University of California Davis Abstract Linear Algebra MAT 67

Practice Final II
Time Limit: 120 Minutes
\qquad
Name (Print):
Student ID (Print):
June 132024

This examination document contains 8 pages, including this cover page, and 4 problems. You must verify whether there any pages missing, in which case you should let the instructor know. Fill in all the requested information on the top of this page, and put your initials on the top of every page, in case the pages become separated.

You may not use your books, notes, or any calculator on this exam.
You are required to show your work on each problem on this exam. The following rules apply:
(A) If you use a lemma, proposition or theorem which we have seen in the class or in the book, you must indicate this and explain why the theorem may be applied.
(B) Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive little credit.
(C) Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or

Problem	Points	Score
1	25	
2	25	
3	25	
4	25	
Total:	100	

(D) If you need more space, use the back of the pages; clearly indicate when you have done this.

Do not write in the table to the right.

1. (25 points) Let $V=\mathbb{R}^{4}$ and consider the linear map $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ given by

$$
A_{f}=\left(\begin{array}{llll}
3 & 2 & 1 & 0 \\
1 & 0 & 2 & 1
\end{array}\right)
$$

Consider also the subset

$$
U=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}-x_{2}+3 x_{3}+2 x_{4}=0\right\} \subseteq V
$$

(a) (7 points) Show that $U \subseteq V$ is a vector subspace of V.
(b) (8 points) Find the dimensions of $\operatorname{dim}(\operatorname{ker} f)$ and $\operatorname{dim}(\operatorname{im} f)$.
(c) (10 points) Show that $V=U+\operatorname{ker} f$.
(d) (10 points) Prove or disprove whether $V=U \oplus \operatorname{ker} f$.
2. (25 points) Let $V=\mathbb{R}^{3}$ and consider the linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by the matrix

$$
A_{f}=\left(\begin{array}{ccc}
4 & -1 & -1 \\
-1 & 3 & 0 \\
-1 & 0 & 3
\end{array}\right)
$$

in the standard coordinate basis.
(a) (5 points) Show that $\lambda=5$ is an eigenvalue of A_{f} and find the other two eigenvalues.
(b) (10 points) Find a basis of eigenvectors of A_{f}.
(c) (5 points) Show that A_{f} defines an inner product on $V=\mathbb{R}^{3}$ via

$$
\langle v, w\rangle=v^{t} \cdot A_{f} \cdot w
$$

(d) (5 points) Prove or disprove whether $v=(1,1,1)$ and $w=(0,-1,1)$ are orthogonal with respect to the inner product defined by A_{f}.
3. (25 points) Consider the vector space $V=\mathbb{R}[x]$ and consider the map $f: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ given by

$$
f(p(x))=p_{7}(x)
$$

where $p_{7}(x)$ is the polynomial consisting of terms of $p(x)$ of degree at most 7 . For instance, $f\left(1+x^{4}-5 x^{7}+x^{9}-14 x^{11}\right)=1+x^{4}-5 x^{7}$.
(a) (10 points) Show that f is a linear map.
(b) (6 points) Find a basis of $\operatorname{ker}(f)$ and a basis of $\operatorname{im}(f)$.
(c) (5 points) Let $U \subseteq \mathbb{R}[x]$ be the subspace of polynomials whose terms are all even powers, i.e. $U=\{p(x) \in \mathbb{R}[x]: p(x)=p(-x)\}$. Compute the dimension of the intersection $\operatorname{im}(f) \cap U$.
(d) (4 points) Does f have any eigenvalue apart from $\lambda=0$? (Justify your answer.)
4. (25 points) For each of the sentences below, circle whether they are true or false. (You do not need to justify your answer.)
(a) (5 points) The map $f: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ given by $f(p(x)):=\int_{0}^{x} p(\xi) d \xi$ is a linear map.
(1) True.
(2) False.
(b) (5 points) Let v_{1}, v_{2} be eigenvectors of eigenvalues λ_{1}, λ_{2} respectively. If $\lambda_{1} \neq \lambda_{2}$ then v_{1}, v_{2} are linearly independent.
(1) True.
(2) False.
(c) (5 points) $(1,0,1,0),(-2,-4,5,7),(1,-4,8,7)$ are linearly independent.
(1) True.
(2) False.
(d) (5 points) The inverse of $A=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$ is A itself.
(1) True.
(2) False.
(e) (5 points) Let $V=\mathbb{R}[x]$. The map $f: V \rightarrow V$ given by $f(p(x))=p^{\prime}(x)$ is surjective.
(1) True.
(2) False.

