
SOLUTIONS TO PROBLEM SET 2

MAT 108

Abstract. Solutions to Problem Set 2 for MAT 108 in the Fall Quarter 2024.

Proofs by Contradiction

Problem 1. Show that there do not exist two integers n,m ∈ Z such that n4−4m = 2.

Hint: Proof by contradiction, i.e. assume that there exist two integers n,m ∈ Z such
that n4 − 4m = 2 and reach a contradiction.

Solution. Suppose there exist integers n,m ∈ Z satisfying n4 − 4m = 2. If n is odd,
then n4 is odd, so n4 − 4m is odd, which contradicts n4 − 4m = 2. If n is even, then
n = 2k for some integer k ∈ Z, and consequently n4 = 16k2. Then

n4 − 4m = 16k2 − 4m = 4(4k2 −m),

which is divisible by 4. But our assumption is that this quantity is equal to 2, which
is not divisible by 2. Therefore, we have a contradiction whether n is odd or even, so
we conclude that no such integers exist.

Problem 2. A natural number n ∈ N which is only divisible by 1 and n is said to be
a prime number. Prove that there are infinitely many prime numbers.

Hint: Proof by contradiction, i.e. assume that there exist finitely many primes {p1, p2, . . . pN},
and then try to reach a contradiction. (Clue: Consider the number P = p1·p2·. . .·pN+1.
Is this a prime ?)

Solution. (This problem was solved in lecture by the professor. Here is a slightly
modified proof.) We proceed with a proof by contradiction. Assume the result is false,
that there are not infinitely many primes. Then there are only finitely many primes,
say N of them, and we can arrange the primes into a set {p1, p2, . . . , pN}. Form the
product

Q = p1p2 · · · pN ,
and define the number P = Q + 1. P is either prime or P has a smaller prime factor
r > 1 satisfying P = ar for some integer a.

Since r is prime, it must be in our list, so r = pi for some i ∈ {1, 2, . . . , N}. Therefore,
Q = p1p2 · · · pi−1pipi+1 . . . pN = (p1p2 · · · pi−1pi+1 . . . pN)pi = br.

Where we define b = p1p2 · · · pi−1pi+1 . . . pN . Recalling the definition of P , P = Q+ 1,
we now have the two equations

Q+ 1 = ar

Q = br.
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Subtracting these two equations, we find 1 = (a− b)r, so 1 is divisible by r. But r > 1,
and 1 is not divisible by any number greater than 1, so we arrive at a contradiction.
Therefore, we conclude that our original assumption was not true, and there are infin-
itely many primes.

Problem 3. (20 pts) Prove that there are infinitely many prime numbers that have
residue 3 when divided by 4. Equivalently, prove that there are infinitely many prime
numbers p of the form p = 4k − 1 for some natural number k ∈ N.

For instance, p = 2 or p = 5 are prime numbers but they are not of the form p = 4k−1
for any k ∈ N. So not every prime number is of the form p = 4k− 1, this problem asks
you to show that there are infinitely many of them.

Hint: Adapt your proof by contradiction in Problem 2 to this case.

Solution. For the main proof, we proceed by contradiction. Assume the result is
false, that there are not infinitely many primes of the form 4k − 1. Then there are
only finitely many primes of this form, say N of them, and we can arrange them into
the set {p1, p2, . . . , pN}. As before, form the product

Q = p1p2 · · · pN .
Now define the number P = 4Q − 1. In Problem 2, we showed that every number
greater than 1 can be written as a product of primes. Note that P > 3 (because
3 = 4 · 1− 1 is definitely in our list of primes), so we can use this result.

Since P is odd, it is not divisible by 2, so our result tells us that P is a product of odd
primes. All odd numbers are of the form 4k − 1 or 4k − 3 for some integer k, and we
now want to show that P is divisible by at least one prime of the form 4k − 1 (i.e., a
prime in our set {p1, p2, . . . , pN}). Suppose for the sake of contradiction that P can be
written as a product of primes all of the form 4k − 3. Then we have

(0.1) 4Q− 1 = P = (4k1 − 3)(4k2 − 3) · · · (4km − 3)

for some integers k1, k2, . . . , km (here the factors 4k1 − 3, 4k2 − 3 etc. are the supposed
prime factors of P ). The right-hand side has residue 3, and so should then the left-hand
side: this is a contradiction. Therefore, we conclude that P must have some prime
factor r of the form r = 4k − 1.

The rest of the proof is the same as the proof of Problem 2. Since our prime r has
residue 3 modulo 4, it must be in our set {p1, p2, . . . , pN}. Therefore, r divides Q,
meaning r also divides 4Q. Since r divides 4Q and P , r must divide their difference:
4Q − P = 1. But r is an odd prime number, so r > 1, which means r cannot be a
factor of 1. Therefore, as in Problem 2, we reach a contradiction. We conclude that
the original statement was not true, so there are infinitely many primes of the form
4k − 1.
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Proofs by Induction

Problem 4. (20=5+5+10 pts) (Proposition 2.18 in Textbook) Prove the following
three statements:

(i) For all k ∈ N, k3 + 2k is divisible by 3.

(ii) For all k ∈ N, k4 − 6k3 + 11k2 − 6k is divisible by 4.

(iii) For all k ∈ N, k3 + 5k is divisible by 6.

Hint: In the induction step you might want to use the binomial formulas:

(n+ 1)2 = (n+ 1)(n+ 1) = n2 + 2n+ 1,

(n+ 1)3 = (n+ 1)(n+ 1)(n+ 1) = n3 + 3n2 + 3n+ 1,

(n+ 1)4 = (n+ 1)(n+ 1)(n+ 1)(n+ 1) = n4 + 4n3 + 6n2 + 4n+ 1.

Solution.

(i) For the base case, we check if the statement holds for k = 1. We get 13+2(1) =
3, which is divisible by 3. Now assume that for some n ∈ N, n3+2n is divisible
by 3 and we see if this still holds for (n+ 1)3 + 2(n+ 1). Indeed, we get

(n+ 1)3 + 2(n+ 1) = n3 + 3n2 + 5n+ 3

= (n3 + 2n) + (3n2 + 3n+ 3)

where the first part in the parenthesis is divisible by 3 by our induction hypoth-
esis. The sum of two numbers, each of which is divisible by 3, is also divisible
by 3, so we are done.

(ii) We have 14 − 6(1)3 + 11(1)2 − 6(1) = 0, which is divisible by 4. Assume that
for some n ∈ N, n4 − 6n3 + 11n2 − 6n is divisible by 4. Then,

(n+ 1)4 − 6(n+ 1)3 + 11(n+ 1)2 − 6(n+ 1) = n4 − 2n3 − n2 + 2n

= (n4 − 6n3 + 11n2 − 6n) + (4n3 − 12n2 + 4n)

where the first part in the parenthesis is divisible by 4 by our induction hy-
pothesis. The result then follows by a similar reasoning as part (i).

(iii) For k = 1, we get 13 + 5(1) = 6 is divisible by 6, which is true. Now assume
that for some n ∈ N, n3 + 5n is divisible by 6. Then,

(n+ 1)3 + 5(n+ 1) = n3 + 3n2 + 8n+ 6

= (n3 + 5n) + (3n2 + 3n+ 6)

= (n3 + 5n) + 3n(n+ 1) + 6

where the first part in the parenthesis is divisible by 6 by our induction hy-
pothesis. To finish this problem, we show 3n(n + 1) is divisible by 6. First,
notice that n(n+ 1) will always be divisible by 2 because this product consists
of one odd number and one even number. Then, multiplying this product by 3
tells 3n(n+ 1) must be divisible by 6.
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Problem 5. (20=10+10 pts) Prove by induction the following two formulas:

(i) For all k ∈ N, we have

1 + 2 + 3 + 4 + . . .+ (k − 1) + k =
k(k + 1)

2
.

The left hand side is the sum of all the natural numbers less equal than k, i.e.
from 1 to k, the latter included.

(ii) For all k ∈ N, we have

12 + 22 + 32 + 42 + . . .+ (k − 1)2 + k2 =
k(k + 1)(2k + 1)

6
.

The left hand side is the sum of the squares of all the natural numbers less
equal than k, i.e. from 12 to k2, the latter included.

Solution.

(i) If k = 1, then 1 = 1(1+1)
2

, which is true. Now suppose that for some n ∈ N,

1 + 2 + · · ·+ (n− 1) + n =
n(n+ 1)

2
.

Then,

1 + 2 + · · ·+ (n− 1) + n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1)

=
n2 + n+ 2n+ 2

2

=
(n+ 1)(n+ 2)

2

=
(n+ 1)((n+ 1) + 1)

2
where the first equality follows from our induction hypothesis.

(ii) If k = 1, then 12 = 1(1+1)(2(1)+1)
6

, which is true. Suppose that for some n ∈ N,

12 + 22 + 32 + 42 + . . .+ (n− 1)2 + n2 =
n(n+ 1)(2n+ 1)

6
.

Then,

12 + 22 + 32 + 42 + . . .+ (n− 1)2 + n2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
n(n+ 1)(2n+ 1) + 6(n+ 1)2

6

=
(n+ 1)(n(2n+ 1) + 6(n+ 1))

6

=
(n+ 1)(2n2 + 7n+ 6)

6

=
(n+ 1)(n+ 2)(2n+ 3)

6

=
(n+ 1)((n+ 1) + 1)(2(n+ 1) + 1)

6
where the first equality follows from our induction hypothesis.
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Problem 6. (20 pts) Let k ∈ N be a natural number. Consider a 2k×2k square board
divided into equal square tiles of 1× 1 size, like a chess board. (So the 2k × 2k board
is covered by 22k tiles.) Remove one tile from the 2k × 2k board. Prove by induction
that the remaining part of the board can be covered with triomino pieces, i.e. pieces
made of three unit tiles with an L-shape.

I have depicted in Figure 1 the triomino pieces (Left) and an example of the case
k = 1 (Right), where you can see a board of size 21 × 21 with one tile (the blue one)
removed. It is clear in this case, that the board with one tile removed can be covered
with triomino pieces, in this case, exactly one triomino piece (covering the three white
tiles).

(a) A triomino piece.
(b) The 2k × 2k board with one tile removed
in the case k = 1, where the board is 2× 2.

Figure 1. The art of tiling a board with a missing tile with triominos,
as presented in Problem 6. The goal is to prove that you can always tile
with triominos if a tile is missing in a 2k × 2k board.

Solution. The case k = 1 is covered above. To help us visualize this problem even
more, let’s consider the case k = 2 before our inductive step. If we remove one tile from
a 4× 4 board, then we see that we can cover the rest of the board with five triomino
pieces.

Now assume that for some n ∈ N, a 2n × 2n square board with one tile removed can
be covered with triomino pieces. Consider a 2n+1 × 2n+1 board, which we can think of
as four 2n × 2n boards. An example for n = 1 is shown below.
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Let the tile we remove be on the top right. Then, by our induction hypothesis, the top
right 2n × 2n board can be covered by triomino pieces. To show the remaining three
2n × 2n boards can be covered by triomino pieces, draw one triomino piece so that it
occupies one space on each board (i.e. draw the piece near the center of the 2n+1×2n+1

board). Then, we can apply our induction hypothesis to each board and we are done.

Problem 7. (20 pts) Let k ∈ N be a natural number. Consider k distinct straight
lines in the plane. These are infinitely long straight lines, and we assume that no two
such lines are parallel and no three such lines every intersect at a single point. Prove
that k such lines divide the plane into (k2 + k + 2)/2 regions.

Figure 2. Six lines dividing the plane in 22 regions. This is the case
k = 6 in Problem 7.

Hint: This can be proven by induction, but it is crucial in this problem that you play
and experiment with this formula first. It will give you an intuition on how to prove
the general case, by adding one line at a time and seeing how new regions appear.

For instance, for one line we have k = 1 and one line divides the plane into (12 + 1 +
2)/2 = 2 regions. By hand, try at least the formula for k = 2, 3 and k = 4. I have
depicted the case k = 6 in Figure 2, where the plane is divided into (k2 + k + 2)/2 =
(62 + 6 + 2)/2 = 22 regions.
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Solution. The case for k = 1 is covered above. The cases k = 2, 3, 4 are depicted
below.

We have (22 + 2 + 2)/2 = 4, (32 + 3 + 2)/2 = 7, and (42 + 4 + 2)/2 = 11. We now
prove the problem. The base cases were handled so we move on to the inductive step.
Assume that for some n ∈ N, n lines satisfying our conditions divide the plane into
(n2 + n + 2)/2 regions. We look at what happens when we add one more line. Since
this new line cannot be parallel to the other n lines and no three lines intersect at a
single point, we conclude this line adds n intersection points. In other words, this new
line is divided into n+ 1 segments so we have n+ 1 additional regions. Thus, we have
that n+ 1 lines divide the plane into

n2 + n+ 2

2
+(n+1) =

n2 + 3n+ 4

2
=

(n2 + 2n+ 1) + (n+ 1) + 2

2
=

(n+ 1)2 + (n+ 1) + 2

2
regions.


