
MAT 108: PRACTICE PROBLEMS

DEPARTMENT OF MATHEMATICS - UC DAVIS

Abstract. This document contains additional practice problems for the first two weeks of the

MAT-108 course during Fall 2024, with a view towards the first midterm on Friday October 25th.

Purpose: The goal of this document is to provide practice problems on the different topics seen
covered in the lectures. I have posted this document in order to help you practice problems on these
topics, with a view towards the first Midterm Exam on Friday Oct 11. This document includes ma-
terial on the following topics:

(i) Proofs by Induction and by contradiction. This corresponds to the second week of the course,
Problem Set 2 and Chapter 2 in the Textbook.

(ii) Problems on Recursion. This corresponds to the third week of the course, Problem Set 3 and
Chapter 4 in the Textbook.

Note that the Midterm includes additional topics, to be covered in weeks three and four, including
modular arithmetic. Thus in additional to the types of problems below, you should practice problems
on modular arithmetic. There is an additional set of practice problems for that as well.

Textbook: We are using ”The Art of Proof: Basic Training for Deeper Mathematics” by M. Beck
and R. Geoghegan.

Suggestion: In the first four problems, I would recommend that you prove the first three cases (a),
(b) and (c), and if you feel you need more practice then do the rest. It is more important that you know
how to do the first three cases in the first four problems than all the cases in one of these four problems.
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Problem 1. Prove the following formulas for sums.

(a)
∑n

k=1 k = n(n+1)
2 ,

(b)
∑n

k=1 k
2 = n(n+1)(2n+1)

6 ,

(c)
∑n

k=1 k
3 = n2(n+1)2

4 ,

(d)
∑n

k=1 k
4 = n(n+1)(2n+1)(3n2+3n−1)

30 ,

Solution.

For each part, we may give a proof by induction.

(a) For the base case, we check if the statement holds for n = 1. Indeed, we have 1 = 1(1+1)
2 .

Now suppose for some n ∈ N,
n∑

k=1

k =
n(n+ 1)

2
.

For n+ 1, we then have

n+1∑
k=1

k =

n∑
k=1

k + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1) + 2(n+ 1)

2

=
(n+ 1)((n+ 1) + 1)

2

where the second equality is given by the inductive hypothesis. The result follows by induction.

(b) For the base case, we can check that 12 = 1(1+1)(2·1+1)
6 . Now suppose that for some n ∈ N,

we have
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

For n+ 1, we have

n+1∑
k=1

k2 =
n∑

k=1

k2 + (n+ 1)2

=
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
(n+ 1)(n(2n+ 1) + 6(n+ 1)

6

=
(n+ 1)(2n2 + 7n+ 6)

6

=
(n+ 1)(n+ 2)(2n+ 3)

6

=
(n+ 1)((n+ 1) + 1)(2(n+ 1) + 1)

6

where the second equality is given by the inductive hypothesis. The result follows by induction.

(c) For the base case, we check 13 = 12(1+1)2

4 . Now suppose that for some n ∈ N, we have

n∑
k=1

k3 =
n2(n+ 1)2

4
.
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For n+ 1, we get

n+1∑
k=1

k3 =

n∑
k=1

k3 + (n+ 1)3

=
n2(n+ 1)2

4
+ (n+ 1)3

=
n2(n+ 1)2 + 4(n+ 1)3

4

=
(n+ 1)2(n2 + 4(n+ 1))

4

=
(n+ 1)2((n+ 1) + 1)2

4
where the second equality is given by the inductive hypothesis. The result follows by induction.

(d) For the base case, we can check that

1(1 + 1)(2 · 1 + 1)(3 · 12 + 3 · 1− 1)

30
=

2 · 3 · 5
30

= 14.

We could suppose for the inductive hypothesis that the formula holds for n, and then show it
holds for n+ 1 as well. However, note that it is equivalent to suppose that the formula holds
for n− 1, where n > 1, and then show it holds for n as well. The latter approach will lead to
nicer formulas. So, suppose that for some n > 1, we have

n−1∑
k=1

k4 =
(n− 1)((n− 1) + 1)(2(n− 1) + 1)(3(n− 1)2 + 3(n− 1)− 1)

30

=
n(n− 1)(2n− 1)(3n2 − 3n− 1)

30
.

For n, we have

n∑
k=1

k4 =

n−1∑
k=1

k4 + n4

=
n(n− 1)(2n− 1)(3n2 − 3n− 1)

30
+ n4

=
n((n− 1)(2n− 1)(3n2 − 3n− 1) + 30n3)

30

=
n(6n4 + 15n3 + 10n2 − 1)

30

=
n(n+ 1)(6n3 + 9n2 + n− 1)

30

=
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30
where the second equality is given by the inductive hypothesis. The result follows by induction.
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Problem 2. Prove the following additional formulas for sums.

(a)
∑n

k=0(2k + 1) = (n+ 1)2,

(b)
∑n

k=1 2k = n(n+ 1),

(c)
∑n

k=1 k(k + 1) = n(n+1)(n+2)
3 ,

(d)
∑n

k=0 3
k = 3n+1−1

2 ,

(e)
∑n

k=1 k!k = (n+ 1)!− 1,

Solution.

For each part, we may give a proof by induction.

(a) For the base case, we check for n = 0. This gives (2 · 0 + 1) = (0 + 1)2 which is true. Now
suppose that for some n ∈ N, we have

n∑
k=0

(2k + 1) = (n+ 1)2.

Checking for n+ 1, we have

n+1∑
k=0

(2k + 1) =

n∑
k=0

(2k + 1) + (2(n+ 1) + 1)

= (n+ 1)2 + 2n+ 3

= n2 + 4n+ 4

= (n+ 2)2

= ((n+ 1) + 1)2

where the second equality is given by the inductive hypothesis. The result follows by induction.
(b) For the base case, we check that 2 · 1 = 1(1 + 1). Now suppose for some n ∈ N that

n∑
k=1

2k = n(n+ 1).

Checking for n+ 1, we have

n+1∑
k=1

2k =

n∑
k=1

2k + 2(n+ 1)

= n(n+ 1) + 2(n+ 1)

= (n+ 1)(n+ 2)

= (n+ 1)((n+ 1) + 1)

where the second equality is given by the inductive hypothesis. The result follows by induction.

(c) For the base case, we check that 1(1 + 1) = 1(1+1)(1+2)
3 , which is true. Now suppose that for

some n ∈ N we have

n∑
k=1

k(k + 1) =
n(n+ 1)(n+ 2)

3
.
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Checking for n+ 1:

n+1∑
k=1

k(k + 1) =

n∑
k=1

k(k + 1) + (n+ 1)(n+ 2)

=
n(n+ 1)(n+ 2)

3
+ (n+ 1)(n+ 2)

=
(n+ 3)(n+ 1)(n+ 2)

3

=
(n+ 1)((n+ 1) + 1)((n+ 1) + 2)

3

where the second equality is given by the inductive hypothesis. The result follows by induction.

(d) For the base case, we can check that 30 = 30+1−1
2 , which is true. Now suppose that for some

n ∈ N, we have
n∑

k=0

3k =
3k+1 − 1

2
.

For n+ 1, we have

n+1∑
k=0

3k =

n∑
k=0

3k + 3n+1

=
3n+1 − 1

2
+ 3n+1

=
3 · 3n+1 − 1

2

=
3(n+1)+1 − 1

2
.

The result follows by induction.
(e) For the base case, we check that 1! · 1 = (1 + 1)! − 1, which is true. Now suppose that for

some n ∈ N, we have
n∑

k=1

k!k = (n+ 1)!− 1.

For n+ 1, we have

n+1∑
k=1

k!k =

n∑
k=1

k!k + (n+ 1)!(n+ 1)

= (n+ 1)!− 1 + (n+ 1)!(n+ 1)

= (n+ 1)!(n+ 2)− 1

= ((n+ 1) + 1)!− 1.

The result follows by induction.

Problem 3. Prove the following inequalities. Be aware of the base case in each case.

(a) For all n ∈ N, n < 2n,

(b) For all n ∈ N, n2 + 6n+ 7 < 20n2,

(c) For n ≥ 4, n2 ≤ 2n,

(d) For n ≥ 4, 2n < n!.

(e) For n ≥ 6, 6(n+ 1) < 2n,

(f) For n ≥ 8, 3n2 + 3n+ 1 < 2n,
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(g) For n ≥ 12, 5n < n!,

Solution.

(a) For the base case, we have n = 1, and we can verify that 1 < 21 = 2. Note that since 2n is
increasing, we also know that 1 < 2n for all n ∈ N. Now suppose that for some n ∈ N, n < 2n.
Considering n+ 1, we have

n+ 1 < 2n+1

< 2n + 2n

= 2n+1.

The first inequality follows by the inductive hypothesis. The second follows because 1 < 2n

for all n ∈ N, and the statement thus follows by induction.
(b) For the base case we consider n = 1. We then have 12 + 6 · 1 + 7 = 14, and 20 · 12 = 20.

Since 14 < 20, the base case follows. Now suppose that for some n ∈ N, n2 + 6n+ 7 < 20n2.
Checking n+ 1, we have

20(n+ 1)2 = 20n2 + 40n+ 20

> (n2 + 6n+ 7) + (40n+ 20)

We can also compute

(n+ 1)2 + 6 · (n+ 1) + 7 = (n2 + 6n+ 7) + (2n+ 7)

The claim follows if we can show that 40n+ 20 > 2n+ 7 whenever n ≥ 1. Indeed, we have

40n+ 20− (2n+ 7) = 38n+ 13

> 38 + 13

> 0,

so the claim follows by induction.
(c) For the base case, we may check that 42 ≤ 24, which is true because 42 = 24 = 16. Now

suppose that for some n ∈ N with n ≥ 4, we have n2 ≤ 2n. Note that n and 2n are positive
numbers, so the inequality n2 ≤ 2n is equivalent to the inequality

n2

2n
≤ 1.

Considering n+ 1, we have

(n+ 1)2

2n+1
=

(n+ 1)2 · n2

2n+1 · n2

=
(n+ 1)2

2n2
· n

2

2n

≤ n2 + 2n+ 1

2n2

=
1

2
+

1

n
+

1

2n2
.

Note that we used the inductive hypothesis for the inequality. Now, considering that n ≥ 4,
the sum 1

n+
1

2n2 will be less than or equal to 1
4+

1
4 . The last expression in the above calculation

is therefore less than or equal to 1. This is precisely what we desired, so the statement follows
by induction.

(d) The base case is given by n = 4, and we may verify that 24 = 16, and 4! = 24. Since 16 < 24,
the base case follows. Now suppose for some n ∈ N with n ≥ 4 that 2n < n!. Considering
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n+ 1, we have

2n+1 = 2 · 2n

< 2 · n!
< (n+ 1) · n!
= (n+ 1)!

where the first inequality follows from the inductive hypothesis, and the second from the fact
that n > 2. By induction, the statement follows.

(e) The base case is given by n = 6, and we need to check that 6(6+1) < 26. Since 6(6+1) = 42
and 26 = 64, the base case is satisfied. Now suppose for some natural number n ≥ 6 that
6(n+ 1) < 2n. Considering n+ 1, we have

6((n+ 1) + 1) = 6(n+ 1) + 6

< 2n + 6

Since 2n is increasing, and since 26 > 6, we may further conclude:

2n + 6 < 2n + 2n

= 2n+1.

We see then that 6((n+ 1) + 1) < 2n+1, so the statement follows by induction.
(f) The base case is given by n = 8, and we wish to show that 3 · 82 +3 · 8+ 1 < 28. Rather than

calculate these numbers by hand, we can factor out 8 from each of them. We see that

3 · 82 + 3 · 8 + 1 < 8(3 · 8 + 3 + 1) = 8 · 28

while

28 = 8 · 25 = 8 · 32.
The base case follows because 28 < 32. Now suppose that for some n ≥ 8 we have 3n2+3n+1 <
2n. For n+ 1, we have

2n+1 = 2 · 2n

> 2 · (3n2 + 3n+ 1)

= 6n2 + 6n+ 2.

We also compute

3(n+ 1)2 + 3(n+ 1) + 1 = 3n2 + 9n+ 7.

The desired result has now been reduced to showing that the quantity

6n2 + 6n+ 2− (3n2 + 9n+ 7) = 3n2 − 3n− 5

is positive whenever n ≥ 8. For this we can briefly use induction again. For n = 8, we have

3 · 82 − 3 · 8− 5 > 8(3 · 8− 3− 1) = 8 · 20 > 0.

Then, supposing that 3n2 − 3n− 5 is positive for some n ≥ 8, we have

3(n+ 1)2 − 3(n+ 1)− 5 = (3n2 − 3n− 5) + 3n+ 3

> 0 + 0.

The result follows by induction.
(g) The base case is given by n = 12, so we wish to show that 512 < 12!. This will require some

work in order to easily compute it by hand. We may compute the ratio 12!/512. This is now
an exercise in grouping terms until we have reduced to something much simpler:

12!

512
=

12

5
· 11
5

· 10
5

· 7 · 4
5 · 5

· 9 · 3
5 · 5

· 5 · 6
5 · 5

· 8 · 2
53

>
23 · 8 · 2

53

=
128

125
> 1.
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Indeed, 12!/512 > 1, so 12! > 512. Now suppose for some natural number n with n ≥ 12 that
5n < n!. For n+ 1, we have

5n+1 = 5 · 5n

< 5 · n!
< (n+ 1) · n!
= (n+ 1)!

where the inequalities follow respectively from the hypotheses that 5n < n! and that n ≥ 12.
By induction, the result follows.

Problem 4 Show that the following divisibility statements are true.

- For all n ∈ N, 4|(5n − 1), i.e. 4 divides 5n − 1.

- For all n ∈ N, 5|(11n − 6).

- For all n ∈ N, 6|(n3 − n).

- For all n ∈ N, 7|(2n+2 + 32n+1).

Solution.

- For n = 1, we can check that 4|(51 − 1), because 51 − 1 = 4. Now suppose for some n ∈ N
that 4|(5n − 1), so that there is some integer k satisfying 4k = 5n − 1. Considering n+ 1, we
have

5n+1 − 1 = 5 · 5n − 1

= 5 · (5n − 1 + 1)− 1

= 5 · (5n − 1) + 5− 1

= 5 · 4k + 4

= 4(5k + 4).

Since 5k+4 is an integer, we see that 5n+1 − 1 is again a multiple of 4, and the result follows
by induction.

- For the base case, we can check that 5|(111 − 6). Indeed, 11 − 6 = 5, which is certainly a
multiple of 5. Now suppose for some n ∈ N that 5|(11n − 6), so there is some integer k with
11n − 6 = 5k. Considering n = 1, we have

11n+1 − 6 = 11 · 11n − 6

= 11 · (11n − 6 + 6)− 6

= 11 · (11n − 6) + 66− 6

= 11 · 5k + 60

= 5(11k + 12).

Since 11k + 12 is an integer, we see that 11n+1 − 6 is again a multiple of 5.
- For the base case, we may verify that 6|(13 − 1). Indeed, 13 − 1 = 0, and 6 · 0 = 0. Now
suppose for some n ∈ N that 6|(n3 − n), so there is an integer k for which n3 − n = 6k.
Considering n+ 1, we have

(n+ 1)3 − (n+ 1) = n3 + 3n2 + 3n+ 1− n− 1

= (n3 − n) + 3n2 + 3n

= 6k + 3n(n+ 1).

Given that n is a natural number, either n or n+ 1 is even. Therefore, the term 3n(n+ 1) is
always an even multiple of 3, or equivalently a multiple of 6. Since the sum of two multiples
of 6 is again a multiple of 6, it follows that 6 divides (n + 1)3 − (n + 1). By induction, the
result holds for all n.
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- For the base case, we wish to show that 7|(21+2+32·1+1). Indeed, 23+33 = 35, and 35 = 5 ·7.
Suppose now that for some n ∈ N, there is an integer k for which 2n+2 + 32n+1 = 7k.
Considering n+ 1, we have

2n+1+2 + 32(n+1)+1

= 2 · 2n+2 + 9 · 32n+1

= 9 · (2n+2 + 32n+1)− 7 · 2n+2

= 9 · 7k − 7 · 2n+2.

This value, being the sum of two multiples of 7, is again a multiple of 7, so the statement
follows by induction.

Problem 5 Prove that there are infinitely primes of the form 6k + 5 with k ∈ N.

Solution. Suppose to the contrary that there are only finitely many, say N distinct primes of the
form 6k + 5 for k ∈ N. We may then enumerate them in a set {p1, p2, . . . , pN}. Define the integer
Q = p1p2 · · · pN , and take P = 6Q− 1. We may equialently express P in the form

Q = 6(Q− 1 + 1)− 1 = 6(Q− 1) + 5

so P is an integer of the form 6k + 5. Furthermore, since Q > 0, P is a positive integer. We may
express P as the product of odd primes, because P itself is odd. Furthermore, all prime factors of P
must be of the form 6k + 1 or 6k + 5 for k ∈ N, because any integer of the form 6k + 3 is a multiple
of 3. We now wish to show that P has some prime factor of the form 6k + 5.

For integers k1, k2, . . . , kn, the integers 6ki + 1 all have residue 1 modulo 6, and so by the laws of
modular arithmetic the product

(6k1 + 1)(6k2 + 1) · · · (6kn + 1)

must also have residue 1 modulo 6. Indeed, since P has residue 5 modulo 6, we see that its factorization
into odd primes must contain at least one factor of the form 6k + 5. Such a number must be one of
the primes pi on our list, so we have pi|Q, and thus pi|4Q as well. Since pi|4Q and pi|P , pi must
divide the difference 4Q−P = 1. This is a contradiction, because pi is a positive integer greater than
1, so it cannot be a divisor of 1.

We reach a contradiction, so we may conclude that there are indeed infinitely many primes of the
form 6k + 5.

Problem 6 Show that there are no positive integer solutions a, b ∈ N to the equation a2 − b2 = 1.

Solution. Suppose, to the contrary, that there are natural numbers a and b which satisfy a2−b2 = 1.
We may factor a2 − b2 = (a + b)(a − b), so that (a + b)(a − b) = 1. We know that a + b is strictly
greater than 1, because a and b are each integers which are at least 1. But now we see that a+ b is a
divisor of 1. This is impossible, because a+ b is an integer greater than 1, so we have a contradiction.

Problem 7 Show that there are no positive integer solutions a, b ∈ N to the equation a2 − b2 = 10.

Solution. Consider the equation a2 − b2 = 10 modulo 4. This becomes the equation a2 − b2 ≡ 2
mod 4. The possible residues modulo 4 are 0, 1, 2, and 3. Their squares are 0, 1, 0, and 1 respectively.
In particular, we see that the pairwise difference between any two squares modulo 4 must be 0, 1, or
−1. We see then that there are no integers a and b for which a2 − b2 ≡ 2 mod 4. In particular, the
equation a2 − b2 = 10 has no integer solutions in a and b.

Problem 8 Let an = 2n + 1, prove that an satisfies the recursion

an+1 = 2an − 1, a1 = 3.
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Solution. We can check the base case by direct computation. By definition, a1 = 21 + 1 = 3, so
indeed a1 = 3. Now consider the term an+1. We have

an+1 = 2n+1 + 1

= 2 · 2n + 1

= 2 · (2n + 1− 1)

= 2 · (2n + 1)− 2 + 1

= 2 · an − 1

as desired.

Problem 9. Let Fn be the nth Fibonacci number, defined by the recursion Fn+1 = Fn + Fn−1 and
F1 = F2 = 1. Prove that

n∑
k=1

F 2
k = FnFn+1.

Solution. The base case is given by n = 1. We have F 2
1 = 1, and F1 ·F2 = 1 · 1 = 1, so the base case

follows. Suppose now that for some n ∈ N, we have

n∑
k=1

F 2
k = FnFn+1.

Considering n+ 1, we have

n+1∑
k=1

F 2
k = F 2

n+1 +

n∑
k=1

F 2
k

= F 2
n+1 + FnFn+1

= Fn+1(Fn+1 + Fn)

= Fn+1Fn+2

As desired. The result follows by induction.

Problem 10. Let An be be defined by the recursion An+1 = 2An + 1 and A1 = α. Prove that

An = (α+ 1) · 2n−1 − 1.

Solution. Define a sequence whose nth term is Bn := (α+1) ·2n−1−1. We wish to show that B1 = α
and Bn+1 = 2An+1. We can check that B1 = (α+1) · 21−1− 1 = α. Furthermore, considering n+1,
we have

Bn+1 = (α+ 1) · 2n+1−1 − 1

= 2(α+ 1) · 2n−1 − 1

= 2
(
(α+ 1) · 2n−1 − 1

)
+ 2− 1

= 2Bn + 1

As desired. It follows by induction that Bn = An, for all n ∈ N, for they both satisfy the same initial
value and recursive conditions that uniquely define An.

Problem 11. Let Ln be defined by the recursion Ln+1 = Ln +Ln−1 and L0 = 2, L1 = 1. Prove that

Ln =

(
1 +

√
5

2

)n

+

(
1−

√
5

2

)n

.

Solution. First, define the real numbers

r1 :=
1 +

√
5

2
, r2 :=

1−
√
5

2
.
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We may check that each ri satisfies the equation r2 = r + 1. Indeed, we calculate:

r21 =

(
1 +

√
5

2

)2

=
(1 +

√
5)2

4

=
1 + 2

√
5 + 5

4

=
1 +

√
5

2
+ 1

= r1 + 1

and similarly

r22 =

(
1−

√
5

2

)2

=
(1−

√
5)2

4

=
1− 2

√
5 + 5

4

=
1−

√
5

2
+ 1

= r2 + 1.

Now we show by induction that Ln = rn1 + rn2 . For the base cases, we have n = 0 and n = 1, and we
may verify:

r01 + r02 = 2

r11 + r12 =
1 +

√
5 + 1−

√
5

2
= 1

and this verifies the base cases. Now suppose that for some n ∈ N, we have Ln = rn1 + rn2 and
Ln−1 = rn−1

1 + rn−1
2 . Checking for n+ 1, we have

Ln+1 = Ln + Ln−1

= rn1 + rn2 + rn−1
1 + rn−1

2

= rn−1
1 (r1 + 1) + rn−1

2 (r2 + 1)

= rn−1
1 r21 + rn−1

2 r22

= rn+1
1 + rn+1

2

which is what we desired. By induction, we see that Ln = rn1 + rn2 for all n.

Problem 12. Let an be defined by the recursion an+1 = 7an − 10an−1 and a0 = 2, a1 = 3. Find a
closed formula for an.

Solution. In general, suppose bn and b′n are two sequences such that bn+1 = 7bn − 10bn−1, and such
that b′n satisfies the same recurrence relation. Given any two real numbers c and d, we may verify
that the sequence sn = cbn + db′n satisfies the same recursive rule. Indeed,

sn+1 = cbn+1 + db′n+1

= c(7bn − 10bn−1) + d(7b′n − 10b′n−1)

= 7(cbn + db′n)− 10(cbn−1 + db′n−1)

= 7sn − 10sn−1.

We therefore see that solutions to this recurrence relation are closed under real linear combinations.
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Now we seek some number r such that the sequence bn = rn satisfies the relation bn+1 = 7bn−10bn−1.
In particular, when n = 1, this gives

r2 − 7r + 10 = 0

(r − 5)(r − 2) = 0.

So r = 5 and r = 2 both give solutions to this recursion. The sequence an that we seek will be some
linear combination an = c · 2n + d · 5n. The initial terms a0 = 2 and a1 = 3 can be used to solve for c
and d:

c · 20 + d · 50 = 2

c · 21 + d · 51 = 3.

Subtracting two of the first equation from the second equation gives 3d = −1, so d = −1/3. Substi-
tuting this into the first equation, we get c = 2 + 1/3 = 7/3. Finally, the sequence an has a closed
form given by

an =
7

3
· 2n − 1

3
· 5n.

By the discussion above, this sequence still satisfies the recurrence relation because it is a real linear
combination of sequences which satisfy the same linear recurrence relation.


