University of California Davis Differential Topology MAT-239 Name (Print): Student ID (Print):

Midterm Examination I Time Limit: 50min Oct 25 2024

This examination document contains 5 pages, including this cover page, and 4 problems.

You are required to show your work on each problem on this exam. The following rules apply:

- (A) If you use a lemma, proposition or theorem which we have seen in the class or in the book, you must indicate this and explain why the theorem may be applied.
- (B) **Organize your work**, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive little credit.
- (C) Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive little credit; an incorrect answer supported by substantially correct calculations and explanations will receive partial credit.
- (D) If you need more space, use the back of the pages; clearly indicate when you have done this.

Do not write in the table to the right.

Problem	Points	Score
1	25	
2	25	
3	25	
4	25	
Total:	100	

- 1. (25 points) Solve the following three parts.
 - (a) (5 points) Show that

$$\{(x,y)\in\mathbb{R}^3: y=|x|\}\subseteq\mathbb{R}^2$$

is not a smooth manifold in \mathbb{R}^2 .

(b) (10 points) Show that

$$X = \{(x, y, z, w) \in \mathbb{R}^4 : 2x^2 + 5y^2 + 8z^2 + 3w^2 = 18\} \subseteq \mathbb{R}^4$$

and

$$Y = \{(x, y, z, w) \in \mathbb{R}^4 : x^3 - x - y + z^2 + w^2 = 1, z - w = 0\} \subseteq \mathbb{R}^4$$

are smooth manifolds in \mathbb{R}^4 .

(c) (10 points) Consider the intersection points $p = (1, 1, 1, 1) \in X \cap Y$. Prove or disprove whether the intersection of X and Y at p is transverse.

2. (25 points) Consider the smooth manifold

$$S^{1} = \{(x, y) \in \mathbb{R}^{2} : x^{2} + y^{2} = 1\}$$

and the restriction $f_{\alpha}: S^1 \longrightarrow \mathbb{R}$ of $F_{\alpha}: \mathbb{R}^2 \longrightarrow \mathbb{R}$, $F_{\alpha}(x, y) := \alpha x^2 - y$, to $S^1, \alpha \in \mathbb{R}_{\geq 0}$. (a) (10 points) Find the critical points of $f_{\alpha}: S^1 \longrightarrow \mathbb{R}$, for each $\alpha \in \mathbb{R}_{\geq 0}$.

(a) (to points) i find the effective points of $j_{\alpha} : b$ (i.e., for each $\alpha \in \mathbb{R} \ge 0$.

(b) (15 points) Find the values of $\alpha \in \mathbb{R}$ for which f_{α} is a Morse function and, for those values, compute the indices of its critical points.

3. (25 points) Consider the smooth manifold

 $X = \{A \in M_2(\mathbb{R}) : \det(A) = 1\} \subseteq \mathbb{R}^4$

and the map $\exp: V \longrightarrow X$, $\exp(N) := e^N$, where $V := \{N \in M_2(\mathbb{R}) : \operatorname{tr}(N) = 0\} \subseteq \mathbb{R}^4$.

(a) (15 points) Show that $\exp: V \longrightarrow X$ is a local diffeomorphism at N = 0.

(b) (10 points) Show that $\exp: V \longrightarrow X$ is not a global diffeomorphism.

- 4. (25 points) For each of the sentences below, circle **the correct answer**. (You do *not* need to justify your answer.)
 - (a) (5 points) Let $f: X \longrightarrow Y$ be a smooth map and $\phi: X \longrightarrow X$ a diffeomorphism. The differential of $\phi \circ f: X \longrightarrow Y$ has the expression (a) $d\phi \circ df$. (b) $d(\phi^{-1}) \circ df$. (c) $df \circ d\phi$. (d) $(d\phi)^t \circ df$.
 - (b) (5 points) Let $f: X \longrightarrow Y$ be a smooth map and $\phi: X \longrightarrow X$ a diffeomorphism. The Hessian $\mathrm{H}(\phi \circ f)$ of $\phi \circ f: X \longrightarrow Y$ has the expression (a) $\mathrm{H}(\phi)^{-1} \circ \mathrm{H}(f) \circ \mathrm{H}(\phi)$. (b) $\mathrm{H}(\phi) \circ \mathrm{H}(f) \circ \mathrm{H}(\phi)^{-1}$. (c) $\mathrm{H}(\phi)^t \circ \mathrm{H}(f) \circ \mathrm{H}(\phi)$. (d) None of the above.
 - (c) (5 points) Let $f: X \longrightarrow Y$ be an injective immersion, then im(f) is a submanifold under the condition that
 - (a) X is compact. (b) No condition. (c) Y is compact. (d) None of these.
 - (d) (5 points) The function $f : \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = x^3 + \alpha x$ is a Morse function if
 - (a) $\alpha = 0$ (b) $\alpha \neq 0$ (c) $\alpha \neq \pm 1$ (d) None of the above.
 - (e) (5 points) The set of regular values of a smooth function $f: X \longrightarrow \mathbb{R}^3$ is
 - (a) Discrete. (b) Measure zero. (c) Dense. (d) Empty. (e) None of the above.