SOLUTIONS TO PROBLEM SET 4

MAT 108

Abstract. Solutions to Problem Set 4 for MAT 108 in the Fall Quarter 2024.

Problem 1. (Proposition 8.53) Prove that every non-empty subset of \mathbb{R} that is bounded below has a greatest lower bound.

Solution. Let A be a nonempty subset of \mathbb{R} that is bounded below. Construct a new set $A = \{-a|a \in A\}$. This set is bounded above because l being a lower bound of A implies $-l$ is an upper bound of A. In other words, $l \leq a$ for all $a \in A$ and negating this gives $-l \ge -a$ for all $a \in A$. By the Completeness Axiom, $s = \sup A$ exists. We claim $-s = \inf(A)$. By definition, s being a supremum of \tilde{A} implies $-a \leq s$ for all $a \in A$. Multiply this inequality by -1 to get $a \geq -s$. Hence, $-s$ is a lower bound of A. Moreover, it has to be our greatest lower bound. If not, then suppose $-t$ is the infimum of A so $-t \le a$ for all $a \in A$. This would imply $t \ge -a$, i.e. the supremum of \overline{A} is t , a contradiction.

Problem 2. (20 points, 5 each) Find the least upper bound $\text{sup}(A)$, and the greatest lower bound $\inf(A)$ of the following subsets of the real numbers \mathbb{R} :

- (a) $A = (-3.2, 7) \subseteq \mathbb{R}$, i.e. $A = \{x \in \mathbb{R} : -3.2 < x \text{ and } x < 7\} \subseteq \mathbb{R}$.
- (b) $B = (-3.2, 7] \subseteq \mathbb{R}$, i.e. $A = \{x \in \mathbb{R} : -3.2 < x \text{ and } x \leq 7\} \subseteq \mathbb{R}$.
- (c) $C = (0, \infty) \subseteq \mathbb{R}$, i.e. $A = \{x \in \mathbb{R} : 0 < x\} \subseteq \mathbb{R}$.
- (d) $D = (-\infty, 4] \subseteq \mathbb{R}$, i.e. $A = \{x \in \mathbb{R} : x \le 4\} \subseteq \mathbb{R}$.

Solution. We will make use of the fact that the average of two distinct real numbers lies strictly between those two numbers. That is, for real numbers $a < b$, we have

$$
a = \frac{a}{2} + \frac{a}{2} < \frac{a}{2} + \frac{b}{2} < \frac{b}{2} + \frac{b}{2} = b,
$$

so

$$
(0.1) \t\t a < \frac{a+b}{2} < b.
$$

(a) We claim that $\inf(A) = -3.2$ and $\sup(A) = 7$. It is clear from the definition of A that these give a lower bound and upper bound, respectively. Let u be a lower bound for A, and suppose for the sake of contradiction that $u > -3.2$. Since u is a lower bound for A , we also have

$$
u \leq 0 < 7.
$$

Consider the average $r := \frac{-3.2 + u}{2}$, which, by [\(0.1\)](#page-0-0) satisfies

 $-3.2 < r < u < 7$.

so $r \in A$. Since $r \leq u$, this contradicts the fact that u is a lower bound, so we conclude that $u \le -3.2$ after all. Therefore, -3.2 is the greatest lower bound for A, as desired.

Similarly, Let v be an upper bound for A , and suppose for the sake of contradiction that $v < 7$. Since v is an upper bound for A, we also have

 $v > 0 > -3.2$.

Consider the average $r := \frac{v+7}{2}$, which, by [\(0.1\)](#page-0-0) satisfies

$$
-3.2 < v < r < 7,
$$

so $r \in A$. Since $r > v$, this contradicts the fact that v is a lower bound, so we conclude that $v \ge -3.2$ after all. Therefore, -3.2 is the least upper bound for A, as desired.

(b) The proof is nearly identical to Part (a). We claim that $\inf(B) = -3.2$ and $\sup(B) = 7$. It is clear from the definition of B that these give a lower bound and upper bound, respectively. Let u be a lower bound for B , and suppose for the sake of contradiction that $u > -3.2$. Since u is a lower bound for B, we also have

 $u \leq 7$. Consider the average $r := \frac{-3.2 + u}{2}$, which, by [\(0.1\)](#page-0-0) satisfies $-3.2 < r < u < 7$.

so $r \in B$. Since $r \leq u$, this contradicts the fact that u is a lower bound, so we conclude that $u \le -3.2$ after all. Therefore, -3.2 is the greatest lower bound for B , as desired.

Similarly, Let v be an upper bound for B , and suppose for the sake of contradiction that $v < 7$. Since v is an upper bound for B, we also have

 $v > 0 > -3.2$. Consider the average $r := \frac{v+7}{2}$, which, by [\(0.1\)](#page-0-0) satisfies $-3.2 < v < r < 7$,

so $r \in B$. Since $r > v$, this contradicts the fact that v is a lower bound, so we conclude that $v \ge -3.2$ after all. Therefore, -3.2 is the greatest lower bound for B, as desired. Alternatively, notice that $max(B) = 7$, so a Proposition from Discussion 6 tells us that $\sup(B) = 7$.

(c) We claim that $\inf(C) = 0$ and that C has no supremum. The proof the the former is by now standard. It is clear from the definition of C that 0 is a lower bound. Let u be a lower bound for C , and suppose for the sake of contradiction that $u > 0$. Consider the average $r := \frac{0+u}{2}$, which, by (0.1) satisfies

$$
0 < r < u
$$

so $r \in C$. Since $r \leq u$, this contradicts the fact that u is a lower bound, so we conclude that $u \leq 0$ after all. Therefore, 0 is the greatest lower bound for C, as desired.

To show that C has no supremum, we show that it has no upper bounds (this suffices because suprema are, in particular, upper bounds). Indeed, let $x \in \mathbb{R}$. If $x \leq 0$, then $x \leq 1$, but $1 \in C$, so x is not an upper bound for C. Otherwise, $x > 0$, and we have $x < x + 1$, but $x + 1 > x > 0$ is in C, so x is again not an upper bound. Having excluded all possible real numbers as upper bounds, we conclude that C has no upper bound.

(d) We claim that $\sup(D) = 4$ and that D has no infimum. The proof the the former is by now standard. It is clear from the definition of D that 4 is an upper bound. Let v be an upper bound for D , and suppose for the sake of contradiction that $v < 4$. Consider the average $r := \frac{v+4}{2}$, which, by (0.1) satisfies

$$
v < r < 4,
$$

so $r \in D$. Since $r > v$, this contradicts the fact that v is a lower bound, so we conclude that $v \geq 4$ after all. Therefore, 4 is the greatest lower bound for C, as desired. Alternatively, notice that $\max(D) = 4$, so a Proposition from Discussion 6 tells us that $\sup(D) = 4$.

To show that D has no infimum, we proceed as in Part (c) by showing that it has no lower bound (this suffices because infima are, in particular, lower bounds). Indeed, let $x \in \mathbb{R}$. If $x > 4$, then–because $4 \in D-x$ is not a lower bound for D. Otherwise, $x \leq 4$, and we have $x > x-1$, but $x-1 < x \leq 4$ is in D , so x is again not a lower bound. Having excluded all possible real numbers as lower bounds, we conclude that D has no lower bound.

Problem 3. (10+10 points) Consider the set of real numbers

$$
N = \left\{3 - \frac{1}{n} : n \in \mathbb{N}\right\}.
$$

Find $\inf(N)$ and $\sup(N)$.

Solution. We claim $\sup(N) = 3$ and $\inf(N) = 2$. Since $3 > 3 - \frac{1}{n}$ $\frac{1}{n}$ for all $n \in \mathbb{N}$, we know 3 is un upper bound for N. We know for each $\varepsilon > 0$, there exists an $n \in \mathbb{N}$ such that $\frac{1}{n} < \varepsilon$. Then, $3 - \frac{1}{n} > 3 - \varepsilon$ so $3 - \varepsilon$ is not an upper bound for any $\varepsilon > 0$. Thus, 3 must be our least upper bound. Now we prove the infimum is 2. Note that 2 is a lower bound. Moreover, $3 - \frac{1}{n+1} > 3 - \frac{1}{n} \ge 2$ because $\frac{1}{n+1} < \frac{1}{n}$ $\frac{1}{n}$ for all $n \in \mathbb{N}$. Therefore, 2 is our greatest lower bound.

Problem 4. Consider the two following subsets of the real numbers

$$
S = \left\{ \frac{n}{n+1} : n \in \mathbb{N} \right\} \subseteq \mathbb{R}, \quad T = \left\{ \frac{2n+1}{n+1} : n \in \mathbb{N} \right\} \subseteq \mathbb{R}.
$$

Show that $\text{sup}(S) = 1$, $\text{sup}(T) = 2$ and $\text{inf}(T) = 3/2$. Find $\text{inf}(S)$.

Solution. Define

$$
s_n = \frac{n}{n+1} \quad \text{and} \quad t_n = \frac{2n+1}{n+1}.
$$

Then we have the sequences $(s_n)_{n\in\mathbb{N}}$ and $(t_n)_{n\in\mathbb{N}}$. Note that

$$
t_n = \frac{2n+1}{n+1} = \frac{n+n+1}{n+1} = \frac{n}{n+1} + \frac{n+1}{n+1} = s_n + 1,
$$

so our sets are $S = \{s_n : n \in \mathbb{N} \text{ and } T = \{s_n + 1 : n \in \mathbb{N} \text{. We show that the sequence } \}$ $(s_n)_{n\in\mathbb{N}}$ is monotone. Indeed, for each $n \in \mathbb{N}$, we have

$$
s_{n+1} - s_n = \frac{n+1}{n+2} - \frac{n}{n+1}
$$

=
$$
\frac{(n+1)(n+1) - (n+2)n}{(n+2)(n+1)}
$$

=
$$
\frac{1}{(n+2)(n+1)}
$$

$$
\geq 0,
$$

so $s_{n+1} \geq s_n$. In particular,

$$
s_n - s_1 = \frac{n}{n+1} - \frac{1}{2} = \frac{2n - (n+1)}{2(n+1)} = \frac{n-1}{2(n+1)} \ge 0,
$$

since $n \geq 1$, so $\frac{1}{2} = s_1 \leq s_n$. Therefore, $\frac{1}{2} \in S$ is a lower bound for S, and hence $\inf(S) = \frac{1}{2}$ by a Proposition from Discussion 6.

By the proof of the Monotone Convergence Theorem, the limit of $(s_n)_{n\in\mathbb{N}}$ exists and is equal to sup(S), so we now prove that $\lim_{n\to\infty} s_n = 1$. Let $\varepsilon > 0$, and let $n_0 \in \mathbb{N}$ be such that $\frac{1}{n_0} < \varepsilon$. Then, for all $n \ge n_0$ we have

$$
|1 - s_n| = \left| 1 - \frac{n}{n+1} \right| = 1 - \frac{n}{n+1} = \frac{(n+1) - n}{n+1} = \frac{1}{n+1} \le \frac{1}{n_0} < \varepsilon.
$$

Note that in the second equality above we used the fact that $n < n+1$, which rearranges to $1 - \frac{n}{n+1} > 0$. This completes the proof that $\sup(S) = \lim_{n \to \infty} s_n = 1$. The calculations for T follow from those for S. The sequence $(t_n)_{n\in\mathbb{N}}$ is monotone because

$$
t_{n+1} - t_n = (s_{n+1} + 1) - (s_n + 1) = s_{n+1} - s_n \ge 0
$$

for all $n \in \mathbb{N}$. In particular,

$$
t_n - t_1 = (s_n + 1) - (s_1 + 1) = s_n - s_1 \ge 0
$$

so $\frac{3}{2} = t_1 \in T$ is a lower bound for T, and hence $\inf(T) = \frac{3}{2}$ by a Proposition from Discussion 6.

By the proof of the Monotone Convergence Theorem, the limit of $(t_n)_{n\in\mathbb{N}}$ exists and is equal to sup(T), so we now prove that $\lim_{n\to\infty} t_n = 2$. Let $\varepsilon > 0$, and let $n_0 \in \mathbb{N}$ be such that $\frac{1}{n_0} < \varepsilon$. Then, for all $n \geq n_0$ we have

$$
|2 - t_n| = |2 - (s_n + 1)| = |1 - s_n| < \varepsilon.
$$

This completes the proof that $\sup(T) = \lim_{n \to \infty} t_n = 2$.

Problem 5. (10+5+5 points) Find an upper bound for each of the following three sets:

$$
X = \left\{ \left(1 + \frac{1}{n}\right)^n : n \in \mathbb{N} \right\}, \quad Y = \left\{ \left(1 + \frac{1}{n^2}\right)^n : n \in \mathbb{N} \right\}, \quad Z = \left\{ \left(1 + \frac{1}{n}\right)^{n^2} : n \in \mathbb{N} \right\}.
$$

Hint: Consider the following expansion

$$
\left(1+\frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = \sum_{k=0}^n \frac{1}{k!} \left(1-\frac{1}{n}\right) \left(1-\frac{2}{n}\right) \left(1-\frac{3}{n}\right) \cdot \ldots \cdot \left(1-\frac{k-1}{n}\right).
$$

Solution.

(i) Let's look at the expansion:

$$
\sum_{k=0}^{n} \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \left(1 - \frac{3}{n}\right) \cdot \ldots \cdot \left(1 - \frac{k-1}{n}\right).
$$

In discussion, we proved that as *n* becomes larger, the value of $\frac{1}{n}$ becomes smaller and the infimum of the set $\{\frac{1}{n}|n \in \mathbb{N}\}\$ is thus 0. Therefore, each term in the parenthesis is bounded above by 1 so it suffices to consider

$$
\sum_{k=0}^{n} \frac{1}{k!}.
$$

Therefore, we have the following.

$$
\left(1 + \frac{1}{n}\right)^n \le \sum_{k=0}^n \frac{1}{k!}
$$

= $\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$
< $1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} + \dots$
= $1 + \sum_{k=0}^\infty \frac{1}{2^k}$
= 3

The last equality follows since the sum of the infinite geometric series $\sum_{k=0}^{\infty}$ 1 $\overline{2^k}$ is $\frac{1}{1-1/2} = 2$.

(ii) Notice that

$$
\left(1 + \frac{1}{n^2}\right)^n = \left(\left(1 + \frac{1}{n^2}\right)^{n^2}\right)^{1/n}.
$$

We know $\left(1+\frac{1}{n^2}\right)^{n^2}$ is bounded above by 3 from part (i). (If it's difficult to see, replace n^2 with a new variable z, for instance.) It is enough to then consider $3^{1/n}$. Using what we know about the behavior of $\frac{1}{n}$, we conclude it is bounded above by 3.

(iii) We claim that this set has no upper bound. Notice that

$$
c_n := \left(1 + \frac{1}{n}\right)^{n^2} = \left(\left(1 + \frac{1}{n}\right)^n\right)^n.
$$

This is similar to part (ii). By the Binomial Theorem, we have

$$
\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k}
$$

= $\binom{n}{0} \frac{1}{n^0} + \binom{n}{1} \frac{1}{n^1} + \sum_{k=2}^n \binom{n}{k} \frac{1}{n^k}$
= $1 \cdot 1 + n \cdot \frac{1}{n} + \sum_{k=2}^n \binom{n}{k} \frac{1}{n^k}$
 ≥ 2 ,

so $c_n \geq 2^n$. It now suffices to show that the sequence $(2^n)_{n\in\mathbb{N}}$ is unbounded, which we prove by showing that $2^n \geq n$ using induction. (This proves it is not bounded above since the natural numbers is not bounded above.) For the base case, we have $2^1 \geq 1$, which is true. Now assume $2^k \geq k$. We then have

$$
2^{k+1} = 2^k \cdot 2 > k \cdot 2 \ge k+1.
$$

The last inequality follows because $2k \geq k+1$ can be rewritten as $k \geq 1$, which is true.

Problem 6. Consider the subset $C_0 = [0, 1] \subseteq \mathbb{R}$. Recursively, define the sets

$$
C_{n+1} = \frac{C_n}{3} \cup \left(\frac{2}{3} + \frac{C_n}{3}\right),
$$

for $n \geq 1$, where, if we let $A = [a, b]$, then the notation $A/3$ describes the interval $[a/3, b/3]$ and the notation $A + 2/3$ describe the interval $[a + 2/3, b + 2/3]$.

- (a) Describe and draw the sets C_1, C_2, C_3 and C_4 as a union of explicit intervals.
- (b) Show that the intersection $\bigcap_{n=1}^{\infty} C_n$ is non-empty.

Solution. Here is the extension of the notations $\frac{A}{3}$ and $A + \frac{2}{3}$ $\frac{2}{3}$ for arbitrary sets. Let $X \subseteq \mathbb{R}$ be an arbitrary subset, and let c be any real number. Then we define the new sets

 $c \cdot X := \{c \cdot x : x \in X\} \subseteq \mathbb{R}$ and $X + c := \{x + c : x \in X\} \subseteq \mathbb{R}$.

For $c \neq 0$, we also define $\frac{X}{c} := \frac{1}{c} \cdot X$.

(a) The set C_{n+1} is obtained from C_n by scaling all of C_n down to fit inside $[0, \frac{1}{3}]$ $\frac{1}{3}$, and then repeating this scaled copy in the translation to $\left[\frac{2}{3}, 1\right]$. It follows that C_{n+1} is given by deleting the open middle third of each interval in C_n . Explicitly, $C_0 = [0, 1]$ $C_1=[0,\frac{1}{3}]$ $\frac{1}{3}$] \cup $\left[\frac{2}{3}\right]$ $\frac{2}{3}, 1]$

 $C_2=[0,\frac{1}{9}]$ $\frac{1}{9}$] \cup $\left[\frac{2}{9}\right]$ $\frac{2}{9}, \frac{1}{3}$ $\frac{1}{3}$] \cup $\left[\frac{2}{3}\right]$ $\frac{2}{3}, \frac{7}{9}$ $\frac{7}{9}$] ∪ $\left[\frac{8}{9}\right]$ $\frac{8}{9}, 1]$ $C_3 = [0, \frac{1}{27}] \cup [\frac{2}{27}, \frac{1}{9}]$ $\frac{1}{9}$] \cup $\left[\frac{2}{9}\right]$ $\left[\frac{2}{27},\frac{7}{27}\right] \cup \left[\frac{8}{27},\frac{1}{3}\right]$ $\frac{1}{3}$] \cup $\left[\frac{2}{3}\right]$ $\left[\frac{2}{3},\frac{19}{27}\right] \cup \left[\frac{20}{27},\frac{7}{9}\right]$ $\frac{7}{9}$] ∪ $\left[\frac{8}{9}\right]$ $\frac{8}{9}, \frac{25}{27}$] \cup $\left[\frac{26}{27}, 1\right]$ $C_4 = [0, \frac{1}{81}] \cup [\frac{2}{81}, \frac{1}{27}] \cup [\frac{2}{27}, \frac{7}{81}] \cup [\frac{8}{81}, \frac{1}{9}]$ $\frac{1}{9}$] \cup $\left[\frac{2}{9}\right]$ $\frac{2}{9}, \frac{19}{81}] \cup [\frac{20}{81}, \frac{7}{27}] \cup [\frac{8}{27}, \frac{25}{81}] \cup [\frac{26}{81}, \frac{1}{3}]$ $\frac{1}{3}$] \cup $\left[\frac{2}{3}\right]$ $\frac{2}{3}, \frac{55}{81}] \cup [\frac{56}{81}, \frac{19}{27}] \cup [\frac{20}{27}, \frac{61}{81}] \cup [\frac{62}{81}, \frac{7}{9}]$ $\frac{7}{9}$] ∪ $\left[\frac{8}{9}\right]$ $\frac{8}{9}, \frac{73}{81}] \cup [\frac{74}{81}, \frac{25}{27}] \cup [\frac{26}{27}, \frac{79}{81}] \cup [\frac{80}{81}, 1].$

These are illustrated in Figure [1](#page-6-0) below, taken from

georgcantorbyelithompson.blogspot.com

FIGURE 1. The sets C_0 , C_1 , C_2 , C_3 , and C_4 .

(b) We will show that $0 \in C_n$ for all integers $n \geq 0$ by induction on n. For our base case $n = 0$, we have $0 \in [0, 1] = C_0$ (it's important that we're working with *closed* intervals). As our inductive hypothesis, suppose $0 \in C_n$ for some integer $n \geq 0$. Then

$$
0 = \frac{0}{3} \in \frac{C_n}{3} \subseteq C_{n+1},
$$

so $0 \in C_{n+1}$. We conclude that $0 \in C_n$ for all $n \geq 0$, so $0 \in \bigcap_{n=0}^{\infty} C_n$, and consequently $\bigcap_{n=0}^{\infty} C_n$ is not empty.

Note: The set $C_n \subseteq \mathbb{R}$ is a union of 2^n disjoint closed intervals. The above argument works similarly to show that any of the endpoints of these intervals persist in the further sets C_{n+1} , C_{n+2} , etc. (and of course, they're contained in C_{n-1}, C_{n-2} , etc. as well, since $C_0 \supset C_1 \supset C_2 \cdots$).

So each of these $2 \cdot 2^n$ points in the set C_n is in the intersection $\bigcap_{n=0}^{\infty} C_n$, and consequently the set $C := \bigcap_{n=0}^{\infty} C_n$ has infinitely many points! In fact, these persisting endpoints are the *only* elements of C. Notice the 2^{n+1} endpoints from C_n can all be written as rational numbers with common denominator 3^n .

The set $C := \bigcap_{n=0}^{\infty} C_n$ is called the Cantor set, and it exhibits a wide variety of strange phenomena that can occur in the real numbers R.