
MAT 108: SOME SOLUTIONS TO PRACTICE PROBLEMS 2ND MIDTERM

DEPARTMENT OF MATHEMATICS - UC DAVIS

Abstract. This document contains solutions to some practice problems for the second part of the

course, with a view towards the 2nd midterm.

Problem 1. Prove the following four statements.

(a) Let X1 = {x ∈ R : −2 ≤ x < 3} = [−2, 3). Then inf(X1) = −2 and sup(X1) = 3,

Solution (a). By contradiction, suppose that the infimum is −2 < inf(X1), so that −2 is
not the greatest lower bound. Then inf(X1) cannot be a lower bound for X1 since −2 ∈ X1.

Let us show that sup(X1) = 3 now. By contradicition, suppose that the supremum is
sup(X1) < 3, in order for 3 not to be the least upper bound. Since sup(X1) is an upper
bound, we must have

x < sup(X1), ∀x ∈ X1.

Consider δ = (3 + sup(X1))/2 ∈ R+. Then we have

δ = (3 + sup(X1))/2 < 3, since sup(X1) < 3,

and so δ ∈ X1. In contrast, we also have

δ = (3 + sup(X1))/2 > sup(X1), since 3 > sup(X1),

and thus sup(X1) < δ and sup(X1) is not an upper bound for X1, a contradiction. Hence,
sup(X1) = 3.

(b) Let X2 = {x ∈ Q : −
√
3 ≤ x <

√
2} = [−

√
3,
√
2) ∩Q.

Then inf(X2) = −
√
3 and sup(X2) =

√
2,

(c) Let X3 = {2−n : n ∈ N}, then inf(X3) = 0 and sup(X3) = 1/2,

(d) Let X4 =

{
n

5n+ 3
: n ∈ N

}
, then inf(X4) = 1/8 and sup(X4) = 1/5.

Problem 2. Compute the following limits using the ε-definition of the limit of a sequence.

(a) lim
n→∞

1

n3
= 0,

Solution (a). We want that ∀ε > 0 we have the inequality∣∣∣∣ 1n3

∣∣∣∣ < ε, for n ≫ 1.

Indeed, given any ε > 0, by Proposition 10.4, we can choose n ∈ N such that∣∣∣∣ 1n
∣∣∣∣ < ε, for n ≫ 1.

Then, we will have ∣∣∣∣ 1n3

∣∣∣∣ < ∣∣∣∣ 1n
∣∣∣∣ ε, for n ≫ 1,

as required.
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(b) lim
n→∞

2n

7n
= 0,

(c) lim
n→∞

(−1)n · 4n

n!
= 0,

Solution (c). We want that ∀ε > 0 we have the inequality∣∣∣∣ (−1)n · 4n

n!

∣∣∣∣ < ε, for n ≫ 1.

Indeed, given any ε > 0, by Proposition 10.4, we can choose n ∈ N such that∣∣∣∣ 1n
∣∣∣∣ < 6ε

44
, for n ≫ 1.

Then, we will have ∣∣∣∣ (−1)n · 4n

n!

∣∣∣∣ < ∣∣∣∣ 446n
∣∣∣∣ < ε, for n ≫ 1,

as required.

(d) lim
n→∞

n
√
n = 1,

Solution (d). We want that ∀ε > 0 we have the inequality∣∣ n
√
n− 1

∣∣ < ε, for n ≫ 1.

By the Binomial Theorem, we have that

∣∣ n
√
n− 1

∣∣ < √
2

n− 1
.

Thus, given the ε > 0 above, we apply Proposition 10.4 to the positive quantity ε2/(ε2+2),
and we choose n ∈ N such that∣∣∣∣ 1n

∣∣∣∣ < ε2/(ε2 + 2), for n ≫ 1,

which is just saying ∣∣∣∣∣
√

2

n− 1

∣∣∣∣∣ < ε, for n ≫ 1,

Then, we will have

∣∣ n
√
n− 1

∣∣ < ∣∣∣∣∣
√

2

n− 1

∣∣∣∣∣ < ε, for n ≫ 1,

as required.

(e) lim
n→∞

3n+ 7

8n+ 1
=

3

8
,

(f) lim
n→∞

5n2 + 3n+ 7

9n2 + 17n
=

5

9
,

Problem 3. For each of the following sequences, first decide whether the following sequences are
eventually increasing or decreasing (or neither), and second decide whether they are bounded
above or below (or neither). Use this to decide whether each of the sequences (xn) converges.

(a) xn =
1

4n
,

(b) xn =
n2(−1)n+3

3n+ 2
,
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(c) xn =
n

n2 + 1
,

(d) xn =
5n− 7

8n
,

(e) xn =
nn

(2n)!
,

(f) xn =
n+ 1

n− 1
,

(g) xn =
10n

n!
,

(h) xn = 1 +
1

2
+

1

3
+ . . .+

1

n− 1
+

1

n
,

(i) xn =
1

2
+

1

6
+ . . .+

1

(n− 1)n
+

1

n(n+ 1)
,

Problem 4. Consider each of the following recursive sequences. Show that they converge by using
the Monotone Convergence Theorem. Then, find their limit lim

n→∞
xn.

- xn+1 =
xn + 1

4
, with x1 = 7.

- xn+1 =
1

2
xn + 2, with x1 = 1/2.

Solution. The first terms of the sequence are

(x1, x2, x3, . . .) = (0.5, 2.25, 3.125, . . .),

and we thus try to prove that (xn) is increasing. Indeed, by induction, the base case is
x1 < x2 true since 0.5 < 2.25. The induction steps assumes xn < xn+1 and we want to show
xn+1 < xn+2. By the recursive definition, this latter inequality is

xn+1 < xn+2 ⇐⇒ 1

2
xn + 2 <

1

2
xn+1 + 2 ⇐⇒ xn < xn+1,

which is true by the induction hypothesis. Thus the sequence is increasing.

Let us prove that the sequence is bounded above, so that we can apply the Monotone
Convergence Theorem and conclude (xn) converges. Let us show that xn is bounded above
by 5 (the best upper bound is actually 4). Indeed, by induction, the base case will be x1 < 5.
We now assume that xn < 5 and we want to prove xn+1 < 5. By the recursive definition we
have

xn+1 < 5 ⇐⇒ 1

2
xn + 2 < 5 ⇐⇒ xn < 6,

which is true by the induction hypothesis. Thus the sequence (xn) is bounded above.

By the Monotone Convergence Theorem, the sequence (xn) is convergent. Finally, let us
find its limit L. For that, substitute L ∈ R in the recursion, and we obtain:

L =
1

2
L+ 2,

which leads to L = 4. Hence the sequence (xn) → 4, i.e. the sequence converges to 4.

- xn+1 =
1

3− xn
, with x1 = 2.

- xn+1 =
√
3 + xn, with x1 = 1.

- xn+1 =
√
17 + xn, with x1 =

√
17.
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- xn+1 =
x2
n − 63

2
, with x1 = 10.

- xn+1 = 7− 10

xn
, with x1 = 4.

Problem 5. Prove that the following numbers are not rational:

√
5,

7
√
11,

√
2 +

√
3.

Solution (a). Let me proof that
√
5 is not rational. By contradiction, if

√
5 ∈ Q then there would

exist p, q ∈ Z such that √
5 =

p

q
, equivalently 5p2 = q2,

and we can assume, after clearing common factors, that gcd(p, q) = 1, so that they have no common
divisor. Let us now look at the equality

5p2 = q2.

The left hand side is divisible by 5, and thus 5 divides q2, which is the right hand side. Since 5 divides
q2, then 5 must divide q. If 5 divides q, then 52 divides q2, which is the right hand side. In particu-
lar, 52 divides the left hand side 5p2. If 52 divides 5p2, we have that 5 divides p2, and in consequence p.

The conclusion of this tongue-twisting paragraph is that 5 divides q and 5 divides p. This is a con-
tradiction with our initial assumption that gcd(p, q) = 1, since 5 would be a common divisor.

Solution (b) Now let me show that 7
√
11 is not rational by the same method. By contradiction, if

7
√
11 ∈ Q then there would exist p, q ∈ Z such that

7
√
11 =

p

q
, equivalently 11p7 = q7,

and we assum again that gcd(p, q) = 1. Let us look at the equality

11p7 = q7.

This time the argument sound identical, but with 11. The left hand side is divisible by 11, and thus
11 divides q7, which is the right hand side. Since 11 divides q7, then 11 must divide q. If 11 divides
q, then 117 divides q7, which is the right hand side. Now, 117 divides the left hand side 11p7. If 117

divides 11p7, we have that 116 divides p7, and in consequence p. In particular, 11 divides p.

The conclusion again is that 11 divides q and 11 divides p. This is again contradiction with our initial
assumption that gcd(p, q) = 1.

Solution (c) Let me finally show that
√
2+

√
3 is irrational. First, by the same argument as in part

(a), we prove that
√
6 is irrational. Now, assume by contradiction that

√
2+

√
3 is rational. Since the

product of rational numbers is rational, we have that (
√
2 +

√
3)2 = 5 + 2

√
6, is a rational number.

Now 5 + 2
√
6 is rational if and only if

√
6 is rational, which is a contradiction. Hence

√
2 +

√
3 was

not rational to begin with.

Problem 6. Show that for any real number r ∈ R, there exists a sequence of rational numbers
(xn) ⊆ Q such that lim

n→∞
xn = r. In particular, notice that a sequence of rational numbers can

converge to an irrational number.

Solution: For any real number r ∈ R consider, for each n ∈ N, the interval [r − 1
n , r] ⊆ R. Apply

Theorem 11.8 to this interval [r − 1
n , r] in order to obtain a rational number qn ∈ [r − 1

n , r]. Then

xn = qn is a sequence of rational numbers, and since qn ∈ [r − 1
n , r], their limit must be r.
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Problem 7. For each of the following sets X,Y and function f : X −→ Y , determine whether f is
an injection, a surjection or a bijection.

(a) f : N −→ N, f(x) = x2,

Solution (a). This is injective since x2 = y2 implies |x| = |y|, which implies x = y if both
numbers are natural. This is not surjective since 3 is not of the form 3 = x2 for a natural
number x ∈ N.

(b) f : Z −→ Z, f(x) = x2,

Solution (b). This is not injective since x2 = y2 implies |x| = |y|, but this does not imply
x = y if are integers. Since f(3) = f(−3) = 9, the function is not injective. This function is
also not surjective since again 3 ∈ Z is not of the form 3 = x2 for an integer x ∈ N.

(c) f : R+ −→ R+, f(x) = x2,

Solution (c). This is injective since x2 = y2 implies |x| = |y|, which implies x = y if are
positive real numbers. This function is also surjective since for any positive number y ∈ R+,
the number

√
y ∈ R gives f(

√
y) = y.

(d) f : R −→ R, f(x) = x3,

(e) f : R −→ R, f(x) = x4 + x2 + 3,

(f) f : Z̸=0 −→ Q, f(x) = x−5,

(g) f : N× N −→ Q, f(x, y) = x · y,

(h) f : R× R −→ R, f(x, y) = x · y,

(i) f : Z −→ Z× Z, f(x) = (x, x).

Problem 8. Determine the cardinality of each of the following sets.

(a) X1 = {(x, y) : x ∈ N, y ∈ Z} = N× Z,

(b) X2 = {(x, y, z) : x, y, z ∈ Q} = Q×Q×Q,

(c) X3 = {(x, y) : x, y ∈ R} = R× R,

(d) X4 = {x ∈ Z : x ≡ 3 mod 5},

(e) X5 = {p ∈ N : p is a prime},

(f) X6 = {x : x ∈ R \Q,−5 < x < 7} = (−5, 7) ∩ I,

(g) X7 = {x : x ∈ Q or x2 ∈ Q or x3 ∈ Q}.

Answers. The sets X1, X2, X4, X5 are countable because they are subsets of countable sets by Theo-
rem 13.14, Corollary 13.18 and the fact that the product of (finitely many) countable sets is countable.
The set X7 is countable, since it is in bijection with the union Q ∪ Q ∪ Q, which is a finite union of
countable sets, and thus it is countable.
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The sets X3 is uncountable because they admit surjections onto uncountable sets. Indeed, X3 surjects
onto R by mapping onto the first factor R in R × R. The set X6 is uncountable, and can be proven
as follows. First, write

(−5, 7) = ((−5, 7) ∩ I) ∪ ((−5, 7) ∩Q),

and notice that (−5, 7) is uncountable by Corollary 13.29. In addition, (−5, 7) ∩Q is countable since
it is a subset of Q. Now the union of two countable sets is countable, and in consequence (−5, 7)∩ I)
cannot be countable.

Problem 9. Define a word to be a finite sequence of letters, where the letters are taken from a finite
set, oftentimes called the abecedary.

(a) Show that the set of all words is countable.

Solution. The set of all words is a countable union of countable sets, and thus countable.

(b) Define a text as a subset of the set of all words. Is the set of texts countable ?

Solution. It is uncountable because it is in bijection with the power set of a countable
set, and Theorem 13.31 shows that there is no surjection of a set onto its power set.

Problem 10. Prove or disprove the following statements:

(a) Let X be a countable set, and S ⊆ X a subset. Then S is itself countable,

(b) Let X,Y be countable sets, then X × Y is countable,

(c) Let X be a set and P (X) its power set. If P (X) is uncountable then X is countable,

(d) Let X,Y be such that X × Y is uncountable, then X or Y are uncountable,

(e) Let X,Y be such that X × Y is uncountable, then X and Y are uncountable,

(f) There exist sets X,Y and maps f, g : X −→ Y , such that f is an injection but not a surjection,
and g is a bijection.

(g) There exist finite sets X,Y and maps f, g : X −→ Y , such that f is an injection but not a
surjection, and g is a bijection.

Answers. (a), (b), (d), (f) are true, and (c), (e) and (g) are false.


