University of California Davis
Algebraic Topology MAT 215B
Final Examination
Time Limit: Due 6/11@9pm
\qquad
Name (Print):
Student ID (Print):
June 7 2024@9am

This examination document contains 9 pages, including this cover page, and 8 problems.

Task: Solve three of the problems below. You may choose which three problems.
You must show your work on each chosen problem. The following rules apply:
(A) If you use a lemma, proposition or theorem which we have seen in the class or in the book, you must indicate this and explain why the theorem may be applied.
(B) Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive little credit.
(C) Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive little credit; an incorrect answer supported by substantially correct calculations and explanations will receive partial credit.

Do not write in the table to the right.

Problem	Points	Score
1	100	
2	100	
3	100	
4	100	
5	100	
6	100	
7	100	
8	100	
Total:	800	

1. (100 points) Let $K \subseteq S^{3}$ be the image of a smooth embedding $S^{1} \rightarrow S^{3}$.
(a) (70 points) Compute the homology of the complement $H_{*}\left(S^{3} \backslash K, \mathbb{Z}\right)$.
(b) (30 points) Give an example of two such embedded 1-spheres $K_{1}, K_{2} \subseteq S^{3}$ such that $S^{3} \backslash K_{1}$ is not homotopic to $S^{3} \backslash K_{2}$.
2. (100 points) Let $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}, n \in \mathbb{N}$, act on the 5 -sphere

$$
S^{5}=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=1\right\}
$$

via the formula:

$$
\mathbb{Z}_{n} \times S^{5} \rightarrow S^{5}, \quad\left(1 ; z_{1}, z_{2}, z_{3}\right) \mapsto\left(e^{2 \pi i / n} \cdot z_{1}, e^{2 \pi i / n} \cdot z_{2}, e^{2 \pi i / n} \cdot z_{3}\right)
$$

where $1 \in \mathbb{Z}_{n}$ is a generator. Let $X_{n}:=S^{5} / \sim$ be the orbit space of this \mathbb{Z}_{n}-action, endowed with the quotient topology.
(a) (40 points) Show that

$$
H_{*}\left(X_{n}, \mathbb{Z}\right)= \begin{cases}\mathbb{Z} & \text { if } *=0,5 \\ \mathbb{Z}_{n} & \text { if } *=1,3 \\ 0 & \text { if } *=2,4\end{cases}
$$

(b) (30 points) For any $n, m \in \mathbb{N}$, compute the cohomology groups $H^{*}\left(X_{n} ; \mathbb{Z}_{m}\right)$ with coefficients in the Abelian group \mathbb{Z}_{m}.
(c) (30 points) For any $n, m \in \mathbb{N}$, compute the homology groups $H_{*}\left(X_{n} \times X_{m} ; \mathbb{Z}\right)$.
3. (100 points) Let $T^{3}=\left(S^{1}\right)^{3}$ be the 3 -torus and consider the continuous map

$$
f: T^{3} \rightarrow T^{3}, \quad f\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\left(\begin{array}{ccc}
5 & 4 & -2 \\
4 & 4 & -3 \\
-4 & -3 & 4
\end{array}\right)\left(\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right)
$$

Consider the smooth 3-dimensional manifold

$$
M(f):=\left(T^{3} \times[0,1]\right) / \sim \quad \text { where } \quad(f(x), 0) \sim(x, 1) \quad \text { if } x \in T^{3}
$$

(a) (50 points) Compute the homology groups $H_{*}(M(f) ; \mathbb{Z})$.
(b) (20 points) Is the map $f: T^{3} \rightarrow T^{3}$ homotopic to the identity?
(c) (20 points) Show that $f: T^{3} \rightarrow T^{3}$ has at least one fixed point.
(d) (10 points) Suppose that $g: T^{3} \rightarrow T^{3}$ is a continuous map such that $H_{*}(g)=$ $H_{*}(f)$, as endomorphisms of $H_{*}\left(T^{3}\right)$. Does g necessarily have a fixed point?
4. (100 points) Let \mathcal{C} be the Abelian category of Abelian groups. Solve the following parts.
(a) (40 points) Give an example of two functors $F, J: \mathcal{C} \rightarrow \mathcal{C}$ such that F is left-exact but not right-exact and J is right-exact but not left-exact.
(b) (30 points) Give an example of a functor $H: \mathcal{C} \rightarrow \mathcal{C}$ such that H is not left-exact nor right-exact but for every short exact sequence

$$
0 \rightarrow G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow 0
$$

the complex

$$
H\left(G_{1}\right) \rightarrow H\left(G_{2}\right) \rightarrow H\left(G_{3}\right)
$$

is exact.
(c) (30 points) Give an example of a functor $H: \mathcal{C} \rightarrow \mathcal{C}$ such that H is not left-exact nor right-exact and there exists a short exact sequence

$$
0 \rightarrow G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow 0
$$

such that the complex

$$
H\left(G_{1}\right) \rightarrow H\left(G_{2}\right) \rightarrow H\left(G_{3}\right)
$$

is not exact.
5. (100 points) Let k be a field, $R=k\left[x_{1}, \ldots, x_{n}\right]$ the polynomial algebra in n generators x_{1}, \ldots, x_{n} of degree 1. Consider k as an R-module under the map $R \rightarrow k$ that quotients by the ideal $\left(x_{1}, \ldots, x_{n}\right)$.
(a) (50 points) Show that the Ext_{R} groups of k with k are, as k-vector spaces,

$$
\operatorname{Ext}_{R}^{i}(k, k) \cong k^{\binom{n}{i}}, \quad i \in \mathbb{N}
$$

where $\binom{n}{i}$ denotes n choose i. (In particular, for $n<i$, $\operatorname{Ext}_{R}^{i}(k, k)=\{0\}$.)
(b) (50 points) Let $Q=E\left[y_{1}, \ldots, y_{n}\right]$ be the exterior algebra in y_{1}, \ldots, y_{n}, each y_{i} in degree 1. Consider k as an Q-module under the map $Q \rightarrow k$ that quotients by the ideal $\left(y_{1}, \ldots, y_{n}\right)$. Compute the groups $\operatorname{Ext}_{Q}^{i}(k, k)$ for all $i \in \mathbb{N}$.
6. (100 points) Let R be a commutative ring.
(a) (50 points) Suppose that A, B are R-modules. Show that

$$
\operatorname{Tor}_{i}^{R}(A, B) \cong \operatorname{Tor}_{i}^{R}(B, A)
$$ for all $i \in \mathbb{N}$.

(b) (50 points) Let $I, J \subseteq R$ be ideals. Considering $R / I, R / J \in R$-mod, show that

$$
\operatorname{Tor}_{0}^{R}(R / I, R / J) \cong R /(I+J), \quad \operatorname{Tor}_{1}^{R}(R / I, R / J) \cong(I \cap J) /(I \cdot J)
$$

7. (100 points) Consider the complex projective plane $\mathbb{C P}^{2}$ with homogeneous coordinates $\left[z_{0}: z_{1}: z_{2}\right]$. Consider the smooth submanifold

$$
C=\left\{\left[z_{0}: z_{1}: z_{2}\right] \in \mathbb{C P}^{2}: z_{0}^{2}+z_{1}^{2}+z_{2}^{2}=0\right\} \subseteq \mathbb{C P}^{2}
$$

(a) (30 points) Show that C is diffeomorphic to S^{2}.
(b) (40 points) Let $U \subseteq \mathbb{C P}^{2}$ be an arbitrarily small (but fixed) open neighborhood of C, so that the inclusion $C \subseteq U$ is a homotopy equivalence. Compute the homology groups of the boundary of U, i.e. compute $H_{*}(\partial U ; \mathbb{Z})$.
(c) (30 points) Compute the homology groups of the complement, i.e. $H_{*}\left(\mathbb{C P}^{2} \backslash C\right.$; $\left.\mathbb{Z}\right)$.
(d) (0 points) (Optional) Consider the surface

$$
C_{d}=\left\{\left[z_{0}: z_{1}: z_{2}\right] \in \mathbb{C P}^{2}: z_{0}^{d}+z_{1}^{d}+z_{2}^{d}=0\right\} \subseteq \mathbb{C P}^{2}
$$

Compute $H_{1}\left(\mathbb{C P}^{2} \backslash C_{d} ; \mathbb{Z}\right)$.
8. (100 points) Consider the following 3-dimensional smooth submanifold:

$$
\Sigma:=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}: z_{1}^{2}+z_{2}^{3}+z_{3}^{5}=0\right\} \cap S^{5}
$$

where $S^{5}=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=1\right\}$ is the unit 5 -sphere in $\mathbb{C}^{3}=\mathbb{R}^{6}$.
(a) (80 points) Show that $H_{*}(\Sigma ; \mathbb{Z}) \cong H_{*}\left(S^{3} ; \mathbb{Z}\right)$, where S^{3} is the 3 -dimensional sphere.
(b) (20 points) Show that Σ is not diffeomorphic to S^{3}.

