparked a
significant part of modern symplectic topology, cf. [Sei99, Sei01, Sei08]. □

Another class of examples of Legendrian and Lagrangian submanifolds are graphs of contacto-
morphisms and symplectomorphism, respectively. Though we shall not use them prominently
in these notes, these class of submanifolds have proven crucial to the development of contact
and symplectic topology.

Remark 2.2.5. In both Definitions 2.2.1 and 2.2.3 we focused on the integrable case of
maximal dimension. There is a theory for submanifolds that are tangential to ξ, or where ω
vanishes, of dimension less than maximal. These are known as subcritical isotropic subman-
ifolds and M. Gromov established in [Gro86, Section 3.4.2] a classification of them in terms
of formal data (intuitively, strictly smooth and algebraic topology) as a consequence of his
work on h-principles. See also [Gei08, Theorem 6.3.5] or [EM02, Theorem 12.4.1]. Intuitively,
subcritical isotropic submanifold carry no symplectic topological information. This transpires
in the computation of invariants: all known invariant in contact and symplectic topology are
trivial (appropriately understood) for such submanifolds. Thus our focus on Legendrian and
Lagrangian submanifolds. □

2.3. Lagrangian fillings and cobordisms
In the same manner that contact manifolds often arise as boundaries of symplectic mani-

folds, or at least provide suitable boundary conditions to do geometry, Legendrian subman-
1There are even an infinite number of exact Lagrangian classes within the same surface smooth isotopy

class. In fact, many such classes are Lagrangian isotopic, though not through exact Lagrangians.
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ifolds also provide abundant and suitable boundary conditions for Lagrangian submanifolds.
An important concept for us is the following:

Definition 2.3.1 (Lagrangian filling). Let (X,λ) be an exact symplectic manifold and
Λ ⊆ ∂(X,λ) a Legendrian submanifold of its (convex) contact boundary. By definition, a
Lagrangian filling L of Λ is an embedded exact Lagrangian submanifold L ⊆ (X,λ) s.t.:

1. L coincides with the cone of Λ outside a compact set K ⊆ (X,λ),

2. Any primitive of λ|L that is constant on L \ (L ∩K).

In this case we write ∂L = Λ.

Definition 2.3.1 is often used in practice locally near the contact boundary (Y, kerα) =
∂(X,λ), in which case a Legendrian Λ ⊆ (Y × {1}, ξ) is given and L is a Lagrangian fill-
ing in the collar neighborhood

L ⊆ (Y × [0, 1], ker(etα)).

The most important cases in these notes are of this type, with a Legendrian Λ in (Y, ξ) =
(R2n+1, ξst) and (T∞Rn, ξst).

Remark 2.3.2. (1) The condition that a Lagrangian submanifold on (X,λ) intersects a
contact hypersurface on a Legendrian submanifold is not generic. Rather, it is a codimension-
1 condition. The infinitesimal problem, modeling Lagrangians via their generating quadratic
forms, illustrates that: a quadratic form intersects a contact hyperplane as a Legendrian if
and only if the discriminant of the quadratic form vanishes.

(2) If one prefers the more intrinsic framework of ideal Liouville domains and their ideal
contact boundaries, as in [Gir17], Definition 2.3.1 can phrased in those terms by introducing
the notion of an ideal Lagrangian submanifold and its ideal Legendrian boundary. □

Remark 2.3.2 notwithstanding, many Lagrangian submanifolds that appear in applications
do have a natural Legendrian boundary, or that condition can be achieved after a Hamiltonian
isotopy, see e.g. [Cha10, Section 5.1]. Moving forward, we always have in mind that Legendrian
submanifolds Λ serve as a boundary condition for Lagrangian submanifolds.

Example 2.3.3. (1) Building on Example 2.2.4.(iii), for any point x ∈M , its cotangent fiber
L = T ∗

xM ⊆ (T ∗M,λst) is a disk Lagrangian filling of the Legendrian sphere ∂L = T∞
x M ⊆

(T∞M, ξst). For M = R2, [EP96, Theorem 1.1.A], any Lagrangian filling of the Legendrian
T∞
x R2 ⊆ (T∞R2, ξst) is actually exact Lagrangian isotopic to the cotangent fiber L = T ∗

xM .
The analogous statement in M = Rn, n ≥ 3, is not known.

(2) Following Example 2.2.4.(v), any Lefschetz thimble of an isolated singularity f : Cn −→ C
is a Lagrangian disk filling of its associated vanishing cycle. Here the vanishing cycle is
understood as a Legendrian sphere in the contact boundary of a Milnor ball: in an open book
presentation of that contact manifold, the Legendrian can be realized as an exact Lagrangian
on the Weinstein page, which is symplectomorphic to the Milnor fiber.

(3) For an isolated plane curve singularity f : C2 −→ C, any real Morsification f̃ of f provides
a Lagrangian filling in the Milnor ball with Legendrian boundary given by the unique max-tb
representative of the link of the singularity, cf. [Cas22, Section 2]. Smoothly, this Lagrangian
filling is isotopic to the Milnor fiber. □

There is a generalization of Definition 2.3.1, allowing two types of boundaries for a La-
grangian L, its concave boundary ∂−L and its convex boundary ∂+L. We will not use the
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framework of ideal Liouville domains here as technically [Gir17] does not discuss concave
boundaries, though similar considerations apply. We simply adopt the following more ad hoc
description, briefly assuming the notion of Liouville cobordism:

Definition 2.3.4 (Lagrangian cobordism). Let (X,λ) : (∂−X, ξ−) −→ (∂+X, ξ+) be a
Liouville cobordism and Λ± ⊆ ∂±(X,λ) Legendrian submanifolds of its contact bound-
aries. By definition, a Lagrangian cobordism L : Λ− −→ Λ+ from Λ− to Λ+ is an
embedded exact Lagrangian submanifold L ⊆ (X,λ) such that:

1. L coincides with the cones of Λ± away from a compact set K ⊆ (X,λ),

2. Any primitive of λ|L is constant on L \ (L ∩K).

Definition 2.3.4 specializes to Definition 2.3.1 is Λ− ⊆ ∂−X = ∅ are taken to be the empty
set. Even if one if focused on Lagrangian fillings, the usefulness of Lagrangian cobordisms is
that they can be concatenated, so if one has a Lagrangian cobordism L1 : Λ− −→ Λ+ and
a Lagrangian filling L0 : ∅ −→ Λ− of Λ−, then the concatenation L1 ◦ L0 : ∅ −→ Λ+ is a
Lagrangian filling of Λ+. In this manner, one can often construct Lagrangian fillings of a
given Λ by first using Lagrangian cobordisms down to a simpler Legendrian submanifold and
then filling the latter.

Example 2.3.5. (1) The trace

tr(Λt) := {(p, t) ∈ Y × [0, 1] : p ∈ Λt} (2.3.1)

of any Legendrian isotopy Λt ⊆ (Y, ξ), t ∈ [0, 1], is a Lagrangian cobordism from Λ− := Λ0 to
Λ+ := Λ1 in the Liouville manifold (Y × [0, 1], etα), where ξ = kerα.

(2) Following Example 2.3.3.(3), an adjacency of singularities endowed with real Morsifica-
tions, see e.g. [AdGiZV85, Section 15.0.2], yields a Lagrangian cobordism between the max-tb
Legendrian representatives of the links of the singularities, arguing as in [Cas22]. Specifically,
for a simple adjacency f ← g, there is a Lagrangian cobordism L : Λf −→ Λg with a unique
saddle point.

(3) The study of parametric Morse theory, through generating families, provides many in-
teresting instances of Lagrangian cobordisms, see e.g. [BST15]. Intuitively, these are certain
quotients of a relative and parametric generalization of Example 2.2.4, with boundaries de-
scribed by quotients of a parametric version of Equation (2.2.1). □

Remark 2.3.6 (On obstructed fillings and cobordisms). It is a subtle task to decide whether
a given general Lagrangian filling or cobordism interacts well (and non-trivially) with other
geometric objects, such as pseudoholomorphic curves or sheaves. This leads to the notion of a
Lagrangian being obstructed or unobstructed, whose precise definition is context dependent but
in essence tries to capture whether Floer-theoretic of sheaf-theoretic invariants, for example,
are well-defined and non-trivial for such a Lagrangian. Important points are:

1. Embedded exact Lagrangian fillings and cobordisms are unobstructed. Therefore, if we
are working with embedded and exact, there are no further considerations.

2. Immersed exact fillings (or cobordisms) might be unobstructed or obstructed. In gen-
eral, more singular exact Lagrangians might be unobstructed or obstructed. To date,
there is not a immediate criterion being able to assess whether a general immersed
filling is obstructed or not. There are many important examples where unobstructed
immersed Lagrangian fillings have a key role.
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3. There is an h-principle for immersed Lagrangians, see [Gro86, Section 3.4.4.(G)]. This
abundance of immersed Lagrangians that one can obtain by an h-principle almost always
yields obstructed Lagrangians. The aim of finding unobstructed immersed Lagrangian
fillings is a subtle and interesting task which, to our knowledge, does not abide by any
type of h-principle. □

2.4. Legendrian fronts
A smooth fibration π : (Y, ξ) −→ B is said to be Legendrian if the fibers of π are Leg-

endrian submanifolds of Y . Legendrian fibrations are also known as front projections. Note
that for a Legendrian fibration, we must have dim(B) = n.

Definition 2.4.1. Let Λ ⊆ (Y, ξ) be a Legendrian submanifold and π : (Y, ξ) −→ B a
Legendrian fibration. By definition, the front of the Legendrian Λ with respect to the
fibration π is the subset π(Λ) ⊆ B. □

Legendrian fibrations are useful because, in important cases, we can recover a Legendrian
Λ ⊆ (Y, ξ) by studying the image π(Λ) ⊆ B:

1. The advantage of studying π(Λ) ⊆ B is that it is an (n − 1)-dimensional subset of an
n-dimensional manifold B. This is often more amenable for study than an ambient
(2n− 1)-dimensional manifold (Y, ξ).

2. The cost of decreasing dimension in (1) is that π(Λ) ⊆ B is typically singular, with
singularities that often go beyond immersed points.

Intuitively, studying Legendrians Λ ⊆ (Y, ξ) via their front projections π(Λ) trades dimension
for singularities.

Example 2.4.2. (1) Consider (R2n−1, ξst) with ξst = {dz − y1dx1 − . . . yn−1dxn−1} as in
Example 2.1.2.(1). Then

π : (R2n−1, ξst) −→ Rn, (x1, y1, . . . , xn−1, yn−1, z) 7−→ (x1, . . . , xn−1, z) (2.4.1)

is a Legendrian fibration. Any Legendrian submanifold Λ ⊆ (R2n−1, ξst) is uniquely determined
by π(Λ), as we can recover the coordinates yi along Λ via yi = ∂xiz. In these notes, the most
important cases will be n = 2, 3. For n = 2, the front π(Λ) ⊆ R2

x,z of a Legendrian link
Λ ⊆ (R3, ξst) generically has the singularities depicted in Figure 2.1:

Figure 2.1: The generic singularities of a front of a Legendrian link Λ ⊆ (R3, ξst).
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These singularities are locally modeled as

arc := {z = 0}, cusp := {x3 = z2}, crossing := {(x− z)(x+ z) = 0}.

For this front projection π : R3
x,y,z −→ R2

x,z the y-coordinate of Λ is uniquely determined as
y = ∂xz(x), the x-slope of z. These local model can be glued together to form more elaborate
Legendrian knots, see for instance two fronts depicted in Figure 2.2.

Figure 2.2: Two fronts for two Legendrian knots Λ ⊆ (R3, ξst), fronts drawn in R2
x,z. The

smooth type of both these knots in R3 is that of m(52), the mirror of the three twist knot: the
only 5-crossing knot apart from the (2, 5)-torus knot. These Legendrian knots are Legendrian
isotopic but not smoothly isotopic, as first proven in [Che02, Example 4.4].

(2) Consider (T∞M, ξst) as in Example 2.1.2.(2). The restriction

π : (T∞M, ξst) −→M (2.4.2)

of the projection T ∗M −→ M to the zero section is a Legendrian projection. The front
π(Λ) ⊆M , with the additional information of a coorientation, recovers Λ ⊆ (T∞M, ξst). We
indicate coorientation by drawing a segment in M \π(Λ) ortoghonal to π(Λ) with one endpoint
in π(Λ). In particular, any cooriented immersed curve in R2

q1,q2 defines a Legendrian link in

(T∞R2, ξst) ∼= (R2
q1,q2 × S1

θ , ker{(cos θ)dq1 + (sin θ)dq2}). (2.4.3)

Specifically, a parametrization γ : Rt −→ R2
q1,q2 lifts to a Legendrian curve (γ(t), θ(t)), where

θ(t) is the unique angle such that (sin(θ(t)),− cos(θ(t))) = ∂tγ(t), t ∈ R.2 See Figure 2.3 for
two more fronts for this projection.

(3) The same contact manifold (Y, ξ) might admit different Legendrian fibrations, and each
of them might be useful in its own way. For instance, there is the following variation on the
contactomorphism in Equation (2.4.3):

(R2
q1,q2 × S1

θ , ker{(cos θ)dq1 + (sin θ)dq2}) ∼= (J1S1
ϑ, ker{dz − λst)), (2.4.4)

2Here we use implicitly that an oriented curve in the oriented R2
q1,q2 is equivalent to a cooriented curve.
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Figure 2.3: Two fronts in R2, which lifts to Legendrian knots in (T∞R2, ξst). Note the segment
marking the coorientation needed to specify a unique Legendrian lift. (Left) This Legendrian
knot is isotopic to the fiber of the front projection T∞R2 −→ R2. (Right) Any cooriented
immersed curve in R2, possibly with simple cusp singularities, such as the one depicted here,
determines a unique Legendrian knot in (T∞R2, ξst).

where J1S1 := T ∗S1 × R, λst = κdϑ ∈ Ω1(T ∗S1) the Liouville form, and the coordinates are
(ϑ, κ; z) ∈ T ∗S1 × Rz, cf. Example 2.1.2.(3). In the presentation of the right hand side, as a
1-jet space, the following projection is a Legendrian fibration

Π : (J1S1
ϑ, ker{dz − λst}) −→ S1

ϑ × Rz, (ϑ, κ; z) 7−→ (ϑ, z). (2.4.5)

The Legendrian fibers of Π are diffeomorphic to R, whereas the Legendrian fibration π from
Equation (2.4.2) on the contactomorphic contact manifold (T∞R2, ξst) has Legendrian fibers
diffeomorphic to S1.

For instance, Figure 2.4 depicts the images under Π and π of two Legendrians Λ1,Λ2 ⊆
(T∞R2, ξst), where Λ1 is a Legendrian fiber of Π, and Λ2 is the result of applying the Euclidean
lift of the geodesic flow to it for a few seconds. Note that the Legendrian fronts Π(Λ1),Π(Λ2) ⊆
S1 × R suffice to recover Λ1,Λ2 ⊆ (T∞R2, ξst), whereas π(Λ1), π(Λ2) are not sufficient: the
additional data of the coorientation, and more generally, the conormal lift directions, are
necessary to recover Λ1,Λ2.

Figure 2.4: Two instances of Legendrian knots in (T∞R2, ξst) and their fronts under different
Legendrian projections. (Left) According to the Legendrian fibration in Equation (2.4.2).
(Right) Via the Legendrian fibration Equation (2.4.5), after using a contactomorphism to
identify (T∞R2, ξst) with (J1S1, ξst).
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(3) More generally, the contact manifolds (J1M, ξst) from Example 2.1.2.(3) admit the Leg-
endrian fibrations

Π : (J1M, ξst) −→M × R, (q, p; z) 7−→ (q, z),

where (q, p) ∈ T ∗M is a point in the cotangent bundle. The contactomorphism obtained by
concatenating Equation (2.4.3) and Equation (2.4.4) generalizes to a contactomorphism

(T∞Rn, ξst) ∼= (J1Sn−1, ξst),

as in Example 2.1.2.(3). The natural Legendrian projection on the left hand side, as in
Equation (2.4.2), has Sn−1-fibers. The natural Legendrian projection on the right hand side,
as in 2.4.5, has Rn−1-fibers. □

Figure 2.5: Legendrian Reidemeister moves in the front projection. Each of these moves can
be realized by a Legendrian isotopy. Conversely, in (R3, ξst) and (T∞R2, ξst) every Legendrian
isotopy is itself isotopic to a Legendrian isotopy whose front projections are exactly a sequence
of these Reidemeister moves. There are symmetric versions of these moves which we always
implicitly include: R1 upside-down, R2 with the cusp pointing east, and R2’ with both
coorientations in the bigon also pointing opposite but outwards.

2.4.1 Legendrian isotopies in front projections

Let (Y, ξ) be a contact manifold and π : (Y, ξ) −→ B a front projection. It is often useful
to visualize a Legendrian isotopy Λt ⊆ (Y, ξ), t ∈ [0, 1] via the fronts π(Λt). Conversely,
manipulating fronts in B is an effective way to construct Legendrian isotopies. In the local
case of (R3, ξst) and the front projection in Example 2.4.2.(1), the following result is helpful:
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Theorem 1 (Legendrian link isotopies via front diagrams). The following hold:

(1) Let Λ0,Λ1 ⊆ (R3, ker{dz−ydx}) be two Legendrians whose fronts π(Λ0), π(Λ1) ⊆ R2
x,z

are generic. Then

Λ0,Λ1 Legendrian isotopic⇐⇒ π(Λ0), π(Λ1) related by the moves R1, R2, R3,

where the Legendrian Reidemeister moves are depicted in Figure 2.5.

(2) Let Λ0,Λ1 ⊆ (T∞R2
q1,q2 , ξst) be two Legendrians whose fronts π(Λ0), π(Λ1) ⊆ R2

q1,q2
are generic. Then

Λ0,Λ1 Legendrian isotopic⇐⇒ π(Λ0), π(Λ1) related by the moves R1, R2, R2′, R3,

where these Legendrian Reidemeister moves are depicted in Figure 2.5.

Theorem 1.(1) is proven in [Swi92, Theorem B], see also [Etn05, Section 2.3]. Theorem 1.(2)
follows from its Part (1). For more results on moves for front diagrams, including higher-
dimensions, see [Arn90b, Section 3.3]. Specifically, in Figure 48 therein, the Legendrian
Reidemeister moves for Legendrian surface fronts are displayed as A4, D

±
4 .3

2.4.2 Lagrangian cobordisms in front projections

A practical way to construct Lagrangian cobordisms L : Λ− → Λ+ between two Legendrian
submanifolds Λ−,Λ+ is to use their front projections. The general theory of perestroikas of
fronts is surveyed in [Arn90b, Section 3]. Since our focus is on Legendrian links and (surface)
Lagrangian cobordisms between them, it suffices that we use the following result:

Theorem 2 (Lagrangian cobordism between Legendrian links via front diagrams). Let
Λ− ⊆ (R3, ξst) be a Legendrian whose front π(Λ−) contains a piece as in the left diagrams
of Figure 2.6. Then there exists an exact Lagrangian cobordism

L : Λ− −→ Λ+, L ⊆ (R3 × R, d(et(dz − ydx))),

with concave end Λ− and convex end Λ+ such that Λ+ admits a front given by π(Λ−)
locally modified as depicted in right diagrams of Figure 2.6. In addition:

1. L is embedded for S0, S1 and D−
4 . The restriction of the function t : R3×R −→ R

to L has a unique critical point in these cases, of index 0 (i.e. a minimum) for S0
and of index 1 (i.e. a saddle) for S1 and D−

4 .

2. L is immersed for the clasp move and the restriction of the function t to L has no
critical point (so L is diffeomorphic to Λ− × R).

The move S1 can be refined with orientations: if the two strand on the right of Figure 2.6.(S1)
are oriented in opposite directions, then the resulting Lagrangian saddle cobordism is oriented,
otherwise it is a non-orientable Lagrangian cobordism.

3These are the strictly new moves for Legendrian surfaces in (R5, ξst): for a complete list, one should add
those arising as traces of moves in lower dimensions as well, such as A3 therein.
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Figure 2.6: Ends of Lagrangian cobordisms, including two Legendrian surgeries, in the front
projection. Each of these moves depicts the concave (bottom) end of the associated La-
grangian cobordism on the left and and convex (top) end on the right. The move S0 corre-
sponds to a Lagrangian 0-handle, i.e. a minimum, and move S1 to a Lagrangian 1-handle,
i.e. a saddle cobordism. These two are Legendrian surgeries and the associated Lagrangian
cobordisms are embedded. The clasp move yields an immersed Lagrangian cobordism. Move
D−

4 yields an embedded Lagrangian cobordism, with a unique saddle critical point, and it is
obtained by performing Legendrian isotopies, then an S1-surgery and then further isotopies.
The coorientations, which are not drawn explicitly, are all downwards.

Example 2.4.3. (1) S0 states that the standard Legendrian unknot has a Lagrangian disk
filling and, as stated in Example 2.3.3.(1), it is unique. Therefore, if Λ− ⊆ (R3, ξst) is the
standard Legendrian n-unlink, any Lagrangian cobordism L : Λ− −→ Λ can be filled at the
bottom Λ− to produce a Lagrangian filling of Λ.

(2) Since the four moves in Figure 2.6 often suffice to simplify any Legendrian front to an
unlink, it is frequently simple to produce a Lagrangian filling of a Legendrian link. The issue
is that, if the clasp move has been used, such Lagrangian filling will likely be immersed and
obstructed, cf. Remark 2.3.6. □

2.5. Examples of Legendrian submanifolds
Let us discuss a sample of sources for Legendrian submanifolds.

2.5.1 Conormal lifts

Expanding on Example 2.2.2.(iii), let S ⊆M be an immersed submanifold. Its conormal lift

ν(S) := {(q, p) ∈ T∞M : q ∈ S, p|TS ≡ 0} ⊆ (T∞M, ξst)

is a Legendrian submanifold. The front projection of ν(S) via the Legendrian projection
π : (T∞M, ξst) −→ M from Equation (2.4.2) is the submanifold S ⊆ M itself. If S is
cooriented, we can further restrict p to be in the coorientation. The most used case is that
of a cooriented hypersurface S ⊆ M , in which case we can choose the unique codirection
aligning with the coorientation, known as the positive lift, or its opposite, known as the
negative lift. These two conormal lifts of a cooriented hypersurface S ⊆ M are denoted by
ν±(S) ⊆ (T∞M, ξst).
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Figure 2.7: The local models for the front, a.k.a. alternating strand diagrams, for a plabic
graph G. The cooriented front defined from a plabic graph G in this manner yields a Legen-
drian link Λ(G) ⊆ (T∞R2, ξst), or generally in (T∞S, ξst) if G is embedded in a surface S.

Plabic graphs

Alternating strand diagrams are specific type of cooriented immersed curve constructed from
bicolored graphs, often planar. They are useful to relate Legendrian links to the algebraic
combinatorics of total positivity and networks, as first introduced in [Pos06, Section 14]. For
simplicity, we describe these as follows: let S be a smooth surface and G ⊆ S a graph with
only univalent and trivalent vertices and a choice of color (black or white) on each vertex.
To such G ⊆ S, we can associated a cooriented immersed curve γ(G) ⊆ S, known as the
alternating strand diagram, using the local models in Figure 2.7. As in Example 2.4.2, such
γ(G) defines a Legendrian link

Λ(G) ⊆ (T∞S, ξst)

by declaring that γ(G) is its cooriented front. Legendrian links of the form Λ(G) in fact all
admit embedded exact Lagrangian fillings, cf. [CL23, Section 2] and [STWZ19, Section 4.2].
See Figure 2.8 for some examples of such Legendrian link Λ(G).

Figure 2.8: Instances of plabic graphs G and some of the fronts γ(G) for their associated
Legendrians Λ(G) ⊆ (T∞R2, ξst). In these examples, all the Legendrian link Λ(G) are actually
contained in a Darboux ball (R3, ξst) inside of (T∞R2, ξst). (Left) The Legendrian Λ(G) is
a 3-component link, each component is a standard Legendrian unknot and the smooth link
type is that of (3, 3)-torus link. (Right) The Legendrians Λ(G) ⊆ (R3, ξst) associated to these
plabic graphs are all smoothly twist knots. For instance, the plabic graph labeled by m(52)
has Λ(G) Legendrian isotopic to the Legendrian knot in Figure 2.2(left).

Remark 2.5.1. Another beautiful source of Legendrian submanifold is the theory of irregular
singularities of algebraic differential equations. In the 1-dimensional case, where the differ-
ential equation occurs on a Riemann surface, the Stokes diagram of an irregular singularity
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is a cooriented immersed curve, and thus defines a Legendrian link, as above, see e.g. [CN25,
Example 2.5] and references therein. □

2.5.2 Generating families

The study of Cerf diagrams, initiated in [Cer70], is a cornerstone of 1-parametric Morse theory,
with Cerf’s pseudo-isotopy theorem being a 1-parametric version of h-cobordism theorem,
see [Cer70, Theorem 0] and respectively [Sma61, Theorem I], or [Sma62, Theorem 1.1]. One-
parametric Morse theory is closely related to the study of Legendrian links: Cerf diagrams
are understood as fronts. In general, we can consider families of generalized Morse functions
fx : RN −→ R, for some N ∈ N, parametrized by points x ∈ M on smooth manifold M and
obtain Legendrian submanifolds of (J1M, ξst). Specifically, given such a family f := {fx}x∈M
we can define the Legendrian submanifold

Λf := {(x, dfx(q), fx(q)) ∈ T ∗M × Rz : q ∈ RN is a critical point of fx} ⊆ (J1M, ξst).

The analytic condition on q ∈ RN being a critical point of fx is dfx(q) = 0. The front of Λf

under the Legendrian fibration from Example 2.4.2 is the set

Π(Λf) = {(x, z) ∈M × Rz : z is a critical value of fx}
= {(x, z) ∈M × Rz : ∃q ∈ RN s.t. dfx(q) = 0 and fx(q) = z}.

For instance, the fronts in Figure 2.9 are examples of fronts that arise in this manner, with
M = R. The set Π(Λf) is understood as a higher-dimensional analogue of a Cerf diagram.
Technically, since RN is non-compact, one often constraints the behavior of each fx at infinity,
e.g. linear or quadratic at infinity. Legendrian submanifolds of the form Λf, for a generating
family f linear at infinity, tend to have unobstructed Lagrangian fillings.4 There are also more
general constructions, allowing each Morse function fx : Q −→ R to be an arbitrary family
or considering non-trivial Q-bundles over M and Morse functions on them. The existence of
a generating family for a given Legendrian (o Lagrangian) submanifold is still an active area
of research. To wit, it was only recently established that nearby Lagrangians admit (twisted)
generating functions if certain formal obstructions vanish, cf. [ACGK25, Section 1.2].

Remark 2.5.2. For generating families in contact topology, original sources are [Cha95,
Section 1.3] and [Che96a, Section 2]. A starting place to learn is also [Tra01, Section 3] and
[FR11, Section 4], plus see [BST15, Section 2] and references therein. □

2.5.3 The case study: Legendrian links from positive braids

Let β ∈ Br+n be a positive braid word in n-strands. If we draw the braid diagram in the
plane, with crossings drawn as actual crossings (not overcrossings nor undercrossings), then
we obtain a collection immersed curves. These can be closed up to a collection of immersed
circles in different ways. For instance, we can consider a front as in Figure 2.9 (right), of which
Figure 2.9 (left) is an instance where β = σ3σ

2
2σ3σ

2
1σ3σ2σ1σ2σ3σ1σ2σ3σ1σ3σ1σ2. Legendrian

in this class of examples are denoted by Λ = Λβ ⊆ (R3, ξst) and be studied thoroughly in
Chapter 6. In particular we will establish that they have (often many) Lagrangian fillings if
the braid is of the form βw0 and the Demazure product of β is w0, e.g. if the braid is of the
form w0βw0.

4Appropriately understood, I would be inclined to argue that they always admit an unobstructed La-
grangian filling.



26

Figure 2.9: Two fronts in R2
x,z that define Legendrian links in (R3, ker{dz−ydz}. These types

of Legendrian links will be studied in Chapter 6. They can be understood as Cerf diagrams
of generating families linear at infinity, as the examples in Section 2.5.2.

2.5.4 Cone singularity and spinning

Consider the hyperspherical coordinates in Rn
x1,...,xn

given by

x1(r, φ) = r cos(φ1)

x2(r, φ) = r sin(φ1) cos(φ2)

x3(r, φ) = r sin(φ1) sin(φ2) cos(φ3)

...
xn−1(r, φ) = r sin(φ1) sin(φ2) . . . sin(φn−2) cos(φn−1)

xn(r, φ) = r sin(φ1) sin(φ2) . . . sin(φn−2) sin(φn−1)

where the radial coordinate is given by r =
√

x21 + x22 + · · ·+ x2n ∈ R≥0 and the hyperspherical
coordinates on Sn−1 are:

φi ∈ [0, π] i ∈ [1, n− 2], φn−1 ∈ [0, 2π).

Figure 2.10: (Left) The front projection known as the cone singularity, which lifts to an
embedded Legendrian Sn−1 × R ⊆ (R2n+1m, ξst). (Right) An example of front spinning, in
this case spinning the front in Figure 2.2 of a Legendrian knot.

The image Cn ⊆ (R2n+1, ker{dz − y1dx1 − . . . yndxn}) of the smooth embedding

cn : Sn−1
φ × Rr −→ R2n+1

cn(φ, r) := (x1(r, φ), x1(r, φ)/r, . . . , xn(r, φ), xn(r, φ)/r, r) (2.5.1)



27

is a Legendrian submanifold, diffeomorphic to Sn−1 × R. Its front projection is the cone

π(Cn) := {z = ±
√

x21 + . . .+ x2n} ⊆ Rn
x1,...,xn

× Rz,

as depicted in Figure 2.10(left), with its conormal coorientation. Note that the entire sphere
Sn−1 × {0} maps onto a point in the front: the origin in π(Cn). The germ of this front
π(Cn) ⊆ Rn+1 at the origin is known as the cone singularity, see [CM19, Section 2.4.1]. The
study of the generic behavior of this front singularity dates back to A. Cayley’s study on
the shape of the surface containing all the centers of the principal curvatures of ellipsoids,
cf. [Cay09, Chapter 145] and see also [Ali24, Section 3]. Specifically, the n = 1, 2 cases are
reasonably understood, see e.g. [DR11, Section 3] for n = 2. The case n = 3 was started
to be studied by A. Cayley and, in many ways, still remains to be understood. The higher-
dimensional cases are yet to be explored.

The cone singularity can be completed to a front for many closed Legendrians. One of the
simplest non-trivial fronts for a closed Legendrian submanifold that contains a cone point is
as depicted in Figure 2.11. We denote by Λc its Legendrian lift and refer to it as the Cayley
Legendrian, in honor of his work on caustics.

Figure 2.11: (Left) The front projection of a Legendrian Sn−1 × S1 ⊆ (R2n+1, ξst) with a
cone singularity. We refer to its Legendrian lift as the Cayley Legendrian. (Right) The front
projection of another Legendrian Spun(Λu) ⊆ (R2n+1, ξst), also diffeomorphic to Sn−1 × S1,
obtained by front spinning the front projection of a standard unknot in (R3, ξst).

An independent construction of fronts that can be useful is front spinning, whereby one
considers an axis disjoint from π(Λ) and spins its front in higher-dimensions to create a new
front for a new Legendrian, see e.g. Figure 2.10(right) and Figure 2.11(right). This is akin to
the spinning of knots in smooth topology, as introduced in [Eps60, Spun knots] and [Zee65,
Section 6]. See [EES05, Section 4.4] and [EES09, Example 5.3], also [Gol14, Section 2], for
details of the construction in the Legendrian setting.

2.6. Lagrangian disk surgery
Let L ⊆ (W,λ) be an embedded exact Lagrangian filling of a Legendrian submanifold

Λ = ∂L ⊆ ∂(W, ξ). To construct new Lagrangian fillings that are not Hamiltonian isotopic
to L, we can try to perform a local operation to L. A local operation near a point p ∈ L can
be challenging to find and, for instance, [EP96, Theorem 1.1.A] implies that local knotting is
not possible for Lagrangian surfaces.
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Figure 2.12: A Lagrangian filling L ⊆ (D4, λst) of a Legendrian link (Λ ⊆ ∂D4, ξst) undergoing
Lagrangian disk surgery. (Left) The Lagrangian disk D ⊆ D4 \L being surgered is depicted in
orange, with boundary ∂D = γ ⊆ L. (Center) The critical moment of the surgery, where the
filling L degenerates to an immersed exact Lagrangian. (Right) The Lagrangian filling µD(L),
also denoted µγ(L), result of the surgery. Here the new Lagrangian disk µD(D) ⊆ D4 \µγ(L)
after the surgery is depicted in purple, with boundary γ ⊆ µγ(L) oriented in reverse.

Figure 2.13: The effect of Lagrangian disk surgery seen in fronts for the Legendrian lifts L↑

and µD(L)
↑ of L and µD(L). These fronts can be understood in arbitrary dimensions, as

spherical spuns of the cusp, for the left front, and the cone point, for the right front. The
disk D , in orange, is the same disk in orange as in Figure 2.12 (Left) and a neighborhood of
the cone point corresponds to a neighborhood of the purple disk in Figure 2.12 (Right).

That said, L. Polterovich introduced a beautiful construction in [Pol91, Sections 3&4] that
produces a (potentially) new Lagrangian filling µD(L) if one has an embedded Lagrangian
disk D ⊆ W \ L whose boundary ∂D ⊆ L belongs to L. See also [LS91, Section 3.3] for the
case of Lagrangian surfaces. This operation is local in a neighborhood of the disk D , so the
Lagrangian embeddings of L and µD(L) coincide outside of a neighborhood of ∂D . Intuitively,
this operation can be depicted as in Figure 2.12: the Lagrangian disk D is contracted to a
point and expanded in a different way. Locally around D , the Legendrian lifts of L and
the surgered µD(L) can be represented via fronts as in Figure 2.13. This is justified by the
computations that now follow, cf. also [CMP19, Section 6.2].

Local model for Lagrangian disk surgery

The local model for the Lagrangian surgery in [Pol91] is described as follows. Consider local
coordinates (q1, . . . , qn, p1, . . . , pn) ∈ R2n and model the two sheets of an immersed point in
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(a) Lagrangian handle Γ+. (b) Lagrangian handle Γ−.

Figure 2.14: The Lagrangian handles Γ± ⊆ R2n(q, p).

a Lagrangian, as the one in Figure 2.12 (Center), and the Liouville form via

S1 := {p1 = 0, . . . , pn = 0}, S2 := {q1 = p1, . . . , qn = pn−1}, λst =
n∑

i=1

pidqi.

The two Lagrangian handles Γ± presented in [Pol91] provide two ways to resolve such an
immersed point, resulting in an embedded exact Lagrangian. These Lagrangian handles
are depicted in Figure 2.14, and in order to explicitly parametrize them we use coordinates
t = (t1, . . . , tn) ∈ Rn. First, the positive Lagrangian handle Γ+ can be described via the
parametrization Γ+ : Rn \ {0} −→ R2n defined as

Γ+(t1, . . . , tn) =
(
(µ+ µ−1)t1, . . . , (µ+ µ−1)tn, µt1, . . . , µtn

)
where µ =

n∑
i=1

t2i .

Note that Γ± are diffeomorphic to Sn−1 × R, we have the two asymptotics

lim
µ→∞

Γ+ ⊆ S2, lim
µ→0

Γ+ ⊆ S1,

and in this model L and D are described as follows:

1. The given Lagrangian L is obtained by gluing the above positive Lagrangian handle Γ+

to the Lagrangian sheet S1 at the limit µ = 0, and to the Lagrangian sheet S2 at the
limit µ = ∞. Thus, intuitively, locally near the boundary ∂D ⊆ L, the Lagrangian is
modeled by Γ+.

2. The Lagrangian disk D is modeled within the Lagrangian graph Γℓ of the linear function

ℓ : Rn
q1,...,qn −→ Rn

p1,...,pn , pi =
qi
2
, i ∈ [1, n].

Specifically, D is the image of the restriction of Γℓ to {∥q∥ < 1}. The boundary ∂D ⊆ L
of D in this model can be taken to be the intersection Γℓ∩Γ+, which can be parametrized
by Γ+(t1, . . . , tn) where (t1, . . . , tn) ∈ Sn−1

1/2 belong to the round sphere of radius 0.5.5

5Note that, generically, two Lagrangian submanifolds intersect in points, not in codimension 1 subsets of
each other. This model is not a generic situation and Γℓ ∩ Γ+ ∼= Sn−1 being diffeomorphic to a sphere does
not persist under a generic Hamiltonian isotopy applied to either Lagrangian.
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The surgered Lagrangian µD(L) is obtained by using the negative Lagrangian handle Γ− :
Rn−1 \ {0} −→ R2n−2 parametrized by

Γ−(t1, . . . , tn) =
(
(µ− µ−1)t1, . . . , (µ− µ−1)tn, µt1, . . . , µtn

)
.

This parametrization satisfies the asymptotics lim
µ→∞

Γ− ⊆ S2 and lim
µ→0

Γ− ⊆ S1, and can be

glued to S1 and S2 in the asymptotic limits, thus constructing the Lagrangian µD(L):

Definition 2.6.1 (Lagrangian disk surgery). In the local model above, the Lagrangian
disk surgery of L along D is the embedded exact Lagrangian µD(L) obtained by exchang-
ing the positive Lagrangian Γ+ ⊆ L by the negative Lagrangian handle Γ−.

Lagrangian disk surgery has the following properties:

1. Γ+ and Γ− are smoothly isotopic and thus L and µD(L) are smoothly isotopic. In fact,
since Γ+ and Γ− are even Lagrangian isotopic, so are L and µD(L).

2. Γ+ and Γ− are not Hamiltonian isotopic via a compactly supported Hamiltonian diffeo-
morphism of R2n. Equivalently, Γ+ and Γ− are not exact Lagrangian isotopic relative
to their boundaries. This follows, for instance, from the fact that Γ± are Lagrangian
fillings of the Hopf link inducing different augmentations, cf. [EHK16, Section 8.1] for
the n = 2 case and [BST15, Section 6] for higher n. Alternatively, and historically
preceding ibid., this follows from the fact that the Chekanov and Clifford tori, which
differ by a unique Lagrangian disk surgery, are not Hamiltonian isotopic, as proven in
[Che96b, Section 4].

3. In the model above, the new Lagrangian disk µD(D) is given by

µD(D) := {(q, p) ∈ R2n : q1 = 0, . . . , qn = 0, ∥p∥ < 1},

whose boundary ∂D is indeed contained in im(Γ−), as can be parametrized by Γ−(t1, . . . , tn)
where (t1, . . . , tn) ∈ Sn−1 belong to the unit sphere.

4. Lagrangian disk surgery is an involutive operation, in the sense that

µµD(D)(µD(L)) ≃ L

are Hamiltonian isotopic. This follows from the fact that, in the local model above,
Lagrangian disk surgery applied to Γ− along µD(D) results in a Lagrangian which is
Hamiltonian isotopic to Γ+.

5. It is natural to wonder whether there is a third way to resolve an immersed point, not
just with Γ±. At least for n = 2, it follows from a result of B. Thomson, that Γ± are the
only embedded exact Lagrangian fillings of the Hopf link, up to Hamiltonian isotopy.
Thus Γ± are the only two possible Lagrangian handles we could have constructed, up
to Hamiltonian isotopy. I conjecture that the higher-dimensional Hopf link has only Γ±

as embedded Lagrangian fillings, up to Hamiltonian isotopy.

Suppose that a Lagrangian filling L is given, in order to be able to apply Lagrangian disk
surgeries, it is crucial to find the Lagrangian disks D . For the purpose of these lectures, I will
focus the discussion on the n = 2 case.
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2.6.1 L-compressing systems

Let Λ ⊆ (T∞R2, ξst) be a Legendrian link and L ⊆ (T ∗R2, λst) a Lagrangian filling. We can
try to apply Lagrangian disk surgeries to L, as discussed in Section 2.6, to produce Lagrangian
fillings that are potentially new, i.e. not Hamiltonian isotopic to L. The input of a Lagrangian
disk surgery is L and an embedded Lagrangian disk D with ∂D ⊆ L. The next question thus
becomes: how do we find such embedded Lagrangian disks?

The short answer is that this is not known for a general situation. We will nevertheless
present many interesting cases, some connected to singularity theory and some to algebraic
combinatorics, in which these disks appear naturally. In order to have a precise language to
talk about these situations, we introduce the following notion:

Definition 2.6.2 (L-compressing systems). Let L ⊆ (T ∗R2, λst) be a Lagrangian filling
of ∂L ⊆ (T∞R2, ξst). By definition, an L-compressing system D(L) := {D1, . . . ,Ds} of
rank s is a collection of disks Di ⊆ T ∗R2 \ L, i ∈ [1, s], such that

1. Di is an embedded Lagrangian disk with ∂Di ⊆ L, for all i ∈ [1, s],

2. The collection of {∂D1, . . . , ∂Ds} is linearly independent in H1(L).

By definition, an L-compressing system D(L) := {D1, . . . ,Ds} is said to be maximal if
the boundaries of the disks Di ∈ D(L) span H1(L,Z).

A given Lagrangian L ⊆ (T ∗R2, λst) might not have a maximal L-compressing system. To wit,
the Legendrian representative of m(52) in Figure 2.2(Left) has two known distinct Lagrangian
fillings, both once-punctured tori: both of them admit an L-compressing system of rank
1, but none of them admits an L-compressing system of rank 2. There are relaxations of
Definition 2.6.2, allowing for immersed Lagrangian disks, cf. [CW24, Section 3], but we focus
on maximal L-compressing systems in these notes.

Remark 2.6.3. (1) Definition 2.6.2 naturally generalizes to embedded exact Lagrangians
L ⊆ (W 2n, λ) in a Weinstein manifold by using the concept of Lagrangian skeleta. For
instance, a maximal L-compressing system for a given L ⊆ (W,λ) is a collection D(L) of
embedded Lagrangian disks Di ⊆W \ L, i ∈ [1, s], with ∂Di ⊆ L such that

L ∪ (D1 ∪ . . .Ds)

is a Lagrangian skeleton of (W,λ). In the case of (W,λ) ∼= (T ∗R2, λst), this generalizes the
condition of {∂D1, . . . , ∂Ds} being a basis of H1(L,Z).
(2) As examples from toric varieties illustrate, and especially in higher dimensions, it is also
useful to relax the condition that Di is a disk, and rather allow more general Lagrangian
submanifolds, see e.g. [RSTZ14, Section 3]. □

Example 2.6.4. (1) The Legendrian links Λ(G) associated to plabic graphs G, discussed in
Section 2.5.1, come endowed with both a Lagrangian filling and an L-compressing system.
Intuitively, the L-compressing system is given by the bounded faces of G, understood as La-
grangian disks in the zero section. See e.g. [CG24, Section 4.3] and references therein. These
L-compressing systems are maximal in many interesting cases, e.g. for reduced plabic graphs.

(2) Given an isolated plane curve singularity f : C2 −→ C with a real Morsification,
the Lagrangian fillings from Example 2.3.3.(3) come endowed with a maximal L-compressing
system. The Lagrangian disks are precisely the Lefschetz thimbles, and their boundary curves
in the Lagrangian Milnor fiber are the vanishing cycles, cf. [Cas22, Section 2]. □
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2.7. Exercises
1. (Front computation of rotation class) Let Λ ⊆ (R3, ξst) be an oriented Legendrian knot
and π(Λ) ⊆ R2

x,z be its front projection. Consider the quantity

r(Λ) =
1

2
(u− d),

where u is the number of up cusps in π(Λ) and d is the number of down cusps in π(Λ).

(i) Show that r(Λ) is a Legendrian isotopy invariant.

(ii) Suppose that L is a Lagrangian filling of a knot Λ ⊆ (R3, ξ) obtained a sequence of
moves involving solely S0, the oriented version of S1, and Legendrian isotopies possibly
in between.6 Prove that r(Λ) = 0.

2. (Front computation of Thurston-Bennequin) Let Λ ⊆ (R3, ξst) be an oriented Legendrian
knot and π(Λ) ⊆ R2

x,z be its front projection. Consider the quantity

tb(Λ) = lk(Λ,Λε),

where Λε is an ε-Reeb pushoff in the vertical direction, with ε ∈ R+ arbitrarily small, see
e.g. Figure 2.15.

(i) Show that tb(Λ) is a Legendrian isotopy invariant.

(ii) Prove the tb(Λ) = w(π(Λ))− cr, where w(π(Λ)) is the writhe of π(Λ), understood as a
knot diagram (so every crossing is an overcrossing), and cr is the number of right cusps
of π(Λ).

3. (Examples of rotation and tb) Perform the following computations:

(i) Compute the pair (r(Λ), tb(Λ)) for the Legendrian representatives of m(52) in Figure 2.2.

(ii) For the Legendrian knots of the form Λ = Λβ in Section 2.5.3, show that r(Λβ) = 0 and
find a formula for tb(Λ) in terms of the number of crossings and strands of the positive
braid word β.

(iii) Show that r(Λ(G)) = 0 vanishes for Legendrian knots of the form Λ = Λ(G), as in
Section 2.5.1.

Remark 2.7.1. For more examples of formal Legendrian invariants, beyond Exercises 1, 2
& 3 and also in higher dimensions, see [CE12, Appendix B]. □

4. (A Legendrian Hopf link) Consider the 2-component oriented Legendrian link ΛH ⊆
(R3, ξst) given by the front in Figure 2.15(left).

(i) Show that ΛH admits an embedded oriented Lagrangian filling L in (R4, λst).

(ii) Prove that the Lagrangian filling L you built in (i) has a maximal L-compressing system.
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Figure 2.15: Two instances of 2-component Legendrian links formed by taking a Legendrian
knot Λ ⊆ (R3, ξst) union its ε-Reeb push off, for ε ∈ R+ small enough. (Left) Here Λ is the
standard Legendrian unknot. Note the choices of orientations: Λε has reversed orientation
than Λ.

Figure 2.16: Three instances of fronts for different Legendrian Hopf links, Legendrian isotopic
to each other.

(iii) Describe the result L′ of performing Lagrangian disk surgery on L using the L-compressing
system in (ii) as a filling obtained via the moves S0, S1 and Legendrian isotopies.

(iv) Show that the three 2-component Legendrian links associated to the fronts in Figure 2.16
are pairwise Legendrian isotopic.

5. (A Lagrangian filling for Reeb push-offs) Let Λ ⊆ (R2n+1, ξst) be a Legendrian submanifold
and consider the 2-component oriented Legendrian submanifold Λ ∪ Λε ⊆ (R2n+1, ξst) given
by Λ union its Reeb push-off Λε. Show that Λ ∪ Λε admits an embedded exact Lagrangian
filling and compute its diffeomorphism type.

6. (Properties of Λβ) Let β ∈ Br+n be a positive braid word and consider its associated
Legendrian link Λβ ⊆ (R3, ξst), as in Section 2.5.3.

(i) Show that Λβ admits an embedded exact orientable Lagrangian filling.
6These are known as decomposable Lagrangian fillings.
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Figure 2.17: (Left) The type of plabic graph associated to a braid word β = σn
1 . (Center) The

plabic graph associated to the braid word β = (σ1σ2)
4. (Right) The plabic graph associated to

a tuple of words (β, δ), where β is written with vertical edges with a black dot on top and δ is
written with vertical edges with a white vertex on top. In this case β = σ5σ1σ3σ4σ3σ

2
5σ2σ1σ4

and δ = σ1σ3σ4σ
2
5σ4σ1σ2σ4σ1σ2σ5σ4σ3σ2σ3σ1.

(ii) Find the genus of the filling you showed exists in (i) in terms of the length of β and n.

(iii) Consider the plabic graph G = Gβ obtained from β as in Figure 2.17, writing the
generators of β as vertical edges of the plabic graph.7 Show that Λ(Gβ) is Legendrian
isotopic to a Legendrian link whose front is as in Figure 6.1(right).8

Remark 2.7.2. Following Exercise 6.(iii), see [CW24, Section 2.5] for more details on these
types of plabic graphs and associated Legendrians. □

7. (Cone singularity) Solve the following parts related to Section 2.5.4:

(i) Prove that the smooth embedding in Equation (2.5.1) yields a Legendrian submanifold.

(ii) For n = 1, 2, describe the front in Rn+1 of a generic Legendrian perturbation applied
to the Legendrian submanifold Cn ⊆ (R2n+1, ξst).

(iii) Show that the two Legendrians Λc and Spun(Λu) in Figure 2.11 are diffeomorphic to
Sn−1 × S1 and, in fact, smoothly isotopic to each other.

(iv) If familiar with formal Legendrian, show that Λc and Spun(Λu) are formally Legendrian
isotopic to each other if n ≥ 2.

Remark 2.7.3. Beautifully, Λc and Spun(Λu) are not Legendrian isotopic to each other. For
n = 1, their tb differ, and n = 2 this was proven Floer-theoretically in [DR11, Section 4.4].
For n ≥ 3, this is a result of A. Wong, as part of her (in-progress) thesis. □

8. Verify that the Lagrangian disk surgery described in Section 2.6 is indeed involutive. That
is, show that µD′(µD(L)) is Hamiltonian isotopic to L, where D′ is the Lagrangian disk re-
sulting from applying a Lagrangian disk surgery to L along a disk D.

9. Understand Example 2.6.4 in detail. In particular, show that the max-tb Legendrian rep-
resentative of an algebraic link admits an embedded exact Lagrangian filling with a maximal
L-compressing system.

7These are known as plabic fences in the literature.
8The βfig in that figure is different to the β in this exercise. Specifically, the βfig in the figure is w0βw0.



Chapter 3: Sheaves and singular support

This chapter is to introduces the core ingredients and examples in the microlocal theory
of sheaves that we employ to study Legendrian submanifolds. The key concept is that of the
singular support of a sheaf, a notion first introduced in [KS83], in part inspired by M. Sato’s
ideas on hyperfunctions and algebraic analysis, and whose foundational properties were crys-
tallized in [KS90]. Decades later, this concept is now fruitfully integrated with the study of
modern contact and symplectic topology.

3.1. A motivating construction
Generating families provide a first motivation to study sheaves, and microlocally so. The

basic construction, as discussed in [Vit10, Section 9.1.2], is as follows. Let f : M ×Rm
s −→ R

be a generating family f = {fx}x∈M with Cerf diagram Π(Λf) and Λf ⊆ (J1M, ξst), cf. Sec-
tion 2.5.2. For instance, if M = R, then π(F ) ⊆ R2

x,z is a front diagram that lifts to a
Legendrian link Λ(F ) ⊆ (R3, ξst).

The important space is the subspace of sublevel sets

Sf := {(x, q, z) ∈M × Rm × R : fx(q) ≤ z} ⊆M × Rm × R, (3.1.1)

whose inclusion we denote by i : Sf −→M ×Rm×R. A sheaf associated to it is the extension
kSf

:= i∗k ∈ Sh(M × Rm × R,K) of its constant sheaf by zero, for some object k ∈ K. This
sheaf can be pushforwarded via the projection p : M ×Rm ×R −→M ×R, whose codomain
we understand as a front for (J1M, ξst), where the Cerf diagrams live. The pushforwarded
sheaf

Ff := Rp∗(kSf
) ∈ Sh(M × R,K).

As we will see in Section 3.2.1, such direct image Ff is the sheaf that assigns singular cochains
of the preimage p−1(U) to an open subset U . In particular, the stalk of (Ff)x,z at a point
(x, z) ∈M ×R is simply recording the singular cochain complex of the sublevel set {q ∈ Rm :
fx(q) ≤ z}.

The key link between generating functions and the microlocal theory of sheaves is that

SS(Ff) ⊆ Λf (3.1.2)

where SS(Ff) is the singular support of the sheaf, discussed in Section 3.2.2. This is rigourously
capturing the idea that the singular cohomology of the sublevel sets {q ∈ Rm : fx(q) ≤ z}
change precisely at the critical points of fx. Thus, intuitively, the sheaf Ff only changes when
crossing a point in the Cerf diagram Π(Λf) in the vertical direction.

Example 3.1.1. Consider the case M = {pt} is a point and m = 1, so there is a unique
Morse function f = fpt : Rq −→ Rz, as depicted in Figure 3.1. Since the cohomology of the
sublevel sets does not change past a regular value, the sheaf Ff remains locally constant at
the regular values. Intuitively, the sheaf changes exactly at the critical values, drawn as red
dots in Figure 3.1(right). □

35



36

Figure 3.1: (Left) The graph of a Morse function f : Rq −→ Rz and the total sublevel set Sf .
(Right) The pushforward of the constant sheaf k on Sf , which is a sheaf on the real line R,
depicted vertically. Intuitively, the points on R where the are changes to the (sections of the)
sheaf are drawn in red, and to the right of R we have indicted the stalks of the sheaf on the
complement of these points.

Remark 3.1.2. Technicalities notwithstanding, I would advocate that the reader will benefit
from thinking that all sheaves with singular support on a Legendrian are, appropriately
understood, of the form above and try to understand them from that generating family
viewpoint. Many of the (homological) algebraic manipulations with sheaves are also rather
natural from the generating family viewpoint. This is a subject of current research, but the
expectation is that the theory of generating functions effectively matches (or at least recovers)
the microlocal theory of sheaves with Legendrian singular support. □

3.2. Sheaves: Key Concepts
Sheaves are meant to capture geometric objects1 associated to M that behave in a local-

to-global manner, i.e. geometric objects that can be determined by studying them on a basis
of open sets and can be glued together in a unique manner.

Let Op(M) denote the poset category of open sets in M , with objects given by open sets and
morphism given by open inclusions. By construction, a functor F : Op(M) −→ K is given
by the data of

1. An object F (U) ∈ K for each open set U ∈ Op(M),

2. A morphism ρUV (F ) : F (U) −→ F (V ) for each open inclusion V ⊆ U such that

ρUU = Id, and ρWV ◦ ρUV = ρUW

if W ⊆ V ⊆ U are open inclusions, where we abbreviated ρUV := ρUV (F ).

A general functor F : Op(M) −→ K assigns geometric objects to an open set U via F (U)
and the morphisms ρUV (F ) provide a notion of “restriction to an open subset”. That said,
such general functor might not adhere to a local-to-global behavior. In order to rigorously
capture the local-to-global behavior, and thus define sheaves, we study how such functors
interact with open covers, as follows.

Let U ⊆ M be an open set and U = ∪i∈IUi an open cover. By definition, the diagram
C({Ui},F ) associated to a sheaf F and such an open cover is

C({Ui},F ) := Πi∈IF (Ui) −→ Πi,j∈IF (Uij) −→ Πi,j,k∈IF (Uijk) −→ · · · (3.2.1)

1For instance, capturing sections of bundles on M , e.g. certain class of functions from M to another
manifold, or tensors on bundles associated to M (such as differential forms).
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where we abbreviated Uij := Ui ∩ Uj , Uijk := Ui ∩ Uj ∩ Uk and so on. The morphisms
in this diagram are in the coefficient category K and are given by the maps ρVW where
V = Ui1 ∩ . . .∩Uiℓ is an intersection of open sets in the cover and W is V ∩Uj , where j ̸= ik,
i.e. a further intersection with a different open set in the cover. In particular, each arrow −→
in 3.2.1 contains many arrows in K. Informally, we refer to C({Ui},F ) as the Čech diagram
of F and {Ui}.

The diagram C({Ui},F ) in Equation (3.2.1) has two purposes: defining sheaves and
computing derived global sections of sheaves. For the first purpose, note that C({Ui},F )
is a diagram in the category K and, by assumption, there exists a limit limC({Ui},F ) in
K. Since F (U) maps into the diagram C({Ui},F ) by the restrictions ρU,Ui , the universal
property of limits yields a unique natural map

F (U) −→ lim
i∈I

C({Ui},F ). (3.2.2)

The intuition behind Equation (3.2.1) is that the domain F (U) is seen as the global object,
capturing sections F (U) on U as is, whereas the codomain C({Ui},F ) encodes the data of
local sections (local according to the open over {Ui}) and how these sections compare on
intersections, e.g. whether they agree or not. The notion of behaving in a local-to-global
manner is then captured by requiring that all global sections can be uniquely expressed as a
collection of local sections, for all covers. This leads to the following definition:

Definition 3.2.1 (Sheaves). Let M be a smooth manifold and K a coefficient category.
A sheaf on M with coefficients in K is a functor F : Op(M) −→ K such that for any
open cover U = ∪i∈IUi the natural map

F (U) −→ lim
i∈I

C({Ui},F ) (3.2.3)

is an isomorphism.

For coefficients K in a 1-category, such as K = Sets or K = Mod(k), Equation (3.2.5) is that
all diagrams

F (U) −→ Πi∈IF (Ui) −→ Πi,j∈IF (Ui ∩ Uj) (3.2.4)

are equalizer diagrams. In words, for any open cover U = ∪i∈IUi, we have that:

(i) Given local sections si ∈ F (U) such that si|Ui∩Uj = sj |Ui∩Uj , there exists a section
s ∈ F (U) with s|Ui = si.

(ii) Two sections s1, s2 ∈ F (U) are equal iff their restrictions to each Ui are equal.

Informally, (i) states that we can glue local sections if they coincide in double intersections,
and (ii) implies that such gluing is unique. This is the classical definition of a sheaf, e.g. as
in [Bre97, Chapter 1.1]. For most of the contents of these notes, the reader might take
Equation (3.2.4) as the defining condition of a sheaf. As per usual, if the coefficient category
K has certain operations, e.g. directs sums (in general, coproducts) or tensor products, then it
is possible to perform such operation with sheaves, namely, consider the direct sum of sheaves
or their tensor product.

Example 3.2.2. (1) The functor F : Op(M) −→ Mod(k) determined by

F (U) = k for all U ∈ Op(M), ρUV (F ) = Id for all V ⊆ U,
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Figure 3.2: (Left) A depiction of a closed subset j : Z −→ R2. (Right) A depiction of an
open subset i : U −→ R2. In such drawings, we indicate the part of the boundary in the set
by solid lines, and the part of the boundary not in the set by dashed lines.

is a sheaf if M is connected. It is denoted by kM . Intuitively, this sheaf gives the empty
Legendrian submanifold in (T∞M, ξst).

(2) Let f : N −→ M be a continuous map and F ∈ Sh(N,K). Its direct image f∗(F ) ∈
Sh(M,K) is the sheaf determined by

f∗(F (V )) := F (f−1(U)), for all open U ⊆M,

ρUV (f∗F ) := ρf−1(U)f−1(V ), for all opens V ⊆ U.

Let j : Z −→ M be a closed inclusion of a closed subset Z ⊆ M with smooth boundary
∂Z ⊆M , as depicted in Figure 3.2(left). Intuitively, j∗Z ∈ Sh(M,K) is a sheaf that represents
the Legendrian Λin(Z) ⊆ (T∞M, ξst) given by the inward conormal lift of ∂Z.

(3) The construction in Section 3.1 is a (derived) version of the direct image of (2). Namely,
if f : M ×Rq −→ R is a generating family quadratic at infinity, the sheaf Ff ∈ Sh(M ×R,K)
is given by the (derived) direct image Rπ∗(kSf). Intuitively, the sheaf Rπ∗(kZS

) represents
the Legendrian Λ(F ) ⊆ (T∞M, ξst) generated by the generating family f.

(4) Let i : U −→ M be an open inclusion of an open set U ⊆ M with smooth boundary, as
in Figure 3.2(right). Given F ∈ Sh(U,K), there exists a sheaf i!F ∈ Sh(M,K) which is a
subfunctor of i∗F and it is characterized by

i!F (U) := {s ∈ F (f−1(U)) : i|supp(s) : supp(s) −→ U is proper},

that is, those sections of i∗F (U) that map properly under i. The sheaf i!F ∈ Sh(M,K) is
said to be the extension of F by 0 and, intuitively, it represents the Legendrian Λout(U) ⊆
(T∞M, ξst) given by the outward conormal lift of ∂U .

Figure 3.3: Two instances of direct images of sheaves with subsets that have singular bound-
aries. The boundaries ∂+ are contained in the set, whereas the boundaries ∂−, drawn in
dashed lines, are not contained in the set.
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(5) It is possible to combine the direct image j∗ and i! by choosing codimension-0 subsets
Q ⊆M , with not necessarily smooth boundary. For instance, consider the subset

S := {(x, y) ∈ R2 : max(x, y) ≤ 1}.

as depicted in Figure 3.3(right). Let f : S −→ R2 be its inclusion in the plane and k ∈ Sh(S)
the constant, then f!k ∈ Sh(R2) is a sheaf. In the study of Legendrian submanifolds, using
such sheaves is common, as fronts are typically singular, see e.g. Figure 3.3(left).

(6) Any continuous map f : N −→M defines a functor f∗ : Sh(M) −→ Sh(N) via

(f∗F )(U), U ⊆ U open

for any F ∈ Sh(M). This is known as the pull-back of sheaves. It is particularly useful when
f is an inclusion, so f∗ rigorously incarnates the intuitive notion of restriction of sheaves from
M to a subset N . In this case, the notation F |N := f∗F is sometimes used. □

Given a closed point x ∈ M , a sheaf F ∈ Sh(M,K) does not know what to assign to x, as
x is not an open set. Nevertheless, we can gain intuition of what the sheaf F looks around
x ∈ M by studying smaller and smaller open neighborhoods U ⊆ M containing x and the
directed system {F (U), ρ(F )} in K that F assigns to them. This leads to:

Definition 3.2.3 (Stalk). Let x ∈ M be a point and F ∈ Sh(M,K) a sheaf. By
definition, the stalk Fx of F at x is the colimit

Fx := colimx∈UF (U), (3.2.5)

where the colimit runs over all open sets U ⊆M with x ∈ U .

Example 3.2.4. The stalks of some of the sheaves in Example 3.2.2 are as follows:

1. If F = kM is the constant sheaf, then Fx = k.

2. If j : Z −→M is a closed inclusion, then the stalks of the direct image F = j∗kZ are

Fx =

{
(kZ)x = k if x ∈ Z

0 if x ̸∈ Z.

3. For the derived direct image, and thus the construction in Section 3.1 relating generating
functions and sheaves, the stalk at a point (x, z) ∈M×R is given by the cochain complex

Rπ∗(kZS
)(x,z) = C∗(M × Rq × R, kZS

) ≃ Sing({s ∈ Rq : Sx(s) ≤ z}, k).

That is, the singular cochain complex of the sublevel set {Sx(s) ≤ z} ⊆ Rq.

4. If i : U −→M is a open inclusion, then the stalks of the direct image F = j∗kU are

Fx =

{
k if x ∈ U = U ∪ ∂U

0 if x ̸∈ U.

In contrast, the stalks of the extension by zero F = i!kU are

Fx =

{
(kU )x = k if x ∈ U

0 if x ̸∈ U.
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5. For the examples related to Figure 3.3, the stalks are k at the points contained in the
set and 0 otherwise. In particular, the stalks are k at the points in the boundary piece
∂+ and zero at the point in the boundary piece ∂−.

6. For a pull-back sheaf f∗F under f : N −→ M , the stalks are (f∗F )y ≃ Ff(y) for any
y ∈ N . In particular, restricting a sheaf preserves its stalks. □

3.2.1 Derived sections

Given a sheaf F ∈ Sh(M,K) and an open set U ⊆M , the object F (U) ∈ K is referred to as
the sections of F on U . There is a more refined notion of sections that we need, that of derived
sections on U . Derived sections are needed for many of the key definitions in the microlocal
theory of sheaves, including the notion of singular support, which is what connects sheaves
to Legendrian submanifolds, and the morphisms in category F ∈ Sh(M,K). Intuitively, the
Legendrian Λ(F ) ⊆ (T∞M, ξst) associated to a (constructible) sheaf F ∈ Sh(M,K) records
the set of points and directions in which the derived sections of the sheaf F change.

The definition of derived sections is part of the general machinery of derived functors, cf. [Bre97,
Chapter II.2], [KS90, Section 1.8] or [Wei94, Chapter 2]. Derived sections of F on U are a
certain cochain complex in K extracted from F and U . As we focus on Legendrian sub-
manifolds, it suffices to use the Čech diagram C({Ui},F ) from Equation (3.2.1) to obtain a
quasi-isomorphic cochain complex. For that, note that C({Ui},F ) can be seen as a cochain
complex if K is an Abelian category, i.e. the composition of two arrows in (3.2.1) is the zero
object. We use the following result to compute derived sections:

Proposition 3.2.5 (Cech complex computes derived sections). Let M be a smooth manifold
of dimension n and F ∈ Sh(M,K) a sheaf. Suppose that U = ∪i∈IUi is an open cover such
that all non-empty finite intersections of its open sets are diffeomorphic to Rn. Then the
derived sections of F on U is the quasi-isomorphic to the Čech complex C({Ui},F ). □

For a proof of Proposition 3.2.5 that suffices for our goals, see [BT82, Theorem 8.9], [Bre97,
Theorem 4.13] or [KS90, Prop. 2.8.4]. To summarize, we used the Čech diagram C({Ui},F )
from Equation (3.2.1)in two ways:

1. First, its limit limC({Ui},F ), seen as a diagram in K, receives a map from F (U), and
the defining property of a sheaf is that this map is an isomorphism.

2. Second, considering C({Ui},F ) as a complex in K, it is quasi-isomorphic to the derived
sections of F on U .

Notation: For now onward, we denote the global sections of F on U by Γ(U), that is we
implicitly derive the functor Γ, denoting RΓ by Γ. □

Example 3.2.6. (1) Consider the constant sheaf kM as in Example 3.2.2.(1). Then its
derived sections are

Γ(M,kM ) ≃ Sing(M),

where Sing(M) is the singular cochain complex of M , as defined in e.g. [Hat02, Chapter 3.1].
This quasi-isomorphism follows, for instance, from [Bre97, Chapter III].

(2) Consider an open inclusion i : U −→M and the sheaves i∗kU and i!kU given by the direct
image and the extension by zero of the constant sheaf kU . Then derived sections are

Γ(M, i∗kU ) ≃ Sing(U), Γ(M, i!kU ) ≃ Singc(U),
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where Singc(U) is the singular cochain complex of U of cochains with compact support, see
e.g. [KS90, Section 2.3]. Similarly, if j : Z −→M is a closed inclusion, then

Γ(M, j∗kZ) ≃ Sing(Z).

In practice, one uses a computationally-friendly model for singular cochains, such as simplicial
or cellular cochains, and tries to use that the homotopy type of such complexes is a homotopy
invariant of the topological space. □

3.2.2 Singular support

The singular support of a sheaf F ∈ Sh(M,K) is a subset of T∞M . In a nutshell, thinking
of points in T∞M as a point x ∈M and a (co)direction ξ ∈ T∞

x M at that point, the singular
support SS(F ) ⊆ T∞M consists of those points (x, ξ) such that the derived sections near x
change as we move in the codirection ξ.

Definition 3.2.7 (Microstalk relative to f). Let F ∈ Sh(M,K), (x, ξ) ∈ T∞M and
f : M −→ R a smooth function such that f(x) = 0 and dfx = ξ. By definition, the
microstalk fF(x,ξ) of F at x relative to f is

fF(x,ξ) := lim
U

(cone(Γ(U ;F ) −→ Γ({f < 0} ∩ U ;F ))[−1]) , (3.2.6)

where the limit is that of the directed systems of open sets containing x and the morphisms
being coned are the restriction maps ρU,U∩{f<0}(F ) of F .

To study Legendrians microlocally, our focus is on whether a given microstalk fF(x,ξ) ∈ K

vanishes or not. A central notion in the microlocal theory of sheaves is the following:

Definition 3.2.8 (Singular support). Let F ∈ Sh(M,K) be a sheaf on a smooth manifold
M . By definition, the singular support SS(F ) of F is

SS(F ) := {(x, ξ) ∈ T∞M s.t. ∃f : M −→ R with fF(x,ξ) ̸≃ 0} ⊆ T∞M,

where f : M −→ R is smooth with f(x) = 0 and dfx = ξ.

In our case, the singular support in Definition 3.2.8 can be used to study Legendrians because:

1. Given a Legendrian Λ ⊆ (T∞M, ξst), one can study sheaves with SS(F ) ⊆ Λ. The
category of such sheaves will turn out to be a Legendrian invariant of Λ. In many cases,
this category is non-empty, and has rich structure, e.g. it is smooth and it has a natural
relative Calabi-Yau structure.

2. If the sheaf F satisfies certain properties, then SS(F ) ⊆ (T∞M, ξst) is Legendrian,
and we can readily construct many interesting Legendrian submanifolds in this manner.
Such property on F is that of being constructible, discussed in Section 4.3 below.

About Definition 3.2.8: arguing that (x, ξ) ∈ T∞M is in the singular support of F is a
relatively simple task: it suffices to find one such function f with non-vanishing microstalk
fF(x,ξ). In contrast, arguing that (x, ξ) ∈ T∞M is not in the singular support requires
showing that all microstalks fF(x,ξ), for all such functions f , indeed vanish.

The following result, proven in [KS90, Prop. 7.5.3], facilitates the task of proving that a given
points is not in the singular support:
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Proposition 3.2.9 (Test for non-characteristic propagation). Let (x, ξ) ∈ T∞M be contained
in a Legendrian P ⊆ (T∞M, ξst), and F ∈ Sh(M,K) a sheaf such that SS(F ) ⊆ P. Suppose
that f : M −→ R is a smooth function with f(x) = 0 such that df intersects P transversely
at (x, ξ). Then fF(x,ξ) is independent of f . In particular, if fF(x,ξ) vanishes for such an f ,
then (x, ξ) ̸∈ SS(F ). □

A function f : M −→ R as in Proposition 3.2.9, transversely intersecting a Legendrian con-
taining the singular support, is sometimes called a test function. Based on Proposition 3.2.9,
the following definition is often used:

Definition 3.2.10 (Microstalk). Let F ∈ Sh(M,K), (x, ξ) ∈ T∞M . By definition, the
microstalk F(x,ξ) of F at x is

F(x,ξ) :=f F(x,ξ)

where f is any test function, which is well-defined up to a shift.

In particular, singular support can then be described as

SS(F ) = {(x, ξ) ∈ T∞M s.t. F(x,ξ) ̸≃ 0}. (3.2.7)

Remark 3.2.11. For the reader familiar with the following notions:

1. The microstalk fF(x,ξ) is the stalk of the sheaf Γ{f≥0}(F ) at x ∈M , where ΓZ denotes
derived sections with compact support relative to Z.

2. More conceptually, fF(x,ξ) corepresents the vanishing cycle functor associated to f ,
cf. e.g. [NT23, Section 2.1].

3. A foundational result in the study of singular support is that SS(F ) ⊆ (T∞M, ξst) is a
coisotropic subset. This is proven in [KS90, Theorem 6.5.4]. Since a given Legendrian
Λ ⊆ (T∞M, ξst) is an example of a coisotropic subset, it thus makes to discuss sheaves
F with singular supported SS(F ) ⊆ Λ contained in such given Λ, cf. the teal comment
after Definition 3.2.8. □

We conclude this subsection with the tenet relating sheaves F ∈ Sh(M,K) and Legendrian
submanifolds Λ ⊆ (T∞M, ξst), inspired by Remark 3.2.11.(3):

If Λ ⊆ (T∞M, ξst) is Legendrian and F has SS(F ) = Λ, then F represents Λ. (3.2.8)

There will be more technical jargon for Tenet 3.2.8, such as “F is a quantization of Λ”, but for
now this language should be accessible enough to guide us until further details are discussed.

3.2.3 Examples of singular support

For the purposes of studying Legendrian submanifolds, a first intuition when determinig the
singular support of a sheaf is given by the behavior of its stalks. For instance, if a point
x ∈M has a given stalk Fx but there is a set V ⊆M of points with x ∈ V \ V such that the
stalks at F are not isomorphic to Fx, then the codirection (x, ξ), where ξ is any codirection
at x “pointing toward” V , is most likely in the singular support. Let us describe the singular
support for the sheaves in Example 3.2.2, cf. also Examples 3.2.4 and 3.2.6.
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Figure 3.4: (Left) Directions in the singular support of j∗kZ , j : Z −→ R2 a closed inclusion,
drawn in purple arrows. (Right) Directions in the singular support of i!kU , i : U −→ R2 an
open inclusion.

(1) The singular support of the constant sheaf F = kM is empty:

SS(kM ) = ∅ ⊆ (T∞M, ξst).

In stark contrast, the sheaf F = C∞
M of R-valued smooth functions on M , which assigns

C∞
M (U) := C∞(U,R) and has ρ(F ) given by restriction of functions, has singular support

SS(C∞
M ) = (T∞M, ξst).

Intuitively, for any point x ∈ Rn and any codirection (x, ξ) ∈ T∞Rn at that point, we can
find a function which is smooth in the half-space H := {v ∈ Rn : ξ(v) < 0} but not smooth in
an open neighborhood of the origin. Thus there is a section of F = C∞

M that does not extend
as we move from H near the origin towards (and past) the origin in the codirection ξ, e.g. in
a direction ortoghonal to the hyperplane {v ∈ Rn : ξ(v) = 0}, pointing outwards from H.

These two examples of sheaves, kM and C∞
M are, in a sense, at opposite extremes to what

the singular support SS(F ) of a sheaf F can be. Note that both subsets are coisotropic:
SS(C∞

M ) being maximal and of dimension 2n − 1, whereas SS(kM ) is as minimal as possible
(it is empty), and should be interpreted as n-dimensional.2 In the spirit of Tenet 3.2.8,
kM represents the empty Legendrian in (T∞M, ξst). In the study of Legendrians via the
microlocal theory of sheaves, the relevant sheaves are much closer to kM than to C∞

M .

(2) Let j : Z −→M be a closed inclusion with smooth boundary. Then the singular support
of F = j∗kZ is given by the set of points at the boundary ∂Z and their inward-pointing
codirections. That is, if ν− denotes the inward pointing covector along ∂Z, pointing towards
Z, then

SS(j∗kZ) = {(x, ξ) ∈ (T∞M, ξst) : x ∈ ∂Z, ξ = ν−(x)}.

These direction are depicted in Figure 3.4(left). Following Tenet 3.2.8, we would say j∗kZ
represents the negative Legendrian conormal lift of ∂Z ⊆M .

(3) Let i : U −→ M be an open inclusion with i(U) having smooth boundary. Then the
singular support of the extension by zero F = i!kU is given by the set of points at the
boundary ∂Z and their outward-pointing codirections, as drawn in Figure 3.4(right). That is

SS(i!kU ) = {(x, ξ) ∈ (T∞M, ξst) : x ∈ ∂U, ξ = ν+(x)},

where ν+ denotes the outward pointing covector along ∂U , pointing away from U . As in
Tenet 3.2.8, we would say i!kU represents the positive Legendrian conormal lift of ∂U ⊆M .

2This is admittedly a bit clearer if one consider singular support to be a conic subset of T ∗M . In that
case, the singular support of kM is the zero section M ⊆ T ∗M , which is n-dimensional.
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3.2.4 The categories of sheaves

Sheaves talk to each other, i.e. there is a well-defined notion of morphisms Hom(F ,G ) between
two sheaves F ,G ∈ Sh(M,K) and compositions of such morphisms. Said formally, Sh(M,K)
arises as the class of objects of a category. At a basic level, the set of functors Sh(M,K) is a
category simply because the coefficients K are a category. The morphisms between sheaves are
then the morphisms between such functors.3 Defining such morphisms between sheaves does
not use the local-to-global property characterizing sheaves among all functors Op(M) −→ K.
Rather, the sheaf property is seen in that such morphisms Hom(F ,G ) can be computed in a
local-to-global manner. We provide a brief account of such morphisms, cf. e.g. [Bre97, Section
1.2] or [KS90, Section 2.2] for details.

Definition 3.2.12 (Sheaf morphisms). Let F ,G ∈ Sh(M,K) be two sheaves. By defi-
nition, the Hom sheaf H (F ,G ) ∈ Sh(M,K) is given by

H (F ,G )(U) := HomK(F (U),G (U)), U ⊆M open,

and its restriction morphisms are inherited from those of F and G . By definition, the
morphisms Hom(F ,G ) between F ,G ∈ Sh(M,K) are given by the derived sections of
H (F ,G ), that is

Hom(F ,G ) := Γ(M,H (F ,G )).

The composition of morphisms

Hom(F1,F2)⊗Hom(F2,F3) −→ Hom(F1,F3)

is defined by the morphism induced by the compositions

HomK(F1(U),F2(U))⊗HomK(F2(U),F3(U)) −→ HomK(F1(U),F3(U)), U ⊆M open,

in the coefficient category K, after taking derived sections. To ease notation, we eponymously
denote the category with objects Sh(M,K) by Sh(M,K):

Definition 3.2.13 (Sheaf category). The category Sh(M,K) of sheaves on M with values
in K is the category with:

1. Objects are sheaves F ∈ Sh(M,K).

2. Morphisms between sheaves F ,G are Hom(F ,G ). □

The category Sh(M,K) in Definition 3.2.13 contains rather wild objects, e.g. there are
sheaves with stalks given by arbitrary objects in K. A first step is to consider the subcate-
gory Shc(M,K) ⊆ Sh(M,K) of compact objects, cf. e.g. [Lur09, Section 5.3.4]. Intuitively,
Shc(M,K) are objects with some finiteness properties, in a sense they are “finitely presented”.

Example 3.2.14. For specificity, consider the category K = Mod(k), understood as sheaves
over a point K = Sh({∗},K). Then the stalk of a sheaf Sh({∗},K) can be any object
in K, such as an unbounded complex of possibly infinity rank k-modules in each degree.
Considering compact objects cuts out a subcategory Mod(k)c ⊆ Mod(k) which can be shown
to be equivalent to perfect complexes, i.e. complexes in Mod(k) which are quasi-isomorphic to
bounded complexes of finite projective k-modules. The latter is a more manageable category,
as its objects can be presented by “finite data”: in each degree of the complex, the k-module
is of finite rank, and the complex is non-zero only in finitely many degrees. □

3I.e. the inclusion of sheaves into presheaves is fully faithful.
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3.3. The category of sheaves of a Legendrian Λ

Our focus is to study Legendrian submanifolds Λ ⊆ (T∞M, ξst). The notion of singular
support, in Definition 3.2.8, provides the key link to associate a category to such a Λ:

Definition 3.3.1 (Sheaf category of Λ). Let M be a real analytic manifold, Λ ⊆
(T∞M, ξst) a Legendrian and K a coefficient category. By definition, the category
Shc

Λ(M,K) of compact sheaves on M with values in K and singular support in Λ is the
subcategory of Shc(M,K) given by the objects F ∈ Shc(M,K) that satisfy SS(F ) ⊆ Λ.
Informally,

Shc
Λ(M,K) := {F ∈ Shc(M,K) s.t. SS(F ) ⊆ Λ}.

The category Shc
Λ(M,K) in Definition 3.3.1, of sheaves that represent (a part of) Λ, will be

used to study a given Legendrian Λ ∈ (T∞M, ξst). The following properties of Shc
Λ(M,K)

are useful in that task:

1. Shc
Λ(M,K) is a Legendrian invariant of Λ. This is discussed in Chapter 5.

2. The category Shc
Λ(M,K) is smooth and, in fact, finite type. In consequence, its derived

stack M(Λ) of pseudoperfect objects, as defined in [TV07, Def. 3.2], is a reasonably
behaved algebraic geometric object, cf. [TV07, Theorem 3.6]. It can occasionally be
more manageable to work with M(Λ), rather than Shc

Λ(M,K) directly, as we can apply
techniques from algebraic geometry.4 These geometric spaces are discussed in more
detail in Section 3.3.1 below.

An important feature of M(Λ) is that the tangent complex

TFM(Λ) ≃ Hom(F ,F )

records the endomorphisms of any pseudoproper object F ∈ Shpp
Λ (M,K). In Chapter 6

we will describe in detail a connected component of M(Λ) for a class of Legendrian links
Λ ⊆ (T∞R2, ξst).

3. For Λ ⊆ (T∞R2, ξst) a Legendrian link, there exists a natural functor

mΛ : Shc(M,K) −→ Locc(Λ,K)

from this category to the category of compact local systems on Λ with coefficients in K.
This functor mΛ is known as the microlocalization functor, and it is an instance of the
theory of µHom and µShΛ, cf. [KS90, Chapter VI], [Gui23, Parts 10& 11] or [Nad16,
Section 3.4]. In practice, mΛ(F ) is computed by studying the microstalks of F , which
are the stalks of the local system mΛ(F ).

Note that the codomain category can be neatly described as Perf(C−∗(ΩΛ)), the cat-
egory of perfect modules over the algebra of chains in the based loop space of Λ. For
instance, if Λ is a Legendrian link with c components, then Locc(Λ,K) is equivalent to
perfect modules over the ring k⟨t±1

1 , . . . , t±1
c ⟩.

Remark 3.3.2. The microstalk functors

µ(x,ξ) : Shc(M,K) −→ Perf(k), F 7−→ F(x,ξ)

are corepresentable, i.e. of the form µ(x,ξ) = Hom(M(x,ξ), ·) for some M(x,ξ) ∈ Shc(M,K).
These corepresentatives of the microstalk functors generate Shc(M,K), cf. [Nad16, Lemma
3.15] or [GPS24, Prop. 4.17]. □

4Intuitively, Shc
Λ(M,K) is fundamentally a non-commutative being and MΛ is a commutative being.
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3.3.1 The moduli of sheaves of a Legendrian Λ

It can be useful to extract a geometric space out of the category Shc
Λ(M,K). For that we

use results from derived algebraic geometry, working within the framework of D−-stacks,
cf. [TV05, TV08], and specifically using the concept of the derived moduli stack of pseudo-
perfect objects of a category, as introduced in [TV07, Section 3.1].

In a nutshell, given a dg-category C of finite type, there is a geometric space MC associated
to it. The geometric space is rigorously defined as the D−-stack associated to the functor of
points

MC : sCAlgk → sSet, MC(A) = Mapdg-catk
(Cop,Perf(A)).

Here sCAlgk is the category of simplicial commutative k-algebras (denoted sk-CAlg in [TV07,
Section 2.3]), sSet the category of simplicial sets, Perf(A) is the dg-category of perfect A-
modules (denoted Âpe in [TV07, Section 2.4]), and Mapdg-catk

denotes the mapping space
of a model structure for the category of small dg-categories. See [TV07, Section 3] for the
necessary details.5 The D−-stack MC is said to be the moduli of pseudo-perfect objects of C.

This is a functorial construction, in that the assignment C 7→MC defines a functor

M : Ho(dg-catk)
op −→ D−St(k) (3.3.1)

between the opposite of the homotopy category Ho(dg-catk) of dg-categories and the category
D−St(k) of D−-stacks, the functor being enriched over the homotopy category of sSet. In
particular, given a dg-functor f : C −→ D, there is a map M(f) : M(D) −→ M(C), which
sends a pseudo-perfect object Dop −→ Perf(k) to its pull-back via Cop −→ Dop −→ Perf(k).

By [TV07, Theorem 3.6], MC is a reasonably geometric space, e.g. locally geometric and
locally of finite presentation, if C is of finite type. In the case of Λ ⊆ (T∞M, ξst) a Legendrian
link, Shc

Λ(M,K) is of finite type by the results from [Nad17, Sta18].6 We are thus lead to the
following:

Definition 3.3.3 (Moduli of sheaves with singular support on Λ). Let Λ ⊆ (T∞M, ξst)
be a Legendrian submanifold. By definition, the moduli M(Λ) of K-valued sheaves with
singular support on Λ is the derived stack of pseudo-perfect objects of Shc

Λ(M,K).

The space MΛ typically has many interesting components and substacks. To wit, if K =
Mod(k), we can already focus on sheaves whose microstalk is concentrated in one degree and,
for instance, also specify the isomorphism type of the k-module in that degree. Throughout
these notes, we often focus on substacks of this form, cf. Section 6.2.

3.3.2 Singular support and Maslov potential

In this brief technical aside, we remark that there are two pieces of data often attached to
sheaves and Legendrians:

1. For a sheaf F ∈ Sh(M,K) and a point (x, ξ) ∈ SS(F ), there exists a half-integer d,
called the shift of F at (x, ξ). Intuitively, it captures the homological degree of the
microstalk at (x, ξ). This number is defined in [KS90, Definition 7.5.4], and see also
[Gui23, Section 1.4].

5In zero characteristic zero, sCAlg is equivalent to cdga≤0, via the appropriate version of the Dold-Kan
correspondence. Therefore, in zero characteristic, the inputs for (functor of points of) the derived stack MC
can be taken to be non-positively graded commutative dg-algebras.

6In generality, it is known that these sheaves categories are smooth, cf. e.g. [GPS24, Corollary 4.26].
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2. For a Legendrian Λ ⊆ (T∞M, ξst), there is the notion of Maslov class ϑΛ ∈ H1(Λ,Z).
Intuitively, it measures the failure of the Lagrangian projection of Λ to being graphical
over the zero section.

For instance, for a Legendrian knot Λ ⊆ (R3, ξst), the Maslov potential assigns an integer
number to each segment of the front diagram connecting two cusps, with the rule that it
must increase or decrease one unit when passing through a cusp upwards or downwards. Such
Maslov potential exists modulo twice the rotation number 2r(Λ), e.g. it does if r(Λ) = 0.

In these notes, we shall often focus on sheaves which are pure, as defined in [KS90, Section
7.5]: the microstalk at a point in Λ is concentrated in the degree essentially given by the
Maslov potential at the segments containing that point.

3.4. Exercises
1. (Legendrian unknot) Consider the inclusion i : Q −→ R2

x,z of the set Q in R2 as de-
picted in Figure 3.5(left). Specifically, its upper boundary ∂+Q and lower boundary ∂−Q are
parametrized by

∂±Q =

(
x,∓

(
1− x2

3

)3/2

∓ (x2 − 1)

(
1− x2

3

)1/2
)
, x ∈ [−1, 1].

The (image of the) set Q includes ∂+Q, depicted in solid blue, but does not include ∂−Q,
depicted in dashed blue.

Figure 3.5: (Left) The set Q ⊆ R2
x,z in Exercise 1, here ∂+Q ⊆ Q is depicted in solid blue

and ∂−Q ⊆ Q, which is not considered part of Q, in dashed blue. (Right) A front for the
standard Legendrian unknot Λu ⊆ (R3, ξst).

(i) Consider the sheaf F := i!k ∈ Shc(R2,Mod(k)). Show that SS(F ) ⊆ Λu, where
Λu ⊆ (R3, ξst) is the Legendrian lift of the front in Figure 3.5 (right).

(ii) By (i), F ∈ ShcΛu
(R2,Mod(k)). Compute its endomorphisms End(F ) in this category.

2. (Legendrian Hopf link) Let Λh ⊆ (R3, ξst) be the Legendrian Hopf link whose front is as de-
picted in Figure 3.6, one component in blue and the other in green, cf. also Figure 2.16(Right).
Consider the two inclusions i1 : Q1 −→ R2 and i2 : Q2 −→ R2 of the sets as depicted in the
figure, cf. Exercise 1 above.

(i) Consider the sheaves F1 := (i1)!k and F2 := (i2)!k in Shc(R2,Mod(k)) and their direct
sum F⊕ = F1 ⊕F2. Show that SS(F⊕) ⊆ Λh.
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Figure 3.6: The sets Q1, Q2 ⊆ R2
x,z in Exercise 2.

(ii) Find a sheaf G ∈ ShcΛh
(R2,Mod(k)) which sits in a short exact sequence between F1

and F2 but it is not isomorphic to F⊕.

(iii) Formulate and solve analogs of parts (i) and (ii) for the other two fronts of Λh in
Figure 2.16.

3. (Examples from Legendrian knots to sheaves) For each of the Legendrian lifts Λ of the
fronts π(Λ) ⊆ (R3, ξst) depicted in Figure 3.7, find a sheaf F ∈ Shc(R2,Mod(k)) such that
SS(F ) = Λ. (You may select any Maslov potential.)

Figure 3.7: A series of fronts for Legendrian links in Λ ⊆ (R3, ξst) for Exercise 3. (Upper
left) A front for the Legendrian unknot Λu ⊆ (R3, ξst). (Bottom left) A front for the max-
tb Legendrian right-handed trefoil. (Right) A Legendrian link with components given by a
max-tb Legendrian m(52) and two Legendrian unknots, non-trivially linked to it.

4. Consider the front π ⊆ R2 in Figure 3.7(Upper left) and denote by Qu, Qb ⊆ R2 the upper
and bottom bounded connected components of R2 \π, as in Exercise 1 above, with inclusions
iu : Qu −→ R2 and ib : Qb −→ R2.7 Let Fu = i!kQu and Fb = i!kQb

be their associated
characteristic sheaves. Compute the singular support of Fu ⊕Fb.

5. For the examples in Section 2.5, given by Legendrian links of the form Λ = Λβ , as in Sec-
tion 2.5.3, and the Legendrian links Λ = Λ(G) associated to plabic graph, as in Section 2.5.1:

7So Qu, Qb contain their the upper boundaries ∂+ but not their lower boundaries ∂−.
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1. Show that there always exists a sheaf F ∈ Sh(R2,Mod(k)) with SS(F ) = Λ.

2. For the sheaf you found in (1), compute its algebra of endomorphisms.

6. Consider a Legendrian Λ ⊆ (R2n+1, ξst) with a front π(Λ) ⊆ Rn+1, Q a smooth q-
dimensional submanifold, and Λ×Q ⊆ R2(n+q)+1 its trivial front spinning, cf. Section 2.5.4.
Describe ShΛ×Q(Rn+q+1,Mod(k)) in terms of ShΛ(Rn+1,Mod(k)).

7. For any n ∈ N, provide an example of a Legendrian submanifold Λ ⊆ (T ∗Rn, ξst) such that
there exists no sheaf F ∈ ShΛ(Rn,Mod(k)).

8. Let f : M −→ R be a Morse function on a closed smooth manifold M and kM ∈
Sh(M,Mod(k)) the constant sheaf. Compute the singular support of Rf∗kM .

9. Let Λ = ∅ ⊆ (T∞Sn, ξst) be the empty Legendrian submanifold, n ≥ 3. Show that
Sh∅(S

n,Mod(k)) is equivalent to the category of modules over the polynomial algebra k[x],
where |x| = n− 1.

10. Show that the stalk and microstalk functors, as described in Definition 3.2.3 and Defini-
tion 3.2.10, are both corepresentable functors. In addition, try to describe, at least intuitively,
their corepresentatives.

Hint: left adjoints can be described via left Kan extensions.

3.5. Key references
These resources might be helpful to complement and expand the content of this chapter:

1. The foundational textbook [KS90] contains a thorough treatment of the definition and
properties of singular support. Though written in the framework of (classically) de-
rived categories, many of the results extend with less restrictive technical hypothesis,
e.g. working with unbounded complexes, or dg-categories and ∞-categories. See for
instance [RS18], [CL23, Appendix A], [CL24, Appendix A] and references therein. The
authors of [KS90] have also written a number of accounts autour the theme of [KS90],
see e.g. [KS01, KS85a].

2. As a rule of thumb, many of the research articles and monographs by the authors of
[KS90] and, more recently, S. Guillermou and C. Viterbo, tend to be rigorous and en-
lightening contributions to the microlocal theory of sheaves, often in relation to symplec-
tic topology. To wit, the notes [Vit10] provide a helpful introductory account explaining
the relation between modern contact and symplectic topology and the microlocal theory
of sheaves. The monograph [Gui23] is a wonderful follow-up to C. Viterbo’s notes, with
an emphasis on the applications of sheaf theory to contact and symplectic topology.

3. Beyond textbooks and monographs, the school “Symplectic topology, sheaves and mirror
symmetry” took place in Paris in Summer 2016 at the IMJ-PRG. Its website contains
a number of lecture notes that can be of use. Prior to that event, a group of mathe-
maticians in France ran a groupe de travail in 2013-14 on [GKS12], with some of the
materials available online.8

4. For the derived stacks appearing in Section 3.3.1, [TV07] applies to (finite type) dg-
categories. Experts assert that the results can nevertheless be generalized to∞-categories.
This is implicitly used already in some articles in the literature, see e.g. [PT25a, PT25b].

8Active urls: “school2016.imj-prg.fr” and “imo.universite-paris-saclay.fr/∼patrick.massot/en/gdtSS/gdt2013.html”.



Chapter 4: Exodromy description of singular support

Let Λ ⊆ (T∞M, ξst) be a Legendrian submanifold: the present goal is to describe the
category Shc

Λ(M,K) in a reasonably explicit manner. For instance, we will be able to describe
objects in Shc

Λ(M,K) in terms of linear algebra, understood as the study of functors from
posets to Mod(k). The overarching strategy to describe Shc

Λ(M,K) explicitly is:

1. Introduce the category Shccons(M,K) ⊆ Shc(M,K) of constructible sheaves, which has
the important property that

Shc
Λ(M,K) ⊆ Shccons(M,K).

2. Describe the category Shccons(M,K) in more combinatorial terms. In this case, in terms
of K-valued modules over certain posets.

3. Given a Legendrian Λ, translate the condition SS(F ) ⊆ Λ for a sheaf F ∈ Shccons(M,K)
in these combinatorial terms. This yields a combinatorial description of the subcategory
Shc

Λ(M,K) ⊆ Shccons(M,K) we are studying.

The present chapter implements this strategy. An additional advantage of the notion of
singular support is that it crystallizes some of the classical concepts in sheaf theory and their
relation to each other, see Chapter 4.

Classical concept Microlocal viewpoint
Local systems Loc(M,K) Sh∅(M ;K), i.e. empty singular support

S-constructible sheaves ShS(M ;K) Shν∗S(M ;K), i.e. singular support in conormal
Stalk functor Sh(M,K) −→ K Microstalk ShΛ(M,K) −→ K with ξ = ∅.

Table 4.1: Table summary of classical notions in sheaf theory expressed in terms of singular
support, i.e. from the microlocal viewpoint.

In a nutshell, ShΛ(M,K) lies in between

Loc(M,K) ⊆ ShΛ(M,K) ⊆ ShS(M,K)

where S is a stratification given by any front projection of Λ and ShS(M,K) ⊆ Shcons(M,K)
is the category of constructible sheaves with respect to that specific stratification S. From
the viewpoint of Chapter 4, these inclusions are simply inclusions of singular support:

Sh∅(M,K) ⊆ ShΛ(M,K) ⊆ Shν∗S(M,K) (4.0.1)

4.1. A motivation for constructibility
Let Λ ⊆ (T∞M, ξst) be a Legendrian submanifold. The category Shc(M,K) can be

difficult to work with: for instance, it contains sheaves whose stalks vary from point to point,
and can do so in a rather uncontrolled manner. Even if the stalks of a sheaf F ∈ Shc(M,K)
do not vary, the associated morphisms ρ might be challenging to understand. Thus, trying
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to describe the subcategory Shc
Λ(M,K) ⊆ Shc(M,K) by starting with the ambient category

Shc(M,K) can require a fair amount of work.

The first important fact is that there exists a better understood subcategory

Shccons(M,K) ⊆ Shc(M,K)

which contains Shc
Λ(M,K). Such category Shccons(M,K) is known as the category of con-

structible sheaves. The result we use is [KS90, Theorem 8.4.2], which states:

Theorem 3 (Microlocal characterization of constructibility). Let M be a real analytic
manifold and F ∈ Shc(M,K) a sheaf. Then

F ∈ Shccons(M,K)⇐⇒ SS(F ) ⊆ (T∞M, ξst) is Legendrian.

In particular, Shc
Λ(M,K) ⊆ Shccons(M,K) for any Legendrian Λ ⊆ (T∞M, ξst).

Constructible sheaves and their categories are rather classical objects, preceding the mi-
crolocal theory of sheaves, cf. e.g. [Sch03, Chapter 2] or [Gor20, Sections 5.7&5.8]. For its
connection to the microlocal theory of sheaves, cf. [KS90, Chapter VIII]. From Theorem 3,
we have the faithful inclusions

Shc
Λ(M,K) ⊆ Shccons(M,K) ⊆ Shc(M,K) (4.1.1)

of categories of sheaves, for any given Legendrian Λ ⊆ (T∞M, ξst). Since we are focused
on Shc

Λ(M,K), once we understand Shccons(M,K), we use Equation (4.1.1) to effectively for-
get about Shc(M,K). Note that only Shc

Λ(M,K) in Equation (4.1.1) depends on the given
Legendrian Λ.

This chapter will now discuss the category of constructible sheaves Shccons(M,K), with an eye
towards studying Legendrian submanifolds via the first inclusion of Equation (4.1.1). The
main result will be the Exodromy Equivalence (Theorem 5) describing constructible sheaves
in a reasonably down-to-Earth manner. As a toy case, which is logically needed, we will
discuss local systems and the Monodromy Equivalence (Theorem 4).

4.2. Locally constant sheaves and the Monodromy Equivalence
For the purposes of studying Legendrian submanifolds, Theorem 3 implies that we can

focus on a particular class of sheaves on M , known as constructible sheaves. These are sheaves
for which there exists a stratification of M such that the sheaves are locally constant along
each stratum. Thus, we first need to understand locally constant sheaves:

Definition 4.2.1 (Locally constant sheaves). A sheaf F on M is said to be locally
constant if for every point x ∈ M there exists a neighborhood U ⊆ M such that the
restriction F |U is isomorphic to the constant sheaf kU .

Locally constant sheaves are also known as local systems in the literature. The constant sheaf
kM is an example of a locally constant sheaf but, typically, there exist many locally constant
sheaves which are not globally constant.

Example 4.2.2. Consider the circle S1 = R/Z and the covering map

fℓ : S
1 −→ S1, θ 7→ ℓθ, ℓ ∈ Z
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and the sheaf (fℓ)∗kS1 ∈ Sh(S1,K), as in Example 3.2.2.(2). Then (fℓ)∗kS1 is locally constant
but not isomorphic to kS1 . Intuitively, when we study the local sections of (fℓ)∗kS1 for small
open sets going around S1 and back to where we start, the resulting map, from the space of
sections on the initial open set to itself, is non-trivial. This is formalized by the notion of
parallel transport and monodromy. □

Let Loc(M,K) ⊆ Sh(M,K) denote the subcategory of locally constant sheaves on M . The
following fact allows us to work with locally constant sheaves in a more manageable manner
than with an arbitrary sheaf:

Theorem 4 (Monodromy Equivalence). Let M be a connected smooth manifold, Π∞(M)
is fundamental ∞-groupoid, and Loc(M,K) ⊆ Sh(M,K) the subcategory of locally con-
stant sheaves. Then there exists an equivalence of categories

Loc(M,K) ∼= Fun(Π∞(M),K). (4.2.1)

In particular, Loc(M,K) only depends on the homotopy type of M .

There are a number of incarnations of Theorem 4 in the literature, cf. e.g. [Lur17, Theorem
A.4.19]. The following are consequences of Theorem 4:

1. Since Π∞(M) is generated by the endomorphisms of a point, which are isomorphic to
C−∗(ΩM), there exists an equivalence of categories

Loc(M,K) ∼= C−∗(ΩM)-mod (4.2.2)

between the category of locally constant sheaves and modules over the algebra C−∗(ΩM)
of chains on the based loop space ΩM , endowed with the Pontryagin product. Similarly,
the category of compact objects Locc(M,K) ⊆ Loc(M,K) is given by

Locc(M,K) ∼= Perf(C−∗(ΩM)) (4.2.3)

2. Importantly, Equation (4.2.3) implies that if M is contractible then kM is the unique
locally constant sheaf on M , up to isomorphism.

Another relevant instance is M = S1. Then Equation (4.2.3) is the statement that

Loc(S1) ∼= k[π1(S
1)]-mod ∼= k[Z]-mod ∼= k[t, t−1]-mod

since ΩS1 ≃ Z and π0(ΩS
1) ∼= π1(S

1) ∼= Z. Therefore, a locally constant sheaf of
S1 is given by the data of a k-module V and an automorphism T ∈ Autk(V ). Then,
t ∈ k[t, t−1] is the algebraic incarnation of the monodromy and acts on V via T .

Similarly, if M is a surface with boundary – in our case Lagrangian fillings of Legendrian
links – then M ≃ K(π, 1), as M is homotopic to a wedge of circles. In particular, the
objects of Loc(M,K) are simply representations of π1(M), i.e. modules over the non-
commutative ring of Laurent polynomials in several variables.

3. In practice, Theorem 4 is used to describe a locally constant sheaf F by giving the
data of any of its stalks1 Fx, which is simply giving an object of K, and the Aut(K)-
valued monodromies based at that point x ∈ M , i.e. the subgroup of automorphisms
of Hom(Fx,Fx) obtained by parallel transporting Fx, using the ρ-morphisms, along
chains in M based at x.

1It follows from Definition 4.2.1 that all the stalks of a locally constant sheaf in a connected manifold are
isomorphic. Therefore, for locally constant sheaves, it suffices to give the stalk at one point to determine the
isomorphism type of the stalks at any other.
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To understand how locally constant sheaves relate to Legendrian submanifolds, in the way of
Tenet 3.2.8, computing the singular support of a locally constant sheaf is a first step. In fact,
the following stronger characterization holds:

Lemma 4.2.3. Let F ∈ Sh(M,K) be a sheaf. Then

F is locally constant⇐⇒ SS(F ) = ∅.

Proof. (=⇒) By Definition 4.2.1, all restriction maps of a locally constant sheaf are isomor-
phisms. Therefore any microstalk fF(x,ξ), as in Definition 3.2.10, must vanish. By choosing
f to be a test function and applying Proposition 3.2.9, we conclude that no codirection can
be in the singular support.

(⇐=) Similarly, SS(F ) = ∅ implies that all restriction maps must be isomorphisms, as their
cones are acyclic. Thus F is a locally constant sheaf.

In the sense of Tenet 3.2.8, Lemma 4.2.3 implies that a locally constant sheaf on M represents
the empty Legendrian in (T∞M, ξst). That is the reason why, in many cases, one actually
quotients by Loc(M,K) in the microlocal theory of sheaves, as they are essentially trivial
objects from the microlocal perspective.

4.3. Constructible sheaves and the Exodromy Equivalence
A poset-stratified smooth manifold (M, S) is a continuous surjection S : M −→ P from M

to a poset P, the latter endowed with the Alexandroff topology. The ith dimensional strata
Si of S is defined to be:

Si := {S−1(i) ⊆M : i ∈ P and S−1(i) ̸= 0}.

Such {Si} is a stratification of M in the classical sense. In particular, the closure of each
stratum is a union of strata and the poset structure i ≤ j in P captures the inclusions
Si ⊆ Sj . See e.g. [BGH20, Part I] or [Sch03, Chapter 4].

Example 4.3.1 (Stratifications from subsets). Consider an open inclusion i : U −→M , the
associated closed inclusion j : Z −→ M with Z = M \ U , and assume that ∂U = ∂Z is a
smooth submanifold of M . Then we can consider the stratification S given by the three strata

S1 := M \ U, S2 := U, S3 := ∂U = ∂Z.

Since the only relevant inclusions are S3 ⊆ S2 and S3 ⊆ S1 = S1, the associated poset is
P = (S1 ← S3 → S2), which is notation to indicate that the poset P = ({S1, S2, S3}, <) has
partial order S3 < S1 and S3 < S2. □

Example 4.3.2 (Stratifications of R2 from fronts). The local fronts described in Section 2.4,
cf. Figure 2.1, stratify the base of any Legendrian fibration. In particular, for a Legendrian
link Λ ⊆ (T∞R2, ξst), its front stratifies R2, with strata consisting of single points, single
segments and open subsets of R2. □

Definition 4.3.3 (Constructible sheaves). Let M be a smooth manifold and S : M −→ P

a stratification. A sheaf F on M is said to be S-constructible if the restriction of F each
stratum Si ⊆M is locally constant.

The subcategory of Sh(M,K) consisting of S-constructible sheaves is denoted by ShS(M,K).
The subcategory of Sh(M,K) consisting of sheaves which are S-constructible for some
stratification S is denoted by Shcons(M,K).
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Example 4.3.4. (1) A locally constant sheaf F ∈ Loc(M,K) is S-constructible with respect
to the trivial stratification S : M −→ {∗}, where {∗} is the one-element poset. In fact,
Loc(M,K) ∼= ShS(M,K) for this trivial stratification S.

(2) Following Example 4.3.1, both j∗kZ and i!kU are S-constructible with respect to the
stratification given by those three strata

S1 := M \ U, S2 := U, S3 := ∂U = ∂Z.

Note that Z = S1 ∪ S3 and the stalks of j∗kZ in both S1 and S3 are isomorphic to k, while
the stalks of j∗kZ in S2 vanish. In contrast, the stalks of i!kU vanish in M \U = S1 ∪ S3 and
are isomorphic to k in S2. □

Example 4.3.4.(2) shows that a constructible sheaf F ∈ Shcons(M,K) typically has non-empty
singular support SS(F ).

Remark 4.3.5. Example 4.3.4.(2) illustrates that the category Loc(M,K) ⊆ Sh(M,K) of
locally constant sheaves is not closed under operations such as taking (direct or exceptional
images) and related functors. The larger category Shcons(M,K) has the desirable property
of being closed under the 6-functors, see e.g. [Ver76, Section 2] or [BH22, Theorem 1.6] for
instances of the 6-functors formalism in the constructible context. Along with Theorem 3,
this is a conceptual reason why we can focus on Shcons(M,K) and forget the larger category
Sh(M,K). □

Let S : M −→ P be a stratification and ExitS(M) the category of S-exit paths, as in [Lur17,
A.6] or [BGH20, Example 8.4.2].2 The objects of ExitS(M) are points in M and, intuitively,
the morphisms are paths from any stratum Si to any stratum Sj with i < j.3 Coarsely speak-
ing, ExitS(M) is a category that records the fundamental groupoid of each stratum Π∞(Si)
and the ways these strata are glued together. We use ExitS(M) to study S-constructible
sheaves ShS(M,K) via the following result:

Theorem 5 (Exodromy Equivalence). Let M be a connected smooth manifold, S :
M −→ P a Whitney stratification, ExitS(M) its exit-path category and ShS(M,K) ⊆
Sh(M,K) the subcategory of constructible sheaves. Then there exists an equivalence of
categories

ShS(M,K) ∼= Fun(ExitS(M),K). (4.3.1)

This is proven in [Lur17, Theorem A.9.3], cf. also [Tre09, Theorems 1.2 & 6.10] and [BGH20,
Chapters 0&1]. Theorem 5 generalizes Theorem 4: as in Example 4.3.4.(1), Loc(M,K) ∼=
ShS(M,K) if S : M −→ {∗} is chosen as the trivial stratification, and for this trivial stratifi-
cation all paths are exit-paths, and so there is also the equivalence ExitS(M) ∼= Π∞(M). The
nomenclature of exodromy, by the authors of [BGH20], is a portmanteau of exit paths and
monodromy: it hints at the fact that the Exodromy Equivalence in Theorem 5 generalizes the
Monodromy Equivalence in Theorem 4, in the same manner that ExitS(M) and the K-valued
representations Fun(ExitS(M),K) of its exit paths generalize Π∞(M) and its monodromies.

In practice, when studying Legendrian submanifolds, we often use Theorem 5 for strat-
ifications S with particularly well-behaved. To precisely described “well-behaved”, note that
a sheaf does often not have sections on a stratum Si of a stratification S, as typically Si is

2This category is denoted SingS(M) in [Lur17], while Π∞(M) is denoted by Sing(M) there.
3Thus the use of the word exit: the path must exit Si into a “larger” stratum Sj , larger in that Si ⊆ Sj .
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not open. Instead, one can construct an open set in M which contains a given stratum Si by
adding other strata to it. By definition, S⋆i the star of a stratum Si is

S⋆i := ∪i≤jSj

i.e. the union of strata in S that contain the given stratum Si in their closure. The type of
well-behaved stratifications we mentioned above are:

Definition 4.3.6 (Contractible stratifications). Let S : M −→ P be a stratification. By
definition, S is said to be contractible if, for each stratum Si of S, both the stratum Si
and its star S⋆i are contractible.

In the following consequence, we interpret P as a category whose objects are the elements of
the (partially ordered) set {stri}i∈P and its morphisms are given by the partial order. That
is Hom(Si, Sj) contains a unique element if i ≤ j and it is empty otherwise. The category
Fun(P,K) of K-valued functors on P is often referred to as the category of representation or
modules over the poset. For contractible stratifications, Theorem 5 implies:

Corollary 4.3.7. Let S :−→ P be a contractible stratification of M , with P = {Si}i∈I . Then

ShS(M,K) ∼= Fun(P,K). (4.3.2)

Specifically, an equivalence is given by mapping F ∈ ShS(M,K) to the functor

F (F ) : P −→ K, F (F )(Si) := Γ(S⋆i ,F )

that assigns the derived sections of a sheaf F to each stratum. □

Proof. For a contractible stratification, the stratification S : M −→ |P| induces an equivalence
of categories ExitS(M) ∼= P and the result follows from Theorem 5.

See also [GPS24, Lemma 4.5] or [?, Prop. 3.9]. For completeness, the functors F (F ) in
Corollary 4.3.7 are determined on morphisms via

F (F )(i
≤−→ j) := {fij : Γ(S⋆i ,F ) −→ Γ(S⋆j ,F )},

and zero if i ̸≤ j. Here we have used that an inclusion Si ⊆ Sj induces an inclusion S⋆i ⊆ S⋆j
of stars, and thus a (unique) map fij : Γ(S⋆i ,F ) −→ Γ(S⋆j ,F ) between the corresponding
derived sections of F . For a contractible stratification, we also have the following useful
property:

Fx
∼= Γ(S⋆i ,F ) if x ∈ Si. (4.3.3)

From this viewpoint, the representation of the poset P from F is readily described on objects
by assigning i −→ Fx, where i ∈ P and x ∈ Si. The isomorphism type of Fx is independent
of x ∈ Si since the sheaf F is S-constructible.

Example 4.3.8 (Contractible stratifications of R2 from fronts). The three stratifications of
Example 4.3.2 are contractible and thus . □



Chapter 5: Invariance and sheaf quantization

The first goal of this section is to show that the category Shc
Λ(M,K) is a Legendrian

invariant of Λ. Such invariance follows from a more general procedure, often known as sheaf
quantization in the literature. The second goal of this section will be to discuss this sheaf
quantization is a more general setting, with a view towards studying Lagrangian fillings of
Legendrian submanifolds.

5.1. Contact invariance of Shc
Λ(M,K)

The invariance of Shc
Λ(M,K) under contact isotopies is established in [GKS12, Section 3],

see also e.g. [STZ17, Section 4]. The precise statement is Theorem 6 below. There are two
important aspects to the result:

1. In practice, if Λ0 and Λ1 are related by an explicit Legendrian isotopy, we want the
equivalence between their corresponding categories ShcΛ0

(M,K) and ShcΛ1
(M,K) to be as

computable and explicit as possible. In Section 5.1.1 we gain intuition for the invariance
in Theorem 6 by explicitly studying how sheaves change under Reidemeister moves for
Legendrian links. (This provides a hands-on proof of Theorem 6 for Legendrian links.)

2. The proof of Theorem 6, even is reasonably simple, is as important as its statement. It
starts to highlight the principle of sheaf quantization which, at core, addresses the fol-
lowing problem: given a Legendrian Λ ⊆ (T∞N, ξst), construct a sheaf F ∈ ShcΛ(N,K),
i.e. a sheaf F ∈ Shc(N,K) with SS(F ) ⊆ Λ. In the proof of Theorem 6, this Legendrian
Λ will be the Legendrian graph of a contact isotopy.

Since a Legendrian isotopy in a contact manifold can be extended to an ambient contact
isotopy, see e.g. [Gei08, Section 2.6], we focus on studying invariance under contact isotopies
to deduce invariance under Legendrian isotopies.

5.1.1 A motivation: Legendrian Reidemeister moves

To develop intuition on the Legendrian invariance of Shc
Λ(M,K), we treat in detail the cases

of dim(Λ) = 0 and dim(Λ) = 1.

An exercise in 1-dimensional contact topology

Consider coordinates (x, ξ) ∈ (T∞R, ξst), where x ∈ R is the coordinate in the zero section
and |ξ| ∈ S0 is the fiber coordinate in the cotangent fiber, so ξ = ±1. Let us focus on the
Legendrian isotopy

Λt := {(t, 1)} ∪ {(−t,−1)}, t ∈ [−1, 1],

where Λt
∼= S0 is a Legendrian in (T∞R, ξst) for each t. The isotopy starts at the 0-sphere

Λ−1 = {(−1, 1)} ∪ {(1,−1)} and ends at Λ1 = {(1, 1)} ∪ {(−1,−1)}.From the perspective of
sheaves on R, Λ−1 = SS(k[−1,1]) where k[−1,1] := j∗k, j : [−1, 1] −→ R and k ∈ Sh([−1, 1],K)
is the constant sheaf on Z = [−1, 1]. We want to understand how ShΛt(R,K) varies as we go
from Λ−1 to Λ1:
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1. For t ∈ [−1, 0), it should be apparent that not much qualitatively changes. In this case,
the sheaf k[−1,1] ∈ ShΛ−1(R,K) with Λ−1 = SS(k[−1,1]) is mapped to k[−t,t] ∈ ShΛt(R,K),
where now Λt = SS(k[−t,t]).

2. For t = {0}, it is not as immediate what sheaf F ∈ ShΛ0(R,K) should be the continu-
ation of k[−t,t] at t→ 0−. The correct answer is k{0}, the skyscraper sheaf at the origin
{0}, which represents the Legendrian boundary of the cotangent fiber T ∗

0R. Note that,
indeed, SS(k{0}) = {(0, 1)} ∪ {(0,−1)}.

3. For t ∈ (0, 1), one might guess that the isotopy sends k[−t,t] → k{0} → k(−t,t), as
SS(k(−t,t)) = Λt for t ∈ (0, 1]. This is almost correct, except for the presence of ho-
mological grading: the correct sheaf is k(−t,t)[1], which still has SS(k(−t,t)[1]) = Λt for
t ∈ (0, 1]. Through the isotopy Λt, the sheaves vary as k[−t,t] → k{0} → k(−t,t)[1].

The above is an illustrative example of the importance of the grading shift in Section 3.3.2.
In particular, of the importance of the choice of Maslov potential on the Legendrian Λ and
the dependence of Shc

Λ(M,K) on that Maslov potential.

5.1.2 The invariance result

The main step in showing that Shc
Λ(M,K) is invariant under contact isotopies is the con-

struction of a sheaf kernel from a contact isotopy. More precisely:

Definition 5.1.1 (Sheaf kernel of a contact isotopy). Let {φt} ∈ Cont(T∞M, ξst), t ∈
I = [0, 1], be a contact isotopy. By definition, a sheaf

K({φt}) ∈ Sh(M ×M × I) (5.1.1)

is said to be a kernel for {φt} if

1. SS(K({φt})) ⊆ Λ({φt}),

2. K({φt})|t=0 ≃ k∆,

where Λ({φt}) ⊆ T∞(M ×M × I) is the Legendrian graph of {φt} and ∆ ⊆M ×M the
diagonal submanifold.

We often abbreviate Kφ := K({φt})) to ease notation. For background on general sheaf
kernels, see [KS90, Section 3.6] or [GKS12, Section 1.6]. The use of the word kernel in
Definition 5.1.1 is in analogy with the notion of an integral kernel in analysis, see e.g. [H0̈3,
Chapter V], or Fourier-Mukai kernels in algebraic geometry, cf. e.g. [BZNP17, Section 1].

Remark 5.1.2. The point of this notion of kernel is that one can sometimes define a map

ΦK : C(X) −→ C(Y )

by constructing an object K ∈ C(X×Y ), called the kernel, where X,Y are geometric objects
of some type, and C is a type of space or category associated to them. In many cases, one
can characterize maps C(X) −→ C(Y ) that are of this form, and some times such maps
are abundant.1 Intuitively, the map ΦK is obtained by pulling back an object from C(X) to

1For instance, the Schwarz Kernel Theorem [H0̈3, Theorem 5.2.1] states that any linear map from test
functions to distributions is of this form. See [BZNP17, Theorem 1.1.3] for the algebraic geometric context.
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C(X×Y ) via the first projection p1 : X×Y −→ X, multiplying it with K and then projecting
it down to Y via the second projection p2 : X×Y −→ Y . What “pulling back”, “multiplying”
and “projecting” exactly mean depends on the type of mathematical objects being used. □

Definition 5.1.1.(1) states, via Tenet 3.2.8, that the kernel K({φt}) represents the Legendrian
graph of the contact isotopy {φt}. Definition 5.1.1.(2) is stating that Kφ|t=0 represents the
graph of the identity (whose graph is ∆ ⊆ M ×M) and does so in the stronger sense that
Kφ|t=0 is gives the constant sheaf k∆ on ∆, and not any other locally constant sheaf on ∆.
It is proven in [GKS12, Prop. 3.2] that if the kernel Kφ of a contact isotopy exists, then Kφ

is unique, uniqueness being appropriately understood, cf. [GKS12, Lemma 3.3].

A kernel as in Definition 5.1.1 defines a collection of functors

ΦKφ,s : Sh(M) −→ Sh(M), ΦKφ,s(F ) := (p1)!(Kφ|t=s ⊗ p−1
2 (F )). (5.1.2)

for each s ∈ I, where pi : M ×M −→ M denotes the projection onto the ith factor. This
corresponds to setting X = Y = M , C(M) = Sh(M) in Remark 5.1.2 and considering the
construction in a 1-parametric family depending on t ∈ I. In the case of sheaves, we are
pull-backing F ∈ Sh(M,K) to a sheaf in the product M ×M via sheaf pull-back by p1, as in
Example 3.2.2.(6), multiplying means taking the tensor product in M ×M , and projecting
down to the second component M of M ×M means taking the direct image sheaf under
the second projection p2, as in Example 3.2.2.(2). The functor in Equation (5.1.2) is often
referred to as the integral transform of the sheaf kernel Kφ,s := Kφ|t=s ∈ Sh(M ×M), or said
to be the convolution with Kφ,s.

The functor in Equation (5.1.2), built from a sheaf kernel for {φt}, is precisely the one giving
the necessary isomorphism induced by the contact isotopy {φt}:

Theorem 6 (Legendrian invariance of Shc
Λ(M,K)). Let φt ∈ Cont0(T

∞M, ξst) be a
contact isotopy, t ∈ [0, 1], and Λ ⊆ (T∞M, ξst) a Legendrian. Then there exists a sheaf
kernel Kφ ∈ Sh(M ×M × I) for {φt} such that the convolution functor

ΦKφ,1 : Shc
Λ(M,K) −→ Shcφ1(Λ)

(M,K), ΦKφ,1(F ) := (p1)!(Kφ|t=1 ⊗ p−1
2 (F )), (5.1.3)

is an equivalence. In particular, the isomorphism type of Shc
Λ(M,K) is a Legendrian

invariant of Λ ⊆ (T∞M, ξst).

5.2. The microlocalization functor
In Section 3.3, we assigned a sheaf category Shc

Λ(M,K) to a Legendrian submanifold
Λ ⊆ (T∞M, ξst) by using the notion of singular support, cf. Definition 3.2.8.

The singular support of a sheaf can be used to define a different sheaf category µShΛ(Λ,K),
also associated to Λ. In fact, one can define a sheaf µShΛ of (sheaf) categories on (T∞M, ξst),
which ends up being support along Λ, and µShΛ(Λ,K) is its category of global sections.
The construction of µShΛ is presented in [KS90, Part 10], and see also [Nad16, Section
3.4], following key results from [KS90, Chapters IV & VI]. The sheaf of categories obtained
from this construction receives different monikers, including the Kashiwara-Schapira stack or
microlocal sheaves.

Intuitively, µShΛ(Λ,K) is given by the quotient of Shc(M,K) by the subcategory of sheaves
with singular support away from a neighborhood of Λ. Lack of details notwithstanding, here
are useful properties of µShΛ(Λ,K):

1. µShΛ(Λ,K) only depends on Λ as an abstract smooth manifold. In particular, it is
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independent of the Legendrian isotopy type of Λ ⊆ (T∞M, ξst). This is in stark contrast
with Shc

Λ(M,K), which depends crucially on the Legendrian isotopy type of Λ.

For instance, if M := Rn and Λ := st(Λ0) ⊆ (T∞Rn, ξst) denotes the Legendrian sphere
given by a stabilization of the standard Legendrian unknot which preserves its formal
Legendrian class, then Shc

Λ(M,K) is the zero category, whereas there is an equivalence
µShΛ(Λ,K) ∼= Locc(Sn−1,K), and thus µShΛ(Λ,K) is not the zero category.2

2. The two categories Shc
Λ(M,K) and µShΛ(Λ,K) are related. Precisely, there is a type of

restriction functor
mΛ : Shc

Λ(M,K) −→ µShΛ(Λ,K) (5.2.1)

known as the microlocalization functor. A useful property of the functor mΛ in Equa-
tion (5.2.1) is that it admits a smooth relative Calabi-Yau structure, cf. [KL24b, The-
orem 1.1].

3. In a number of interesting cases, there is a global equivalence

µShΛ(Λ,K) ∼= Loc(Λ,K). (5.2.2)

For instance, if K = Mod(k) then there are two obstructions to the existence of a
non-trivial object in µShΛ(Λ,Mod(k)), cf. [Gui23, Section 10.3]. In general, there are
different obstructions for other coefficients K, see e.g. the brane obstructions from [JT24,
Sections 1.6-1.8] or [Jin24]. Technically, in more generality, the right hand side of Equa-
tion (5.2.2) should be understood as a category of twisted coefficients. At core, these
obstructions classes come standard obstruction theory, as in [Hat02, Section 4.3], from
trying to trivialize the Gauss map along Λ post-composed with maps to the delooping of
a Picard group.3 Note that, in general, µShΛ is locally equivalent to the category of local
systems on Λ, cf. [NS20, Corollary 6.4], so these obstructions measure a local-to-global
passage for such an equivalence to hold globally.

Remark 5.2.1. Historically, Sato’s microlocalization and µhom allowed to compute mor-
phisms in µShΛ(Λ), among other uses, see [KS90, Theorem 6.1.2] or [Gui23, Section 10.1]).
This preceded the systematic study of µShΛ(Λ) and its relation to Shc

Λ(M,K) via mΛ. Indeed,
µhom was already studied in [KS90, Section 4.4] whereas properties of the functor mΛ, such
as being relative Calabi-Yau, and the latter categories, are strictly recent developments. □

Since these notes focus on cases where the equivalence in Equation (5.2.2) holds, e.g. any Leg-
endrian links Λ ⊆ (T∞R2, ξst) with vanishing rotation, we often refer to the microlocalization
functor as a functor

mΛ : Shc
Λ(M,K) −→ Loc(Λ,K).

Instead of resorting to the original and more general definition of mΛ, we directly define this
functor as follows:

Definition 5.2.2 (Microlocalization functor). Let Λ ⊆ (T∞M, ξst) be a Legendrian
submanifold whose K-brane obstructions vanish. By definition, the microlocalization
functor is the functor

mΛ : Shc
Λ(M,K) −→ Loc(Λ,K)

that sends to a sheaf F to the local system given by its microlocal stalks F(x,ξ), where
ξ ∈ TxΛ is the conormal direction of the coorientation of Λ.

2This also works for dim(Λ) = 1 with a stabilization of the standard Legendrian unknot with rotation zero.
3Intuitively, the Picard group Pic(C) of a category C is parametrizing homological automorphisms of C, of

the form T ⊗ (·) for invertible objects T .
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Definition 5.2.2 has the advantage of making mΛ amenable to direct computations, whereas
some of the more abstract properties of mΛ, such as invariance of the relative Calabi-Yau
structure, are obscured by this choice. It is not perhaps an immediate fact that the microlocal
stalks form a local system on Λ if the K-brane obstructions vanish: this can be verified rather
directly in the case of Legendrian links in (T∞R2, ξst) via front computations.

Remark 5.2.3. We implicitly assume from now onwards that, whenever mΛ is used as in
Definition 5.2.2, all Legendrians Λ have K-brane obstructions vanishing. □

5.3. Quantization of Lagrangian Fillings
Let Λ ⊆ (T∞M, ξst) be a Legendrian submanifold. In Definition 3.3.1 we introduced the

category Shc
Λ(M,K) and in Definition 5.2.2 the functor mΛ. Two questions:

1. Does Shc
Λ(M,K) have any object F?

2. A refinement of the question in (1): given a fixed local system L ∈ Loc(Λ,K), does
Shc

Λ(M,K) have any object F with mΛ(F ) = L ?

In the literature, this is known as the problem of sheaf quantization. Here the term quan-
tization, already appearing in [SKK73, Section 3.3] and [KS85b, Definition 11.4.10], is used
in the sense of canonical quantization of transformations.4 In [NS20, Section 7] the term
antimicrolocalization is also employed as it is, in a sense, aiming to find an inverse of mΛ.

Figure 5.1: Two fronts for two Legendrian tangles in (T∞R2, ξst). These are local examples of
Legendrians such that no sheaf in R2 has singular support contained in them. Thus, if a front
for a Legendrian Λ contains either of these two models, the associated category Shc

Λ(M,K)
has no objects.

Example 5.3.1. (1) If a Legendrian Λ is stabilized, in the sense of [EES05, Section 4.3],
then ShcΛ(M,K) does not contain any object. In particular, even locally, for either of the
Legendrian arcs associated to the fronts in Figure 5.1 , there are no sheaves in R2 with these
singular supports.

(2) For many Legendrian knots Λ ⊆ (R3, ξst) ⊆ (T∞R2, ξst), e.g. the max-tb Legendrian
unknot or the Legendrian knot in Figure 2.2(left), there are non-trivial objects in ShcΛ(M,K),
with M = R2 and K = Mod(k). That said, the local system mΛ(F ) ∈ Loc(S1,Mod(k)) is
always the trivial local system on the circle, for any F ∈ ShcΛ(M,K). □

4Lecture 6 of I. Dolgachev’s notes “A Brief Introduction To Physics For Mathematicians”, and T. Tao’s
blog titled “Lars Hormander” on 11/30/2012 are good introductions to this use of the term quantization.
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Example 5.3.1 illustrates that the answers to (1) and (2) above might be negative. In gen-
eral, there is currently no known verifiable criterion that given a Legendrian submanifold
Λ ⊆ (T∞M, ξst) can decide whether Shc

Λ(M,K) is empty or non-empty, even for Legendrian
knots. In these notes we shall be studying Legendrian submanifolds for which Shc

Λ(M,K) is
non-empty and in fact the answer to the sheaf quantization questions above is affirmative.
To illustrate a first instance where a general sheaf quantization is known, we highlight the
following result:

Theorem 7 (Sheaf quantization of nearby Lagrangians). Let Λ ⊆ (J1M, ξst) be a Leg-
endrian submanifold with no Reeb chords. Then there exists a sheaf F ∈ Shc

Λ(M,K).

Theorem 7 is proven in [Vit19, Theorem 1.5], see also [Gui23, Part 12]. In fact, any sheaf F
as in Theorem 7 has its endomorphism complex isomorphic to Sing(Λ).

5.4. Decorated sheaves
In Section 3.3, we introduced the category Shc

Λ(M,K) of sheaves in M with singular
support contained in Λ. The microlocalization functor introduced in Section 5.2 allows for a
finer concept, as introduced in [CL24, Section 2.2]. Intuitively, we consider subsets T ⊆ Λ and
study F ∈ Shc

Λ(M,K) endowed with trivializations of the microlocal stalks along the subset
T . A typical situation is a case where Λ ⊆ T is contractible, so that the local system mΛ(F )
can be trivialized on Λ \ T . In the same manner that a Legendrian Λ yields the category
Shc

Λ(M,K), a pair (Λ, T ) yields a refinement of this category Shc
Λ(M,K), cf. Definition 5.4.4

below. This subsection introduces this refinement.

Remark 5.4.1. In practice, the moduli space for this refinement is often a bit better behaved
than MΛ. This is a common theme throughout mathematics: adding the information of
a framing prevents isotropy groups from being non-trivial, or at least it makes them more
tractable. Also, this refinement has proven to be useful in applications, for instance it provides
the A-cluster scheme in the Fock-Goncharov theory of cluster ensembles, see e.g. [CW24,
Section 2.8.3] and [CGG+22, Section 8], and it is crucial when dealing with frozen variables,
cf. [CLSBW23, Section 6.2]. □

5.4.1 Category of decorated sheaves for (Λ, t)

Our focus is on Legendrian links Λ ⊆ (T∞R2, ξst), so we discuss such refinement in this case:

Definition 5.4.2 (Pointed Legendrian links). A pointed Legendrian (Λ, t) is a pair given
by a Legendrian link Λ ⊆ (T∞R2, ξst) and a set of basepoints t ⊆ Λ, with at least one
basepoint from t in each component of Λ.

In the same manner that a Legendrian Λ names a category of sheaves Shc
Λ(M,K), a pointed

Legendrian link will name a category of decorated sheaves Shc
Λ,t(R2,K). In Definition 5.4.2,

it is alright for t to have more than one basepoint per component of Λ, though essentially
nothing particularly interesting occurs once one adds more than one basepoint per component.
This is explained in [CL24, Section 2.3]. Therefore, unless additional combinatorial data is
involved, a first common choice is to have exactly one basepoint per component.

Remark 5.4.3. In the literature, it is often the case that the set of basepoints is denoted
by T . Technically, we are choosing a set of basepoints t ⊆ Λ on the complement of T ⊆ Λ.
To be precise, in the literature one often chooses T ⊆ Λ to be a set of basepoints, with
at least one basepoint per component of Λ. If that data is given, the set of basepoints
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t = {t1, . . . , t|t|} ⊆ Λ \ T we select in Definition 5.4.2 is such that each component of Λ \ T
contains a unique basepoint from t. Since the data of T is equivalent to the data of t, we also
refer to t as a set of basepoints: the roles of T and t are interchangeable. □

To define the category Shc
Λ,t(R2,K) of t-decorated sheaves, we consider two functors:

1. The first functor is

mΛ,t : Shc
Λ(M,K) −→

|t|∏
i=1

K, F 7−→ mΛ,t(F ) := (F(t1,ξt1 )
, . . . ,F(t|t|,ξt|t| )

), (5.4.1)

which records the microstalks at the basepoints ti ∈ t in the co-direction ξti ∈ T ∗
tiR

2 of
the co-normal lift of Λ. Equivalently, mΛ,t assigns to an object F the stalks of the local
system mΛ(F ) ∈ Loc(Λ) at the points in t, where mΛ is the microlocalization functor
from Definition 5.2.2.5 In this latter perspective, we are implicitly using an equivalence

|t|∏
i=1

K ∼=
|t|∏
i=1

Loc({t1, . . . , t|t|}) ∼= Loc(t).

2. The second functor is the diagonal functor

∆ : K −→
|t|∏
i=1

K, (5.4.2)

which is effectively independent of Λ and t.

The microstalk functor mΛ,t, used in (1) above, admits a left adjoint mℓ
Λ,t because it preserves

products, see e.g. [Nad16, Section 3.6] or [GPS24, Lemma 4.13]. Similarly, the diagonal func-
tor ∆ in (2) above admits a left adjoint ∆ℓ given by the coproduct. Both functors mΛ,t and
∆ preserve coproducts, and thus mℓ

Λ,t and ∆ℓ preserve compact objects. The refinement of
Definition 3.3.1 is:

Definition 5.4.4 (Sheaf category for (Λ, t)). Let (Λ, t) ⊆ (T ∗
∞R2, ξst) be a pointed Leg-

endrian link. By definition, the dg-category ShcΛ,t(R2,K) is the homotopy colimit of the
black diagram

|t|∏
i=1

Kc ShcΛ(R2,K)

Kc ShcΛ,t(R2,K)

mℓ
Λ,t

∆ℓ

The category ShcΛ,t(R2,K) is said to be the category of K-valued sheaves with singular
support in (Λ, t), also known as t-decorated sheaves with singular support in Λ. □

5We have implicitly chosen an isomorphism µshΛ(Λ) ∼= Loc(Λ) between the global sections of the
Kashiwara-Schapira stack µsh and the dg-derived category of local systems Loc(Λ) on Λ. This is possible in
the case where Λ = S1 ⊔ . . . ⊔ S1 by [Gui23, Chapter 10].
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The homotopy colimit of the diagram and the universal map associated to it are highlighted
in blue in Definition 5.4.4. Here the homotopy colimit is taken in the ∞-category dg-Catk
of well generated dg-categories over k, cf. [Tab09]. Intuitively, ShcΛ,t(R2,K) captures sheaves
with singular support on Λ with the additional data of their microstalks at the basepoints of
t and a common identification of these microstalks.

5.4.2 Moduli of decorated sheaves for (Λ, t)

In Section 3.3.1 we discussed how to associate a geometric space MΛ to the category Shc
Λ(M,K).

Similarly, the category ShcΛ,t(R2,K) in Definition 5.4.4 admits a corresponding geometric
space:

Definition 5.4.5 (Moduli of sheaves for (Λ, t)). Let (Λ, t) ⊆ (T ∗
∞R2, ξst) be a pointed

Legendrian link. By definition, the derived stack M(Λ, t) of K-valued sheaves with sin-
gular support on (Λ, t) is the derived stack of pseudo-perfect objects of the category
ShcΛ,t(R2,K).

By [TV07, Prop. 3.4], the functor M admits a left adjoint and therefore M preserves
homotopy limits. In particular, it sends a homotopy pullback in Ho(dg-catk)op to a homotopy
pullback in D−St(k). Since homotopy pullbacks in Ho(dg-catk)op are homotopy pushouts in
Ho(dg-catk), the functor M applied to the homotopy pushout in Definition 5.4.4 yields a
homotopy pullback. Therefore, the derived stack in Definition 5.4.5 can equivalently be
described as the homotopy limit of the black diagram

M

 |t|∏
i=1

Kc

 M(ShcΛ(R2,K))

M(Kc) M(ShcΛ,t(R2,K)) := M(Λ, t).

M(mℓ
Λ,t)

M(∆ℓ)

The homotopy limit and the universal maps are highlighted in blue, for clarity. By [Nad16,
Thm. 3.21] or [GPS24, Cor. 4.23], via the Yoneda embedding, the pseudo-perfect objects in
ShcΛ(R2,K) are those sheaves in ShcΛ(R2,K) with stalks in Kc. Thus, the map

M(ShcΛ(R2)0) −→M

 |t|∏
i=1

Kc


on geometric points is given by the microstalk functor mΛ,t at the basepoints of t. Similarly,
the map

M(Mod(k)c) −→M

 |t|∏
i=1

Kc


on geometric points is also given by the diagonal map ∆. Therefore, M(Λ, t) in Definition 5.4.5
indeed captures the intuition of parametrizing sheaves F ∈ Sh(M,K) with an additional
choice of common trivialization of the microstalks along a given subset of Λ.



Chapter 6: A case study

The goal of this section is to study the categories Shc
Λ(M,K) and their moduli stack M(Λ)

for a class of Legendrian links Λβ ⊆ (R3, ξst) indexed by positive braids words β. This is a
class of Legendrian links that can be used to illustrate a number of interesting examples and
counter-examples in low-dimensional contact topology, and has been instrumental in helping
experts gain intuition, and then prove results, in the study of Lagrangian fillings.

6.1. The class of Legendrian links Λβ

Let β ∈ Br+n be a positive braid word. We associate two Legendrians to such data:

Definition 6.1.1 (Legendrians associated to β). Let β ∈ Br+n be a positive braid word.

1. Λβ ⊆ (R3, ξst) is the Legendrian defined by the front in Figure 6.1.(Left). It is said
to be the (−1)-closure of β.

2. Λ◦
β ⊆ (J1S1, ξst) is the Legendrian defined by the front in Figure 6.1.(Right). It is

said to be the circular closure of β.

Figure 6.1: (Left) The front in R2
x,z for Λβ ⊆ (R3, ker{dz − ydx}) referred to as the (−1)-

closure of β. (Right) The front of the Legendrian link Λ◦
β ⊆ (T∞R2

x,y, ξst), the circular closure
of β, which closely related to Λβ .

From the viewpoint of smooth knot theory, the class of Legendrians Λβ ⊆ (R3, ξst) is
reasonably broad, as it includes smooth knots in each of the three classes: torus knots,
satellite knots and hyperbolic knots. Thurston’s results imply that any smooth knot must be
in one of these three classes, cf. [Thu82, Cor. 2.5]. In fact, for each of these smooth classes,
there exist infinitely many Legendrian knots of the form Λβ in such class, each not smoothly
isotopic to one another. This is proven in [CG22, Section 6.2].

Remark 6.1.2. (1) The two Legendrians Λβ,Λ
◦
β in Definition 6.1.1 are related: Λβ is Leg-

endrian isotopic to the image of Λ◦
β along a contact embedding of (J1S1, ξst) into (R3, ξst)

that sends the zero section S1 ⊆ (J1S1, ξst) to the max-tb Legendrian unknot in (R3, ξst). In
short, Λβ is the result of satelliting Λ◦

β along the Legendrian unknot.

64
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(2) The literature has also featured the rainbow closure of a positive braid word β, as depicted
in Figure 6.2 (Right), cf. [STZ17, Section 6.5]. It is an exercise to show that this is an instance
of a (−1)-closure, specifically the (−1)-closure of w0βw0, cf. Figure 6.2.

(3) The smooth type of Λβ is that of the smooth link typically associated to the braid
w−1
0 βw−1

0 , by closing the braid smoothly without any framing, i.e. the 0-closure, with no
twists. Briefly put, the crossings in each of the two sides of the β-box in Figure 6.1(Left) are
each smoothly contributing w−1

0 . □

Figure 6.2: (Left) The (−1)-closure of w0βw0, where w0 is any positive braid word representing
the half-twist. (Right) The rainbow closure of β, which is Legendrian isotopic to the (−1)-
closure of w0βw0.

Example 6.1.3. (1) Consider c := σ1 . . . σn−1 ∈ Br+n and let w0 be any positive braid word
representing the half-twist, e.g. w0 = σ1(σ2σ1) · · · (σn−1 · · ·σ2σ1). Then the Legendrian Λβ

given by the (−1)-closure of β = w0c
mw0 is a Legendrian representative of the (n,m)-torus

link. If gcd(n,m) = 1, then Λβ is a knot and it is the unique max-tb Legendrian representative
of the (n,m)-torus link.

(2) If β = σ2
1σ

2
2σ

2
1σ

2
2σ1σ2 ∈ Br+3 , then Λβ is Legendrian isotopic to the Legendrian repre-

sentative of m(52) depicted in Figure 2.2 (Left). Note that, following Remark 6.1.2.(3), the
smooth type of the knot is given by the 0-closure of

w−1
0 σ2

1σ
2
2σ

2
1σ

2
2σ1σ2)w

−1
0 = (σ1σ2σ1)

−1(σ2
1σ

2
2σ

2
1σ

2
2σ1σ2)(σ1σ2σ1)

−1 = σ1σ
3
2σ

−1σ2,

which is indeed a braid for m(52). The Legendrian representative of m(52) depicted in Fig-
ure 2.2(Right) is not of the form Λβ for any n ∈ N and β ∈ Br+n : e.g. it does not admit a
binary Maslov index, cf. [STZ17, Section 7.2.2]. □

Remark 6.1.4. Since there is a contactomorphism (T∞R2, ξst) ∼= (J1S1, ξst), as in Exam-
ple 2.1.2, we can obtain a different front for Λ◦

β by using Π : (J1S1, ξst) −→ S1×R, where the
resulting front is in S1 ×R. See Equation (2.4.3).(3) and Figure 2.4. The contactomorphism
above can be chosen such that the front for Λ◦

β in S1 × R is as in Figure 6.3. □
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Figure 6.3: (Left) A front for Λ◦
β in R2

q1,q2 , under the Legendrina fibration π in Figure 2.4.
(Right) A front for Λ◦

β under the Legendrian fibration Π in Figure 2.4, having used a contac-
tomorphism (T∞R2, ξst) ∼= (J1S1, ξst).

6.2. Sheaves with singular support on Λβ

The goal of this section is to describe sheaves with singular support on Legendrian links
of the form Λβ or Λ◦

β , as introduced in Section 6.1. For specificity, we focus on sheaves
F ∈ Sh(M,K) with the following two properties:

1. The stalk of F in the unbounded component of R2 \ π(Λ) is acyclic, where π(Λ) is a
front for the given Legendrian link.

2. The microstalks of F are isomorphic to a shift of the ground ring k. These sheaves are
known as simple in the literature, cf. [KS90, Def. 7.5.4] or [Gui23, Def. 1.4.2].

For that, we first introduce the following class of algebraic varieties defined over Z, known
as braid varieties.

6.2.1 Braid varieties

Let G be a simple algebraic group with Weyl group W (G). We fix a Borel subgroup B ⊆ G
and a Cartan subgroup T ⊂ B. Pairs of flags B1,B2 ∈ G/B in relative position w ∈ W (G),
i.e. B1 = [g1B] and B2 = [g2B] such that g−1

1 g2 ∈ BwB, are denoted by B1
w−→ B2. Let Br(G)

be the braid group associated with W (G). The Artin generators of Br(G) are denoted by
σi, which lift the Coxeter generators si ∈ W (G), where the index i runs through the simple
positive roots of the Lie algebra of G. Our main object of study is defined as follows:

Definition 6.2.1. Let β = σi1 · · ·σiℓ be a positive braid word and δ(β) ∈ W (G) its
Demazure product. The braid variety associated with β is

X(β) := {(B1, . . . ,Bℓ+1) ∈ (G/B)ℓ+1 | B1 = B,Bk

sik−→ Bk+1,Bℓ+1 = δ(β)B}, (6.2.1)

where δ(β) ∈ W (G) ∼= NG(T )/T has been lifted to NG(T ); this is well-defined since
the flag δ(β)B does not depend on such a lift.

Consider ShΛβ
(M ;K) with K = Mod(k) and its moduli stack M(Λβ). Then

M1(Λ
◦
β)
∼= G\{(B1, . . . ,Bℓ+1; g) ∈ (G/B)ℓ+1 × G : B1

β−→ Bℓ+1,B1 = gBℓ+1},
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M1(Λβ) ∼= G\{(B1, . . . ,Bℓ+1) ∈ (G/B)ℓ+1 : B1
β−→ Bℓ+1,B1 = Bℓ+1}.

Here the G-action is given by (g;B1, . . . ,Bℓ+1) 7−→ (gB1, . . . , gBℓ+1). Given a fixed Borel
B ⊆ G and an opposite B−, with B ∩ B− = T , we can fix the first flag in M1(Λβ) by using
the action of G. Then we get

M1(Λβ) ∼= B−\{(B1, . . . ,Bℓ+1) ∈ (G/B)ℓ+1 : B1
β−→ Bℓ+1,B1 = Bℓ+1 = B}.

Suppose that the positive braid is of the form βw0 and write ℓ′ = ℓ+ ℓ(w0). Then we can use
the w0 to slice the action more and get

M1(Λβw0)
∼= G\{(B1, . . . ,Bℓ′+1) ∈ (G/B)ℓ

′+1 : B1
βw0−→ Bℓ′+1,B1 = Bℓ′+1}

∼= B−\{(B1, . . . ,Bℓ′+1) ∈ (G/B)ℓ
′+1 : B1

βw0−→ Bℓ′+1,B1 = Bℓ′+1 = B}
∼= B−\{(B1, . . . ,Bℓ′+1) ∈ (G/B)ℓ

′+1 : B1
β−→ Bℓ+1,Bℓ+1

w0−→ Bℓ′+1,B1 = Bℓ′+1 = B}
∼= B−\{(B1, . . . ,Bℓ+1) ∈ (G/B)ℓ+1 : B1

β−→ Bℓ+1,Bℓ+1
w0−→ B,B1 = B}

∼= T\{(B1, . . . ,Bℓ+1) ∈ (G/B)ℓ+1 : B1
β−→ Bℓ+1,B1 = B,Bℓ+1 = w0B}

∼= T\X(β)

In conclusion

M1(Λβw0)
∼= T\X(β) (6.2.2)

The diagonal subgroup ∆T ⊆ T , isomorphic to Gm, acts trivially on X(β). The quotient
T/∆T acts non-trivally on X(β). This (T/∆T )-action is free if Λβw0 is a knot; it is not free
if Λβw0 is a link. In particular, if Λβw0 is a knot

X(β) ∼= Y (β)× (Gm)n−1, where Y (β) := (T/∆T )\X(β).

Here Y (β) is a smooth irreducible affine variety and we are identifying T/∆T
∼= (Gm)n−1.

Then the isomorphism (6.2.2) becomes

M1(Λβw0)
∼= Y (β)×BGm.

For (Λβ, tβ) pointed with one marked point per strand, framed version of isomorphism (6.2.2)
is

M1(Λβw0 , tβ)
∼= X(β)×BGm (6.2.3)
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