MAT 215B: PROBLEM SET 3

NO DUE DATE

Task: Solve some of the following problems. Be rigorous and precise in writing your solutions. These problems are for practice and do not need to be submitted.

Problem 1. (**Properties of Ext**). Let G, H be finitely generated Abelian groups.

- (a) Show that Hom(-, G) is right exact, i.e. if $A \longrightarrow B \longrightarrow C \longrightarrow 0$ is exact, then $Hom(A, G) \longleftarrow Hom(B, G) \longleftarrow Hom(C, G) \longleftarrow 0$ is exact.
- (b) Give an example which shows that Hom(-, G) is not left exact.
- (c) Show that $Ext^0(H,G) = Hom(H,G)$.
- (d) Show that $Ext^i(H,G) = 0$ for $i \ge 2$.
- (e) Give two examples of distinct Abelian groups H_1, H_2 such that

$$Ext^{0}(H_{1},\mathbb{Z}) = Ext^{0}(H_{2},\mathbb{Z}).$$

Thus, $Ext^0(H, \mathbb{Z})$ does not in general recover the Abelian group H.

Problem 2. (Homological Algebra of Ext). Let $0 \longrightarrow A \longrightarrow B \longrightarrow C$ be a short exact sequence of Abelian groups, and G an Abelian group. Show that there exists a long exact sequence

$$0 \longrightarrow Hom(C,G) \longrightarrow Hom(B,G) \longrightarrow Hom(A,G) \xrightarrow{\delta} Ext^{1}(C,G) \longrightarrow Ext^{1}(B,G) \longrightarrow Ext^{1}(A,G) \longrightarrow 0.$$

That is, similar to the homology functor H_* , applying Ext^* to a short exact sequence yields a long exact sequence of Ext groups. (Recall that $Ext^0(H,G) = Hom(H,G)$, as you proved in Problem 1.(c), and, $Ext^i(H,G) = 0$ for $i \ge 2$, after Problem 1.(d). Thus this long exact sequence is a sequence of all Ext groups.)

Problem 3. (Computations of Ext I). All groups H_1, H_2, G_1, G_2, H, G in this problem are finitely generated Abelian groups.

- (a) Show that $Ext^*(H_1 \oplus H_2, G) = Ext^*(H_1, G) \times Ext^*(H_2, G)$.
- (b) Prove that $H^*(X \vee Y, G) \cong H^*(X, G) \times H^*(Y, G)$.
- (b) Is $Ext^{*}(H, G_1 \times G_2) = Ext^{*}(H, G_1) \times Ext^{*}(H, G_2)$ true ?
- (c) Show that $Ext^{1}(H,G) = 0$ if H is a free group.
- (d) Find the cohomology groups $H^*(S^n, G)$ with coefficients in a finitely generated group Abelian G.
- (e) Find the cohomology groups $H^*(\mathbb{CP}^n, G)$.

Problem 4. (Computations of Ext II) Solve the following parts:

- (a) Compute $Ext^*(H, \mathbb{Z})$ for all finitely generated Abelian groups H. In particular, conclude that the graded groups $Ext^*(H, \mathbb{Z})$ uniquely determine H.
- (b) Show that $Ext^0(\mathbb{Z}_n, \mathbb{Z}_m) = \mathbb{Z}_d$ and $Ext^1(\mathbb{Z}_n, \mathbb{Z}_m) = \mathbb{Z}_d$, where d = gcd(n, m).
- (c) Find the cohomology groups $H^*(\mathbb{RP}^n, \mathbb{Z})$ with coefficients in \mathbb{Z} .
- (d) Compute the cohomology groups $H^*(\mathbb{RP}^n, \mathbb{Z}_2)$ with coefficients in \mathbb{Z}_2 .
- (e) Which groups provide more information $H^*(\mathbb{RP}^n, \mathbb{Z}_2)$ or $H^*(\mathbb{RP}^n, \mathbb{Z}_3)$?
- (f) For each odd $n \in \mathbb{N}$, give an example of a topological space X such that the cohomology groups $H^*(X, \mathbb{Z}_3) \cong H^*(S^n, \mathbb{Z}_3)$ are isomorphic, but X is not homotopy equivalent to S^n .

Problem 5. (Group Extensions) Let A, B be two \mathbb{Z} -modules, an *extension* of B by A is the data of a group G and a short exact sequence

$$0 \longrightarrow A \longrightarrow G \longrightarrow B \longrightarrow 0$$

The set of all extensions of B by A is denoted $\mathcal{E}(B, A)$.

- (a) Show that $G \cong A \oplus B$ if B is free, i.e. the only extensions of the Abelian groups \mathbb{Z}^r are by direct sums.
- (b) Show that $\mathcal{E}(\mathbb{Z}_p, \mathbb{Z}_p)$ contains p elements, if p is a prime.
- (c) Given an extension $0 \longrightarrow A \longrightarrow G \longrightarrow B \longrightarrow 0$, consider the induced map $Hom(A, A) \xrightarrow{\delta} Ext^1(B, A)$ constructed above. Show that

$$\begin{split} \chi: \mathcal{E}(B,A) &\longrightarrow Ext^1(B,A), \\ \chi\left(0 &\longrightarrow A &\longrightarrow G &\longrightarrow B &\longrightarrow 0 \right) = \delta(id_A), \end{split}$$

is a bijection.

(d) Conclude that there are exactly $\mathbb{Z}_{acd(n,m)}$ extensions of \mathbb{Z}_n by \mathbb{Z}_m .

Problem 6. (A geometric Meaning of Ext) This problem is only optional, in case you are taking an introductory class in Algebraic Geometry.

(a) Let X = Spec(A) be an affine variety, $x \in X$ a closed point given by a maximal ideal $\mathfrak{m} \subseteq A$, and k(x) its residue field. Show that $Ext^1_X(k(x), k(x))$ is isomorphic to the tangent space $T_x X$ of X at x.

Since $Ext_X^1(k(x), k(x))$ is isomorphic to $Ext_A^1(A/\mathfrak{m}, A/\mathfrak{m})$, and T_xX is, by definition, $Hom_{A/\mathfrak{m}}(\mathfrak{m}/\mathfrak{m}^2, A/\mathfrak{m})$, the above statement is equivalent to

$$Ext^{1}_{A}(A/\mathfrak{m}, A/\mathfrak{m}) \cong Hom_{A/\mathfrak{m}}(\mathfrak{m}/\mathfrak{m}^{2}, A/\mathfrak{m}).$$

(b) Let $E \longrightarrow X$ be a coherent sheaf (e.g. a vector bundle) over a smooth algebraic variety X, and \mathcal{M}_X the moduli space of coherent sheaves. Give an heuristic explanation for the isomorphism $Ext^1(E, E) \cong T_E \mathcal{M}_X$.

Problem 7. (Künneth Formula I). Solve the following parts.

- (a) Compute the cohomology $H^*(S^n \times S^m, \mathbb{Z})$ for all $n, m \in \mathbb{N}$.
- (b) Show that the cohomology $H^*(T^n, \mathbb{Z})$ is isomorphic to the exterior algebra on n elements. In particular, show that

$$\operatorname{rank}_{\mathbb{Z}}(H^k(T^n,\mathbb{Z})) = \binom{n}{k}.$$

(c) Let X be a CW complex. Compute the cohomology of $H^*(X \times S^1, \mathbb{Z})$ in terms of $H^*(X)$.

Problem 8. (Künneth Formula II). A real division algebra structure on \mathbb{R}^n is a bilinear multiplication map

$$: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

such that ax = b and xa = b are uniquely solvable whenever $a \neq 0$.

- (a) Show that \mathbb{R}, \mathbb{R}^2 and \mathbb{R}^4 admit an real division algebra structure.
- (b) Suppose (\mathbb{R}^n, \cdot) is a real division algebra. Show that the map

$$g: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}, \quad g(x,y) = \frac{x \cdot y}{|x \cdot y|}$$

defined by restricting the division algebra product to the unit sphere (and normalize), descends to a map $\tilde{g} : \mathbb{RP}^n \times \mathbb{RP}^n \longrightarrow \mathbb{RP}^n$.

- (c) (Assuming knowledge of cup product or ring structure on cohomology.) Let $\alpha \in H^1(\mathbb{RP}^{n-1}, \mathbb{Z}_2)$ be the generator. Show that the pull-back $\tilde{g} * (\alpha^n)$ of the map \tilde{g} in Part (b) vanishes, i.e. $\tilde{g} * (\alpha^n) = 0$.
- (d) Show that if (\mathbb{R}^n, \cdot) is a real division algebra, then $n = 2^k$ for some $k \in \mathbb{N}$.

Problem 9. Let $\mathcal{F} \in \text{Sh}(S^1)$ be a locally constructible sheaf on S^1 and k a field. Suppose that the stalk \mathcal{F}_x is an *n*-dimensional *k*-vector space and $M \in \text{Aut}(\mathcal{F}_x)$ is its monodromy. Compute the sheaf cohomology $H^*(S^1; \mathcal{F})$.

Problem 10. Let X be a smooth manifold.

- (1) Show that the sheaf of smooth differential forms Ω_X^* on the smooth manifold X is an acyclic resolution of the constant sheaf $\underline{\mathbb{R}}$ on X.
- (2) Prove that $H^*_{dR}(X, \mathbb{R}) \cong H^*(X; \mathbb{R})$, i.e. deRham cohomology is isomorphic to the sheaf cohomology of the constant sheaf \mathbb{R} .