
SOLUTIONS TO PROBLEM SET 6

MAT 108

Abstract. Solutions to Problem Set 6 for MAT 108 in Fall Quarter 2024.

Problem 1. (Theorem 11.8) Show that Q ⊆ R is a dense subset, i.e. ∀x, y ∈ R there
exists q ∈ Q such that x < q < y. Is the complement R \Q also dense ?

Solution. For the proof that Q is dense in R, refer to Theorem 11.8 on pp. 108-109
of our textbook.

The set of irrational numbers R \ Q is also dense in R: Let x < y be real numbers.
By the density of Q in R, there exists a rational number q ∈ Q such that x < q < y.
Then y− q > 0, so by Proposition 10.4 there exists a natural number n ∈ N such that
y − q > 1

n
. We then have

x < q +
1

n
√
2
< q +

1

n
< y.

Finally, q + 1
n
√
2
is irrational by our results on unary and binary operations from

Discussion 8 (make sure you can prove this directly, though).

Problem 2. Prove the following two statements:

(a) Show that 5
√
3 is not a rational number.

(b) (Theorem 11.12) Let p ∈ N be a prime number, then
√
p is irrational.

Solution.

(a) Suppose 5
√
3 = a

b
where a, b ∈ Z and b ̸= 0. Also, assume (a, b) = 1. We then

get 3b5 = a5. It follows that b divides a5 but since (a, b) = 1, we conclude
(a5, b) = 1. In other words, b = 1 so 3 = a5, a contradiction.

(b) Suppose
√
p = a

b
where a, b are defined the same as before. We then get

pb2 = a2. Since p divides a2, we know p divides a. Hence, a = pA for
some integer A. Substituting this expression into our original equation gives
pb2 = (pA)2 = p2A2. In other words, b2 = pA2. We similarly conclude p divides
b. However, this is a contradiction because the greatest common divisor of a
and b is 1. Hence,

√
p is irrational.
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Problem 3. In the following instances of a function f : X −→ Y between two sets
X and Y , determine whether the function is an injection, a surjection and a bijection.
You must provide a complete proof of each of your assertions.

(a) The function f : N −→ N, given by f(n) = 4n+ 6,

(b) The function f : Z −→ Z, defined by f(x) = −x2 + 3x+ 5,

(c) The function f : Z −→ N ∪ {0}, given by f(x) = |x|,

(d) The function f : Q \ {0} −→ Q \ {0}, given by f(x) = 1/x2,

(e) The function f : R −→ R, given by f(x) = 5x3 − 9.

Solution.

(a) This function is injective but not surjective. It is not surjective because there
is no solution to f(n) = 1, for instance. This function is injective because
f(x) = f(y) (4x+ 6 = 4y + 6) implies x = y.

(b) This function is neither injective nor surjective. It is not surjective because
there is no solution to f(x) = 10, for instance. It is not injective because
f(1) = f(2).

(c) This function is surjective but not injective. It is not injective because f(−1) =
f(1). We show it is surjective. Suppose f(x) = y so |x| = y. Then, we can let
x = y or x = −y if y ̸= 0. If y = 0, then let x = 0.

(d) This function is neither surjective nor injective. It is not injective because
f(1) = f(−1). It is not surjective because there is no solution to f(x) = 1

2
.

(e) This function is bijective. Suppose f(x) = f(y) so 5x3 − 9 = 5y3 − 9. We
can simplify this to x3 = y3, which only holds if x = y. Thus, the function is

injective. Now suppose f(x) = b so b = 5x3 − 9. Then, we can let x = 3

√
b+9
5
,

which has a solution since we’re working in R.



SOLUTIONS TO PROBLEM SET 6 3

Problem 4. Determine the cardinality of each of the following four sets, i.e. determine
whether they are finite, countably infinite or uncountable. You must provide a complete
proof of each of your assertions.

(a) The set X1 = {2n : n ∈ N} of even natural numbers.

(b) The set X2 = {(x, y) : x, y ∈ Q} of pairs of rational numbers.

(c) The set X3 = {x ∈ R : x > 3} of positive real numbers greater than 3.

(d) The set X4 = {x ∈ R such that x ̸= n
√
2 for any n ∈ N, and x ∈ R \ Q} of

irrational numbers which are not of the form n
√
2 for any n ∈ N.

Solution.

(a) This set is countably infinite. Consider the map f : N → X1 given by n 7→ 2n.
This function is a bijection. It is injective because 2x = 2y implies x = y. It is
surjective by construction. If we are given a number 2n ∈ X1, then we can let
our value in the domain be n.

(b) This set is countably infinite. Since Q is countably infinite by Corollary 13.18,
we conclude the cartesian product is also countably infinite using Problem 5(a).

(c) This set is uncountable. Note X3 = (3,∞), an open interval. We prove every
open interval (a, b) has the same cardinality as R. First, consider the case (0, 1).
Define f : (0, 1) → R by x 7→ tan

(
πx− π

2

)
. This map is a bijection, implying

(0, 1) is uncountable. We now construct a bijection from (0, 1) to (a, b) and this
finishes our proof. Define g : (0, 1) → (a, b) by x 7→ (b− a)x+ a.

(d) This set is uncountable. It suffices to prove the following: if A is uncountable
and B is countable, then A \ B is uncountable. For our problem, A is the set
of irrational numbers and B is the set of irrational numbers of the form n

√
2

where n ∈ N. We explain why the latter set is countable. Note the set of
irrational numbers of the form n

√
2 is equivalent to N. We prove every number

n
√
2 is irrational. The proof is similar to Problem 2(a). Suppose n

√
2 = a

b
where

(a, b) = 1. We then get 2bn = an. We have b divides an so (b, an) = 1. In other
words, b = 1 so 2 = an, a contradiction. Now we prove the first statement.
Suppose A\B is countable. Then, since B is countable, (A\B)∪B is countable
by Proposition 13.19. Observe that A ⊂ ((A \ B) ∪ B). In other words, an
uncountable set is a subset of a countable set, a contradiction. Thus, A \ B is
uncountable.
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Problem 5. Prove the following two statements:

(a) Let X, Y be two sets such that the set

X × Y := {(x, y) : x ∈ X, y ∈ Y },
is uncountable. Show that then either X or Y must be uncountable.

(b) Show that the set [0, 1]× [0, 1] is uncountable.

Solution:

(a) Suppose X and Y are both countable. Then there exist injections

f : X −→ N and g : Y −→ N
Define the function

h : X × Y −→ N× N
by h((x, y)) = (f(x), g(y)) for (x, y) ∈ X × Y . Suppose h((x, y)) = h((x′, y′))
for (x, y), (x′, y′) ∈ X × Y . Then

(f(x), g(y)) = (f(x′), g(y′)),

so f(x) = f(x′) and g(y) = g(y′). Since f and g are injective, we conclude that
x = x′ and y = y′, so (x, y) = (x′, y′). Therefore, h is injective, and

card(X × Y ) ≤ card(N× N).
By Corollary 13.16, N× N is countable, so X × Y is countable.

(b) The set [0, 1] is uncountable by Theorem 13.25, so it suffices to construct a
surjection from [0, 1]× [0, 1] to [0, 1]. That is, take the function

f : [0, 1]× [0, 1] −→ [0, 1]

defined by f((x, y)) = x for (x, y) ∈ [0, 1]×[0, 1]. If a ∈ [0, 1], then f((a, 0)) = a,
so f is surjective (you could replace 0 with any element of [0, 1]).

Note: Visualize f geometrically as the restriction of a linear map R2 −→ R to
a square. Interpret the parenthetical comment above geometrically.

Problem 6. (20 points) Consider the set of binary sequences

B := {f : N −→ {0, 1}}.
For instance, s = 000100010001000100010 . . . ∈ B is an example of an element of this
set. That is, elements of this set are infinite sequences of 0 and 1s.

Show that the set B is uncountable.
Hint: Use Theorem 13.31 in the textbook.
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Solution: By Theorem 13.31, it suffices to show that card(B) = card(P (N)). That
is, we show that B is in bijection with the power set of N, so B must have larger
cardinality than N (which is the definition of uncountable).

In fact, a more general fact is true: for any set X, the power set P (X) is in bijection
with the set of functions 2X := {f : X −→ {0, 1}} (this is why the notation 2X is often
used for P (X) itself). The proof of this general fact is similar to the way we treated
the finite case in Problem 4(d) of Problem Set 3. Specifically, we define a function

T : 2X −→ P (X).

To the element f ∈ 2X , we associate a subset

T (f) := {x ∈ X : f(x) = 1} ⊆ X

Then T (f) ∈ P (X) as desired. We show that T is a bijection by showing that it is
injective and surjective. Suppose f ̸= g are two elements of 2X . Since f and g are not
equal, there exists some x ∈ X such that f(x) ̸= g(x). If f(x) = 1, then g(x) = 0, so
x ∈ T (f) and x ̸= T (g), and we conclude that T (f) ̸= T (g). Similarly, if f(x) = 0,
then g(x) = 1, so x ̸= T (f) and x = T (g), and we again conclude that T (f) ̸= T (g).
Therefore, T is injective.

Let A ∈ P (X) be an arbitrary subset of X. Then define f ∈ 2X by

fA(x) =

{
1 if x ∈ A

0 if x /∈ A
.

Note that T (fA) = A, which proves that T is surjective, hence bijective.

In fact, the function R : P (X) −→ 2X defined above as R(A) = fA is the inverse to T .
We just proved that T (R(A)) = A for all A ∈ P (X), and one can similarly show that
R(T (f)) = f for all f ∈ 2X . This is another proof that T is a bijection.

Another way to see that B is uncountable is to associate each sequence f ∈ B with
the binary expansion 0.f(1)f(2)f(3)f(4) · · ·2 (the subscript 2 indicates that we are
expanding in base 2), which is a real number in [0, 1]. Such an association is a surjection
of B to [0, 1] because every number in [0, 1] can be given a binary expansion. Therefore,
card(B) ≥ card([0, 1]). Since [0, 1] is uncountable by Theorem 13.25, so is B.
Note: The association B −→ [0, 1] described above, while surjective, is not injective.
This is because some numbers in [0, 1] can be represented by more than one binary
expansion, i.e. one number in [0, 1] would be the image of multiple distinct sequences in
B. For example, the number 1

10
∈ [0, 1] can be represented in binary as 1

10
= 0.1000 · · ·2

and 1
10

= 0.01111 · · ·2.

Problem 7. Consider the subset C0 = [0, 1] ⊆ R. Recursively, define the sets

Cn+1 =
Cn

3
∪
(
2

3
+

Cn

3

)
,

for n ≥ 1, where, if we let A = [a, b], then the notation A/3 describes the interval
[a/3, b/3] and the notation A + 2/3 describe the interval [a + 2/3, b + 2/3]. This sets
appeared in Problem 6 of Problem Set 4.

(a) Show that the intersection C := ∩∞
n=1Cn is infinite.
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(b) Show that the intersection C := ∩∞
n=1Cn is uncountable.

Hint: For Part (a), show that the subset of endpoints of the intervals is countably
infinite. For Part (b), construct a surjection to [0, 1].

Solution

(a) Sketch: As remarked in the Solution to Problem 6 of Problem Set 4, the set
Cn has 2n+1 endpoints, all of which are in C. Let An denote the set of these
2n+1 endpoints. Note that for each n ∈ N, An−1 ⊆ An, and An \An−1 contains
2n+1 − 2n = 2n elements, so each set Cn introduces exactly 2n new endpoints.
Therefore, the total set of endpoints is

∞⋃
n=0

An =
∞⊔
n=1

An \ An−1,

where the
⊔

notation indicates a union of disjoint sets. The latter set has car-
dinality 20 + 21 + 22 + 23 + · · · = ∞. Note that this set is a countable union of
countable (in fact, finite) sets, so it is countably infinite by Proposition 13.19.
Since C contains this infinite set, C must be infinite.

(b) Sketch: Any element is C is uniquely specified by a path downward on the tree
shown below (taken from the Wikipedia article on the Cantor set).

That is, any (infinite) sequence of LEFT or RIGHT moves determines a unique
element of C, and each element of C can be given by such a sequence. Therefore,
C bijects to the set {f : N −→ {LEFT,RIGHT}} of binary sequences, which is
clearly in bijection with the set B from Problem 6.

Seen another way, the elements of C are those real numbers in [0, 1] which
have an expansion in base 3 consisting of only the digits 0 and 2 (no 1’s).
Such expansions are unique, so C bijects to the set B of binary sequences from
Problem 6.

With either viewpoint, we see that C is uncountable because B is uncountable
by Problem 6. See the Wikipedia article for an explicit surjection to [0, 1] which
employs the ideas discussed above.


