
MAT 108: PRACTICE PROBLEMS II

DEPARTMENT OF MATHEMATICS - UC DAVIS

Abstract. This document contains additional practice problems for the Oct 25th
Midterm in the MAT-108 course during Fall 2024.

Purpose: The goal of this document is to provide practice problems on the topic of
set theory and modular arithmetic. I have posted this document in order to help you
practice problems on these topics, with a view towards the first Midterm Exam on
Friday Oct 25th. This document includes material on the following topics:

(i) Divisibility statements, and last digit computations.

(ii) Reduction modulo n of Equations over the Integers.

Note that the Midterm includes additional topics, covered in the first four weeks of the
course. Thus in addition to the types of problems below, you should practice problems
from the first set of Practice Problems.

Textbook: We are using ”The Art of Proof: Basic Training for Deeper Mathematics”
by M. Beck and R. Geoghegan.

Problem 1. Prove, using modular arithmetic, the following divisibility statements.
Be clear which n are you choosing when you perform computations modulo n.

(a) 3|k3 − k, for all k ∈ N,

(b) 11|k11 + 10k, for all k ∈ N,

(c) 23|k23 − k, for all k ∈ N,

(d) 6|k3 − k, for all k ∈ N,

(e) 15|42n+1 − 74n−2, for all n ∈ N,

Solution 1. Parts (a), (b) and (c) follow from Fermat’s Little theorem modulo p,
where p is correspondingly taken to be 3, 11 and 23. In general,

p|kp − k,

since kp ≡ k mod p by Fermat’s Little Theorem. In Part (a) we have

k3 − k ≡ k − k ≡ 0 mod 3.

In Part (b) we are reducing modulo 11 and we get

k11 + 10k ≡ k + 10k ≡ 11k ≡ 0 mod p.
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For Part (c) we reduce modulo 23 and we obtain

k23 − k ≡ k − k ≡ 0 mod 23.

Parts (d) and (e) were discussed in class. In order to work out divisibility by a com-
posite number which is a product of distinct primes, such as 6 = 2 · 3 and 15 = 3 · 5,
it suffices to show that each of the prime factors divides.

For Part (d), we need to work modulo 2 and modulo 3:

k3 − k ≡ k2 · k − k ≡ k − k ≡ 0 mod 2,

k3 − k ≡ k − k ≡ 0 mod 3.

For Part (e), we work modulo 3 and modulo 5:

42n+1 − 74n−2 ≡ (1)2n+1 − (1)4n−2 ≡ 1− 1 ≡ 0 mod 3,

42n+1−74n−2 ≡ (−1)2n+1−(2)4n−2 ≡ (−1)−(22)2n−1 ≡ (−1)−(4)2n−1 ≡ (−1)−(1)2n−1 ≡ 0 mod 5.

Problem 2. Prove the following divisibility statements.

(a) 4100 is not divisible by 3,

(b) 9|10n+1 + 9 · n2 + 4 · 10n − 5,

Problem 3. Compute the last digit of the following numbers:

- 4100, 20063, 9232006, 7728, and 91234,

- Prove that the last digit of n4, for any n ∈ Z must be 0, 1, 5 or 6.

Solution 3 The last digits are 6, 6, 9, 1 and 1.

Problem 4. Compute the last two digits of the following numbers:

- 9234, 123499810, and 20182018.

Solution 4. The last two digits are 41, 24 and 24.

Problem 5. Show that the following equations have no solution x ∈ Z over the
integers:

(a) 9x7 − 3x2 + 2 = 0,

(b) 15x4 − 20x2 + 56x2 = 22,

(c) 6x9 − 7x2 + 36 = 13.
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Solution 5. For Part (a) reduce modulo 3 to get

9x7 − 3x2 + 2 ≡ 0 mod 3 ⇐⇒ 9x7 − 3x2 + 2 ≡ 0 mod 3,

which has no solution modulo 3, and thus the original equation has no solution over
the integers Z. Another way to say it is that the left hand side of the equation give
residue 2 when divide by 3 and the right hand side gives residue 0.

For Part (b) we reduce modulo 5 to get the equation

15x4 − 20x2 + 56x2 ≡ 22 mod 5 ⇐⇒ x2 ≡ 2 mod 5,

but if x ∈ Z, then its square modulo 5 must be x2 ≡ 0, 1 or4 mod 5, and thus the
equation has no solution modulo 5.

For Part (c) we work modulo 6 and obtain the equation

6x9−7x2+36 = 13 mod 6 ⇐⇒ −x2 ≡ 1 mod 6 ⇐⇒ x2 ≡ −1 mod 6 ⇐⇒ x2 ≡ 5 mod 6.

However, the squares modulo 6 are x2 ≡ 0, 1, 3 or4 mod 6, and none of them is −1 ≡ 5
mod 6.

Problem 6. Show that the following equations have no solutions x, y ∈ Z over the
integers:

(a) 26x+ 52y = 131,

(b) 12x3 − 3xy + 15y2 = 1003,

(c) x2 − 3y2 = 15,

(d) x4 + y4 = 1599.

Solution 6. For Part (a), the reduction modulo 13 gives

26x+ 52y ≡ 131 mod 13 ⇐⇒ 0 ≡ 1 mod 13,

which is a contradiction. For Part (b) we reduce modulo 3, the left hand side becomes
0 and the right hand side 1, which proves there are no solutions modulo 3, and thus
neither over the integers.

For Part (c), we reduce modulo 4 and we will get the equation

x2 − 3y2 ≡ 15 mod 4 ⇐⇒ x2 + y2 ≡ 3 mod 4,

but a square x2 modulo 4 must have x2 ≡ 0, 1 mod 4, and thus x2 + y2 ≡ 0, 1 or 2,
but never 3.

For Part (d) reduce modulo 16 so that the right hand side becomes −1. Modulo 16 a
fourth power is equivalent to 0 or 1, and so x4 + y4 ≡ 0, 1 or 2 mod 16, but 15 ≡ −1
mod 16, and thus it cannot be of the form x4 + y4 modulo 16.


